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Introduction

We aim to give an account of the theorems of Davenport and Heilbronn [DH71] giving an asymptotic

count for the number of cubic number fields of bounded (positive or negative) discriminant. In particular,

our main theorem will be the following.

Theorem 1 ([DH71], Theorem 1). Let N3(ξ, η) denote the number of cubic number fields K, up to

isomorphism, satisfying ξ < Disc(K) < η. Then,

N3(0, X) =
1

12ζ(3)
X + o(X);

N3(−X, 0) =
1

4ζ(3)
X + o(X).

While this result is originally due to Davenport-Heilbronn, our account of it will most closely follow

that of Bhargava, Shankar, and Tsimerman in [BST13].1 For us, our main motivation for considering the

above theorem comes from arithmetic statistics.
1‘closely follow’ in a strong sense. I think in the end these notes ended up being essentially a rewrite of the relevant

sections of their paper with some added details at points I found more confusing.
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There is interest in understanding how the class group ClK of a number field K changes, as one

varies the field K. Restricting attention to quadratic number fields, one way of turning this curiosity

into a precise question is to first consider the uniform distribution µ+
X (X > 0) on isomorphism classes of

quadratic number fields K with positive discriminants 0 < DiscK < X. Roughly speaking, µ+
X pushes

forward, via ClK , to a distribution Clµ+
X

on finite, abelian groups which captures information about the

statistical behavior of class groups of real quadratic numbers of bounded discriminant; one can then take

limits as X ! ∞ to probe the behavior of class groups of all real quadratic number fields. Cohen and

Lenstra [CL84] made precise predictions about the limiting distribution ν+ := lim
X!∞

µ+
X obtained in this

way, as well as about the analogous distribution ν− which captures information about class groups of

imaginary quadratic number fields. In particular, their predictions would imply that

lim
X!∞

EK∼µ+
X

[
# Sur

(
ClK ,

Z
3Z

)]
=

∣∣∣∣ Z3Z
∣∣∣∣−1

=
1

3

lim
X!∞

EK∼µ−X

[
# Sur

(
ClK ,

Z
3Z

)]
= 1

The relevance of this brief discussion of class group statistics to our stated task of counting cubic number

fields is that we will see that, as a by-product of our main result, we will also obtain asymptotics for the

average size of # ClK [3], the size of the 3-torsion of the class groups of quadratic number fields K. Since

ClK is a finite abelian group, one has

# Sur(ClK ,Z/3Z) = # Hom(ClK ,Z/3Z)− 1 = # Hom(Z/3Z,ClK)− 1 = ClK [3]− 1,

so understanding # ClK [3] is enough to verify one part of Cohen and Lenstra’s predictions. With that

said, Davenport and Heilbronn calculated the average size of 3-torsion in the class groups of quadaratic

number fields.

Theorem 2 ([DH71], Theorem 3). Let D denote the discriminant of a quadratic field and let ClQ(
√
D)[3]

denote the 3-torsion subgroup of the ideal class group ClQ(
√
D) of Q(

√
D). Then,

∑
0<D<X

# ClQ(
√
D)[3] =

4

3
·
∑

0<D<X

1 + o(X);∑
−X<D<0

# ClQ(
√
D)[3] = 2 ·

∑
−X<D<0

1 + o(X).

That is, EK∼µ+
X

[# ClK [3]] = 4
3 + o(1) and EK∼µ−X [# ClK [3]] = 2 + o(1).

The proof of Theorem 1 will proceed in several steps. The main idea is that every cubic number field

K has a unique cubic ring OK , its ring of integers, attached to it; to count cubic number fields, we count

cubic rings and then pick from this count those cubic rings which appear as the ring of integers of some

number field. In order to count cubic rings, we will make use of a nice correspondence between then and

binary cubic forms f(x, y) = ax3 + bx2y+ cxy2 + dy3, which are more readily amenable to counting. We

will begin by setting up this correspondence. The brunt of the argument is then spent on using it to

count binary cubic rings. Finally, we use a sieve to extract counts of maximal cubic rings (equivalently,

of cubic number fields), proving Theorem 1. A similar sieve along with some class field theory is then
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used to obtain Theorem 2.

1 Cubic Rings and Binary Cubic Forms

1.1 The Correspondence

We wish to set up a correspondence between cubic rings and binary cubic forms. In fact it will be useful

to have such a correspondence not only for rings, but for algebras, e.g. over Zp or Fp, as well. Hence we

work in a slightly general setting.

