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Introduction

The goal of this talk is to build up the statement of the main theorem of complex multiplication

for abelian varieties, following [Mil17, Chapters 10 and 11]. Given an abelian variety A with CM

by a field E, this theorem will describe the “Galois action on A and its torsion points.” We include

quotation marks here because the Galois group acting on A will not be attached to E, but instead

to the so-called “reflex field” E∗ of A, described later.
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Why do we care about this Galois action in this seminar? Our last goal for the semester

will be to define and construct canonical models of Shimura varieties. That is, given a Shimura

datum (G,X), we have defined certain complex algebraic varieties

ShK(G,X)(C) := G(Q)\X ×G(Af )/K,

for K ⊂ G(Af ) a (sufficiently small) compact open. In the next talk, we wish to show that these

ShK(G,X)(C)’s are canonically the C-points of some algebraic varieties ShK(G,X) define over

some number field E(G,X).

In certain cases, ShK(G,X)(C) is, in a natural way, a moduli variety over C. In such cases, one

can descend it to an algebraic variety over a number field by descending the corresponding moduli

problem.

Example 1. If (G,X) is the Siegel Shimura datum, then ShK(G,X)(C) parameterizes (isomor-

phism classes of) abelian varieties/C equipped with level structure described by K. In this case,

ShK will have a canonical model, over Q, which is still a moduli space for abelian varieties equipped

with appropriate level structure. △

However, not all Shimura varieties are known to solve moduli problems which easily descend to

number fields. Thus, a difference strategy is required if one want to prove the existence of canonical

models for general Shimura varieties. This is where complex multiplication comes in. Given a

variety V/C. To descend it to some subfield E ⊂ C, one could extend the functor it represents from

C-schemes to E-schemes (as in the case of descending Siegel modular varieties), or one could define

an action of Aut(C/E) on V which is compatible with its action on C (see [Mil17, Corollary 14.6]

for a precise statement). It is the latter approach which works for general Shimura varieties. In

this context, the ‘canonicity’ of canonical models comes from specifying their action on a (dense)

subset of so-called “special” points (analogous to the CM points on Siegel modular varieties).

1 Abelian Varieties of CM type

Our first task is to define our objects of study.

Definition 1.2. A CM field is a number field E which totally imaginary, quadratic extension

of a totally real field F . Each embedding F ↪! R extends into a conjugate pair of embeddings

E ↪! C. A CM-type Φ for E is a choice such an extension for each F ↪! R; that is, it is a subset

Φ ⊂ Hom(E,C) such that

Hom(E,C) = Φ ⊔ Φ

(Φ = {φ : φ ∈ Φ}). ⋄

Notation 1.3. Given a CM field E with maximal totally real subfield F , we set

EC = E ⊗Q C ≃
∏

φ:E↪!C
Cφ, Cφ = C
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ER = E ⊗Q R ≃
∏

σ:F↪!R
Cσ, Cσ = E ⊗F,σ R

FR = F ⊗Q R ≃
∏

σ:F↪!R
Rσ, Rσ = R.

Example 1.4. If E = Q(
√
−d) is quadratic imaginary, then E is CM with maximal totally real

subfield F = Q. In this case, a CM-type for E is simply a choice of embedding E ↪! C. △

Notation 1.5. Given a CM-type Φ, we let CΦ denote that (E ⊗Q C)-module

Definition 1.6. An ‘‘isogeny’’ of abelian varieties α : A ! B is an invertible element α ∈
Hom0(A,B) = Hom(A,B)⊗Q, i.e. an isomorphism in the isogeny category. ⋄

Definition 1.7. Let E be a CM field of degree 2g over Q. Let A/C be an abelian variety of

dimension g, and let i be a homomorphism E ! End0(A) := End(A)⊗Z Q. If

T0(A) ≃ CΦ as EC-modules

for some CM-type Φ, then we say that (A, i) is of CM-type (E,Φ). ⋄

Remark 1.8. Let A/C be a g-dimensional abelian variety equipped with a morphism E ! End0(A)

for some degree 2g CM field E. Then, (A, i) will be of CM-type (E,Φ) for some Φ. Indeed,

A ∼= T0(A)/H1(A,Z) (via the Lie exponential exp : LieA↠ A) and

H1(A;C) ≃ (H1(A,Z)⊗Z R)⊗R C = T0(A)⊗R C = T0(A)⊕ T0(A).

