
GENERAL STRATEGY FOR ALGEBRAIC DEGENERACY

NIVEN ACHENJANG

The goal is to prove Theorem 7 below, which gives a criterion for every entire curve on a compact complex
manifold to be degenerate (i.e. to land in some proper submanifold). Its statement is rather hefty, so, at
least for my own personal benefit as a newcomer to the area, let’s begin by very briefly recalling some of the
constructions/results that have appeared in the past few talks.

Setup 1. Let X be an n-dimensional compact complex manifold, also viewed as the directed manifold (X,V )

with V := TX . ⊚

(feel free to imagine that V ⊊ TX if you want)

Recall 2. For k ≥ 1, we define the space of k-jets of X to be the bundle pk : JkTX ! X parameterizing
k-jets of curves f : C ! X.1 This is a (Cn)k-fiber bundle over X.2 ⊙

Recall 3. There are also projectivized jet bundles.

• The projectivized first jet bundle is (X1, V1) where X1 = P(V ) := Proj(SymV ∨)
π
−! X is

the projective bundle of lines in V ,3 equipped with the tautological line subbundle OX1(−1) ⊂ π∗V ,
and V1 is defined via:

0 TX1/X V1 OX1(−1) 0

0 TX1/X TX1
π∗TX 0.

⌜

• Iterating the above leads to the projectivized k-jet bundle πk : (Xk, Vk) ! (X,V ).4 ⊙

Recall 4. Le Gk denote the group of germs of k-jets of biholomorphisms of (C, 0), i.e. germs of biholomorphic
maps

t 7! a1t+ a2t
2 + · · ·+ akt

k with ai ∈ C× and aj ∈ C, j ≥ 2.

This Gk acts on JkV = JkTX via reparameterizing k-jets, and this leads one to defined the bundle of
invariant jet differentials of order k and weighted degree m Ek,mV ∨ −! X whose fibers are
spaces of complex valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkV satisfying

Q
(
(f ◦ φ)′, (f ◦ φ)′′, . . . , (f ◦ φ)(k)

)
= φ′(0)mQ(f ′, f ′′, . . . , f (k))

for all φ ∈ Gk. Note that sections of Ek,mV ∨ may be viewed as (Gk-equivariant) maps JkV ! C. ⊙

Recall 5 (Duc’s talk, [DR16, Theorem 3.3.1]).

(1) There is an embedding JkV
reg/Gk ↪! Xk over X which identifies JkV

reg/Gk
∼
↪! Xreg

k . Here, a
regular k-jet is one with non-vanishing first derivative.
(so Xk is a relative compactification of JkV reg/Gk)

1Equivalence classes of holomorphic maps f : (C, 0) ! (X, f(0)) where f ∼ g iff f (j)(0) = g(j)(0) for 0 ≤ j ≤ k in some ( ⇐⇒
all) holomorphic coordinate system on X near f(0).
2Vector bundle if k ≤ 1, in which cases J1TX = TX and J0TX = X.
3Some authors write this space as P(Ω1) = Proj(SymΩ1) instead.
4E.g. (X2, V2) = ((X1)1, (V1)1) and so on...
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(2) The direct image sheaf
(πk)∗ OXk

(m) ≃ O(Ek,mV ∨)

is identified with the sheaf of holomorphic sections of Ek,mV ∨ ! X.
(Compare: p∗OP(E)(m) ≃ Symm(E∨), where P(E) = Proj(SymE∨)

p
−! X) ⊙

Recall 6 (Jit Wu’s talk, [DR16, Corollary 4.2.5]). Assume there are integers k,m ≥ 1 and an ample line
bundle A on X such that

H0
(
Xk,OXk

(m)⊗ π∗
kA

−1
)
≃ H0

(
X,Ek,mV ∨ ⊗A−1

)
has nonzero sections σ1, . . . , σN with base local Z =

⋂N
i=1{σi = 0}. Then, every entire curve f : C ! X

tangent to V satisfies f[k](C) ⊂ Z. ⊙

Slogan (Recall 6 in words). If X has a jet differential σ valued in an anti-ample line bundle (e.g. A−1), then
the image of any entire curve satisfies the corresponding differential equation (i.e. f[k](C) ⊂ {σ = 0} ⊂ Xk).

Theorem 7 ([DR16, Theorem 4.3.1]). Suppose there are two ample line bundles A,B on X and integers
k,m > 0 such that

(i) there is a nonzero section P ∈ H0(X,Ek,mT∨
X ⊗A−1).5

(ii) the twisted tangent space TJkTX
⊗ p∗kB of the space of k-jets

pk : JkTX −! X

is globally generated over its regular part JkT
reg
X by its global sections. Moreover, suppose one can

choose such generating vector fields to be equivariant w.r.t the action of Gk ↷ JkTX .
(iii) the line bundle A⊗B−m is ample.

Then, every holomorphic entire curve f : C ! X has image contained in Y := {P = 0} ⊊ X.

Proof. Let f : C ! X be an entire curve, with lifting jk(f) : C ! JkTX . Note that jk(f)(C) ̸⊂ JkT
sing
X :=

JkX \ JkT
reg
X ; otherwise, f ′ = 0 everywhere so f would be constant. Suppose that f(C) ̸⊂ Y and choose

some ζ0 ∈ C so that x0 := f(ζ0) ̸∈ Y . Note that we may and do choose ζ0 so that jk(f)(ζ0) ∈ JkT
reg
X .

