
MODULARITY SEMINAR: TANGENT SPACES OF DEFORMATION

RINGS

DANIEL HU

Abstract. I’d like to thank Halloween for sponsoring today’s lecture.

These notes are based on [Gee22, Section 3] and [Zho14] and [CHT08, Section 2].

Notation. Let ℓ be a prime greater than 2, and L/Qℓ a finite extension with ring of integers
O, uniformizer λ and residue field F. We define the category CO whose objects are complete
Noetherian local O-algebras A such that A/mA = F, and whose morphisms are local homo-
morphisms f : (A,mA) → (B,mB) of local algebras (i.e. f(mA) ⊂ mB). Let G be a profinite
group satisfying the following axiom:

Axiom 0.1. For all finite index subgroups ∆ ⊂ G, ∆/⟨[∆,∆],∆ℓ⟩ is finitely generated.

Finally, let n be a positive integer such that ℓ ∤ n, and let ρ : G → GLn(F) be a continuous
representation.

1. The lifting and deformation functors

Definition 1.1. Let A ∈ CO. A lift of ρ to A is a continuous representation ρ : G→ GLn(A)
such that ρ mod mA = ρ. (By ρ mod mA we mean the composition of ρ with the projection
GLn(A)→ GLn(F).)

Recall the lifting functor of ρ, which maps to sets of lifts,

R□
ρ : CO → Set,

A 7→ {lifts of ρ to A}.

Fact 1.2. The functor R□
ρ is represented by some R□

ρ ∈ CO, called the universal lifting ring.

Equivalently, there exists a continuous representation ρ□ : G → GLn(R
□
ρ ), called the

universal lifting, with the following property: for all A ∈ CO and ρ : G → GLn(A) lifting ρ,
there exists a unique fρ : R□

ρ → A making the following diagram commute. (By abuse of

G GLn(R
□
ρ )

GLn(A)

ρ□

ρ fρ

notation, fρ also denotes the induced map GLn(R
□
ρ )→ GLn(A).)

These are the main definitions for the lifting functor. For the deformation functor, we first
recall that if EndF[G] ρ = F then we say that ρ is Schur. And if ρ⊗F F is irreducible, then we
say that ρ is absolutely irreducible. Moreover, it is absolutely irreducible if and only if it is
irreducible and Schur.
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Definition 1.3. Suppose ρ is Schur. A deformation of ρ to A is an equivalence class of liftings,
where ρ ∼ ρ′ if and only if ρ′ = aρa−1 for some a ∈ ker(GLn(A) → GLn(F)) (equivalently,
some a ∈ GLn(A)).

We can define the deformation functor of ρ, which maps to sets of deformations,

Rρ : CO → Set,

A 7→ {lifts of ρ to A}/ ∼ .

Fact 1.4. If ρ is Schur, the functor Rρ is represented by some Runiv
ρ ∈ CO, called the universal

deformation ring.

Equivalently, there exists a continuous representation ρuniv : G → GLn(R
univ
ρ ) up to ∼-

equivalence, called the universal deformation, with the following property: for all A ∈ CO and
ρ : G→ GLn(A) lifting ρ, there exists a unique fρ : Runiv

ρ → A such that fρ ◦ ρuniv ∼ ρ.
From the definitions, there is a natural map R□

ρ → Runiv
ρ . In fact, if ρ is absolutely

irreducible, then R□
ρ is isomorphic to a power series ring in (n2 − 1) variables over Runiv

ρ .

2. Tangent spaces

Knowing that the rings R□
ρ and Runiv

ρ , it is worthy to study their properties such as their
Krull dimension, number of generators and relations, etc. In pursuit of this the study of
tangent spaces is very useful.

To begin, the adjoint representation ad ρ is given by the composite

G→ GLn(F)
ad−→ Aut(Mn(F)),

where the map ad is given by

g 7→ (ϕ 7→ gϕg−1).

We also use ad ρ to denote Mn(F) as an F[G]-module.

Proposition 2.1. The following are in natural bijection:

(1) HomF(mR□
ρ
/⟨m2

R□
ρ

, λ⟩,F)

(2) HomCO(R
□
ρ ,F[ϵ]/⟨ϵ2⟩)

(3) R□
ρ (F[ϵ]/⟨ϵ2⟩) = {lifts of ρ to F[ϵ]/⟨ϵ2⟩}

(4) Z1(G, ad ρ), the continuous 1-cocycles.

