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Introduction

We aim to give an overview of Bombieri’s simplification of Vojta’s proof of the Mordell conjecture. In
order to keep the whole discussion reasonably brief, we will necessarily omit many details. To fill in the
gaps we leave, one may consult [BG06, Chapter 11] and/or [HS00, Part E].

To be specific, we aim to describe a proof of the following statement:

Theorem (Mordell Conjecture). Let K be a number field, and let C/K be a geometrically irreducible
smooth projective curve of genus g ≥ 2. Then, #C(K) <∞.
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We begin with a hint of the idea behind the argument. It is harmless to assume on the outset that
we have some rational point P0 ∈ C(K), and so obtain an embedding j : C ↪! J := Pic0C/K of C into
its Jacobian, where j(P ) = [P − P0]. The Jacobian is an abelian variety, and so – after choosing some
ample, even line bundle L on J – has a quadratic form ĥJ,L : J(K) ! R defined on its K-points. Thus,
J(K)⊗R ∼= Rrank J(K) becomes a Euclidean space. In particular, the quadratic form ĥL induces an inner
product ⟨−,−⟩ and norm | · | on J(K)⊗ R.

In 1965, Mumford [Mum65] showed that the image of C(K)
j
↪! J(K) ! J(K) ⊗ R is ‘sparse’ in the

sense that given two points P,Q ∈ C(K), of large height (and small angle between them), with images
p, q ∈ J(K)⊗ R, one must have |p| ≥ 2 |q| or vice versa. This alone is not enough to prove Mordell, but
Vojta improved the situation by further showing that

Theorem (Vojta’s inequality). There are constants κ1 = κ1(C) and κ2 = κ2(g) such that, for P,Q ∈
C(K), one has

|P | ≥ κ1 and |Q| ≥ κ2 |P | =⇒ ⟨P,Q⟩
|P | |Q|

≤ 3

4
.

That is, two ‘large’ points on the curve cannot be too far away from each either without having small
angle between them. This stands in contrast to Mumford’s result that any two ‘large’ points with small
angle must be far away. Playing these two off of each other, combined with a simple geometric argument,
allows one to show that C may only have finitely many points of large height. Since a curve always has
only finitely many ‘small’ points, this gives Mordell’s conjecture.

In the first section of these notes, we will give the details of the geometric argument taking us
from Vojta’s inequality to Mordell’s Conjecture. Afterwards, we will prove Mumford’s results, and then
describe the way by which one gets from there to Vojta’s inequality. Throughout, we will need to appeal to
various facts about (canonical) heights on Jacobians of curves which we have not yet seen in this seminar.
All of the relevant results are collected in Appendix A. I recommend perusing it before continuing with
these notes, and then referring back to it as needed while reading them.

1 The Punch line

Before diving into the proof of Vojta’s inequality. Let’s take a closer look at how it can be used, along
with Mumford’s Gap Principle, to prove Mordell’s conjecture. For the reader’s convenience, we restate
these results below.

Notation 1.1. Let K be a number field, and let C/K be a genus g ≥ 2 curve with basepoint P0 ∈ C(K).
Let J = Pic0C/K be its Jacobian, let j : C ↪! J, P 7! [P − P0] denote the embedding determined by
P0, and let Θ = j(C) + · · · + j(C) ∈ Div(J) be the Theta divisor. Let Θ− = [−1]∗Θ, so ĥJ,Θ+Θ− gives
a quadratic form on J(K). Let | · | denote the associated norm, so |x|2 = ĥJ,Θ+Θ−(x), and let ⟨−,−⟩
denote the associated bilinear form on J(K), so

⟨x, y⟩ = 1

2

(
|x+ y|2 − |x|2 − |y|2

)
.

Abuse of Notation 1.2. We will often be sloppy by implicitly identifying points of C(K) with their
images (under j) in J(K) or even in J(K) ⊗ R, writing expressions such that |P | , ⟨P,Q⟩ instead of
|j(P )| , ⟨j(P ), j(Q)⟩.
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Theorem 1.3. For any ε > 0, there are constants B = B(C,P0, ε) and κ = κ(g) ≥ 1 such that for any
distinct P,Q ∈ C(K) satisfying |P | ≥ |Q| > B and

cos θ(P,Q) :=
⟨P,Q⟩
|P | |Q|

≥ 3

4
+ ε

(i.e. the angle between P,Q is small) one has

• (Mumford’s Gap Principle) 2 |Q| ≤ |P |.

• (Vojta’s Inequality) |P | ≤ κ |Q|

We first remark that if one only wants to prove the Mordell Conjecture, then Vojta’s inequality alone
suffices. Indeed,

Corollary 1.4. #C(K) <∞

Proof. Recall that the kernel of the map J(K) ! J(K) ⊗ R is the torsion subgroup of J(K), which is
finite, so it suffices to show that the image of C(K) in J(K)⊗ R is finite.

For any poits x, y ∈ J(K)⊗ R the angle θ(x, y) between them is defined via

cos θ(x, y) =
⟨x, y⟩
|x| |y|

and 0 ≤ θ(x, y) ≤ π.

For any point x0 and angle θ0, we consider the cone

Λx0,θ0 := {x ∈ J(K)⊗ R : θ(x, x0) < θ0} ,

so any two elements of Λx0,θ0 differ by an angle at most 2θ0. We’ll show that Vojta’s inequality implies
that Λx0,θ0 can only have finitely elements of C(K) if θ0 is small.

Indeed, suppose θ0 so small that cos(2θ0) >
3
4 , and fix some Q ∈ Λx0,θ0 ∩ C(K) with |Q| > B.1

Then, by Vojta’s inequality, every P ∈ Λx0,θ0 ∩ C(K) satisfies |P | ≤ B, |P | ≤ |Q| or |P | ≤ κ |Q|,
so in fact |P | ≤ κ |Q| always. Thus, the points of Λx0,θ0 ∩ C(K) have bounded height (bounded by
κ2 |Q|2 = κ2ĥJ,Θ+Θ−(Q)), and so there are only finitely many points of C(K) in each small cone.

Thus, to win, it suffices to observe that J(K)⊗ R can be covered by finitely many cones of the form
Λx0,θ0 with θ0 small. The quickest way to see this is the observe that such cones are open and a collection
of them covers J(K)⊗ R iff it covers the unit sphere S = {|x| = 1} ⊂ J(K)⊗ R, but this unit sphere is
compact. Hence, finitely many such cones will cover it and so cover all of J(K)⊗ R. ■

That’s great, but we’d ultimately like to have a uniform bound on the number of points (of large
height) of C(K). The argument does not even give us an explicit bound for a single curve C. To remedy
this, one uses Mumford’s Gap Principle as well as the following geometric fact.

Proposition 1.5. Fix some θ0 ∈ (0, π/2). There is a set {x1, . . . , xn} ⊂ Rd such that

Rd =
n⋃
i=1

Λxi,θ0 where Λxi,θ0 :=
{
y ∈ Rd : θ(x, y) ≤ θ0

}
,

1If this is not possible, the points of C in this cone have bounded height, so there are only finitely many of them.
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and furthermore
n ≤ (1 + csc(θ0/2))

d − 1.

Proof. Assume wlog that |xi| = 1 for all i. Let S ⊂ Rd denote the unit sphere, and note that the Λxi,θ0 ’s
cover Rd iff they cover S. If x ∈ Λxi,θ0 and |x| = 1, then, by the law of sines (applied to the triangle with
vertices 0, x, xi), one gets

sin θ(x, xi)

|x− xi|
=

1

|x− 0|
sin

(
π − θ(x, xi)

2

)
= cos

(
θ(x, xi)

2

)
which implies that

|x− xi| =
sin θ(x, xi)

cos(θ(x, xi)/2)
= 2 sin(θ(x, xi)/2) ≤ 2 sin(θ0/2)

(above, we used sin(2t) = 2 sin(t) cos(t) with t = θ(x, xi)/2). Thus, letting r := 2 sin(θ0/2), and letting
Sxi,r ⊂ Rd denote the closed ball of radius r centered at xi, we have

S ∩ Sxi,r = S ∩ Λxi,θ0 .