Above, H1(A,Q) is a 1-dimensional E-vector space (compare dimensions overQ), so T0(A)⊕T0(A) ≃
H1(A,C) ≃ EC. Thus, the set of φ : E ↪! C occurring in T0(A) must form a CM-type. ◦

Example 1.9. The elliptic curve A : y2 = x3 − x has CM by E = Q(i) where i ∈ E acts via

[i] : (x, y) 7! (−x, iy). △

Example 1.10. Fix an odd prime p and let E = Q(ζp). This field is CM, with totally real subfield

F = Q(ζp + ζ−1
p ). Consider the hyperelliptic curve C : y2 = xp + 1, and let A = Jac(C). Then, ζp

acts on C via [ζp] : (x, y) 7! (e2πi/px, y), and so one gets an induced map E ! End0(A). Explicitly,

this maps sends ζp to [ζp]
∗ : A! A. One can compute1 that the associated CM-type here is

Φ =
{
ζp 7! e2πik/p : k = 1, . . . , g

}
. △

Example 1.11. Let A1/C be an elliptic curve with CM by an imaginary quadraticK. Let A := Ag
1,

a g-dimensional abelian variety. Note that, because K ↪! End0(A1) by assumption, we have an

embedding Mg(K) = EndK(Kg) ↪! End0(A). Now, let F be a totally real number field of degree

g. After choosing a Q-basis for F , we can embed F ↪! Mg(Q) ⊂ Mg(K) via its multiplication

1Look at the action of [ζp] on H1(C,Ω1) = H1(A,Ω1) = T0(A)∨. A basis is given by xkdx/y for k = 0, . . . , g− 1,
and [ζp]∗(xkdx/y) = (e2πi/px)kd

(
e2πi/px

)
/y = e2πi(k+1)/pxkdx/y.
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action on itself. Thus, End0(A) ⊃Mg(K) contains copies of both K and F , and so contains a copy

of their compositum E := KF , a CM field of degree 2g, so A has CM by E. △

Recall 1.12. Let M = Cn/Λ be a complex torus, and let J denote the induced complex structure

on V := R ⊗Z Λ ≃ Cn. A Riemann form for M is an alternating form E : Λ × Λ ! Z whose

extension ER to V satisfies

E(Ju, Jv) = E(u, v) for all u, v ∈ V and EJ(u, v) := E(u, Jv) is positive-definite

(this is exactly a polarization of the integral Hodge structure H1(M,Z)). With this definition in

place, M is an abelian variety if and only if it admits a Riemann form. ⊙

Proposition 1.13. Let Φ be a CM-type on E. Abuse notation by letting Φ denote also the natural

map E ! CΦ, a 7! (φ(a))φ∈Φ. Then,

(a) The image Φ(OE) ⊂ CΦ is a lattice.

(b) The quotient

AΦ : CΦ/Φ(OE)

is an abelian variety of CM-type (E,Φ) for the natural homomorphism iΦ : E ! End0(AΦ).

(c) Any other pair (A, i) of CM-type (E,Φ) is E-isogenous to (AΦ, iΦ).

Proof. (a) This holds simply because

OE ⊗Z R ≃ E ⊗Q R = ER
∼
−!
Φ

CΦ.

(b) AΦ = CΦ/Φ(OE) is a complex torus by definition. To show that it is an abelian variety, one

needs to show it supports a Riemann form. Choose some α ∈ E so that Imφ(α) > 0 for all φ ∈ Φ.2

We may scale α to assume that α ∈ OE . Let F ⊂ E be the maximal totally real subfield. Let

v 7! v denote the nontrivial element of Gal(E/F ). Then,

ψ(u, v) := TrE/Q(αuv) =
∑
φ∈Φ

TrC/R

(
φ(α)φ(u)φ(v)

)
for u, v ∈ OE

is a Riemann form, so AΦ is an abelian variety. Furthermore, iΦ : OE ! End(AΦ) sending α ∈ OE

to multiplication by Φ(α) ends to the desired iΦ : E ! End0(AΦ). Finally, T0(AΦ) = CΦ as

EC-modules, by construction, so (AΦ, iΦ) is of CM-type (E,Φ).