Proof. For (1) ⇒ (2), define a map R□
ρ → F[ϵ]/⟨ϵ2⟩ by a + x 7→ a + f(x)ϵ for all a ∈ O,

x ∈ mR□
ρ
. (Note that R□

ρ /mR□
ρ
≃ O/λ = F. Thus O ∩mR□

ρ
= λ, so this is well-defined.)

For (2) ⇒ (1), note that under a map R□
ρ → F[ϵ]/⟨ϵ2⟩, the maximal ideal mR□

ρ
must map

to the maximal ideal ϵF[ϵ]/⟨ϵ2⟩, which we identify with F. Moreover, the kernel contains m2
R□

ρ

and also contains λ.
The bijection (2) ⇔ (3) is by definition.
For (3) ⇒ (4), we send a cocycle ϕ ∈ Z1(G, ad ρ) to the lifting ρ : G → GLn(F[ϵ]/⟨ϵ2⟩),

ρ(g) = (1 + ϕ(g)ϵ)ρ(g). □

Proposition 2.2. Suppose ρ is absolutely irreducible. Then we have a natural bijection
between HomF(mRuniv

ρ
/⟨m2

Runiv
ρ

, λ⟩,F) and H1(G, ad ρ).

Proof. Replicate the arguments above. □
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Corollary 2.3. We have

dimF Z
1(G, ad ρ) = dimFmR□

ρ
/⟨m2

R□
ρ
, λ⟩ = dimFH

1(G, ad ρ) + n2 − dimFH
0(G, ad ρ).

Proof. Consider the exact sequence

0→ H0(G, ad ρ)→ ad ρ→ Z1(G, ad ρ)→ H1(G, ad ρ)→ 0,

where the middle arrow is ϕ 7→ (γ 7→ γϕ− ϕ). □

In particular, if d = dimF Z
1(G, ad ρ), then we can choose a surjection ϕ : OJx1, . . . , xdK→

R□
ρ . Similarly, if ρ is absolutely irreducible, we can choose a surjection ϕ′ : OJx1, . . . , xd′K→

Runiv
ρ , where d′ = dimFH

1(G, ad ρ).

Lemma 2.4. If J = kerϕ or J = kerϕ′, then there is an injection HomF(J/mJ,F) ↪→
H2(G, ad ρ), where m = ⟨λ, x1, . . . , xd⟩ or ⟨λ, x1, . . . , xd′⟩ denotes the maximal ideal of OJx1, . . . , xdK
or OJx1, . . . , xd′K, respectively.

Proof. Let f ∈ HomF(J/mJ,F). Consider

ρ□ : G GLn(R
□
ρ ) = GLn(OJx1, . . . , xdK/J)

GLn(OJx1, . . . , xdK/mJ)

For g ∈ G, let ρ̃(g) be a lift of ρ□(g) to GLn(OJx1, . . . , xdK/mJ). Define

cf (g, h) = f(ρ̃(gh)ρ̃(h)−1ρ̃(g)−1 − 1n) ∈Mn(F).
One shows that cf ∈ Z2(G, ad ρ), i.e. it is a 2-cocycle. We claim that f 7→ [cf ] is the desired
injection.

Note that [cf ] = 0 if and only if there exists a set-theoretic map ρ̃ : G→ GLn(OJx1, . . . , xdK/mJ)
such that ρ̃ mod Jf is a homomorphism where Jf = ker(J → J/mJ → F). Suppose this is

true. By the universal property of R□
ρ , we can complete the diagram

G GLn(OJx1, . . . , xdK/J)

GLn(OJx1, . . . , xdK/Jf )

ρ□

ρ̃

Suppose f ̸= 0. Then we have an exact sequence

0→ F→ OJx1, . . . , xdK/Jf → OJx1, . . . , xdK/J → 0.

□

Corollary 2.5. If H2(G, ad ρ) = 0, then R□
ρ ≃ OJx1, . . . , xdK, where d = dimF Z

1(G, ad ρ).

In any case, the Krull dimension of R□
ρ is at least

1 + n2 − dimFH
0(G, ad ρ) + dimFH

1(G, ad ρ)− dimFH
2(G, ad ρ).

If ρ is absolutely irreducible, then the Krull dimension of Runiv
ρ is at least

1 + dimFH
1(G, ad ρ)− dimFH

2(G, ad ρ).