Thus, the Λxi,θ0 ’s cover Rd iff the Sxi,r’s cover S = S0,1. Say x1, . . . , xn is a maximal collection of points
on the sphere satisfying

|xi − xj | ≥ r for all i ̸= j.

Then, the Sxi,r cover S by maximality, so these give a collection of points for which the Λxi,θ0 ’s cover
Rd. To bound the number of points, note that the Sxi,r/2’s are disjoint with union

n⋃
i=1

Sxi,r/2 ⊂ S0,1+r/2 − S0,r/2

by the triangle inequality. Letting v = vol(S) = vol(S0,1), we then get

nv(r/2)d = vol

(⊔
i

Sxi,r/2

)
≤ vol(S0,1+r/2)− vol(S0,r/2) = v(1 + r/2)d − v(r/2)d,

whence the claimed inequality

n ≤
(
1 + r/2

r/2

)d
− 1 = (1 + 2/r)

d − 1 =

(
1 +

1

sin(θ0/2)

)d
− 1. ■

Exercise. Using Proposition 1.5 and Mumford’s Gap Principle, adapt the proof of Corollary 1.4 to obtain
the following stronger result:

With B, κ as in Theorem 1.3, if Γ ≤ J(K) is finitely generated, then

#
{
P ∈ C(K) : P ∈ Γ and |P | ≥ B

}
≤ (log2 κ+ 1)7rank Γ.

In particular, taking Γ = J(K) provides an explicit upper bound for the number of large points on a
given curve.

To extend the above to a uniform bound on the number of large points on a curve of genus g ≥ 2, one
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would need to keep closer track of how the constants (especially B = B(C,P0, ε)) depend on the choice
of curve. We will not do this, but if one were to do this, then they could prove a result like

Theorem 1.6 ([Gao21], Theorem 3.2). Let S be an irreducible variety, and let π : A ! S be an
abelian scheme of relative dimension g ≥ 1. Let L be a relatively ample line bundle on A/S such that
[−1]∗L ≃ L . Let ĥL : A(Q) ! R≥0 denote the fiber-wise Néron-Tate height. Moreover, let M be an
ample line bundle over a compactification S of S, and so obtain a height function hS,M : S(Q) ! R
downstairs.

Let C ⊂ A be an irreducible closed subvariety dominating S and suppose that C ! S is a flat family
of curves of genus ≥ 2. Then, there is a constant c = c(π,L ,M : C) ≥ 1 so that for any s ∈ S(Q) and
subgroup Γ ≤ As(Q) of finite rank ρ ≥ 0, one has

#
{
P ∈ Cs(Q) ∩ Γ : ĥL (P ) > cmax

{
1, hS,M(s)

}}
≤ cρ.

In these notes, our main goal is Corollary 1.4, and so we will devote the remaining sections to giving
an overview of the proofs of Mumford’s Gap Principle and Vojta’s Inequality.

2 Mumford’s Gap Principle

We keep the conventions from Notation 1.1. In particular, C/K is a genus g ≥ 2 curve over a number
field, and it is equipped with a basepoint P0 ∈ C(K). We let J denote its Jacobian with embedding
j : C ↪! J , and we let Θ ∈ Div(J) be the so-called theta-divisor. Furthermore, | · |, ⟨−,−⟩ denote the
norm and inner product on J(K) induced by the ample, symmetric divisor Θ+Θ−.

We now recall the goal of this section

Theorem 2.1. For any ε > 0, there is a constant B = B(C,P0, ε) such that for any distinct P,Q ∈ C(K)

satisfying |P | ≥ |Q| > B,

cos θ(P,Q) ≥ 3

4
+ ε =⇒ 2 |Q| ≤ |P | .

The main lemma used in proving this result is sometimes called Mumford’s formula (Corollary 2.5).
For later use in the proof of Vojta’s inequality, we will here prove a slight generalization of Mumford’s
formula.

Mumford’s original formula gives an upper bound for the height hC×C,∆(P,Q) of a point on the
product C × C with respect to the diagonal divisor ∆ ⊂ C × C. Vojta obtained an analogous result for
so-called ’Vojta divisors’, combinations of the Diagonal along with horizontal and vertical copies of C.

Definition 2.2. Let C1 = pr∗1(P0) = P0×C ∈ Div(C×C) and let C2 = pr∗2(P0) = C×P0 ∈ Div(C×C).
Furthermore, let ∆′ := ∆− C1 − C2. A Vojta divisor is any divisor of the form

V (d1, d2, d) := d1C1 + d2C2 + d∆′ ∈ Div(C × C),

with d1, d2, d ∈ Z. ⋄

In order to bound the height of points w.r.t. such a divisor, we will need to recall (e.g. from the
appendix), the following facts relating various divisors on Jacobians.
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Recall 2.3.

(a) Let hΘ : J
∼
−! Ĵ be the isomorphism induced by the theta divisor, and let δ := (id×hΘ)∗ ℘J ∈

Div(J × J) be the “Poincaré bundle viewed on J × J .” Then,

δ ∼ m∗Θ− pr∗1 Θ− pr∗2 Θ ∈ Div(J × J),

where m : J × J ! J is the addition map, and pr1,pr2 : J × J ⇒ J are the projection maps. This
is from Proposition A.18.

(b) Furthermore, given x, y ∈ J(K), one has

ĥJ×J,δ(x, y) = ĥJ×Ĵ,℘J
(x, hΘ(y)) = 2 ⟨x, y⟩Θ = ⟨x, y⟩

via Proposition A.7 combined with Proposition A.18.

Exercise. Instead of going through the lengthy argument for this using the appendix, directly
compute this by simply expanding out ĥJ×J,δ(x, y) (this also avoids the need for part (a) of this
recall). For the sake of this exercise, define δ := m∗Θ− pr∗1 Θ− pr∗2 Θ.

(c) Finally, g[P0] ∼ j∗(Θ−) ∈ Div(C) by Corollary A.13. ⊙

Lemma 2.4. Let P,Q ∈ C(K), and fix a Vojta divisor V = V (d1, d2, d) = d1C1 + d2C2 + d∆′. Then,

hC×C,V (P,Q) =
d1
2g

|P |2 + d2
2g

|Q|2 − d ⟨P,Q⟩+ d1O(|P |) + d2O(|Q|) + (d1 + d2 + d+ 1)O(1).

Proof. First recall that Remark A.19 shows that (j × j)
∗
δ ≃ OC×C(−∆′). This combined with Recall

2.3(b) shows that
hC×C,∆′(P,Q) = ĥJ×J,−δ(P,Q) +O(1) = −⟨P,Q⟩+O(1).

Next note that
hC×C,C1

(P,Q) = hC×C,pr∗1 [P0](P,Q) = hC,[P0](P ) +O(1).

By Recall 2.3(c), we know that g[P0] ∼ j∗(Θ−), so we must have

hC,[P0](P ) =
1

g
hC,g[P0](P ) +O(1) =

1

g
ĥJ,Θ−(P ) +O(1)

above. Finally, note that ĥJ,Θ− = 1
2

[
ĥJ,Θ+Θ− − ĥJ,Θ−Θ−

]
, and so conclude that

hC×C,C1(P,Q) =
1

g
ĥJ,Θ−(P ) +O(1) =

1

2g
|P |2 − 1

2g
ĥJ,Θ−Θ−(P ) +O(1).

One similarly shows that

hC×C,C2
(P,Q) =

1

g
ĥJ,Θ−(Q) +O(1) =

1

2g
|Q|2 − 1

2g
ĥJ,Θ−Θ−(Q) +O(1).
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Thus,

hC×C,V (P,Q) =
d1
2g

|P |2 + d2
2g

|Q|2 − d ⟨P,Q⟩ − d1
2g
ĥJ,Θ−Θ−(P )− d2

2g
ĥJ,Θ−Θ−(Q) + (d1 + d2 + d+1)O(1).

