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Introduction

These are notes for my Juvitop talk. Our goal is to give an overview of class field theory, introducing the
main statements and hopefully discussing enough results to understand the uses of CFT in this paper
[FGV20] by Feng-Galatius-Venkatesh.

Since our primary motivation is understanding the paper of Feng-Galatius-Venkatesh, our main focus
is arriving at the statements of the main theorems of (global) class field theory, and then seeing what
these get us. To be safe, we begin by quickly recalling some background materiaEI needed to understand
the statements of the main results of class field theory. Afterwards, we give the main results, and then
discuss how to think about them and how to derive some of their consequences.

The preliminaries section tries not to say much more than is needed. For more details, included proofs
of statements only claimed here, see the last two chapters of [Mil20a] or the first two chapters of [Ser79].

Throughout these notes, K will denote a number field (and never a global function field).

1 Preliminaries

Fix a number field K, so K/Q is some finite extension. The goal of class field theory is to understand
Gal(K/K)* = Gal(K?®"/K), the abelianization of the absolute Galois group of K. Here, K is a choice

ISection 1 is kinda unorganized. It’s just a Hodge podge of stuff that seems like it may be useful for section 2



of algebraic closure of K, and

K = U L
K/L/K
L/K finite, abelian

is the maximal abelian extension of K, the union of all finite, abelian intermediate extensions L of K /K.
In order to understand Gal(K?P/K), a potentially good first step is being able to produce elements
of Galois groups of number fields.

1.1 Frobenius and Ramification

Notation 1.1. We let Ok denote the ring of integers of K, the integral closure of Z C K.

Remark 1.2. The ring O is a Dedekind domain, which, among other things, means that any ideal

I C Ok uniquely factors
g
1= H p
i=1
as a finite product of prime ideals.
Fact. Let L/K be some finite extension, and fix a prime p C Ok of K. Then this factors upstairs as
g
pﬁL = H m?ia
i=1

with 9; a prime of L. Let k, = Ok /p, and let ky, = 01/ P;. Set f; := [ky, : kp]. Then, one has
[L:K]=>7ef;. Wecall ¢; the ramification degree of J3; over p, and f; the residue field degree
of P; over p. We say p is

e unramified in L/K if e; = 1 for all 1.
e totally ramified in L/K if e; = n.

e totally split in L/K if g =n.

e inert in L/K if f; =n.

In the above situation, say L/K is a Galois extension. We still have p C Ok a prime downstairs, and
a list {P1,P2,..., P, } of primes above p. Let G = Gal(L/K) be the Galois group. Then, for any ¢ and
any o € G, o(;) is a prime above o(p) = p, so o(P;) =P, for some j, and G ~ {P;}Y_,. This action is

in fact transitive, so all ramification and residue field degrees above p are equal (say to e, f, respectively),

and one writes n:=[L : K| = efg.
In the same situation, choose some prime P € {P1,...,P,} above p. We define its decomposition
group to be

DB |p):={oeCG:0(P) =%}

the stabilizer of P8 under the Galois action. Recall the notation k, = Ok /p and kyp = Or/P. There is a

natural map D(P | p) — Gal(ky/kp) sending o € D(P | p) to the automorphism @ : T +— o(z) for any

x € O, with reduction T € rep.



Fact. The map D(P | p) — Gal(kyp/kp) is a surjection.

We define the inertia group I(P | p) := ker(D(B | p) — Gal(kgp/ky)), so we have an exact sequence
L—I(¥|p) — DF|p) — Gal(rgp/ky) — L.

Remark 1.3. Recall that n = #G = efg, and G acts transitively on {J1,...,B,} 2 B. By orbit-stabilizer,
this means that #D (P | p) = # Stabg (P) = #G/g = ef. Furthermore, by definition, f = # Gal(kyp /ky),
soe=#I(B | p).

