GENERAL STRATEGY FOR ALGEBRAIC DEGENERACY

NIVEN ACHENJANG

The goal is to prove Theorem 7 below, which gives a criterion for every entire curve on a compact complex manifold to be degenerate (i.e. to land in some proper submanifold). Its statement is rather hefty, so, at least for my own personal benefit as a newcomer to the area, let's begin by very briefly recalling some of the constructions/results that have appeared in the past few talks.

Setup 1. Let X be an n-dimensional compact complex manifold, also viewed as the directed manifold (X, V) with $V \coloneqq T_X$.

(feel free to imagine that $V \subsetneq T_X$ if you want)

Recall 2. For $k \ge 1$, we define the space of k-jets of X to be the bundle $p_k: J_kT_X \to X$ parameterizing k-jets of curves $f: \mathbb{C} \to X$.¹ This is a $(\mathbb{C}^n)^k$ -fiber bundle over X.² \odot

Recall 3. There are also projectivized jet bundles.

• The projectivized first jet bundle is (X_1, V_1) where $X_1 = \mathbb{P}(V) := \operatorname{Proj}(\operatorname{Sym} V^{\vee}) \xrightarrow{\pi} X$ is the projective bundle of *lines in* V,³ equipped with the tautological line subbundle $\mathscr{O}_{X_1}(-1) \subset \pi^* V$, and V_1 is defined via:

• Iterating the above leads to the projectivized k-jet bundle $\pi_k \colon (X_k, V_k) \to (X, V)$.⁴ \odot

Recall 4. Le \mathbb{G}_k denote the group of germs of k-jets of biholomorphisms of $(\mathbb{C}, 0)$, i.e. germs of biholomorphic maps

$$t \mapsto a_1 t + a_2 t^2 + \dots + a_k t^k$$
 with $a_i \in \mathbb{C}^{\times}$ and $a_j \in \mathbb{C}, j \ge 2$.

This \mathbb{G}_k acts on $J_k V = J_k T_X$ via reparameterizing k-jets, and this leads one to defined the bundle of invariant jet differentials of order k and weighted degree $m E_{k,m} V^{\vee} \longrightarrow X$ whose fibers are spaces of complex valued polynomials $Q(f', f'', \ldots, f^{(k)})$ on the fibers of $J_k V$ satisfying

$$Q\Big((f\circ\varphi)',(f\circ\varphi)'',\ldots,(f\circ\varphi)^{(k)}\Big)=\varphi'(0)^mQ(f',f'',\ldots,f^{(k)})$$

for all $\varphi \in \mathbb{G}_k$. Note that sections of $E_{k,m}V^{\vee}$ may be viewed as (\mathbb{G}_k -equivariant) maps $J_kV \to \mathbb{C}$. \odot

Recall 5 (Duc's talk, [DR16, Theorem 3.3.1]).

(1) There is an embedding $J_k V^{\text{reg}}/\mathbb{G}_k \hookrightarrow X_k$ over X which identifies $J_k V^{\text{reg}}/\mathbb{G}_k \stackrel{\sim}{\hookrightarrow} X_k^{\text{reg}}$. Here, a regular k-jet is one with non-vanishing first derivative. (so X_k is a relative compactification of $J_k V^{\text{reg}}/\mathbb{G}_k$)

¹Equivalence classes of holomorphic maps $f: (\mathbb{C}, 0) \to (X, f(0))$ where $f \sim g$ iff $f^{(j)}(0) = g^{(j)}(0)$ for $0 \leq j \leq k$ in some (\iff all) holomorphic coordinate system on X near f(0).

²Vector bundle if $k \leq 1$, in which cases $J_1T_X = T_X$ and $J_0T_X = X$.

³Some authors write this space as $\mathbb{P}(\Omega^1) = \mathbf{Proj}(\operatorname{Sym} \Omega^1)$ instead.

⁴E.g. $(X_2, V_2) = ((X_1)_1, (V_1)_1)$ and so on...

(2) The direct image sheaf

$$(\pi_k)_* \mathscr{O}_{X_k}(m) \simeq \mathscr{O}(E_{k,m} V^{\vee})$$

is identified with the sheaf of holomorphic sections of $E_{k,m}V^{\vee} \to X$.