To conclude, we use Proposition A.6 to see that ĥJ,Θ−Θ−(P ) = O(|P |) from whence we get the claim. ■

Corollary 2.5 (Mumford’s Formula). For ∆ = V (1, 1, 1), one has

hC×C,∆(P,Q) =
1

2g
|P |2 + 1

2g
|Q|2 − ⟨P,Q⟩+O(|P |+ |Q|+ 1).

Corollary 2.6 (Mumford’s Gap Principle). Fix some ε > 0. There is a constant B = B(C,P0, ε) > 0

such that for any distinct P,Q ∈ C(K), satisfying |P | ≥ |Q| > B, one has

cos θ(P,Q) =
⟨P,Q⟩
|P | |Q|

≥ 3

4
+ ε =⇒ 2 |Q| ≤ |P | .

Proof. By Mumford’s formula (+ |P | ≥ |Q| > B to simplify the big O’s a bit), we know

⟨P,Q⟩+ hC×C,∆(P,Q) =
1

2g
|P |2 + 1

2g
|Q|2 +O(|P |).

Since (P,Q) ̸∈ supp∆, we may assume that h∆(P,Q) ≥ 0. Thus, assuming cos θ(P,Q) ≥ 3/4 + ε,

1

2g
|P |2 + 1

2g
|Q|2 +O(|P |) ≥ ⟨P,Q⟩ ≥

(
3

4
+ ε

)
|P | |Q| .

That is,
3

4
+ ε ≤ 1

2g

(
|P |
|Q|

+
|Q|
|P |

)
+O

(
1

|Q|

)
≤ 1

2g

(
|P |
|Q|

+ 1

)
+O

(
1

|Q|

)
.

If |Q| ≫ 0, the big-O term above will be < ε, and so we will have

3

4
≤ 1

2g

(
|P |
|Q|

+ 1

)
.

This rearranges to
|P |
|Q|

≥ 6g

4
− 1 ≥ 12

4
− 1 = 2,

the desired conclusion. ■

3 Vojta’s Inequality

For the sake of brevity, this section will be missing many details (which can found in [BG06, Chapter 11]
or [HS00, Part E]).2

We aim to sketch a proof of

2This whole section could use some cleaning. If you find a mistake or something that can be improved, let me know.
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Theorem 3.1. There are constants κ1 = κ1(C) and κ2 = κ2(g) such that, for any P,Q ∈ C(K) with
|P | ≥ |Q| > κ1, one has

cos θ(P,Q) ≥ 3

4
+ ε =⇒ |P | ≤ κ2 |Q| .

At a high level, the proof of this inequality is very similar to the proof of Mumford’s Gap Principle.
Lemma 2.4 gives an equation of the form

hC×C,V (P,Q) = (quadratic in |P | , |Q|) + (linear in |P | , |Q|) +O(1)

for any fixed Vojta divisor V = V (d1, d2, d). One wants to choose d1, d2, d carefully so as to force the
quadratic term to be very negative. At the same time, if (P,Q) ̸∈ suppV , then hC×C,V (P,Q) ≥ 0, so for
such P,Q, the linear term must be larger (in absolute value) than the quadratic. This forces a bound on
such |P | , |Q|.

Part of the difficulty with extending this argument to all P,Q is that the choice of V = V (d1, d2, d)

used in the end will depend on the points P,Q. Hence, we cannot guarantee that P,Q ̸∈ suppV . In
order to combat this, one must do a careful analysis of the height function hC×C,V in order to produce
general (negative) lower bounds on hC×C,V (P,Q) which still suffice to get a non-trivial height bound in
the end. To obtain this, one does two things: (1) produces a precise lower bound for hC×C,V (P,Q) in
terms of given local equations cutting out V (i.e. in terms of a section of OC×C(V )), and (2) produces
a section giving as small (in magnitude) a lower bound as possible.

For the below sections, keep the conventions from Notation 1.1.

3.1 Vojta Divisors, and lot’s of notation

Recall 3.2. A Vojta divisor on C × C is one of the form

V (d1, d2, d) = d1C1 + d2C2 + dC. ⊙

In our attempt to obtain bounds for hC×C,V , we will need to describe things as explicitly as possible.
Hence, our first goal is to write V as a difference of two very ample divisors on C × C in order to relate
hC×C,V directly to the absolute logarithmic height on projective space. This will involve introducing lots
of new notation, which is summarized at the end of this section in Table 1.

Fix some N ≥ 2g + 1, so that N [P0] is very ample on C by Riemann-Roch. Let

φN [P0] : C ↪! PnK

denoted the corresponding closed immersion. This gives rise to a closed embedding

ψ = φN [P0] × φN [P0] : C × C ↪−! Pn × Pn

so that
ψ∗OPn×Pn(δ1, δ2) ≃ OC×C(δ1NC1 + δ2NC2). (3.1)

Corollary 3.3. In particular, the above equality shows that δ1NC1 + δ2NC2 is very ample for any
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δ1, δ2 ≥ 1. Furthermore, if M ≫ 0, then

B :=M(C1 + C2)−∆′

is very ample on C × C as well.

Fix a choice of M as in the above corollary, and let φB : C × C ↪! Pm be the corresponding closed
embedding.

Notation 3.4. We denote the homogeneous coordinates on Pm (the target of φB) by y⃗ (i.e. by
y0, y1, . . . , ym), and we denote those on Pn × Pn (the target of ψ) by (x⃗, x⃗′).

Throughout this argument, we will generally assume that our Vojta divisors V = V (d1, d2, d) satisfy
the following three axioms

(V1)

δi :=
di +Md

N
∈ Z≥1 for i = 1, 2.

This gives our decomposition

V = d1C1 + d2C2 + d∆′ = N(δ1C1 + δ2C2)− dB

of V into a difference of two very ample divisors. Note that this can be rephrased as

OC×C(V ) ≃ ψ∗OPn×Pn(δ1, δ2)⊗ (φ∗
BOPm(d))

−1
.

(V2) The first cohomology groups of the twisted ideal sheaves IPn×Pn/ψ(C×C)(δ1, δ2),IPm/φB(C×C)(d)

vanish. This will hold as long as we take δ1, δ2, d≫ 0, and then the natural restriction maps

ψ∗ : Γ (PnK × PnK ,O(δ1, δ2)) −! Γ(C×C,O(δ1NC1+δ2NC2)) and φ∗
B : Γ(PmK ,O(d)) −! Γ(C×C,O(dB))

will be surjective.

(V3) d1 + d2 > 4g − 4 and d1d2 − gd2 > γd1d2 for some γ > 0.

The significance of this axiom won’t be seen until section 3.3.

Not every intermediate result will require all three of these, but you can go ahead and assume them all
if you want.

Within these axioms, we have obtained our decompostion of V into a difference of two very ample
divisors. Let’s see how to use this to explicitly describe sections of OC×C(V ) using our coordinates (x⃗, x⃗′)
and y⃗ on Pn × Pn and Pm.

Lemma 3.5. Let V be a Vojta divisor satisfying (V1) and (V2). For any global section s ∈ Γ(C ×
C,O(V )), there are bihomogeneous polynomials Fi(x⃗, x⃗′), i = 0, . . . ,m, of bidegree (δ1, δ2), such that

s =
Fi(x⃗, x⃗

′)

ydi

∣∣∣∣
C×C

(3.2)
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for i = 0, . . . ,m.
Conversely, assume that Fi(x⃗, x⃗′), i = 0, . . . ,m, are bihomogeneous polynomials of bidegree (δ1, δ2)

satisfying
Fi(x⃗, x⃗

′)

ydi
=
Fj(x⃗, x⃗

′)

ydj

on C × C for every i, j. Then, there is a unique global section s ∈ Γ(C × C,O(V )) such that (3.2) holds
for all i.