Now suppose p is unramified, so e = 1. By the above remark, in this case, I(3 | p) = 1 is trivial, so
D(B | p) = Gal(kyp/kp) is an isomorphism. The latter is a Galois group of an extension of finite fields,
is isomorphic to Z/f7 with canonical generator

kg DX — xke,

The unique lift Froby € D( | p) C G of this generator to D(P | p) is called the Frobenius at B. This

gives one way of producing Galois elements.

Remark 1.4. Still assuming p is unramified, note that Frobenius Froby € G generates the decomposition
group D(B | p), so the splitting behavior of p can be determined by knowing the order of Frobenius in
the Galois group G = Gal(L/K). In particular, if Froby = 1 is trivial, then f = #D(B | p) = 1, so
n = efg = g which means p splits completely.

Note that Frobenius Froby: depends on a choice of prime 3 above p. There is not natural choice of such
a prime, so we would prefer if it Frobenius depended only of p. If o € G is an arbitrary Galois element,
then the Frobenius element associated to o(*B) is the canonical generator of D(c(B) | p) = Stabg(c(P)) =

o Stabg(PB)o~!. By canonicity (or an easy by hands argument), we see that Frob,g) = ocFrobgo™!

, SO
choosing a different prime above p conjugates Frobenius. In particular, there is a well-defined conjugacy
class Frob, C G associated to the prime p downstairs. Finally, if G is abelian, then every conjugacy class

is a singleton, so we get a well-defined element Frob, € G. For some reason, people sometimes instead

Frob, =: (L/pK> e G.

This has all been part of the “global” story. In order to talk about class field theory, we will also need

use the cumbersome notation

to know some of the “local” theory, so we do that next. Everything I claimed without proof here can be

found e.g. in the first chapter of Serre’s ‘Local Fields’ [Ser79].

1.2 Places and Local Fields

Instead of studying a global field, it is often useful to complete it in order to study things “one primeﬂ
at a time,” e.g. every prime of K has corresponding decomposition/inertia groups in Gal(K ab /K), so
it may make sense to understand Gal(K?"/K) by understanding each of these subgroups. To study one
prime at a time, think about the passage from Z to Z,, the p-adics.

As before, fix a number field K.

2really, place



Definition 1.5. An absolute value on K is a function | - | : K — R>¢ such that |a| =0 < a =0,
|ab| = |a| |b], and |a + b] < |a| + |b|]. We say two absolute values | - |,| - |" on K are equivalent, dented
It =

| - | ~] - [, if there exists some t > 0 such that | - |* =] - |". A place is an equivalence class of absolute

values.

Definition 1.6. An absolute value | - | is called non-archimedean if |a + b| < max(a,b) (with equality

if |a|] # |b]), or equivalently, if |Z| C R is bounded. It is called archimedean if it is not non-archimedean.

Definition 1.7. Non-archimedean places are also called finite places, and we may denote that a place
v is non-archimedean by writing v t co. Archimedean places are also called infinite places, and we may

denote that a place v is archimdean by writing v | co.
Theorem 1.8 (Ostrowski). Let | - | : Q — R be an absolute value. Then, one of the following holds,

o | - | is equivalent to the usual, archimedean absolute value | - | we all learned about long ago, i.e.

la|, =a ifa>0 and|a| = —a ifa <0.; or

o There exists a (unique) prime p s.t. | - | is equivalent to the p-adic absolute value | - |,. This

—ordp(n

satisfies |n|, = p ) for any n € Z, where ord,(n) is the largest e such that p° | n.

Notation 1.9. Given a place v of K, let | - | be some absolute value representing it. Then, | - | induce a
metric d(x,y) := | — y| on K in the usual way, and we let K, denote the completion of K with respect

to this absolute value.

Example. Let v, be the place of Q containing | - |. Then Q = R. Let p be a prime, and let v, be
the place of Q containing | - |,. Then, Q,, = Q, is the p-adics.