Fix a domain A. For our applications we will mostly take A = Z,Zp,Fp.

Definition 1.1. A cubic A-algebra is a commutative A-algebra R which is free of rank 3 as an A-

module.

These will be in bijection with GL2(A)-orbits of binary cubic forms f(x, y) = ax3 + bx2y+ cxy2 +dy3

(a, b, c, d ∈ A)under the action

(γ · f)(x, y) :=
1

det γ
f ((x, y) · γ) ,

where γ ∈ GL2(A). Indeed,

Theorem 1.2 ([GGS02], Proposition 4.2). There is a natural bijection between the set of GL2(A)-

equivalence classes of binary cubic A-forms, and the set of isomorphism classes of cubic rings.

Proof. Given a cubic A-algebra R, let 〈1, ω, θ〉 be an A-basis, and temporarily write ωθ = u + vω + wθ

with u, v, w ∈ A. Then,

(ω − w)(θ − v) = (u+ vω + wθ)− vω − wθ + vu = u+ vw ∈ A,

so we can replacing ω, θ with ω − w, θ − v, respectively, to assuming that we have a normal basis, i.e.

one where ωθ ∈ A.

Since 〈1, ω, θ〉 is a normal basis, there exists constants a, b, c, d, `,m, n ∈ A such that

ωθ = n

ω2 = m− bω + aθ (1.1)

θ2 = `− dω + cθ.

To R, we associate the binary cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3.

Conversely, given a binary cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3, referring to (1.1) almost

immediately gives us the multiplication law on our desired cubic algebra. We require (ωθ)θ = ω(θ2),

which tells us that n = −ad and ` = −bd, as well as(ω2)θ = ω(ωθ), which tells us that m = −ac. Making

the assignments

n = −ad

m = −ac (1.2)

` = −bd
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in (1.1) gives us our cubic A-algebra R = RA(f), along with a preferred normal basis for it.

This sets up correspondence between cubic rings with normal bases and binary cubic A-forms. To see

that changing the normal basis exactly corresponds to acting on the associated form by some element

of GL2(Z), we introduce a coordinate-free perspective for our bijection. The form f(x, y) represents the

cubic map A2 ∼= R/A!
∧2

(R/A) ∼= A given by r 7! r ∧ r2. For r = xω + yθ, one has

r ∧ r2 = f(x, y)(ω ∧ θ).

In particular, changing the A-basis (ω, θ) for R/A by an element γ ∈ GL2(A), and then renormalizing this

basis in R transforms the corresponding binary cubic form f(x, y) by that same element of GL2(A). �

Notation 1.3. When A = Z, we will usually write R(f) in place of RZ(f).

Remark 1.4. Combining (1.2) and (1.1), passing back and forth between a cubic A-algebra and its

associated binary cubic is achieved by using the following equations.

ωθ = −ad

ω2 = −ac−bω+aθ (1.3)

θ2 = −bd−dω+cθ.

This sets up our correspondence. We would not like to be able to read off properties of the ring RA(f)

by just looking at the form f itself.

Definition 1.5. Let R be a cubic A-algebra. The trace of an element α ∈ R, denoted TrA α, is the

trace of the A-linear operator mα : R ! R given by multiplication by α. This allows us the define a

bilinear pairing (α, β) 7! TrA(αβ) on R. The determinant of this pairing is called the discriminant of

R, and is denote DiscAR.

Definition 1.6. Let f(x, y) = ax3 + bx2y + cxy2 + dy3 be a binary cubic. Its discriminant is degree 4

homogeneous polynomial

Disc(f) := b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

One can check that, for g ∈ GL2(R), Disc(g · f) = (det g)4 Disc(f).

Proposition 1.7. The discriminant of a binary cubic is equal to the discriminant of its corresponding

algebra.

Proof Sketch. One can just go through the trouble of computing this by hand. �

The above proposition is useful since we will be counting by discriminant. Recall that we will later

want to pick out the cubic rings which correspond to rings of integers of number fields. The first step in

doing this will be telling when RA(f) is a domain.

Proposition 1.8. For an integral binary cubic A-form f , the cubic A-algebra R(f) is an integral domain

iff f is irreducible as a polynomial over F := FracA.
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Proof. If f is reducible, it must have a linear factor2 which, by change of variable in GL2(A), we may

assuming is y, i.e. we may assume a = 0. Hence, by (1.3), ωθ = −ad = 0 too, so R(f) is not a domain.