Proof. This is essentially a direct consequence of

OC×C(V ) ≃ ψ∗OPn×Pn(δ1, δ2)⊗ (φ∗
BOPm(d))

−1
.

Spelled out, first let s be a global section of OC×C(V ), so s⊗
(
ydi |C×C

)
is a global section of ψ∗OPn×Pn(δ1, δ2).

By (V2), this means that s⊗
(
ydi |C×C

)
= Fi(x⃗, x⃗

′)|C×C is the restriction of a bihomogeneous polynomial
Fi of bidegree (δ1, δ2), from which we obtain the first statement.

For the converse, say Fi(x⃗, x⃗
′), i = 0, . . . ,m, are bihomogeneous polynomials of bidegree (δ1, δ2)

satisfying
Fi(x⃗, x⃗

′)

ydi
=
Fj(x⃗, x⃗

′)

ydj

on C × C for all i, j. Let si ∈ Γ((C × C)yi , V ) be the meromorphic section defined by (3.2), where
(C × C)yi = {yi ̸= 0} is the open locus where yi ∈ Γ(C × C,φ∗

BO(1)) is non-vanishing. Then, the si’s
glue to given a regular section on

m⋃
i=0

(C × C)yi = (C × C) \ {yi = 0 for all i} = C × C,

i.e. they give a global section s ∈ Γ(C × C, V ). ■

To end, we summarize the notation we have introduced below in Table 1.

Symbol Description
V = V (d1, d2, d) A choice of Vojta divisor V = d1C1 + d2C2 + d∆′.
φB : C × C ↪! Pm Embedding associated to the very ample divisor B =

M(C1 + C2) − d∆′ on C × C. Note: B (and so M) is
fixed.

y⃗ = [y0 : · · · : ym] Homogeneous coordinates on Pm.
ψ = φN [P0] × φN [P0] : C × C ↪! Pn × Pn Embedding associated to the pair (N [P0], N [P0]) of very

ample divisors on C. Note: N is fixed.
(x⃗, x⃗′) Homogeneous coordinates on Pn × Pn
δ1, δ2 Integers so that

V = d1C1 + d2C2 + d∆′ = N(δ1C1 + δ2C2)− dB

when V satisfies (V1).
γ > 0 Number so that d1d2−gd2 > γd1d2, when V satisfies (V3).

Table 1: Notation used throughout the proof of Vojta’s inequality

10



3.2 A lower bound for hC×C,V

In the previous section, we obtained a description for sections of OC×C(V ) in terms of coordinates y⃗ on
Pm and (x⃗, x⃗′) on Pm×Pm. Let us not use this description to product an explicit lower bound for hC×C,V

at any point (P,Q) ∈ C × C.

Recall 3.6. Let X/K be a smooth K-variety, and let x ∈ X be a closed point. Let κ(x) := OX,x/mx

denote its residue field. The tangent space TX,x of X at x is the κ(x)-vector space

TX,x := Derκ(x)(OX,x, κ(x)) ≃ Homκ(x)(ΩOX,x/κ(x), κ(x))

consisting of all κ(x)-derivations ∂ : OX,x ! κ(x). An element of TX,x is called a tangent vector. ⊙

Consider two points P,Q ∈ C(K). Let ∂, ∂′ be non-zero tangent vectors at P,Q. Abbreviate

∂i :=
1

i!
∂i and ∂′i :=

1

i!
∂′i.

Any differential operator on OC×C,(P,Q) of degree k with values in κ(P,Q) is a homogeneous polynomial
of degree k in the variables ∂, ∂′ with coefficients in K.3 In fact, since C×C is irreducible (so K(C×C) =
FracOC×C,(P,Q)), all such operators acts on K(C × C).

Remark 3.7. If f1, . . . , fr are rational functions on C, then Leibniz’s rule tells us that

∂i(f1 . . . fr) =
∑

i1+···+ir=i
(∂i1f1) . . . (∂irfr). ◦

Definition 3.8. Let s ∈ Γ(C × C,O(V )) be a nonzero global section. A pair (i∗1, i
∗
2) ∈ N2 is called

admissible for (P,Q) iff
∂i∗1∂

′
i∗2
s(P,Q) ̸= 0,

but ∂i1∂′i2s(P,Q) = 0 for all i1 ≤ i∗1 and i2 ≤ i∗2 with (i1, i2) ̸= (i∗1, i
∗
2). That is, (i∗1, i∗2) give the ‘first

nonzero Taylor coefficient’ of s near (P,Q), so admissibility is a measure of the order of vanishing of s at
(P,Q).

In order to make sense of this, one should choose a trivialization of OC×C(V ) near (P,Q). Note however
that admissibility is independent of the choice of trivialization and of the choice of ∂, ∂′ (different choices
only differ by a scalar since dimTC,P = 1 = dimTC,Q). ⋄

Recall that (x⃗, x⃗′) denote the homogeneous coordinates on Pn × Pn. Hence,

ξij :=

(
xi
xj

)∣∣∣∣
C

and ξ′ij :=

(
x′i
x′j

)∣∣∣∣∣
C

gives well-defined non-zero rational functions on C, for i, j = 0, . . . , n.

Notation 3.9. We write
ξ⃗j := (ξ0j , ξ1j , . . . , ξnj) =

(
x0
xj
, . . . ,

xn
xj

)
3Really to make proper sense of this, you need ∂, ∂′ to be differential operators in neighborhoods of the points P,Q, and

not just at these points. I didn’t wanna bother being careful about this technical point in these notes.
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for the vector with components ξij = xi/xj for i = 0, . . . , n. We similarly define ξ⃗′j .

Now, note that, with respect to the choices made in section 3.1 (in particular axiom (V1)), we
can choose an explicit height function associated to V . First choose a finite extension L/K so that
P,Q ∈ C(L). Recall that

OC×C(V ) ≃ ψ∗OPn×Pn(δ1, δ2)⊗ (φ∗
BOPm(d))

−1
.

We set

hC×C,V (P,Q) :=
∑
v∈ML

max
H,H′

|H|=δ1,|H′|=δ2

min
I

|I|=d

log

∣∣∣∣∣ x⃗H x⃗′H
′

y⃗I
(P,Q)

∣∣∣∣∣
v

=
∑
v∈ML

max
j,j′

min
i

log

∣∣∣∣∣x
δ1
j x

δ2
j′

ydi
(P,Q)

∣∣∣∣∣
v

,

where ML denote the set of all places of L.

Notation 3.10. For s ∈ OC×C(V ), Lemma 3.5 gives bihomogeneous polynomials Fi(x⃗, x⃗′) of bidegree
(δ1, δ2) with

s =
Fi(x⃗, x⃗

′)

ydi
on C × C for i = 0, . . . ,m.

We let h(F⃗ ) denote the height of the projective point whose coordinates are given by all the coefficients
of F0, . . . , Fm.

For v ∈MK , we let jv be the index j for which |ξj0(P )|v is largest, and similarly

j′v := argmax
j

∣∣ξ′j0(Q)
∣∣
v
.

Lemma 3.11. Let s be a nonzero global section of OC×C(V ), and let (i∗1, i∗2) be admissible for s at (P,Q).
With the notation introduced above, one has

hV (P,Q) ≥− h(F⃗ )− n log ((δ1 + n)(δ2 + n))

−
∑
v∈ML

max
{iλ}

(∑
λ

max
ν

log |∂iλξνjv (P )|v

)

−
∑
v∈ML

max
{i′λ}

(∑
λ

max
ν

log
∣∣∣∂′i′λξ′νj′v (Q)

∣∣∣
v

)
− (δ1 + δ2 + i∗1 + i∗2) log 2

where {iλ} and {i′λ} run over all partitions of i∗1 and i∗2.

Proof. We fix trivializations of OPn(1) at P,Q and of OPm(1) at (P,Q). These give rise to trivializations
of all line bundles in question, and in particular, of OC×C(V ).