(c) Say (A, i) is of CM-type (E,Φ). Then, T0(A) ≃ CΦ as EC-modules, so A ≃ CΦ/Λ w/

QΛ ⊂ CΦ stable under the E-action. We must therefore have QΛ = Φ(E) · λ for some λ ∈ E×
R , so

Λ = Φ(O) · λ for some lattice O ⊂ E. Choose N such that NO ⊂ OE . Then, we have isogenies

A = CΦ/Λ = CΦ/(Φ(O) · λ) N
−! CΦ/(Φ(NO) · λ) ·λ

 − CΦ/Φ(OE). ■
2Why possible?
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We end with section with two nice properties of CM abelian varieties: they are always defined

over number fields, and they have everywhere potentially good reduction.

Proposition 1.14. Let (A, i) be an abelian variety of CM-type (E,Φ) over C. Then, (A, i) has a

model over Q, which is unique up to isomorphism.

Proof. Uniqueness is easy: the functor A!C: AV(Q)! AV(C) is fully faithful. Indeed, a morphism

A ! B between C-abelian varieties is determined by its action on the (Zariski dense) subset of

torsion points, but A(Q)tors = A(C)tors, so any morphism is fixed by the action of Aut(C/Q), and

so defined over Q.

For existence, suppose (A, i) is of CM-type (E,Φ). It clearly has a model over some subring

R ⊂ C which is finitely generated over Q. Let m ⊂ R be a maximal ideal where A has good

reduction. Then, R/m ≃ Q, so (A, i) specializes to some (A′, i′) over Q, which is still of CM-type

(E,Φ).3 Proposition 1.13(c) shows that there is an isogeny (A′, i′)C ! (A, i). Its kernel will be

defined over Q since A′(Q)tors = A′(C)tors, so (A′/H, i′) is a model of (A, i) over Q. ■

To show that CM abelian varieties have potentially everywhere good reduction, we use the

Néron-Ogg-Shafarevich criterion [ST68, Theorem 1]. This says that A has good reduction if and

only if its Tate module Tℓ(A) is unramified for some (equivalently, any) prime away from the residue

characteristic. We will find it more immediately useful to appeal to the following corollary.

Lemma 1.15 (Corollary 1, [ST68]). Let F be a local field with residue characteristic p, and let

GF := Gal(F s/F ). Let A/F be an abelian variety. If, for some ℓ ̸= p, the image of GF in

Aut(Tℓ(A)) is abelian, then A has potential good reduction at v.

Proof. By Néron-Ogg-Shafarevich is suffices to show that inertia has finite image in Aut(Tℓ(A)).

Because the image is abelian, class field theory tells us that the image of inertia is a quotient of the

group O×
F of units in F ’s valuation ring. Let mF ⊂ OF be its maximal ideal, and let k := OF /mF .

There is a short exact sequence

1 −! 1 +mF −! O×
F −! k× −! 0,

and 1 +mF is pro-p. Similarly, Aut(Tℓ(A)) sits in a short exact sequence

1 −! 1 + ℓ · End(Tℓ(A)) −! Aut(Tℓ(A)) −! Aut(Tℓ(A)/ℓ) −! 1,

and 1 + ℓ · End(Tℓ(A)) is pro-ℓ. Comparing these, we see that 1 + mF must have finite image

in Aut(Tℓ(A)), so O×
F must have finite image in Aut(Tℓ(A)), so inertia must have finite image in

AutTℓ(A). ■

Proposition 1.16. Let (A, i) be an abelian variety of CM-type (E,Φ) over some number field

K ⊂ C. Then, A has potential good reduction over all p ∈ SpecOK .

3Write E = Q(α). Then, the eigenvalues of α acting on T0(A) determine the CM type.

5



Proof. Fix some p ∈ SpecOK , as well as a rational prime ℓ ̸∈ p. Let GK = Gal(Ks/K), and

consider the ℓ-adic Tate representation

ρA,ℓ : GK −! Aut(Vℓ(A)) Vℓ(A) := Tℓ(A)⊗Zℓ
Qℓ.