In general, K, will be some locally compactﬂ field containing K as a dense subfield. Let u be the
place on Q under v — i.e. pick a representative | - | : K — Rx>q of v and then let u be the place containing
its restriction to Q. Then, K, D Q, is a field extension. Furthermore, since K, is locally compact,

[K, : Qu] < oo. Hence, as a consequence of Ostrowski, we have the following partial classification

e Say v is an archimedean place. Then, K, = R or K, = C. Indeed, v, is the only archimedean

place of Q, so K, must be some finite extension of Q. = R.
e Say v is a non-archimedean place. Then, K, is a finite extension of QQ, for some prime p.

In any case, we call K, a local field. More intrinsically, a local field is a locally compact topological

field which is complete with respect to some non-trivial absolute value.

Remark 1.10. Each place actually has a canonical choice of representative absolute value. Let v be a
place of K. Since K, is locally compact, it supports an additive Haar measure p, unique up to scaling.
For any a € K, let p, be the measure defined by p,(S) := p(aS). Then, p, is easily seen to be a Haar
measure, so there exists a unique scalar ¢, € K s.t. 1q(S) = cou(S) for all S C KUE| The assignment
al

» i= Cq defines an absolute value | - |, : K, — Rx. Both it and its restriction to K are called the

normalize absolute value associated to v.

3Enough to show the closed unit ball is compact, and this follows from compactness of [0,1] C R + completeness of K,
4Technically, for all Borel subsets, but shhhhhh that doesn’t matter



Ezercise. The normalized absolute value on R is the usual one. However (since C is a 2-dimensional

Euclidean space), the normalized absolute value on C is |z| = 2Z, the square of the usual one.

Archimedean places are boring, so now fix a non-archimedean place v on K,. We introduce the

following heap of notation.

o U, :={acK,:|a|, <1} is called the ring of integers (or valuation ring) of K,. This is a

discrete valuation ring, i.e. a local PID.

e m, := {a € K, :|a|, <1} is the (unique) maximal ideal of &,. It is literally all the non-units in
0.

® K, := 0,/m, is the residue field at v.

Let p be the rational prime such that K, D Q,. Since K, is a finite extension of Q,, it is not hard to
show that |K,|, C R is a discrete subgroup. Choose some m, € m, with |r,|, maximal. Then, m, = (7,),

and we call 7, a uniformizer. Any nonzero element of ¢ € K can be uniquely written in the form

m
v 7

a = ur! for some u € O and m € Z. In particular, |a|, = |u|, |T.|)" = |7|", so | - |, is completely
determined by its value on a uniformizer. Since 7,0, = m,, letting u be additive Haar measure on K,,
we see that

[Tl 1(O) = pir, (O0) = p(my) = [myl, = p(my,)/pu(0y).

At the same time, 0, = | | (a+m,) is a disjoint union of ##, cosets of m,, so

w(Oy) = Z pla+my,) = Z p(my,) = (Fk,)p(m,) = ‘Trv|v = (#"@v)_l'

A€k A€k

Now, note that p, := m, Nk is a nonzero (e.g. it contains p fixed earlier) prime of Ok . Furthermore,
(O /py) — Ky In this way, associated to any non-archimedean place v of K is a nonzero prime p,, of
Ok.
Remark 1.11. In the reverse direction, if p is a nonzero prime of Ok, then the localization Ok, =
(Ok \ p) 'Ok is a dvr. Hence, for any a € Ok, there is a unique n € Z>(, denote ordy(a), such that
a0k p = (pOkp)". Thus, we get a p-adic absolute value defined by |a|, := (#Ox [p)~orde (@),

Remark 1.12. The previous remark shows that non-archimedean places of K are in bijection with maximal
ideals of Ok . Archimedean places of K are in bijection with embeddings ¢ : K <— C, up to conjugation.
On the one hand, such an embedding gives rise to an absolute value |z| = |¢(x)| where the latter is the
usual Euclidean absolute value on C. On the other hand, an archimedean place v gives an embedding
K — K, but K, =R or C, so we get an embedding K — K, — C.