Proof. Combine Corollary 2.3 and Lemma 2.4. □
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3. Deformation problems

Definition 3.1. By a deformation problem D we mean a collection of liftings (R, ρ) of (F, ρ)
(with R ∈ CO) satisfying the following properties.

• (F, ρ) ∈ D.
• If f : R→ S is a morphism in CO and (R, ρ) ∈ D, then (S, f ◦ ρ) ∈ D.
• If f : R ↪→ S is an injective morphism in CO then (R, ρ) ∈ D iff (S, f ◦ ρ) ∈ D.
• Suppose that R1, R2 ∈ CO and I1, I2 are closed ideals of R1, R2, respectively such that
there is an isomorphism f : R1/I1

∼−→ R2/I2. Suppose also that (R1, ρ1), (R2, ρ2) ∈ D,
and that f(ρ1 mod I1) = ρ2 mod I2.

Then ({(a, b) ∈ R1 ⊕R2 | f(a mod I1) = b mod I2}, ρ1 ⊕ ρ2) ∈ D.
• If (R, ρ) is a lifting of (F, ρ) and I1 ⊃ I2 ⊃ · · · is a sequence of ideals of R with
∩jIj = 0, and (R/Ij , ρ mod Ij) ∈ D for all j, then (R, ρ) ∈ D.
• If (R, ρ) ∈ D and a ∈ ker(GLn(R)→ GLn(F)), then (R, aρa−1) ∈ D.

Note that each element a ∈ ker(GLn(R
□
ρ )→ GLn(F)) acts on R□

ρ via the universal property

and by sending ρ□ to a−1ρ□a. (In general, this is not a group action.)

Proposition 3.2. There is a bijection

{deformation problems} ↔ {ker(GLn(R
□
ρ → GLn(F))-invariant radical ideals of R□

ρ }.
D 7→ I(D)

D(I)←[ I

which is defined as follows.
If D is a deformation problem, then there is a ker(GLn(R

□
ρ → GLn(F))-invariant radical

ideal I(D) of R□
ρ such that (R, ρ) ∈ D if and only if the map R□

ρ → R induced by ρ factors

through the quotient R□
ρ /I(D).

If I is a ker(GLn(R
□
ρ → GLn(F))-invariant radical ideal of R□

ρ , then

D(I) = {(R, ρ) | R□
ρ → R factors through R□

ρ /I}

is a deformation problem.

Definition 3.3. Let L̃(D) ⊆ Z1(G, ad ρ) ≃ HomF(mR□
ρ
/⟨m2

R□
ρ

, λ⟩,F) denote the annihilator

of the image of I(D) in mR□
ρ
/⟨m2

R□
ρ

, λ⟩. Then L̃(D) is actually the pre-image of its image L(D)

in H1(G, ad ρ).

Note that

HomF(mR□
ρ
/⟨m2

R□
ρ
, I(D), λ⟩,F) ≃ L̃(D)

and the exact sequence from Corollary 2.3 gives us

dim L̃(D) = n2 + dimL(D)− dimH0(G, ad ρ).

In applications, one often wishes to fix the determinants of the lifts. Given a continuous
character χ : G → O× such that χ mod λ = det ρ, we let Rρ,χ(A) be the set of liftings to A
that have det ρ = χ⊗O A. Similarly we define a functor Rρ with

Fact 3.4. The functor R□
ρ,χ is represented by a universal object ρ□χ : G→ GLn(R

□
ρ,χ). If ρ is

Schur, then Rρ,χ is represented by a universal object ρ□χ : G→ GLn(R
univ
ρ,χ ) up to equivalence.
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Moreover, all of the statements in Section 2 carry over if we replace ad ρ by the subspace
ad0 ρ = {x ∈ adρ | trace(x) = 0}. Note that since ℓ ∤ n, the exact sequence

0→ ad0 ρ→ ad ρ→ F→ 0

is split.

4. Global deformation problems

Fix a finite set S, and for each v ∈ S, a profinite group Gv satisfying Axiom 0.1, together
with a continuous homomorphism Gv → G, and a deformation problem Dv for ρ|Gv .

Also fix a continuous character χ : G→ O× such that χ mod λ = det ρ. Assume that ρ is
absolutely irreducible, and fix some subset T ⊆ S.

Definition 4.1. Fix A ∈ CO. A T -framed deformation of ρ of type S = (S, {Dv}v∈S , χ) to A
is an equivalence class of tuples (ρ, {αv}v∈T ), where ρ : G → GLn(A) is a lift of ρ such that
det ρ = χ⊗O A and ρ|Gv ∈ Dv for all v ∈ S, and αv ∈ ker(GLn(A)→ GLn(F)).