Let Eℓ := E⊗QQℓ, and note that Vℓ(A) is a free Eℓ-module of rank 1.4 Therefore, ρA,ℓ really lands

in AutEℓ
(Vℓ(A)) ≃ E×

ℓ . In particular, it has abelian image, so we win by Lemma 1.15. ■

2 Interlude: Shimura-Taniyama Formula

We know by Proposition 1.14 that all CM abelian varieties A have a model defined over some

number field. We further know, by Proposition 1.16, that we can always choose this number field

so that A has everywhere good reduction. Given such a setup, one may ask, “How does Frobenius

act on the reductions of A at various primes?”

The main result (Theorem 2.5) of this section will be used in the proof of the Main theorem of

complex multiplication. Before stating, we need the following observation.

Notation 2.1. Let k = Fq be a finite field, and let V/k be a scheme. We let Fr = FrV : V ! V

denote the qth power (absolute) Frobenius map. In particular, Fr is a k-morphism.

Example 2.2. If V = A1
Fq
, Fr : V ! V is the map a 7! aq. △

Lemma 2.3. Let (A, i) be an abelian variety of CM-type (E,Φ) over a number field K ⊂ C.
Choose a prime p ∈ SpecOK where A has good reduction, say to (A, i) over Fq = OK/p. Then, the

Frobenius map FrA ∈ End(A) lies in the image of i : E ! End0(A).

Proof. Fix a prime ℓ ̸= charFq, and let G = Gal(Fq/Fq). It suffices to check the claim after

tensoring with Qℓ.
5 Because

End0(A)⊗Qℓ −! EndG(Vℓ(A))

is injective6, it suffices to show that there’s some α ∈ E which acts as Frobenius on Vℓ(A). We note,

as we did in the proof of Proposition 1.16, that Vℓ(A) (so also Vℓ(A)) is a rank one free module

over Eℓ = E ⊗Q Qℓ. Because Eℓ acts on Vℓ(A) through endomorphisms (up to scaling), this action

commutes with that of FrA, so FrA ∈ EndEℓ
(Vℓ(A)) = E×

ℓ , and we win. ■

Notation 2.4. With a setup as in Lemma 2.3, we let π = π(A,i),p ∈ E denote the element which

acts by Frobenius on A.

4e.g. because VℓA ≃ H1(A(C),Q)⊗ Qℓ

5Maybe the quickest way to see this is to note that Qℓ is faithfully flat over Q, so the composition E
i
−! End0(A) ↠

End0(A)/FrA is zero iff it is after tensoring with Qℓ.
6In fact, bijective by [Tat66]
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Theorem 2.5 (Shimura-Taniyama). Use notation as in Lemma 2.3. Assume that K/Q is Galois

and contains all conjugates of E. Then, for all primes v of E lying over p,

ordv(π)

ordv(q)
=

#(Φ ∩Hv)

#Hv
,

where Hv :=
{
ρ : E ! K : ρ−1(p) = pv

}
.

For a proof, see [Mil07, Section 2] and/or [Mil20, Section 8] (possibly also [Mil17, Section 10]).

Remark 2.6. In proving Theorem 2.5, one usually obtains a stronger result. Under the additional

assumption that i−1(End(A)) = OE (used to ensure π ∈ OE), the ideal (π) ⊂ OE factors as

(π) =
∏
φ∈Φ

φ−1
(
NmK/φE p

)
. ◦

3 Main Theorem of Complex Multiplication

Recall, from the introduction, that, given an abelian variety A w/ CM by E, the main theorem is

meant to describe the action on A of the Galois group of a so-called associated “reflex field.” In

what remains, we describe this field and theorem. In addition to [Mil17], this section also borrows

from [Mil20] (especially sections II.{8, 9}).