Recall that

hV (P,Q) = −
∑
v

max
i

min
j,j′

log

∣∣∣∣∣ ydi
xδ1j x

′δ2
j′

(P,Q)

∣∣∣∣∣
v

.
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The only i, j, j′ that matter above are those for which xj(P ), x
′
j′(Q), yi(P,Q) ̸= 0, so assume this is the

case. Admissibility + Leibniz give (the second equality in)

∂i∗1∂
′
i∗2
Fi(ξ⃗j , ξ⃗

′
j′) = ∂i∗1∂

′
i∗2

(
ydi

xδ1j x
′δ2
j′

s

)
(P,Q) =

(
ydi

xδ1j x
′δ2
j′

∂i∗1∂
′
i∗2
s

)
(P,Q)

(all other terms vanish). Since (∂i∗1∂
′
i∗2
s)(P,Q) ̸= 0, this gives

hV (P,Q) = 0−
∑
v

max
i

min
j,j′

log

∣∣∣∣∣ ydi
xδ1j x

′δ2
j′

(P,Q)

∣∣∣∣∣
v

= −
∑
v

log
∣∣∣(∂i∗1∂′i∗2s)(P,Q)

∣∣∣
v
−
∑
v

max
i

min
j,j′

log

∣∣∣∣∣ ydi
xδ1j x

′δ2
j′

(P,Q)

∣∣∣∣∣
v

by the product formula

= −
∑
v

max
i

min
j,j′

log

∣∣∣∣∣
(

ydi
xδ1j x

′δ2
j′

∂i∗1∂
′
i∗2
s

)
(P,Q)

∣∣∣∣∣
v

= −
∑
v

max
i

min
j,j′

log
∣∣∣∂i∗1∂′i∗2Fi(ξ⃗j , ξ⃗′j′)(P,Q)

∣∣∣
v
.

Now, the number of monomials of Fi is bounded by
(
δ1+n
n

)(
δ2+n
n

)
≤ (δ1 + n)n(δ2 + n)n, so

hV (P,Q) ≥− h(F⃗ )− n log((δ1 + n)(δ2 + n))

−
∑
v

min
j

max
|⃗l|=δ1

log
∣∣∣∂i∗1 ξ⃗ l⃗j(P )∣∣∣v

−
∑
v

min
j′

max
|⃗l′|=δ2

log
∣∣∣∂′i∗2 ξ⃗ ′⃗l′j′ (Q)

∣∣∣
v

(get this by splitting Fi into its monomials and bounding each of them).
For each v, we take the minimum with respect to j, j′. We may instead take j = jv and j′ = j′v.

Consider log
∣∣∣∂i∗1 ξ⃗ l⃗j(P )∣∣∣v for v ∈ML. By Leibniz,

∂i∗1 ξ⃗
l⃗
j =

∑ n∏
ν=0

ℓν∏
µ=1

∂iµν
ξνj where

∑
µν

iµν = i∗1.

The total number of pairs µν above is δ1 =
∣∣∣⃗l∣∣∣, so stars and bars tells us that there are

(
δ1+i

∗
1−1
i∗1

)
≤ 2δ1+i

∗
1

possibilities for iµν . We are interested in the case j = jv. Since |ξjv0(P )|v is the largest |ξj0(P )|v, we
have

|ξνjv (P )|v =
∣∣∣∣ ξν0(P )ξjv0(P )

∣∣∣∣
v

≤ 1 for all ν.
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Thus, terms with iµν = 0 will contribute ≤ log 1 = 0, and so we can ignore them in obtaining the bound4

log
∣∣∣∂i∗1 ξ⃗ l⃗jv (P )∣∣∣v ≤ max

{iλ}

(∑
λ

max
ν

log |∂iλξνjv (P )|v

)
+ εv(δ1 + i∗1) log 2,

where εv = [Lv : R]/[L : Q] if v | ∞ and εv = 0 otherwise, and where {iλ} runs over all partitions of i∗1.
An analogous estimate holds for the sum involving ξ⃗′j′ , and this suffices to get the claim. ■

The sums appearing in the above lemma are a little inconvenient to work with. In order to simplify life,
one can apply a theorem of Eisenstein [BG06, Theorem 11.4.1] bounding Taylor coefficients of algebraic
functions in order to arrive at

Lemma 3.12 ([BG06], Lemma 11.6.7). There exists a finite subset Z ⊂ C(K) such that for P ̸∈ Z, one
has ∑

v∈ML

max
{iλ}

(∑
λ

max
ν

log |∂iλξνjv (P )|v

)
= O

(
i∗1 |P |

2
+ i∗1

)
,

with the max running over all partitions {iλ} of i∗1. The implied constant is independent of P and i∗1.

Corollary 3.13. Fix some (P,Q) ∈ C×C with P,Q ̸∈ Z. Let s be a nonzero global section of OC×C(V ),
and let (i∗1, i∗2) be admissible for s at (P,Q). Then,

hC×C,V (P,Q) ≥ −h(F⃗ )−O
(
i∗1 |P |

2
+ i∗2 |Q|2 + i∗1 + i∗2

)
−O(δ1 + δ2).

3.3 A section of OC×C(V ) of small height

Corollary 3.13 shows us that if we want a useful lower bound for hC×C,V , then we’ll want a section of
OC×C(V ) of small height. To produce such a section, we will reduce the question of constructing sections
to a problem about integral solutions of linear transformations, and then apply a lemma due to Siegel on
producing small solutions to integral linear equations.

Namely, we will apply the following

Theorem 3.14 (Siegel’s Lemma, 1929). Let aij, i = 1, . . . ,M and j = 1, . . . , N be rational integers,
not all 0, bounded by B and suppose N > M . Then, the homogeneous linear system

a11x1 + a12x2 + . . . + a1NxN = 0

a21x1 + a22x2 + . . . + a2NxN = 0
...

...
...

...
aM1x1 + aM2x2 + . . . + aMNxN = 0

has a solution x1, . . . , xN ∈ Z, not all 0, bounded by

max
i

|xi| ≤
⌊
(NB)

M
N−M

⌋
.

4max{xi} ≤
∑

xi ≤ nmax{xi} (n terms) so taking logs gives

max{log xi} ≤ log
(∑

xi

)
≤ logn+max{log xi}.
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Proof. Let A = (aij). We may assume no row is identically 0. For a positive integer k, let

Tk :=
{
x⃗ ∈ ZN : 0 ≤ xi ≤ k for all 1 ≤ i ≤ N

}
.

Let S+
m denote the sum of the positive entries in the mth row of A, and let S−

m denote the sum of the
negative entries. For x⃗ ∈ Tk and y⃗ := Ax⃗, we have

kS−
m ≤ ym ≤ kS+

m.

Let
T ′
k :=

{
y⃗ ∈ ZM : kS−

m ≤ ym ≤ kS+
m for all 1 ≤ m ≤M

}
.

If Bm := maxn |amn| is the largest absolute value in the mth row, then S+
m − S−

m ≤ NBm, so T ′ has at
most

∏
m(NkBm + 1) elements. Now, choose k so that #T > #T ′, i.e.∏

m

(NkBm + 1) < (k + 1)N

(note N > M), e.g. let k =
⌊∏

m(NBm)1/(N−M)
⌋

and use NkBm+1 < NBm(k+1) to see this choice of
k works.. By pigeonhole, we then get two different points x⃗′, x⃗′′ ∈ T with Ax⃗′ = Ax⃗′′, and x⃗ := x⃗′ − x⃗′′

is a solution in integers with

max
n

|xn| ≤ k ≤

⌊∏
m

(NB)1/(N−M)

⌋
=
⌊
(NB)M/N−M

⌋
. ■

Corollary 3.15. Let K be a number field of degree d contained in C with | · | the usual absolute value
on C. Let M,N ∈ N with 0 < M < N . There are positive constants C1, C2 such that for any nonzero
M ×N matrix A with entries amn ∈ OK , there is some x⃗ ∈ ON

K \ {⃗0} with Ax⃗ = 0, and

H(x⃗) ≤ C1(C2NB)
M

N−M ,

where B := supσ,m,n |σ(amn)| and σ ranging over embeddings K ↪! C.