The equivalence relation is defined by decreeing that for each β ∈ ker(GLn(A)→ GLn(F)),
we have (ρ, {αv}v∈T ) ∼ (βρβ−1, {βαv}v∈T ).

Fact 4.2. The functor

R□,T
S : CO → Set,

A 7→ {T -framed deformations of type S = (S, {Dv}v∈S , χ)}

is represented by a universal object (ρ□,T , {αv}v∈T ) up to equivalence. This means

• R□,T
S ∈ CO,

• ρ□,T
S : G→ GLn(R

□,T
S ) is a lift of ρ with determinant equal to χ, and

• αv ∈ ker(GLn(R
□,T
S )→ GLn(F)) for all v ∈ T .

Definition 4.3. If T = ∅ then we will write Runiv
S for R□,T

S .

To get a better understanding of global Galois deformations, it will be useful to study the
rings Runiv

S . Namely, we want to describe how Runiv
S can be presented in terms of the rings

R□
ρ|Gv ,χ

at the local places.

Remark. When we write R□,T
S we should interpret this as something like R□,T

ρ,S,{Dv},χ.

5. Presenting global deformation rings over local lifting rings

To reiterate, we assume that ρ is absolutely irreducible.
Since α−1

v ρ□,T |Gvαv : G→ GLn(A) is a well-defined element of Dv, we have a tautological

homomorphism R□
ρ|Gv ,χ

/I(Dv)→ R□,T
S . Define

Rloc
S,T =

⊗̂
v∈T

R□
ρ|Gv ,χ

/I(Dv).

Here
⊗̂

denotes the completed tensor product, which is the pushout in the category of com-

plete local Noetherian O-algebras. We have a natural map Rloc
S,T → R□,T

S . It turns out that

R□,T
S is finitely presented as the quotient of a power series ring over Rloc

S,T in some number of
variables. To compute this number, we must compute

dimFmR□,T
S
/⟨m2

R□,T
S
,mRloc

S,T
, λ⟩.
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This quantity will give the number of generators for R□,T
S as an algebra over Rloc

S,T , as was

done in the case for R□
ρ over O.

Given a group G and an F[G]-module M , let Ci(G,M) be the space of functions Gi →M ,
and let ∂ : Ci(G,M)→ Ci+1(G,M) be the usual coboundary map. Also, write H i(G,M) for
the cohomology groups of the complex C•(G,M).

We define a complex C•
S,T,loc(G, ad

0 ρ) by

C0
S,T,loc(G, ad

0 ρ) =
⊕
v∈T

C0(Gv, ad ρ)⊕
⊕

v∈S\T

0,

C1
S,T,loc(G, ad

0 ρ) =
⊕
v∈T

C1(Gv, ad
0 ρ)⊕

⊕
v∈S\T

C1(Gv, ad
0 ρ)/L̃(Dv),

Ci
S,T,loc(G, ad

0 ρ) =
⊕
v∈S

Ci(Gv, ad
0 ρ) for all i ≥ 2.

We define another complex C•
0 (G, ad

0 ρ) by

C0
0 (G, ad

0 ρ) = C0(G, ad ρ),

Ci
0(G, ad

0 ρ) = Ci(G, ad0 ρ) for all i ≥ 1.

Finally, we let

C•
S,T (G, ad

0 ρ) = C•
0 (G, ad

0 ρ)⊕ C•−1
S,T,loc(G, ad

0 ρ)

where the coboundary map is given by

(ϕ, (ψv)v∈S) 7→ (∂ϕ, (ϕ|Gv − ψv)v∈S).

Write H i
S,T,loc, H

i
0, H

i
S,T for the cohomology of the complexes C•

S,T,loc, C
•
0 , C

•
S,T , respectively.

Then we have an exact sequence of complexes

0→ C•−1
S,T,loc(G, ad

0 ρ)→ C•
S,T (G, ad

0 ρ)→ C•
0 (G, ad

0 ρ)→ 0,

and the corresponding long exact sequence in cohomology is

0 H0
S,T H0(G, ad ρ)

⊕
v∈T H

0(Gv, ad ρ)

H1
S,T H1(G, ad0 ρ)

⊕
v∈T H

1(Gv, ad
0 ρ)⊕

⊕
v∈S\T H

1(Gv, ad
0 ρ)/L(Dv)

H2
S,T H2(G, ad0 ρ)

⊕
v∈S H

2(Gv, ad
0 ρ)

H3
S,T · · ·

Let’s double-check why the groups H i
S,T are worth studying.