Conversely, suppose R has zero divisors. We first claim that there exists ω ∈ R such that 〈1, ω〉 ⊂ R

is a quadratic subalgebra. We construct it as follows. Let α and β be two nonzero elements of R with

αβ = 0, and let α3+c1α
2+c2α+c3 = 0 be the characteristic equation of the A-linear mapping α : R! R.

Multiplying both sides by β, we see that c3 = 0, so α(α2 + c1α+ c2) = 0. Recall that we’re not working

in a domain. If α2 + c1α+ c2 = 0, then we can set ω = α (so ω2 = −c1ω − c2). Otherwise,

(α2 + c1α+ c2)2 = α2(α2 + c1α+ c2) + c1α(α2 + c1α+ c2) + c2(α2 + c1α+ c2) = c2(α2 + c1α+ c2),

in which case we can take ω = (α2 + c1α+ c2) (and ω2 = c2ω).

Scaling ω by an integer if necessary, we may assume that it is a primitive vector in the lattice R ∼= Z3,

and then extend 〈1, ω〉 to a basis 〈1, ω, θ〉 of R. Normalizing this basis if needed, we have ω2 ∈ 〈1, ω〉 so

a = 0 by comparison with (1.3). Hence, the associated binary cubic form is reducible. �

To take this a step further, we temporarily set A = Z. A cubic ring R = RZ(f) will be the ring of

integers of some field if it is a domain and furthermore is a maximal order in its fraction field. Note that

R is maximal iff Rp := R⊗ Zp = RZp
(f) is maximal for all p. Hence, maximality is best checked locally,

and the following result characterizes the ways in which local maximality can fail. If Rp is maximal, we

say that R is “maximal at p.”

Lemma 1.9. Suppose R is a cubic ring (i.e. Z-algebra) which is not maximal at p. Then, there is a

Z-basis 〈1, ω, θ〉 of R such that at least one of the following is true

• Z + Z · (ω/p) + Z · θ forms a ring

• Z + Z · (ω/p) + Z · (θ/p) forms a ring

Proof. Let R′ ⊃ R be a ring strictly contining R such that the index of R in R′ is a multiple of p, and

let R1 = R′ ∩ (R ⊗Z Z[1/p]). Then, R1 also strictly contains R, and the index of R in R1 is a power of

p. Since R ⊂ R1 is a p-power inclusion of f.g. free Z-modules, the structure theorem for modules over a

PID guarantees the existence of nonnegative integers i ≥ j along with a basis 〈1, ω, θ〉 of R such that

R1 = Z + Z(ω/pi) + Z(θ/pj).

If i = 1 (so j ∈ {0, 1}) we win, so assume i > 1. We normalize the basis 〈1, ω, θ〉 if necessary. Recalling

(1.3), that the RHS above is a ring translates into the following conditions:

a ≡ 0 (mod p2i−j)

b ≡ 0 (mod pi)

c ≡ 0 (mod pj)

d ≡ 0 (mod p2j−i).

2e.g. because f(x, y) splits into 3 (homogeneous) linear factors over F since it is homogeneous in two variables.
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If j = 0, then we can replace (i, j) by (i− 1, j) while maintaining the truth of the above congruences. If

j > 0, then replacing (i, j) by (i− 1, j − 1) maintains the above congruences. Thus, in a finite sequence

of moves, we arrive at i = 1 as desired. �

This lemma gives two ways a cubic ring R(f) could fail to be maximal at p: (i) f is a multiple of p

or (ii) there is a GL2(Z)-translate of f(x, y) = ax3 + bx2y + cxy2 + dy3 where p2 | a and p | b. Thus, it

shows

Corollary 1.10. Let Up be the set of binary cubic forms f not satisfying either of the two conditions.

The cubic ring R(f) is maximal at p iff f ∈ Up. It is maximal iff f ∈ Up for all p.

There are two more facts about this correspondence which will come handy in later arguments. First,

sticking with the case A = Z, f allows us to see the number of index p subrings of R. This will show up

when we perform our sieves at the end.

Proposition 1.11. For an integral binary cubic form f , the number of index p subrings of R(f) is equal

to ωp(f), the number of zeros in P1(Fp) of f modulo p.

Proof. First, if R′ ⊂ R with index p, then R′ = Z + pR + Zθ for some well-defined element θ ∈
(R/Z)/p(R/Z). Extending this element to a Z-basis 1, ω, θ of R′, and renormalizing if necessary, we

see that 1, ω, θ is a Z-basis for R such that 1, pω, θ is a Z-basis for R. Note that θ is well-defined in

(R/Z)/p(R/Z) while pω is well-defined in (R′/Z)/p(R′/Z).