We do not prove the corollary here, but the basic idea is to use that OK ∼= Zd in order to expand
things out to a situation with Z-coefficients where you can apply the form of Siegel’s lemma dealing with
rational integral matrices.

Now, let’s see how to use this to produce a small section. We first estimate the sizes of some relevant
cohomology groups.

Lemma 3.16 ([HS00], Lemma E.6.1). We have

dimΓ(C × C,ψ∗O(δ1, δ2)) = (Nδ1 + 1− g)(Nδ2 + 1− g),

and, for d1 + d2 > 4g − 4,

dimΓ(C × C,O(V )) ≥ d1d2 − gd2 +O(d1 + d2).
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(The second estimate above is the reason we introduced axiom (V3))
One proves this by applying Riemann-Roch for surfaces, using that d1, d2 are sufficiently large to

show that the Serre dual of the relevant line bundle has no global sections (since it will have negative
intersection with an ample divisor). To get a strict equality in the first case above, one needs to know
the H1 term vanishes; this comes from an application of Kodaira vanishing.

Once one has computed the dimensions of these cohomology groups, they are in position to apply
Siegel’s lemma.

Lemma 3.17. There are two positive constants C4, C5 independent of d1, d2, d and γ with the following
property. Let V be a Vojta divisor satisfying (V1),(V2),(V3), and d1, d2 ≥ C4/γ. Then, there is a
nonzero global section s of OC×C(V ) such that the polynomials F0, . . . , Fm in Lemma 3.5 may be chosen
with

h(F⃗ ) ≤ C5
d1 + d2
γ

.

Proof Sketch. We want to apply Siegel’s lemma to get a section of small height, and so we’ll need to
transfer the equations in Lemma 3.5 into a linear system of equation with coefficients in K.

We consider C as a curve in PNK of degree N (via the closed embedding φN [P0]), and we may also
assume, by a linear change of coordinates, that the projection p(x⃗) = (x0 : x1 : x2) maps C birationally
onto a curve in P2

K . This reduces the number of linear equations to be considered in the application of
Siegel’s lemma. Moreover, we may also assume that p(C) is explicitly given by a homogeneous polynomial

f(x0, x1, x2) = a0 + a2x2 + · · ·+ aN−1x
N−1
2 + xN2

with ai ∈ K[x0, x1] homogeneous of degree N − i.
The point of this simplification is that the monomials in Fi ∈ K[x0, x1, x2;x

′
0, x

′
1, x

′
2] with x2- and

x′2-degrees < N are linearly independent. This is important because to apply Siegel, we’ll need to be
able to estimate the dimensions of the spaces of unknowns and of solutions of the linear system described
by the equations Fi/ydi = Fj/y

d
j . Now, one writes yi = pi(x⃗; x⃗

′) with pi ∈ K[x0, x1, x2;x
′
0, x

′
1, x

′
2] (with

degx2
pi < N and degx′

2
pi < N) and uses this to obtain a linear system (in the coefficients of the

polynomials Fi) whose solutions give sections of OC×C(V ). If one carefully keeps track of the sizes of
the coefficients appearing in this system, and uses Lemma 3.16 to estimate the dimension of the spaces
of solutions and the number of unknowns, then they will obtain the claimed result. ■

3.4 “Roth’s Lemma,” and the Proof of Vojta’s inequality

There is one last technical result needed before one can prove Vojta’s inequality. The previous section
allows us to obtain a section s ∈ Γ(C × C,O(V )) with small height, but staring at Corollary 3.13 shows
that this is not enough; we also need s to vanish to low degree at (P,Q), so it has a small admissible
pair. To guarantee this, one uses a lemma due to Roth in order to strengthen 3.17 and so obtain

Lemma 3.18 ([BG06], Lemma 11.8.6). There is a constant C6 > 0, independent of d1, d2, d and γ such
that for 0 < ε < 1/

√
2, for any Vojta divisor satisfying (V1),(V2),(V3) with

γd2 ≥ C4 and d2 ≤ ε2d1
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and for any P,Q ∈ C(K) with

min
(
d1hN [P0](P ), d2hN [P0](Q)

)
≥ C6

d1
γε2

there is a nonzero global section s of OC×C(V ) with an admissible pair (i∗1, i
∗
2) at (P,Q) such that

h(F⃗ ) ≤ C5
d1 + d2
γ

and
i∗1
d1

+
i∗2
d2

≤ 4Nε.

With this last ingredient taken for granted, we may conclude:

Theorem 3.19 (Vojta’s inequality). There are constants κ1 = κ1(C) and κ2 = κ2(g) > 1 such that, for
P,Q ∈ C(K), one has

|P | ≥ κ1 and |Q| ≥ κ2 |P | =⇒ ⟨P,Q⟩
|P | |Q|

≤ 3

4
.

Proof. I’m gonna be sloppy with some of the big-O stuff because being careful is not my forté.
Note that the set Z to be avoided in Corollary 3.13 is finite, so P,Q ̸∈ Z if |P | , |Q| ≫ 0. Fix a small

positive γ0 < 1 and some D ∈ N. Let V = V (d1, d2, d) be a Vojta divisor with

d1 =
D

|P |2
√
g + γ0 +O(1), d2 =

D

|Q|2
√
g + γ0 +O(1), and d =

D

|P | |Q|
+O(1).

The O(1)’s above are to insure that d1, d2, d, δ1, δ2 are all nonzero natural numbers. Note that this V
satisfies (V1) (because of the O(1)’s), (V2) (by choosing D ≫ 0), and (V3) as

d1d2 − gd2 ≥ γd1d2 for γ =
γ0

g + γ0
+ o(1)

(with the o(1) tending to 0 as D ! ∞).
Now, lemma 2.4 gives

hC×C,V (P,Q) =
d1
2g

|P |2 + d2
2g

|Q|2 − d ⟨P,Q⟩+O (d1 |P |+ d2 |Q|+ d1 + d2)

= D

(√
g + γ0
g

− ⟨P,Q⟩
|P | |Q|

)
+O

(
D

|P |
+

D

|Q|

)
.

Corollary 3.13 combined with Lemma 3.17 then gives

−O
(
d1 + d2
γ

+ i∗1 |P |
2
+ i∗2 |Q|2 + i∗1 + i∗2 + δ1 + δ2

)
≤ hC×C,V (P,Q) = D

(√
g + γ0
g

− ⟨P,Q⟩
|P | |Q|

)
+O

(
D

|P |
+

D

|Q|

)
.

We can further manipulate this:

⟨P,Q⟩
|P | |Q|

≤
√
g + γ0
g

+O

(
1

|P |
+

1

|Q|

)
+

1

D
O

(
d1 + d2
γ

+ i∗1 |P |
2
+ i∗2 |Q|2 + i∗1 + i∗2 + δ1 + δ2

)
=

√
g + γ0
g

+O

(
1

|P |
+

1

|Q|
+

1

|P |2
+

1

|Q|2
+
i∗1
d1

+
i∗2
d2

+
i∗1 + i∗2
D

)

=

√
g + γ0
g

+O

(
1

|P |
+

1

|Q|
+
i∗1
d1

+
i∗2
d2

+
i∗1 + i∗2
D

)
.
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Since |Q| ≥ |P | in the end, this further simplifies to

⟨P,Q⟩
|P | |Q|

≤
√
g + γ0
g

+O

(
1

|P |

)
+

(
i∗1
d1

+
i∗2
d2

)
O

(
1 +

1

|P |2

)
. (3.3)

Now, to apply Lemma 3.18, we’d like some small ε so that

d2
d1

≤ ε2 and min
(
d1hN [P0](P ), d2hN [P0](Q)

)
≥ C6

d1
γε2

. (3.4)

The first of these translates to
|P |
|Q|

≤ ε+ o(1). (3.5)

For the second, recall from the proof of Lemma 2.4 that hN [P0](P ) = N
2g |P |

2
+ O(|P |) + O(1) (and

similarly for Q), so

d1hN [P0](P ), d2hN [P0](Q) ≥ DN

2g

√
g + γ0

while

C6
d1
γε2

=
1

ε2
O

(
D

|P |2

)
.