Notation 1.13. Let L/K be an extension of number fields, and let w be a place of L. Let v = w|x be

the place of K obtained by restricting w. In this situation, we say “w lies above v,” and write w | v.

Remark 1.14. If L/K is a Galois extension of number fields, and v is a place on K, then there exists
a (non-unique) place w of L above v. The Decomposition group D(w | v) := Gal(L,/K,), and

this agrees with our earlier definition in the case that v is a non-archimedean placeﬂ When v is non-

5Any Galois element o € Gal(L/K) fixing . acts continuous w.r.t to the | - |, absolute value, and so extends to an
automorphism of the completion L., fixing K,. Conversely, any T € Gal(L,,/K,) restricts to an automorphism of L (recall,
L/K normal) which fixes Py C &r,. This is because one can show |o(-)|,, = | - |w e.g. by showing there is a unique absolute
value on L,, extending the one on K.



archimedean, we define the inertia group I(w | v) as before. When v is archimedean, we define the
inertia group I(w | v) := D(w | v) to be equal to the decomposition group. That is, I(w | v) = D(w |
v) = Gal(C/R), Gal(C/C), or Gal(R/R) depending on if v,w are real or complex.

Definition 1.15. We say an archimedean place v of a number field K ramifies in L if it has non-trivial

inertia group, i.e. if it is a real place with a complex place lying above it.

2 Global Class Field Theory

2.1 idéles

In order to state the main results of global class field theory, we need to introduce one more concept.
This is that of ideles.

Definition 2.1. Fix a collection of locally compact Hausdorff abelian groups {G; }icr. Let S C I be some
finite set, and for each ¢ € I\ S choose a compact, open subgroup K; < G,;. We define the restricted
direct produciﬁ

H/(Gi7Ki) = {(gl) € HG" : g; € K; for all but finitely many ¢ € T\ S} .

iel el

We topologize this by giving it a basis of opens of the form

H A; with A; Orém G; and A; = K; for all but finitely many i € I.
el

Fact. Restricted direct products are themselves locally compact, Hausdorff abelian groups.

Definition 2.2. Let K be a number field. We define the finite ideles are the restricted direct product

I[ch{m = H/(ng o)),

vfoo

while the ideles are

Ig = H(KX o) =1" x [ K-

v v|oco

Fact. There is a diagonal embedding K* < I given by x — (..., z,x,z,...) whose image is discrete.

Example. To make things more concrete, let’s see that the ideles of Q are a familiar object. Fix some
z = (2y)y € Ig (so z, € Q). There are only finitely many primes p s.t. z, € Q, \ Z,; call them
P1,P2,---,Pk- Let g = in 1D Ord“ (@r) € Q with sign chosen so that gz € R, x H Zy Clg. Thus,
the natural map

Q* xRXy x [[2z; — Iy

p

6If you want, you can imagine Ks = Gs when s € S, even though Gy is not compact



is a surjection. This map is easily seen to be injective, so it is in fact a bijection. Secretly, it is actually an
iso of topological groups (with Q* given the discrete topology). You get a similar idelic decomposition

for any number field with trivial class groupm

Now, consider some extension L/K of number fields. There is unsurprisingly a natural map I — I,

but there is even a map I, — [k in the other direction! We like this map more.

Recall 2.3. For any extension E/F of fields, there is a norm map Nmpg,p : E — F given by a — det(myq),

where m, : E — E is the F-linear “multiplication by «” map m.(5) := af.

We want to construct a norm map Nm = Nmy, /1, : [p — [x. Let ¥ denote the set of places of K,

and similarly for L. We begin by writing
! !/
=[] zx= 11 (I[Z%
weEX, vEXK \wlv

The norm map is induced by the coordinatewise maps

HNme/Kv : HL; — K;(

wlv wlv

for v € Y.

2.2 Statements of Main Results

This brings us to the good stuff. A good reference for this section is [Mil20b], especially sections 1.1 and
V.5.
Fix a number field K.