If f(x, y) = ax3 + bx2y + cxy2 + dy3 is the binary cubic form corresponding to the normal basis

1, ω, θ ∈ R, then (1.3) shows us that R′ = Z+ pR+Zθ is also a ring iff θ2 ∈ R′ iff d ≡ 0 (mod p). Recall

that we can view f as the cubic map R/Z !
∧2

(R/Z) given by r 7! r ∧ r2. In particular, the image of

θ ∈ R/Z under this map is

θ ∧ θ2 = −dθ ∧ ω ∈
∧2

(R′/Z),

so R′ is a ring iff θ is a root of f (mod p). This gives the desired bijection between roots of f (mod p)

and subrings R′ ⊂ R of index p: from R′ we can extract θ ∈ (R/Z)/p(R/Z) giving a root of f :

(R/Z)/p(R/Z)!
∧2

[(R/Z)/p(R/Z)]; from a root θ of f mod p, we can lift this to some θ ∈ R and then

form R′ = Z + pR+ Zθ which will be a genuine subring by the preceding iff’s. �

The final fact about this correspondence we will need is that automorphisms of cubic algebras corre-

spond to stabilizers of the GL2-action. In particular, we return to A being an arbitrary domain.

Proposition 1.12. For a binary cubic A-form f , the group of A-algebra automorphisms of R(f) is

naturally isomorphic to the stabilizer of f in GL2(A).

Proof. Any A-algebra automorphism ϕ of R(f) gives a GL2(A)-transformation on the chosen normal

basis ω, θ of R/A – and the transformed basis has the same multiplication table – so gives an element of

the stabilizer of the binary cubic form f in GL2(A). Conversely, if(
p q

r s

)
∈ GL2(A)
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stabilizes f , then

ϕ :

1

ω

θ

 7!
 1

pω + rθ

qω + sθ


extends to an A-algebra automorphism of R(f) since it preserves the multiplication table. �

This wraps up out discussion of the correspondence between cubic rings and binary cubic forms. The

most important points are that it preserves discriminants and allows us to test for maximality, but of

course, the other properties shown here will be needed as well.

1.2 Local Densities of Maximal Rings

Recall that our rough strategy is to count cubic rings, and then pick out the ones which are maximal.

Doing so will essentially involving answering the questions, “What proportion of cubic rings are maximal?”

Since our understanding of maximality is local, a perhaps better question to answer at the onset is, “what

proportional of cubic rings are maximal at p?” If one imagines that maximality at various primes are

independent conditions, then the proportion of cubic rings which are maximal (everywhere) should be

expressible as a product of the analogous proportions of each prime. We will make this rigorous when

performing the sieve at the end; for now, we tackle the local proportionality question.

Notation 1.13. Given a domain A, let VA denote the rank r free A-module of binary cubic forms over

A. We will primarily be interested in A = Z,Zp,Fp.

Let A be one of Z,Zp,Fp, and consider some binary cubic form f over A such that f 6≡ 0 (mod p).

Then, one can write

RA(f)/(p) ∼= Fpf1 [t1]/(te11 )⊕ · · · ⊕ Fpfg [tg]/(t
eg
g ).

Since RA(f) is a cubic A-algebra, comparing Fp-dimensions of both sides shows that

3 =

g∑
i=1

fiei.

We record this information by defining the symbol (f, p) :=
(
fe11 fe22 . . . f

eg
g

)
; its possible values are

(111), (12), (3), (121), and (13).

Remark 1.14. The symbol (f, p) indicates the factorization of f (mod p). Specifically (f, p) =
(
fe11 fe22 . . . f

eg
g

)
if and only if

f(x, y) ≡ he11 (x, y) . . . hegg (x, y) (mod p),

where hi(x, y) is irreducible over A/(p), and deg hi = fi. Equivalently, (f, p) =
(
fe11 fe22 . . . f

eg
g

)
if and

only if f (mod p) has g roots, the ith of which is defined over Fpfi and appears with multiplicity ei.

Thinking in these terms allows us to easily the determine the density of each factorization type.

Notation 1.15. We let Tp(f
e1
1 . . . f

eg
g ) ⊂ VZp denote the set of forms f such that (f, p) = (fe11 . . . f

eg
g ).
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Notation 1.16. For any S ⊂ VZ (or VZp
), we let µp(S) denote the p-adic density of the p-adic closure

of S in VZp
∼= Z4

p. The measure µp is normalized so that µp(Zp) = 1.