Definition 3.1. Let (E,Φ) be a CM-type. View Φ as a subset of Hom(E,Q). The associated

reflex field E∗ is the smallest subfield of Q such that there exists an E⊗QE
∗-module V satisfying

V ⊗E∗ Q ≃
⊕
φ∈Φ

Qφ as E ⊗Q Q-modules. ⋄

Remark 3.2. V as above, is uniquely determined up to isomorphism.7 Furthermore, letting T =

ResE/Q Gm and T ∗ = ResE∗/Q Gm, there is a homomorphism NΦ : T ∗ ! T , called the reflex

norm, whose action on Q-points is

(E∗)
×

= T ∗(Q) −! T (Q) = E×

a 7−! detE(a | V )

(where detE denotes determinant on the V viewed as an E-vector space). Note NΦ also defines a

compatible homomorphism on idèles, A×
E∗ = T ∗(A×

Q )! T (A×
Q ) = A×

E . ◦

Fact (Aside after Definition 11.1, [Mil17]). E∗ defined above is the fixed field of {σ ∈ Gal(Q/Q) :

σΦ = Φ}.

Remark 3.3. If (A, i) is an abelian variety of CM-type (E,Φ), then any field of definition K of (A, i)

must contain E∗. This is because T0(A) has commuting actions of E and K, and a decomposition

(over C, so also over Q) of the type appearing in Definition 3.1. ◦
7One can think of it as the E∗-linear representation of ResE/Q Gm given by Gal(Q/E∗)-stable set of characters

Φ.
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Before stating the main theorem of complex multiplication, we recall the main theorem of global

class field theory.

Theorem 3.4. Let K be a number field. Then, there is a unique continuous, surjective homomor-

phism

ArtK = φK : K×\A×
K −! Gal(Kab/K)

satisfying

(1) For any finite place v of K and any finite, abelian extension L/K unramified at v, one has

φK(πv)|L = Frob−1
v ∈ Gal(L/K),

for any uniformizer πv of Kv.

(2) For any finite, abelian extension L/K, φK descends to an isomorphism

φL/K : K×\A×
K/NmL/K(A×

L )
∼
−! Gal(L/K).

We write φK : A×
K ! Gal(Kab/K) also for its lift to A×

K .

Remark 3.5. The normalization in (1) above is the inverse of the usual one, but is chosen here to

ensure that

φQ(χ(σ)) = σ,

where χ : Gal(Qab/Q)! Ẑ× ⊂ A×
f is the usual cyclotomic character. ◦

Remark 3.6. Let (A, i) be an abelian variety with CM type (E,Φ), Φ ⊂ Hom(E,Q). Choose any

σ ∈ Gal(Q/E∗), so σΦ = Φ. Hence, Aσ has CM type (E,Φ) as well, so (Proposition 1.13) there is

an E-isogeny α : A! Aσ. Let Af,E := E ⊗ Af . Both maps

x 7! σx, x 7! αx : Vf (A) −! Vf (A
σ)

are Af,E-linear isomorphisms. Because Vf (A) is free of rank one, they must differ by some η(σ) ∈
A×

f,E , i.e.

α(η(σ)x) = σx for all x ∈ Vf (A).

Changing α only changes η(σ) by an element of E×, so we get a well-defined map

η : Gal(Q/E∗) −! A×
f,E/E

×. ◦

The main theorem says that η above is the reflex norm.

Theorem 3.7 (Main Theorem of Complex Multiplication). Let (A, i) be an abelian variety with

CM type (E,Φ) over Q, and let σ ∈ Gal(Q/E∗). For any s ∈ A×
f,E with φE∗(s) = σ|(E∗)ab , there is

a unique E-“isogeny” α : A! Aσ (i.e. α ∈ Hom0(A,Aσ) = Hom(A,Aσ)⊗Q) such that

α(NΦ(s) · x) = σx for all x ∈ Vf (A).
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Remark 3.8. One can replace Gal(Q/E∗) with Aut(C/E∗) in the above theorem. This follows from

Proposition 1.14. ◦

We will not prove this here8. However, one can find a proof in [Mil07, Section 3] or [Mil20,

Section 8]. It is claimed in [Mil17, Section 11] that the Shimura-Taniyama formula can be used to

show that η is given by the reflex norm, but I don’t see how. However, we will end by connecting

this theorem to moduli (recall our initial motivation of producing canonical models of Shimura

varieties).