Theorem 2.4 (Main Theorem of Global CFT). There exists a unique homomorphism, called the
(global) Artin map
o Ix — Gal(K**/K)

satisfying

(1) o(K*) =1 where, as always, K> — Ik diagonally. That is, we really have a map
i KX\l — Gal(K**/K).

This is sometimes referred to as reciprocity.

(2) Fiz a finite place v of K, and let L/K be an extension unramified at v. For any uniformizer m, of
0, C K,, one has
K (my)|L = Frob, € Gal(L/K),

i.e. any uniformizer of a finite, unramified place acts by Frobenius.

"Eh trivial class group + arbitrarily signed units.



(8) For every finite abelian extension L/K, ¢ descends to an isomorphiswﬂ
ok K*\Ig/Nm(I,) = Gal(L/K).

Remark 2.5. Motivated by reciprocity, we define the idele class group Cx = Ix/K*. Let L/K be
finite, abelian. Note that the norm map Nm : I, — Ix descends to a map C; — Cfk, and one can phrase
(3) above as saying that

¢r/k : Cx/Nm(Cp) = Gal(L/K).

Motivated by (3), we define a norm group of K to be a group of the form Nm(Cy) C Ck, where
L/K is finite, abelian.
Fact. A norm group of K is precisely an open, finite-index subgroup of Cx. Hence, CFT gives a bijection

{ finite abelian } { open, finite index }
> .

L/K subgroups of Cx

Corollary 2.6. Let G be an abelian, finite (hence, discrete) group. The data of a G-extension of K is

equivalent to that of a continuous, surjection Cx — G.

Notation 2.7. The Artin map px : Cx — Gal(K?*/K) is sometime also denoted
Art = Artg : Cx — Gal(K**/K)

instead.

The goal of class field theory is to understand Gal(K?®"/K). How well does Theorem achieve
this goal? The Artin map ¢x : O — Gal(K?*/K) is not an isomorphism (e.g. because the source is
not compact but the target is), but clearly it captures much information about Gal(K?*/K) in terms of

ideles. Here are a few ways in which @ answers the goal of class field theory

e (3) says that the composition
Cx 25 Gal(K* /K) — Gal(L/K)

is a surjection for any finite, abelian L/K. Hence, px has dense image in Gal(K*"/K). In fact,
again by (3) (+ the fact after Theorem [2.4)), ¢ i induces an isomorphism

Px 1 Ox = Gal(K*/K),

from the profinite completion C'x = lim Cx /Nm(Cp) of Ck to Gal(K*"/K).
L/K
e We can actually do one better, and compute this profinite completion. In particular, we have the

following (only true when K is a number field).

Fact. px : Ox — Gal(K*/K) is surjective with kernel CY%, the connected component of the
identityﬂ

8This double coset space is really just I /(K> - Nm(Iy,)) since everything abelian
9Note that non-archimedean local fields are totally disconnected, so this is really I, rear R;O x |1

(CX

v complex



e Number theorists care about Gal(K?P/K) as more than just a topological group. We also care
about e.g. understanding its inertia subgroups. Fix a finite place v of K. Let K% =% /K be the

maximal abelian extension of K which is unramified at v. We then have an exact sequence
1 — I(v) — Gal(K*®/K) — Gal(K®" " /K) — 1,

whose kernel is inertia at v. By (2), ¢x(0)) € Gal(K?®"/K) lies in the kernel of the above map,

and so lands in I(v).

Fact. The top map is the below commutative square is an isomorphism.

o —=—— I(v)

| |

Crx 55 Gal(K?P/K),
i.e. 0 is inertia at v.

I am not sure if the above fact is explicitly in [Mil20b], but it can be found e.g. in section 3.8 of
[Sex67] [

What about infinite places? When v is infinite, inertia at v is given by K /(K)°. In particular,

K surjects onto inertia under the Artin map.
Inspired by the third bullet point above, we introduce the following (non-standard) notation.
Notation 2.8. For v a place of K, let I(v) denote the following
e if v is non-archimedean, then I(v) = O

v

e if v is archimedean, then I(v) = K

Hence, I(v) essentially denotes inertia at v. This is not literally true when v is archimedean. What is

always true, though, is that I(v) = ¢ (inertia at v).