Proposition 5.1. There is a natural isomorphism

HomF(mR□,T
S
/⟨m2

R□,T
S
,mRloc

S,T
, λ⟩,F) ≃ H1

S,T .

Thus, if d = dimFH
1
S,T (G, ad

0 ρ), then there is a surjection ϕ : Rloc
S,T Jx1, . . . , xdK→ R□,T

S .
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Proof. As before, we have a natural isomorphism

HomF(mR□,T
S
/⟨m2

R□,T
S
,mRloc

S,T
, λ⟩,F) ≃ HomCO(R

□,T
S /⟨mRloc

S,T
⟩,F[ϵ]/⟨ϵ2⟩).

Taking the quotient by mRloc
S,T

amounts to requiring that the lifting be trivial at v ∈ T . Thus
this space is identified with the set of T -framed deformations to F[ϵ]/⟨ϵ2⟩ of type S that give
trivial liftings at each of the places in T .

Such a deformation is given by

((1n + ϕϵ)ρ, {1n + ψvϵ}v∈T )

where we use the data of a 1-cocycle ϕ ∈ Z1(G, ad0 ρ) and elements {ψv} ∈ ad ρ. By decreeing

that ϕ is a deformation of type S, we are saying that ϕ|Gv ∈ L̃(Dv) for all v ∈ S. By decreeing
that {ψv}v∈T gives trivial liftings at the places in T , we are saying that

(1n − avϵ)(1n + ϕϵ)ρ|Gv(1n + ψvϵ) = ρ|Gv

for all v ∈ T , that is,
ϕ|Gv = (ad ρ|Gv − 1n)ψv

for all v ∈ T .
Two such pairs (ϕ, {ψv}) and (ϕ′, {ψ′

v}) are considered equivalent if and only if there exists
β ∈ ad ρ with

ϕ′ = ϕ+ (1n − ad ρ)β

and

ψ′
v = ψv + β

for all v ∈ T .
Using this description, one identifies the space of such data with H1

S,T . □

We wish to express each of these quantities in terms of standard cohomology groups and
local deformation rings.

Before continuing, define the ”negative Euler characteristics”

χ(G, ad0 ρ) =
∑
i≥0

(−1)i+1 dimFH
i(G, ad0 ρ),

χS,T,loc =
∑
i≥0

(−1)i+1 dimFH
i
S,T,loc,

χ0 =
∑
i≥0

(−1)i+1 dimFH
i
0,

χS,T =
∑
i≥0

(−1)i+1 dimFH
i
S,T .

We know that χS,T = χ0 − χS,T,loc. But we want an expression in terms of standard group
cohomology. Now

χ0 = χ(G, ad0 ρ) + (dimH0(G, ad ρ)− dimH0(G, ad0 ρ))
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and the last term is −1 because ad ρ = ad0 ρ⊕ F. And by definition

χS,T,loc =
∑
v∈S

χ(Gv, ad
0 ρ)−

∑
v∈T

(dimH0(Gv, ad ρ)− dimH0(Gv, ad
0 ρ))

+
∑

v∈S\T

(dimH0(Gv, ad
0 ρ)− dimL(Dv)))

=
∑
v∈S

χ(Gv, ad
0 ρ)−#T +

∑
v∈S\T

(dimH0(Gv, ad
0 ρ)− dimL(Dv)))

So in total,

χS,T = χ0 − χS,T,loc

= (#T − 1) + χ(G, ad0 ρ)−
∑
v∈S

χ(Gv, ad
0 ρ)−

∑
v∈S\T

(dimH0(Gv, ad
0 ρ)− dimL(Dv)))

(5.1)

6. The number field case

We specialize to the case where F is a number field, and S is a finite set of finite places
including the places lying over ℓ, and we set G = GF,S , Gv = GFv for v ∈ S. We cite a few
results on Galois cohomology.

Fact 6.1 (Cohomological vanishing). We have the following.

(a) SupposeM is a finite F[GFv ]-module. Then H i(GFv ,M) is finite, and H i(GFv ,M) = 0
for all i ≥ 3.