3.1 Relation to moduli

Let (E,Φ) be a CM-type, and let F ⊂ E be E’s maximal totally real subfield. Consider the tori

TE := ResE/Q Gm and TF := ResF/Q Gm. Let Nm : TE ! TF denote the norm map a 7! a · a.
Let T be the fiber product

T TE

Gm TF ,

Nm

i.e. T (R) =
{
a ∈(E ⊗Q R)

×
: φR(a)φR(a) = φ′

R(a)φ
′
R(a) ∈ C⊗Q R for any φ,φ′ ∈ Φ

}
.

Consider the morphism hΦ : S! TE
R defined on R-points by

hΦ(R) : C× −! E×
R ≃

∏
φ∈Φ

Cφ

z 7−! (z, z, . . . , z).

Lemma 3.9. The image of hΦ lands in TR ⊂ TE
R , and the pair (T, {hΦ}) is a Shimura datum.

Proof. For the first part, simply compute that the composition

S hΦ−−! TE
R

Nm
−−! TF

R ≃
∏
φ∈Φ

Rφ

is z 7−! (|z|2 , . . . , |z|2), so imhΦ ⊂ Nm−1(Gm) = T . Now, conditions (SV1,2,3) are vacuous since

T is a torus (so commutative and noncompact). ■

We thus get a Shimura variety Sh(T, {hΦ}), which we claim is a moduli space for abelian varieties

with CM.

Construction 3.10. Fix a purely imaginary α ∈ OE such that Imφ(α) > 0 for all φ ∈ Φ, as in the

proof of Proposition 1.13. Let ψ : E × E ! Q be the bilinear form

ψ(x, y) := TrE/Q(αxy) =
∑
φ∈Φ

TrC/R

(
φ(α)φ(x)φ(y)

)
.

8mostly because I do not understand the proof(s)
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With this defined, T ⊂ TE can be described as the torus

T (R) :=
{
(a, b) ∈(E ⊗Q R)

× ×R× : ψ(ax, ay) = bψ(x, y) for all x, y ∈ E ⊗Q R.
}
. (3.1)

Note above that b = φR(a)φR(a) for any φ ∈ Φ. 8

Definition 3.11. For any compact open subgroup K ⊂ T (Af ), let MK denote the set of isomor-

phism classes of quadruples (A, j, λ, ηK) where

• A is a complex abelian variety

• λ is a polarization, equivalently a Riemann form ψλ : H1(A,Q)×H1(A,Q)! Q

• j is a homomorphism E ! End0(A)

• ηK is a K-orbit of AE,f -linear (note AE,f = E ⊗Q Af ) isomorphisms η : AE,f ! Vf (A),

and which satisfy

there exists an E-linear isomorphism a : H1(A,Q)! E sending ψλ to a Q×-multiple of ψ. (⋆)

An isomorphism from one tuple (A, i, ηK) to another (A′, i′, η′K) is an E-“isogeny” A! A′ sending

η to η′ modulo K. ⋄

Proposition 3.12. For any compact open subgroup K ⊂ T (Af ), there is a natural bijection

MK
∼
−! ShK(T, {hΦ}) = T (Q)\T (Af )/K.

Proof Sketch. Say (A, j, λ, ηK) ∈ MK . Fix any choice of isomorphism a : H1(A,Q)
∼
−! E as in (⋆).

Using that Vf (A) = H1(A,Q)⊗Q Af , we can consider the composition

E ⊗Q Af
η
−! Vf (A) = H1(A,Q)⊗ Af

a
−! E ⊗ Af .

By definition, this satisfies (3.1), so a◦η ∈ T (Af ). The choice of a is determined up to composition

w/ an element of T (Q), and similarly η is determined up to composition with an element of K.

Therefore, the class of a◦η in T (Q)\T (Af )/K is well-defined. The desired map is the just-described

(A, j, λ, ηK) 7! [a ◦ η]. ■

Theorem 3.13. Let Aut(C/E∗) act on ShK(T, {hΦ}) = T (Q)\T (Af )/K as follows: given σ ∈
Aut(C/E∗), choose s ∈ A×

f,E∗ such that ArtE∗(s) = σ|(E∗)ab , and then set

σ[a] :=[NΦ(s) · a] for a ∈ T (Af ).