(Compare: $p_* \mathscr{O}_{\mathbb{P}(E)}(m) \simeq \operatorname{Sym}^m(E^{\vee})$, where $\mathbb{P}(E) = \operatorname{\mathbf{Proj}}(\operatorname{Sym} E^{\vee}) \xrightarrow{p} X$)

Recall 6 (Jit Wu's talk, [DR16, Corollary 4.2.5]). Assume there are integers $k, m \ge 1$ and an ample line bundle A on X such that

 \odot

$$\mathrm{H}^{0}(X_{k}, \mathscr{O}_{X_{k}}(m) \otimes \pi_{k}^{*} A^{-1}) \simeq \mathrm{H}^{0}(X, E_{k,m} V^{\vee} \otimes A^{-1})$$

has nonzero sections $\sigma_1, \ldots, \sigma_N$ with base local $Z = \bigcap_{i=1}^N \{\sigma_i = 0\}$. Then, every entire curve $f \colon \mathbb{C} \to X$ tangent to V satisfies $f_{[k]}(\mathbb{C}) \subset Z$. \odot

Slogan (Recall 6 in words). If X has a jet differential σ valued in an anti-ample line bundle (e.g. A^{-1}), then the image of any entire curve satisfies the corresponding differential equation (i.e. $f_{[k]}(\mathbb{C}) \subset \{\sigma = 0\} \subset X_k$).

Theorem 7 ([DR16, Theorem 4.3.1]). Suppose there are two ample line bundles A, B on X and integers k, m > 0 such that

- (i) there is a nonzero section $P \in \mathrm{H}^{0}(X, E_{k,m}T_{X}^{\vee} \otimes A^{-1}).^{5}$
- (ii) the twisted tangent space $T_{J_kT_X} \otimes p_k^*B$ of the space of k-jets

 $p_k \colon J_k T_X \longrightarrow X$

is globally generated over its regular part $J_k T_X^{\text{reg}}$ by its global sections. Moreover, suppose one can choose such generating vector fields to be equivariant w.r.t the action of $\mathbb{G}_k \curvearrowright J_k T_X$.

(iii) the line bundle $A \otimes B^{-m}$ is ample.

Then, every holomorphic entire curve $f : \mathbb{C} \to X$ has image contained in $Y := \{P = 0\} \subsetneq X$.

Proof. Let $f: \mathbb{C} \to X$ be an entire curve, with lifting $j_k(f): \mathbb{C} \to J_k T_X$. Note that $j_k(f)(\mathbb{C}) \not\subset J_k T_X^{\text{sing}} := J_k X \setminus J_k T_X^{\text{reg}}$; otherwise, f' = 0 everywhere so f would be constant. Suppose that $f(\mathbb{C}) \not\subset Y$ and choose some $\zeta_0 \in \mathbb{C}$ so that $x_0 := f(\zeta_0) \notin Y$. Note that we may and do choose ζ_0 so that $j_k(f)(\zeta_0) \in J_k T_X^{\text{reg}}$. Indeed, this amounts to showing that the intersection

(1)
$$f^{-1}(X \setminus Y) \cap j_k(f)^{-1}(J_k T_X^{\operatorname{reg}})$$

is nonempty. Note that $f^{-1}(X \setminus Y) \subset \mathbb{C}$ is a dense open; $Y \subset X$ is cut out by finitely many holomorphic functions on X and any such function, when pulled back to \mathbb{C} , has only finitely many zeros. Furthermore, we saw above that $j_k(f)^{-1}(J_kT_X^{\text{reg}})$ is a nonempty open so the intersection (1) must be nonempty, i.e. there is some $\zeta_0 \in \mathbb{C}$ such that $f(\zeta_0) \notin Y$ and $j_k(f)(\zeta_0) \in J_kT_X^{\text{reg}}$. Note that we may view P as a \mathbb{G}_k -invariant map

$$P: J_k T_X \longrightarrow p_k^* A^{-1}.$$

It follows from Recall 6 that $j_k(f)(\zeta_0) \in \{P_{x_0} = 0\} \subset (J_k T_X)_{x_0} = J_k T_{X,x_0}$ (See Fig. 1). Furthermore, $P_{x_0}: J_k T_{X,x_0} \to \mathbb{C}$ is not identically zero since $x_0 \notin Y$.

Now, the idea is that, because $P_{x_0} \neq 0$, it must have some derivative *not* vanishing at $j_k(f)(\zeta_0) =: z_0 \in J_k T_{X,x_0}$. Using (ii), we'll be able to realize find some global vector fields such that differentiating P with respect to them produces a new jet differential Q which is *non-vanishing* at z_0 , contradicting Recall 6.

After choosing local coordinates, we can realize P_{x_0} as a polynomial of weighted degree m in nk variables $X'_1, \ldots, X'_n, X''_1, \ldots, X''_n, \ldots, X^{(k)}_1, \ldots, X^{(k)}_n$ chosen so that $z_0 = j_k(f)(\zeta_0)$ corresponds to $X'_1 = \cdots = X^{(k)}_n = 0$. Since P_{x_0} has weighted degree m, every monomial appearing in it must have (unweighted) total degree $\leq m$. Consider some such monomial of least degree, say of degree $p \leq m$, which we may write as

$$\lambda Y_1 Y_2 \dots Y_p$$
 where $\lambda \in \mathbb{C}^{\times}$ and $Y_1, \dots, Y_p \in \{X'_1, \dots, X_n^{(k)}\}$

⁵This space is isomorphic to $\mathrm{H}^{0}(X_{k}, \mathscr{O}_{X_{k}}(m) \otimes \pi_{k}^{*}A^{-1})$; see Recall 5(1).