(b) Suppose v is a real place, and GFv = {1, c} acts on a module M whose order is a
power of a prime ℓ ̸= 2. Then H i(GFv .M) = 0 for all i ≥ 0.

(c) Suppose M is a finite F[GF,S ]-module. Then H i(GF,S ,M) is finite, and

H i(GF,S ,M) ≃
⊕
v real

H i(Gv,M)

for all i ≥ 3. Thus, if the prime ℓ ̸= 2, then H i(GF,S ,M) = 0 for all i ≥ 3.

Fact 6.2 (Local/global Euler characteristic). We have the following.

(a) Suppose M is a finite F[GFv ]-module. Then

χ(GFv ,M) = dimF(O/
(b) Suppose M is a finite F[GF,S ]-module. Then

χ(GF,S ,M) = [F : Q] dimF,M −
∑
v|∞

dimFH
0(GFv , ad

0 ρ).

Let G = GF,S or Gv, and let M be a finite F[G]-module. Let M∨ = HomF(M,F). Let

M(1) = M ⊗Zℓ
Zℓ(ϵℓ), where ϵℓ : G → Z×

ℓ is the ℓ-adic cyclotomic character. Thus M∨ =
M∨ ⊗Zℓ

Zℓ(ϵℓ)

We have the following.

Fact 6.3 (Tate local duality). Let M be a finite F[GFv ]-module. For i = 0, 1, 2, the cup
product gives a non-degenerate pairing

H i(GFv ,M
∨(1))×H2−i(GFv ,M)→ F.
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Fact 6.4 (Poitou–Tate theorem). The following nine-term sequence is exact:

0→ H0(GF,S ,M)→
⊕
v real

Ĥ0(GFv ,M)×
∏
v∈S

H0(GFv ,M)→ H2(GF,S ,M
∨(1))∨

→ H1(GF,S ,M)→
⊕
v∈S

H1(GFv ,M)→ H1(GF,S ,M
∨(1))∨

→ H2(GF,S ,M)→
⊕
v∈S

H2(GFv ,M)→ H0(GF,S ,M
∨(1))∨ → 0.

We apply these facts to the GF,S-module M = ad0 ρ possessing the cohomology long exact
sequence above.

• ρ is absolutely irreducible, so that H0(GF,S , ad ρ) = F, so H0
S,T = F.

• By cohomological vanishing, only the groups H0
S,T , H

1
S,T , H

2
S,T , and H

3
S,T are nonzero.

• Meanwhile, by the local/global Euler characteristic formula we find that

χ(GF,S , ad
0 ρ)−

∑
v∈S

χ(Gv, ad
0 ρ) = [F : Q](n2 − 1)−

∑
v|∞

dimH0(GFv , ad
0 ρ)−

∑
v|ℓ

(n2 − 1)[Fv : Qℓ]

= −
∑
v|∞

dimH0(GFv , ad
0 ρ)

because the last term is equal to (n2 − 1)[F : Q].
• Note that M = ad0 ρ is self-dual under the trace pairing M × M → F, (x, y) 7→
trace(xy) (i.e. it is a perfect pairing), which means (ad0 ρ) ≃ (ad0 ρ)∨ and (ad0 ρ)(1) ≃
(ad0 ρ)∨(1).
• For all v ∈ S, let H1(GFv , ad

0 ρ) × H1(GFv , (ad
0 ρ)(1)) → F be the pairing of local

Tate duality (here we use that ad0 ρ is self-dual). Consider L(Dv) ⊂ H1(GFv , ad
0 ρ)

and let L(Dv)
⊥ ⊂ H1(GFv , (ad

0 ρ)(1)) be its annihilator under the pairing.
• The last 6 terms of the Poitou–Tate sequence read

H1(GF,S , ad
0 ρ)→

⊕
v∈S

H1(GFv , ad
0 ρ)→ H1(GF,S , (ad

0 ρ)(1))∨

→ H2(GF,S , ad
0 ρ)→

⊕
v∈S

H2(GFv , ad
0 ρ)→ H0(GF,S , (ad

0 ρ)(1))∨ → 0.