Lemma 1.17. We have

µp(Tp(111)) =
1

6
(p− 1)2p(p− 1)/p4

µp(Tp(12)) =
1

2
(p− 1)2p(p+ 1)/p4

µp(Tp(3)) =
1

3
(p− 1)2p(p+ 1)/p4

µp(Tp(1
21)) = (p− 1) p(p+ 1)/p4

µp(Tp(1
3)) = (p− 1) (p+ 1)/p4

Proof Sketch. We only perform the calculation for µp(Tp(111)). All the rest are done similarly. The main

point is that membership in Tp(·) can be tested after passing to f (mod p), so we might as well work

over Fp. Hence, f ∈ Tp(111) iff it has 3 zeros in P1 defined over Fp. The number of unordered triples of

distinct points in P1 defined over Fp is precisely

1

6
(#P1)(#P1 − 1)(#P1 − 2) =

1

6
(p+ 1)p(p− 1).

Given such a triple, there is, up to scaling, a unique binary cubic form having it as its set of roots. The

total number of binary cubic forms over Fp is p4, so this gives the claimed density

µp(Tp(111)) =
1

6
(p+ 1)p(p− 1)/p4. �

We now wish to use the above calculations to obtain the p-adic densities of the sets Up consisting of

forms maximal at p. Let Up(·) ⊂ Tp(·) be the subset consisting of f such that R(f) is maximal at p.

Remark 1.18. First consider f ∈ Tp(111) ∪ Tp(12) ∪ Tp(3). Then, p is unramified in R(f), so p - Disc(f).

However, if RZp
(f) ⊂ R′ is contained in another cubic Zp-algebra, then it is an easy consequence of

modules over a PID that

Disc(RZp
(f)) = [R′ : RZp

(f)] Disc(R′).

Since, p - Disc(RZp(f)), we conclude that p - [R′ : RZp(f)], so RZp(f) = R′, showing that it is maximal.

Remark 1.19. Now consider f ∈ Tp(121)∪Tp(13). We can use a GL2(Z)-transformation to sen the unique

multiple root of f in P1
Fp

to the point [1 : 0]. Hence, we may assume

f(x, y) = ax3 + bx2y + cxy2 + dy3 with a ≡ b ≡ 0 (mod p).

Recalling the discussion above Corollary 1.10, we see that RZp
(f) is maximal iff a ≡ 0 (mod p2). This is

satisfied by 1/p of f in the above form; hence, (p−1)/p proportion of forms in Tp(1
21)∪Tp(13) correspond

to cubic rings maximal at p.

The two remarks above prove
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Lemma 1.20.

µp(Up(111)) =
1

6
(p− 1)2p(p− 1)/p4

µp(Up(12)) =
1

2
(p− 1)2p(p+ 1)/p4

µp(Up(3)) =
1

3
(p− 1)2p(p+ 1)/p4

µp(Up(121)) = (p− 1)2 (p+ 1)/p4

µp(Up(13)) = (p− 1)2 (p+ 1)/p5

For determining the average size of 3-torsion in quadratic class groups later on, we will need to

consider the set Vp of elements f ∈ Up such that (f, p) 6= (13); this set parameterizes maximal cubic rings

R = R(f) which are maximal at p and not totally ramified at p.

From the above lemma, we obtain

Corollary 1.21 (of Lemma 1.20).

µp(Up) = (p3 − 1)(p2 − 1)/p5

µp(Vp) = (p2 − 1)2/p4

2 Counting Cubic Rings

In this section, we obtain are first asymptotic results. Recall that VR denotes the 4-dimensional vec-

tor space of binary cubic forms over R. Let V +
R , V

−
R ⊂ VR denote the subsets consisting those forms

with positive or negative, respectively, discriminant. These are the two orbits of the natural action of

GL2(R) y (VR \ {0}). We wish to understand the number

N
(
V ±Z ;X

)
of irreducible GL2(Z)-orbits on V ±Z = VZ ∩ V ±R having absolute discriminant less than X. Here, a

GL2(Z)-orbit on VZ si called irreducible if any (all) of its elements are irreducible over Q.

The goal of this section is to prove

Theorem 2.1.

N
(
V +
Z ;X

)
=
π2

72
X + o(X); and

N
(
V −Z ;X

)
=
π2

24
X + o(X).

Remark 2.2. [BST13] actually shows that the o(X)’s above can be replaced with O(X5/6)’s. We will be

a little less careful and obtain instead O(X11/12); we only care about the main term in these notes, so

we find this acceptable.