Example. Let’s pause and see what things say in the case of K = Q. Recall that
Ip = Q* xR, x [[ 2.
P

Thus Q’s idele class group is
CQ ES I@/QX ~ R;O X HZ;
p

Recall the Artin map gives an iso pq : Co/CH — Gal(Q*/Q), so

[1z; = Ga(@™/Q
p

10T his is (one of) Serre’s chapter(s) in Cassels-Fréhlich



(product taken over rational primeﬂ and Z; is inertia at p. As an unimportant (to us) consequence, we
see that class field theory gives an (overpowered) proof that Gal(L/Q) is generated by inertia (at finite

primes) for all Galois number fields L.

2.3 Various Flavors of Class Groups

As far as I can tell, the main use of class field theory in [FGV20] is asserting the existence of various
flavors of Hilbert class fields, so we should probably talk about this.
As always, fix a number field K.

(ideal) Class group We will show the existence of a number field whose Galois group is the ideal class

group of K.
Recall 2.9. The class group of K, is the group

Ol {fractional ideals}
K {principal fractional ideas}

This is sometimes denote Pic O since it coincides with the Picard group of spec & KE This group is

finite for any number field.

Recall also the finite ideles ]I;(m. Note that there is a natural map

" — {fractional ideals}

(mv)v*m — HvToo pgrdu(Iv)

This map is visibly surjective, and visibly not injective (because units). However, the quotient map
i H O) — {fractional ideals}
vfoo

is now an isomorphism. It is probably not a surprise that the principal fractional ideals on the right hand

side exactly correspond to K* (diagonally embedded) on the left hand side, so we get an isomorphism
CK/ [IEZES IS :KX\]IK/ IS IS :KX\H{;‘" [[ex =ci.
vtoo v|oo vtoo v|oo vfoo

We express this perhaps more digestibly as the exact sequence

1— o5 — J[1() — Cx — Clx — 1.

07 % T K2°)! This is

That is, we have a continuous surjection Cx — Clg with kernel (vaoo o M

exciting for two reasons. First, class field theory tells us that this surjection C'x — Clg corresponds to

Hfinite places of Q
12[FGV20] uses Pic Ok to denote the Picard groupoid of spec O (category of f.g. projective & -modules with morphisms
given by Ok-linear isomorphisms), and so uses 7o Pic Ok to denote the class group, the iso classes of Pic Ok

10



some number field Hy, called the Hilbert class field of K, and an isomorphism Gal(Hg/K) — Clg.
Secondly, the kernel of this map is precisely [[, I(v) C Ck; that is, we kill inertia at all places of K and

nothing more. Thus, we get the following characterization of Hy.
Proposition 2.10. The Hilbert class field Hx of K is the maximal abelian, unramified extension of K.
Remark 2.11. Hg is unramified at all places, including the infinite ones.

Fact. Assume K/Q is Galois. Then, we get an exact sequence
1 — Gal(Hg/K) — Gal(Hg/Q) — Gal(K/Q) — 1.

This induces the usual “lift-and-conjugate” action of Gal(K/Q) ~ Gal(Hi/K) = Clg, i.e. given o €
Gal(K/Q) and T € Gal(Hg /K), we seﬂ

o-T1=015 ' € Gal(Hk /K)

for any lift o € Gal(Hk /Q) of 0. Under the identification Gal(Hg /K) = Clg, this becomes the natural
action Gal(K/Q) ~ Clk given by o(I) = {o(a) : a € I} for any fractional ideal.

So far, we’ve defined class groups and idele class groups. Why stop there? Note that the Hilbert class
field is unramified everywhere, but it’s easy to forget ramification at infinite places is a thing, so what if

we only wanted a field unramified at finite places?