If we first fix ε < 1/
√
2 satisfying (3.5), then we get (the second part of) (3.4) by simply taking |P | large,

say |P | ≥ κ1. This puts us in a position to apply Lemma 3.18 in order to obtain

i∗1
d1

+
i∗2
d2

≤ 4Nε

which implies (recall (3.3))

⟨P,Q⟩
|P | |Q|

≤
√
g + γ0
g

+O

(
1

|P |

)
+ 4NεO

(
1 +

1

|P |2

)
≤

√
g + γ0
g

+O

(
1

κ1

)
+O(ε)

(when |P | ≤ ε |Q|, and so we’ll take κ2 := 1/ε). Since g ≥ 2, √g/g ≤
√
2/2 < 3/4, so if we take γ0, ε

small enough and κ1 large enough, the above will say cos θ(P,Q) ≤ 3/4. ■
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Appendices

A Canonical Heights and Jacobians

We first briefly recall the definition of the Picard variety of a smooth variety X.

Definition A.1. Let K be a field, and let X/K be a variety. Two line bundles L1,L2 ∈ Pic(X) are
said to be algebraically equivalent if there is an irreducible smooth variety T and a line bundle L on
X × T so that

L1
∼= L |Xt1

and L2
∼= L |Xt2

,

for some t1, t2 ∈ T (K). We will denote algebraic equivalence by L1 ≡ L2. We let

Pic0(X) := {L ∈ Pic(X) : L ≡ OX}

denote the group of line bundles algebraically equivalent to the trivial bundle. ⋄

Fact. Let K be a field, and let X/K be an irreducible, smooth projective variety. To keep things simple,
assume we have a base point P0 ∈ X(K). Then, the functor Pic0X/K defined by

Pic0X/K(T ) :=

{
(L ∈ Pic(X × T ), ι)

∣∣∣∣∣Lt ∈ Pic0(Xκ(t)) for any t ∈ T

ι : LP0

∼
−! OT

}
∼=

Pic0(X × T )

pr∗2 Pic(T )

is representable by a scheme, also denoted by Pic0X/K . Elements of Pic0X/K(T ) are called subfamilies of
Pic0(X) parameterized by T .

Since this functor is representable there is, in particular, a universal line bundle, the Poincaré
bundle ℘ on X × Pic0X/K such that ℘ is a subfamily of Pic0(X) parameterized by Pic0X/K and for
any L ∈ Pic0X/K(T ), there is a unique morphism φL : T ! Pic0X/K with (idX ×φ)∗ (℘) = L . This
℘ ∈ Pic0X/K(Pic0X/K) is the family corresponding to the identity morphism Pic0X/K

=
−! Pic0X/K .

See [BG06, 8.4.6 and Theorem 8.4.13] for a discussion of the above fact, as well as references for its
proof.

Applying the above fact with X = C a curve yields its Jacobian J := Pic0C/K . Applying it with
X = A an abelian variety, yields the dual abelian variety Â := Pic0A/K .

Remark A.2 (Jacobians). Note that if X = C is a curve, then the above fact yields the Jacobian J :=

Pic0C/K of C. Furthermore, the basepoint P0 ∈ C(K) yields a natural family P 7! OC(P − P0) of degree
0 line bundles on C, parameterized by C. This is the family giving rise to the usual Abel-Jacobi map
j : C ! J . ◦

Remark A.3 (Dual abelian varieties). If X = A is an abelian variety, then Â := Pic0A/K is its dual abelian
variety (and P0 = 0 ∈ A(K)). Given any line bundle L ∈ Pic(A), one gets a morphism φL : A ! Â

corresponding to the family A ∋ x 7−! τ∗xL ⊗ L −1, where τx : A ! A, a 7! a + x is the translation by
x map. This morphism is surjective iff L is ample. ◦

A.1 Heights

For this section, we largely follow [BG06, Chapter 9], especially sections 9.1 – 9.3.
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Fix a number field K, and an abelian variety A/K.

Definition A.4. For any n ∈ Z, let [n] : A ! A denote the multiplication-by-n morphism. We call a
line bundle L ∈ Pic(A) even if [−1]∗L ≃ L and odd if [−1]∗L ≃ L −1. ⋄

Fact. L above is odd ⇐⇒ L ∈ Pic0(A).

Recall A.5 (Canonical/Néron-Tate Height Machinery). There is a homomorphism

ĥ : Pic(A) −! RA(K)

L 7−! ĥA,L

assigning to each line bundle on A a height function on its K-points so that

(a) ĥA,L is the unique quadratic function satisfying ĥA,L = hA,L +O(1) and ĥA,L (0) = 0.

(b) if φ : A! B is a morphism between abelian varieties, then

ĥA,φ∗(L ) = ĥB,L ◦ φ− ĥB,L (φ(0))

for all L ∈ Pic(B).

(c) If L is ample, then for any D,B > 0, we have

#
{
x ∈ A(K) | ĥA,L (x) < D and [κ(x) : K] < B

}
<∞.

(d) If L ∈ Pic(A) is odd, then ĥA,L : A(K) ! R is a linear form, i.e. a homomorphism.

(e) If L ∈ Pic(A) is even, then ĥA,L : A(K) ! R is a quadratic form.

(f) If L is even and ample, then ĥA,L ≥ 0. Furthermore, ĥA,L (P ) = 0 ⇐⇒ P is torsion. ⊙

When working over an abelian variety, we can obtain well-defined heights without having to worry
about bounded functions.

Now, say L ∈ Pic(A). Then ĥA,L is a quadratic function with associated symmetric bilinear form

⟨x, y⟩L :=
1

2

(
ĥA,L (x+ y)− ĥA,L (x)− ĥA,L (y)

)
.

If L is furthermore even and ample, then ĥA,L is a quadratic form, and it also has an associated norm

|x|L :=
√
⟨x, x⟩L =

√
ĥA,L (x).

These both extend naturally to A(K)⊗R ∼= RrankA(K), giving it the structure of a Euclidean space. Note
that, by Recall A.5(f), this inner product on A(K)⊗ R is positive definite.

We will use this language to relate heights for odd line bundles to those for even line bundles. We will
then show that, in fact, all bilinear forms as above come from the height ĥA×Â,℘ on A× Â associated to
the Poincaré bundle ℘.
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Proposition A.6. Let L ′ ∈ Pic0(A) be an odd line bundle, and let L ∈ Pic(A) be an even, ample line
bundle. Then,

ĥA,L ′ = O (| · |L ) = O
(
ĥ
1/2
A,L

)
.

Proof. Since L is ample, the map φL : A ! Â is surjective, so we can find some a ∈ A(K) so that
L ′ = φL (a) = τ∗aL ⊗ L −1 ∈ Pic(AK) = Â(K). Thus,

ĥA,L ′(x) = ĥA,τ∗
aL⊗L −1(x) = ĥA,L (x+a)−ĥA,L (0+a)−ĥA,L (x) = ⟨x, a⟩L ≤ 2 |x|L |a|L = 2 |a|L

√
ĥA,L (x)

where we’ve applied both Recall A.5(b) and Cauchy-Schwarz above. This yields the claim. ■

Proposition A.7. Let L ∈ Pic(A) with symmetric bilinear form ⟨−,−⟩L . Let ℘ ∈ Pic(A × Â) be the
Poincaré class of A, and let φL : A! Â be the associated polarization. Then,

2 ⟨a, a′⟩L = ĥA×Â,℘ (a, φL (a′)) for all a, a′ ∈ A(K).