If we define

H1
S,T (GF,S , (ad

0 ρ)(1)) := ker(H1(GF,S , (ad
0 ρ)(1))→

⊕
v∈S\T

H1(GFv , (ad
0 ρ)(1))/L(Dv)

⊥)),

then we can dualize this expression, and edit the above second and third terms and
have an exact sequence

H1(GF,S , ad
0 ρ)→

⊕
v∈T

H1(GFv , ad
0 ρ)⊕

⊕
v∈S\T

H1(GFv , ad
0 ρ)/L(Dv)→ H1

S,T (GF,S , (ad
0 ρ)(1))∨

→ H2(GF,S , ad
0 ρ)→

⊕
v∈S

H2(GFv , ad
0 ρ)→ H0(GF,S , (ad

0 ρ)(1))∨ → 0.
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• The last 6 nonzero terms of our long exact cohomology sequence read

H1(GF,S , ad
0 ρ)→

⊕
v∈T

H1(GFv , ad
0 ρ)⊕

⊕
v∈S\T

H1(GFv , ad
0 ρ)/L(Dv)→ H2

S,T

→ H2(GF,S , ad
0 ρ)→

⊕
v∈S

H2(GFv , ad
0 ρ)→ H3

S,T → 0.

These two exact sequences coincide at all but the third and sixth positions. Thus

H3
S,T ≃ H0(GF,S , (ad

0 ρ)(1))∨

and

H3
S,T ≃ H0(GF,S , (ad

0 ρ)(1))∨.

Combining with (5.1), we see that

dimFH
1
S,T = #T −

∑
v|∞

dimH0(GFv , ad
0 ρ) +

∑
v∈S\T

(dimL(Dv)− dimH0(GFv , ad
0 ρ))

+ dimH1
S,T (GF,S , (ad

0 ρ)(1))− dimH0(GF,S , (ad
0 ρ)(1)).

The expression H1
S,T (GF,S , (ad

0 ρ)(1)) was just manufactured by us, so let’s see what con-

clusion we get in the nice case where T = ∅.

Proposition 6.5. The Krull dimension of Runiv
S is at least

1 +
∑
v∈S

(dimKrull(R
□
ρ|GFv

,χ/I(Dv))− n2)−
∑
v|∞

dimH0(GFv , ad
0 ρ)− dimH0(GF,S , (ad

0 ρ)(1)).

Proof. Let d = dimH1
S,∅, and let J be the kernel of the surjection R = Rloc

S Jx1, . . . , xdK →
Runiv

S . We define an injective map

Hom(J/mRuniv
S

J,F)→ H2
S,∅(G, ad

0 ρ)

as follows. Pick a lift of ρunivS to GLn(R), denoted ρ̃, and define for γ, δ ∈ G

cf (γ, δ) = f(ρ̃(γδ)ρ̃(δ)−1(̃ρ)(γ)−1 − 1n) ∈ ad0 ρ.

Also for v ∈ S, pick a lift ρ̂v of ρunivS |Gv and define for γ ∈ Gv

df,v(γ) = f(ρ̃(γ)ρ̂(γ)−1 − 1n)

One shows that this gives a well-defined element of H2
S,∅ and that the associated f 7→

[(cf , df,v)] is injective.
Hence setting T = ∅, we find that

dimKrullR
univ
S ≥ dimKrullR

loc
S,∅ + dimH1

S,∅ − dimH2
S,∅

= 1−
∑
v|∞

dimH0(GFv , ad
0 ρ) +

∑
v∈S

(dimL(Dv)− dimH0(GFv , ad
0 ρ))

− dimH0(GF,S , (ad
0 ρ)(1)).

where the 1 comes from O. However,

dimL(Dv)− dimH0(GFv , ad
0 ρ) = dimKrullR

□
ρ|Gv ,χ

/I(Dv)− n2.

□
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In addition, we can also give a lower bound for the Krull dimension of R□,T
S if we assume

that Dv is liftable for all v ∈ S\T .

Definition 6.6. Dv is liftable if for each R ∈ CO, for each ideal I ⊂ R with mRI = ⟨0⟩ and
for each lifting ρ to R/I in Dv, there is a lifting of ρ to R. This is equivalent to R□

ρ /I(Dv)
being a power series ring over O.

7. Maps between global Galois deformation rings

Suppose that F ′/F is a finite extension of number fields, and that S′ is the set of places of
F ′ lying over S. Assume that ρ|GF ′,S′ is absolutely irreducible. Then restricting the universal

deformation ρuniv of ρ to GF ′,S′ gives a ring homomorphism

Runiv
ρ|GF ′,S′

→ Runiv
ρ

Proposition 7.1. The ring Runiv
ρ is a module-finite Runiv

ρ|GF ′,S′
-algebra.

Proof. □
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