Narrow class group The narrow class group of K is

01;::(1;(/ I1ex .

vtoo

i.e. it is the Galois group of the maximal abelian extension Hj; of K which is unramified at all finite
places. This H;g is called the narrow Hilbert class field.
If one wants to, they can give an equivalent definition in terms of fractional ideals. This can be done

either by expanding definitions and thinking things through carefully, or just looking at the Wikipedia
page.

Ray class groups At this point, it is maybe not a surprise what comes next. You can impose whatever
ramification conditions you want, and get a corresponding class group and Hilbert class field.
Consider some “modulus”
N =[] pp with m, >0

vtoo

which is an integral ideal (so we require the product to be finite). We can define

(1+N@3>X =[[a+=rm),

vtoo

13 This is well-defined since Gal(Hf /K) is abelian.

11


https://www.wikiwand.com/en/Narrow_class_group
https://www.wikiwand.com/en/Narrow_class_group

where 7, € 0, is a uniformizer and we set (1 + 7)) := 0. Note that the products above are only
taken over finite places of K (since no infinite places appear in N). We define the Ray class group of

modulus N to be
~\ X

Clxw :=Cx | [[ K% (1 + Nﬁ)
v|oo

Again, one can interpret this as certain isomorphism classes of ideals, and Wikipedia will tell you how.
One can also impose conditions on the infinite places if they want. The notion of ray class group subsumes
both the usual (ideal) class group as well as the narrow class group. As before, class field theory gives a
corresponding ray class field Hg n which, in the present case, is the maximal abelian extension of K
which is unramified outside of N (i.e. at v for which m, = 0) and whose inertia at v | N (i.e. at v for
which m,, > 0) is at worst € /(1 + 7)) (i.e. is a quotient of this)E

2.4 Chebotarev

The last thing we do is state Chebotarev density since this comes up in [FGV20| at some point.

Let L/K be some Galois extension of number fields, and let S C Y i be the (finite) set of archimedean
or ramified (in L/K) places of K. Recall that for any place v € X \ S we get a well-defined conjugacy
class Frob, C Gal(L/K). Thus, we have a map

unram primes conj. classes
F — .
in Ok in Gal(L/K)

Chebotarev says that the fibers of this map have the “size” you might naively expect.

Theorem 2.12 (Chebotarev density). In the above situation, let C C Gal(L/K) be a fized conjugacy
class. Then, F~1(C) has natural density

-1 L #{p:FrobpeC,Nmp<X}_iC
oF (C))—Xlgnoo #{p:Nmp < X} H#G

Above, p ranges over (nonzero) prime ideals of Ok, and Nmp := #(Ok/p). In particular, there are

infinitely many primes with Frobenius in any given conjugacy class.

Corollary 2.13 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). Fiz a,n € N with

ged(a,n) = 1. Then, there are infinitely many rational primes p such that p = a (mod n).

We don’t need this corollary for anything, but I figured these notes should have at least one proof
block.

Proof. Let K = Q(,), where ¢, is some primitive nth root of unity. Then, Gal(K/Q) ~ (Z/nZ)™ with
natural isomorphism a : Gal(K/Q) = (Z/nZ)™ satisfying o(¢,) = CZ(U) for all o € Gal(K/Q). It is a
fact from algebraic number theory that a rational prime p is unramified in K iff p 4 n. For such a p, we
get a well-defined Frob, € Gal(K/Q) ~ (Z/nZ)™ which is uniquely characterized by the fact that

Frob,(z) = 2P (mod p),

14 Assuming I haven’t confused myself, this is requiring your extension to have conductor at v of value at most my,.
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where p is any prime of K above p. Considering the case z = (, it is clear that Frob, corresponds to p
mod n € (Z/nZ)™. Thus, Chebotarev says that there are infinitely many primes p such that Frob, = a
mod n € (Z/nZ)™, i.e. that there are infinitely primes such that p = a (mod n). [ ]

Milne proves Chebotarev in chapter VIII of his notes [Mil20b].
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