Proof. This is a single chain of equalities

2 ⟨a, a′⟩L = ĥA,L (a+ a′)− ĥA,L (a′)− ĥA,L (a) by definition

= ĥA,φL (a′)(a) by the reasoning in the proof of Proposition A.6

= ĥA×Â,℘(a, φL (a′))− ĥA×Â,℘(0, φL (a′)) since ℘|A×{φL (a′)} ≃ φL (a′)

= ĥA×Â,℘(a, φL (a′))− ĥÂ,℘|0×Â
(φL (a′))

= ĥA×Â,℘(a, φL (a′)) since ℘|0×Â = 0 ∈ Pic(Â) by definition of Pic0A/K(Â).

■

Remark A.8. To get rid of the annoying factor of two in the above proposition statement, one could
replace 2 ⟨a, a′⟩L with ⟨a, a′⟩L+[−1]∗L . ◦

A.2 Jacobians

For this section, we largely follow [BG06, Chapter 8], especially section 8.10.
We would like to specialize the above discussion of heights, to the case where A = Jac(C) is the

jacobian of a curve.

Setup A.9. Let K be a field, and let C/K be an irreducible smooth projective curve of genus g ≥ 1.
Fix a basepoint P0 ∈ C(K), let J = Pic0C/K be its Jacobian, and let j : C ! J, P 7! [P − P0] be the
Abel-Jacobi map.

Definition A.10. The theta divisor on J is

Θ := j(C) + · · ·+ j(C)︸ ︷︷ ︸
g−1

⊂ J.
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This is an irreducible, ample divisor such that the associated map

φΘ : J
∼
−! Ĵ

from J to its dual abelian variety is an isomorphism. ⋄

Notation A.11. We let Θ− := [−1]∗Θ = −j(C)− · · · − j(C) denote the pullback of Θ by the multipli-
cation by −1 map on J .

Note that Θ+Θ− is an even (ample) divisor while Θ−Θ− is an odd (non-ample) divisor.
One of the benefits of introducing the divisor Θ− is that it behaves predictably under pullback to C.

For example,

Proposition A.12. For all (P1, . . . , Pg) ∈ C(K)g, one has

g∑
i=1

[Pi] ∼ j∗a(Θ
−) where ja(P ) := j(P )− a,

and a := [P1 + · · ·+ Pg]− g[P0] ∈ J(K).

Proof. See [BG06, Proposition 8.10.15] ■

Corollary A.13. Taking Pi = P0 for i = 1, . . . , g above, we obtain

g[P0] ∼ j∗(Θ−).

In the context of Jacobians, there are two Poincaré classes: ℘C ∈ Pic0(C × J) and ℘J ∈ Pic0(J × Ĵ).
We would like to relate these to each other and to the theta divisor Θ. Our main tool for doing this will
be the seesaw theorem, stated below

Theorem A.14 (Seesaw Theorem). Let X be proper and let T be an arbitrary variety. Let L be a
line bundle on X × T . Then,

(1) S =
{
t ∈ T : L |X×{t} ≃ OX is trivial

}
is a closed subvariety of T .

(2) L |X×S = pr∗2 M for some line bundle M on S.

Proof. See [Mum08] ■

In other words, if you have a line bundle that is trivial on vertical fibers (fibers above T ), then it is
really the pullback of some line bundle on the base. Hence, if you want to show two line bundles on a
product are one-in-the-same, it can often suffice to show that they agree fiberwise (by applying seesaw
to their difference).

Notation A.15. Let C1 = pr∗1(P0) = P0 × C ∈ Div(C × C), let C2 = pr∗2(P0) = C × P0 ∈ Div(C × C),
and let ∆′ := ∆− C1 − C2 ∈ Div(C × C).

Proposition A.16. Let ∆ be the diagonal in C × C. Then,

(idC ×j)∗ (℘C) ≃ OC×C(∆
′).
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Proof. First note that, for any P ∈ C,

(idC ×j)∗ (℘C)|C×{P} ≃ OC(P − P0).

This is a formal consequence of the universality of ℘C . The natural map j : C ! J = Pic0C/K picks out a
family of degree 0 line bundles on C, and forming the above pullback simply recovers the corresponding
family. Similarly, note that, when P ̸= P0,

OC×C(∆
′)|C×{P} = OC×C(∆− C1 − C2)|C×{P} ≃ OC(P − P0).

Let L = (idC ×j)∗(℘C)⊗ OC×C(−∆′). By Seesaw, Theorem A.14,

S :=
{
P ∈ C : LC×{P} is trivial

}
⊂ C

is a closed subvariety. We have just seen that S contains the dense open C \ {P0}, so we conclude that
S = C, and hence – again by seesaw – that L = pr∗2 M for some M ∈ Pic(C). To finish, we note that

M ≃ (idC ×j)∗ (℘C)|{P0}×C ⊗ OC×C(−∆′)|{P0}×C ≃ OC

is trivial, as (idC ×j)∗ (℘C)|{P0}×C ≃ OC = OC(P0 − P0) ≃ OC×C(∆
′)|{P0}×C . ■

The next two propositions are similarly proved via see-saw arguments. Their proofs are omitted here,
but can be found in [BG06, Section 8.10].

Proposition A.17. Let m : J × J ! J be addition, let pr1,pr2 : J × J ⇒ J be the projection maps; for
δ := m∗Θ− − pr∗1 Θ

− − pr∗2 Θ
− ∈ Div(J × J), we have

OC×J
(
(j × idJ)

∗
δ
)
= ℘−1

C .

Proposition A.18. Let φΘ, φΘ− : J −! Ĵ , and let δ := m∗Θ− − p∗1Θ
− − p∗2Θ

− ∈ Pic(J × J). Then,

(idJ ×φΘ−)
∗
(℘J) = OJ×J(δ) = (idJ ×φΘ)

∗
(℘J).

Furthermore, δ ∼ m∗Θ− pr∗1 Θ− pr∗2 Θ.

Remark A.19. Combining Propositions A.16 and A.17, one sees that

OC×C
(
(j × j)

∗
δ
)
= OC×C(−∆′). (A.1)

Because the above fact is actually used in these notes, but Proposition A.17 is not proven here, we will
get an alternate, direct proof of it which does not go through the connection to C’s Poincaré bundle.

Alternate Proof of (A.1). This is another see-saw argument. We recall from the proof of Proposition
A.16 that for any P ∈ C, we have

OC×C(−∆′)|C×{P} ≃ OC(P0 − P ).
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The same better be true of (j × j)∗δ. One sees that, letting ιP : C ↪! C × C,Q 7! (Q,P )

(j × j)
∗
δ|C×{P} ∼ (m ◦ (j × j) ◦ ιP )∗ Θ− − (pr1 ◦(j × j) ◦ ιP )∗ Θ− − (pr2 ◦(j × j) ◦ ιP )∗ Θ−.

We now compute these compositions. First,

m ◦ (j × j) ◦ ιP (Q) = m ◦ (j × j)(Q,P ) = j(Q) + j(P ) =⇒ m ◦ (j × j) ◦ ιP = jj(P ).

Similarly, one computes pr1 ◦(j × j) ◦ ιP = j and pr2 ◦(j × j) ◦ ιP = j(P ). Using Proposition A.12 to
compute these pullbacks, we see

(j × j)
∗
δ|C×{P} ∼ (g[P0]− j(C))− (g[P0])− (0) = −j(C) = [P0 − P ],

so, by See-saw, OC×C
(
(j × j)

∗
δ
)
,OC×C(−∆′) must differ by the pullback (along pr2) of some line bundle

on C. To check that this bundle (on C) is trivial, one computes that OC×C
(
(j × j)

∗
δ
)
,OC×C(−∆′)

agree also on {P0} × C. ■

◦
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