The bijection

MK
∼
−! ShK(T, {hΦ})

is equivariant for this action.
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Proof idea. Let α : A ! Aσ be the E-“isogeny” of Theorem 3.7. By Theorem 3.7 (+ [Mil20,

Remark 9.11(c)] to verify (⋆)), if (A, j, λ, ηK) ∈ MK corresponds to [a ◦ η] ∈ T (Q)\T (Af )/K, then

(Aσ, jσ, λσ, ησK) corresponds to [b ◦ ησ], where b = a ◦ Vf (α)−1. Expanded out, this is

b ◦ ησ = a ◦ Vf (α)−1 ◦ σ ◦ η = a ◦NΦ(s) ◦ η = NΦ(s)a ◦ η,

where s ∈ A×
f,E is chosen so that φE∗(s) = σ|(E∗)ab . This proves the claim. ■
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Appendices

Note 1. I waited sufficiently long after the end of the semester before writing the appendices that

I have forgotten what all I originally wanted to put in here...

A Review of Shimura Data

Let’s first define (connected) Shimura data.

Notation A.1. We will often make reference to the Deligne torus S := ResC/R Gm,C as well as

the R-algebraic group U1 defined by

U1(R) :=
{
g ∈(R⊗R C)× : gg = 1

}
,

where the bar denotes complex conjugation. Note that S(R) = C× while U1(R) = S1 is the circle

group.

Definition A.2. A pair (G,D) consisting of a semisimple Q-algebraic group G and a Gad(R)+-
conjugacy class D of homomorphisms u : U1 ! Gad

R is called a connected Shimura datum if it

satisfies all of

(SU1) For all u ∈ D, the only characters appearing in the representation Ad ◦u of U1 on

Lie(Gad)C are z−1, 1, z.

(SU2) For all u ∈ D, adu(−1) is a Cartan involution on Gad
R .

(SU3) Gad has no Q-factor H such that H(R) is compact. ⋄

For ‘Shimura data,’ there are additional axioms which one can consider. All the ones appearing

in [Mil17, Section 5] are listed below.

Definition A.3. Let G/Q be a connected9, reductive algebraic group, and let X be a G(R)-
conjugacy class of homomorphisms h : S! GR. We consider the following axioms:

(SV1) For each h ∈ X, the Hodge structure on Lie(GR) defined by Ad ◦h is of type {(−1, 1), (0, 0), (1,−1)}.

When this is satisfied, one gets a canonically attached weight homomorphism wX : Gm,R −!

Z(G)◦R ⊂ GR.

(SV2) For each h ∈ X, adh(i) is a Cartan involution on Gad
R .

(SV2∗) For each h ∈ X, adh(i) is a Cartan involution on GR/wX(Gm).

(SV3) Gad has no Q-factor on which the projection of h is trivial.

9Milne [Mil17] notes in several places that much of the theory goes through even without assuming G is connected.

12



(SV4) The weight homomorphism wX : Gm,R ! GR is defined over Q (one says “the weight

is rational”).

(SV5) The group Z(Q) is discrete in Z(Af ).

(SV6) The torus Z◦ splits over a CM field.

We call the pair (G,X) a Shimura datum if it satisfies (SV1),(SV2),(SV3). ⋄

Remark A.4. Because of technicalities in the definition of Shimura datum, there’s also an ever-so-

slightly separate notion of a “zero-dimensional Shimura datum/variety” (see e.g. [Mil17, Towards

end of chapter 5]). I won’t bother recalling this here, but in short, when G = T is a torus, it is

useful to allow X to be bigger than a conjugacy class (= singleton set).10 ◦

Given a Shimura datum (G,X) and a compact open K ⊂ G(Af ), the corresponding Shimura

variety is given by

ShK(G,X) := G(Q)\X ×G(Af )/K ∼= G(A)×G(A)/(K∞ ×K),

where K∞ ⊂ G(R) is the centralizer of h.

10Actually, Milne [Mil17, End of Chapter 9] remark that it might be better to loosen the definition of Shimura
datum by allowing X to be a finite cover of a G(R)-conjugacy class.
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