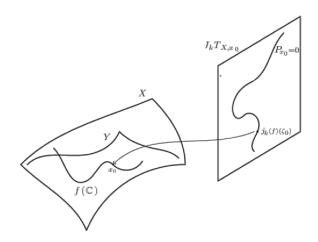


FIGURE 1. The lifting of the curve f, taken (with slight modifications) from [DR16, Fig. 4.1]

Then, $\partial_{Y_p} \dots \partial_{Y_1} P_{x_0}$ is non-vanishing at z_0 , so we would like to realize it as the fiber of some global jet differential. Because we arranged to have $z_0 = j_k(f)(\zeta_0) \in J_k T_X^{\text{reg}}$, (ii) implies that there are \mathbb{G}_k -invariant global vector fields $V_1, \dots, V_p \in \mathrm{H}^0(J_k T_X, T_{J_k T_X} \otimes p_k^* B)$ such that $V_j(z_0) = \partial_{Y_j}|_{z_0}$. Thus, taking Lie derivatives,⁶

$$Q \coloneqq L_{V_p} \dots L_{V_1} P \in \mathrm{H}^0(X, E_{k,m} T_X^{\vee} \otimes B^p \otimes A^{-1})$$

satisfies $Q(z_0) \neq 0$, contradicting Recall 6 since $A \otimes B^{-p}$ is ample by (iii).

Corollary 8. Use notation as in Theorem 7. Suppose, furthermore, that the effective cone of X is contained in its ample cone (for example, that $\operatorname{Pic} X \simeq \mathbb{Z}$). Then, one can choose A such that $\operatorname{codim}_X(Y) \ge 2$.

Proof. Let D be the divisorial part of $Y = \{P = 0\}$. Then, P can be viewed as a section of $E_{k,m}T_X^{\vee} \otimes (A \otimes \mathscr{O}_X(D))^{-1}$, and seen as a section of this bundle, it vanishes on no codimension 1 subvariety of X. Since D is ample, $A \otimes \mathscr{O}_X(D)$ is still ample and still satisfies property (iii) (w.r.t the same B), so one can apply Theorem 7 to $P \in \operatorname{H}^0(X, E_{k,m}T_X^{\vee} \otimes (A \otimes \mathscr{O}_X(D))^{-1})$.

Corollary 9. A compact complex surface satisfying the hypotheses of Corollary 8 is Kobayashi hyperbolic.

(Recall that for *compact* complex manifolds, Kobayashi hyperbolicity is equivalent to the nonexistence of entire curves, see [DR16, Proposition 1.2.1 and Theorem 1.2.2])

Corollary 10. Let X be a compact complex threefold satisfying the hypotheses of Corollary 8 which does not contain any rational or elliptic curve. Then, X is Kobayashi hyperbolic.

Proof. Let $f: \mathbb{C} \to X$ be an entire curve in X. Then, $\overline{f(\mathbb{C})}^{\text{Zar}}$ is an algebraic curve of X admitting a non-constant holomorphic image of \mathbb{C} , so it must be rational or elliptic, a contradiction.

References

[DR16] Simone Diverio and Erwan Rousseau. Hyperbolicity of projective hypersurfaces, volume 5 of IMPA Monographs. Springer, [Cham], second edition, 2016. 1, 2, 3

⁶I think what's happening here is that $T_{J_kT_X} \otimes p_k^*B \simeq \operatorname{Hom}(\Omega^1_{J_kT_X}, p_k^*B) \simeq \operatorname{Der}(\mathscr{O}_{J_kT_X}, p_k^*B)$ (sheaf of p_k^*B -valued derivations), so given a global section V, we can think of as a derivation $\mathscr{O}_{J_kT_X} \to p_k^*B$. Such a thing naturally gives rise to a derivation $p_k^*A^{-1} \to p_k^*B \otimes p_k^*A^{-1} = p_k^*(B \otimes A^{-1})$ and L_VP is simply notation for the image of P under this latter derivation. A propri, this is simply a map L_VP : $J_kT_X \to p_k^*(B \otimes A^{-1})$, but I think one can check after the fact that it really arises from a k-jet differential of degree m values in $B \otimes A^{-1}$, i.e. from a section of $E_{k,m}T_X^{\vee} \otimes B \otimes A^{-1}$.