Indeed, this amounts to showing that the intersection

(1) f−1(X \ Y ) ∩ jk(f)
−1(JkT

reg
X )

is nonempty. Note that f−1(X \ Y ) ⊂ C is a dense open; Y ⊂ X is cut out by finitely many holomorphic
functions on X and any such function, when pulled back to C, has only finitely many zeros. Furthermore,
we saw above that jk(f)−1(JkT

reg
X ) is a nonempty open so the intersection (1) must be nonempty, i.e. there

is some ζ0 ∈ C such that f(ζ0) ̸∈ Y and jk(f)(ζ0) ∈ JkT
reg
X .

Note that we may view P as a Gk-invariant map

P : JkTX −! p∗kA
−1.

It follows from Recall 6 that jk(f)(ζ0) ∈ {Px0
= 0} ⊂ (JkTX)x0

= JkTX,x0
(See Fig. 1). Furthermore,

Px0
: JkTX,x0

! C is not identically zero since x0 ̸∈ Y .
Now, the idea is that, because Px0

̸= 0, it must have some derivative not vanishing at jk(f)(ζ0) =: z0 ∈
JkTX,x0

. Using (ii), we’ll be able to realize find some global vector fields such that differentiating P with
respect to them produces a new jet differential Q which is non-vanishing at z0, contradicting Recall 6.
After choosing local coordinates, we can realize Px0

as a polynomial of weighted degree m in nk variables
X ′

1, . . . , X
′
n, X

′′
1 , . . . , X

′′
n , . . . , X

(k)
1 , . . . , X

(k)
n chosen so that z0 = jk(f)(ζ0) corresponds to X ′

1 = · · · = X
(k)
n =

0. Since Px0
has weighted degree m, every monomial appearing in it must have (unweighted) total degree

≤ m. Consider some such monomial of least degree, say of degree p ≤ m, which we may write as

λY1Y2 . . . Yp where λ ∈ C× and Y1, . . . , Yp ∈ {X ′
1, . . . , X

(k)
n }.

5This space is isomorphic to H0(Xk,OXk
(m)⊗ π∗

kA
−1); see Recall 5(1).
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Figure 1. The lifting of the curve f , taken (with slight modifications) from [DR16, Fig. 4.1]

Then, ∂Yp . . . ∂Y1Px0 is non-vanishing at z0, so we would like to realize it as the fiber of some global jet
differential. Because we arranged to have z0 = jk(f)(ζ0) ∈ JkT

reg
X , (ii) implies that there are Gk-invariant

global vector fields V1, . . . , Vp ∈ H0(JkTX , TJkTX
⊗ p∗kB) such that Vj(z0) = ∂Yj |z0 . Thus, taking Lie

derivatives,6

Q := LVp
. . . LV1

P ∈ H0(X,Ek,mT∨
X ⊗Bp ⊗A−1)

satisfies Q(z0) ̸= 0, contradicting Recall 6 since A⊗B−p is ample by (iii). ■

Corollary 8. Use notation as in Theorem 7. Suppose, furthermore, that the effective cone of X is contained
in its ample cone (for example, that PicX ≃ Z). Then, one can choose A such that codimX(Y ) ≥ 2.

Proof. Let D be the divisorial part of Y = {P = 0}. Then, P can be viewed as a section of Ek,mT∨
X ⊗

(A⊗ OX(D))
−1, and seen as a section of this bundle, it vanishes on no codimension 1 subvariety of X. Since

D is ample, A⊗ OX(D) is still ample and still satisfies property (iii) (w.r.t the same B), so one can apply
Theorem 7 to P ∈ H0(X,Ek,mT∨

X ⊗(A⊗ OX(D))
−1

). ■

Corollary 9. A compact complex surface satisfying the hypotheses of Corollary 8 is Kobayashi hyperbolic.

(Recall that for compact complex manifolds, Kobayashi hyperbolicity is equivalent to the nonexistence of
entire curves, see [DR16, Proposition 1.2.1 and Theorem 1.2.2])

Corollary 10. Let X be a compact complex threefold satisfying the hypotheses of Corollary 8 which does
not contain any rational or elliptic curve. Then, X is Kobayashi hyperbolic.

Proof. Let f : C ! X be an entire curve in X. Then, f(C)
Zar

is an algebraic curve of X admitting a
non-constant holomorphic image of C, so it must be rational or elliptic, a contradiction. ■
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6I think what’s happening here is that TJkTX
⊗p∗kB ≃ Hom(Ω1

JkTX
, p∗kB) ≃ Der(OJkTX

, p∗kB) (sheaf of p∗kB-valued derivations),
so given a global section V , we can think of it as a derivation OJkTX

! p∗kB. Such a thing naturally gives rise to a derivation
p∗kA

−1 ! p∗kB⊗ p∗kA
−1 = p∗k

(
B ⊗A−1

)
and LV P is simply notation for the image of P under this latter derivation. A propri,

this is simply a map LV P : JkTX ! p∗k(B ⊗ A−1), but I think one can check after the fact that it really arises from a k-jet
differential of degree m values in B ⊗A−1, i.e. from a section of Ek,mT∨

X ⊗B ⊗A−1.
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