Very roughly, since GL2(R) acts transitively on V +
R , we will obtain Theorem 2.1 by counting lattice

points in the space formed by the translates of some v± ∈ V ±Z under a fundamental domain for GL2(Z)

acting on GL2(R); that is, we will morally be counting lattice points in GL2(Z)\GL2(R) · v± ⊂ V ±R ∼= R4.
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Notation 2.3. Because we are interested in proving a linear asymptotic, we will super careful in keeping

track of lower order terms. To this end, we introduce the non-standard notation

f(x) � g(x) ⇐⇒ f(x) = g(x) + o(x).

We could just use ∼ instead of �, except we will note know that N(V ±Z ;X) is asympotically linear in X

until the end.

2.1 The Setup

We start by describing the Iwasawa decomposition for GL2(R).

Notation 2.4. Let K,K1, A+, N,Λ denote the following subgroups of GL2(R):

K1 = {orthogonal transformations in GL2(R)} = O2(R)

K =

{(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ R/2πiZ

}
= SO2(R)

A+ =

{
at :=

(
t−1

t

)
: t ∈ R+

}
∼= R×>0

N =

{
nu :=

(
1

u 1

)
: u ∈ R

}
∼= R

Λ =

{(
λ

λ

)
: λ > 0

}
∼= R×>0

Proposition 2.5 (Iwasawa Decomposition). The natural product

Λ×K1 ×A+ ×N −! GL2(R)

is an analytic isomorphism.

Proof Sketch. We will only show that this map is surjective. We will see that, in constructing a preimage

of a point, we really have a unique choice at each step so injectivity is at least plausible given the below

argument.

Fix some g ∈ GL2(R), and let λ = |det g|1/2. Let e1, e2 be the standard basis of R2, and define

vi = g(ei) (i = 1, 2). Choose k ∈ K1 such that k(v2) is a positive multiple of e2. If (kv1, e1) < 0 then

compose k with reflection across the e2-axis, so we may assume that (kv1, e1) ≥ 0. Write kv2 = se2 (so

s > 0) and let t = s−1 > 0, so atk(v2) = e2. Write atk(v1) = αe1 + βe2 (so α > 0). Then,

n−β/αatk(v1) = n−β(αe1 + βe2) = αe1,

and n−β/αatk(v2) = e2. Let T = n−β/αatkλ
−1g ∈ SL2(R). By construction T (e1) = αe1 and T (e2) = e2,

so 1 = detT = α, which shows that T = Id, i.e. that g = λk−1at−1nβ/α is in the image of this map. �

Remark 2.6. Fix g ∈ GL2(R), and write g−1 = λkan with λ ∈ Λ, k ∈ K1, a ∈ A+, and n ∈ N . Then,
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g = n−1a−1k−1λ−1, so one sees that the natural product

N ×A+ ×K1 × Λ −! GL2(R)

with the order of the factors reverse is also a bijection.

Notation 2.7. We will let F ⊂ GL2(R) denote Gauss’s usual fundamental domain for GL2(Z)\GL2(R).

This is

F = {nakλ : a ∈ A′, n ∈ N ′(a), k ∈ K,λ ∈ Λ} ,

where

N ′(a) =

{(
1

n 1

)
: n ∈ ν(a)

}
, A′ =

{(
t−1

t

)
: t ≥ 4

√
3/
√

2

}
, Λ =

{(
λ

λ

)
: λ > 0

}
.

Above, ν(a) is a union of either one or two subintervals of [−1/2, 1/2] depending on the value of a ∈ A′.
Specifically, if a = at, then ν(a) (which we may also call ν(t) from time to time) is

ν(at) =
{
n ∈ [−1/2, 1/2] : n2 + t4 =

∣∣n+ t2i
∣∣ ≥ 1

}
.

For verification that F is a fundamental domain for GL2(Z) y GL2(R), see [Lan20, Lemma 3.33].

To count irreducible binary cubics, it would suffice to be able to count lattice points in Fv± ⊂ V ±R .

The region F is not particularly nice-looking, so this is hard to do directly. In order to get around this

instead of considering a single fundamental domain, we will count the average number of lattice points

in Fv as v ranges over a compact set B ⊂ VR. This has the advantage that the average number of lattice

points in Fv (for v ∈ B) is related to the average number of points in gB (for g ∈ F) and we will be able

to get a handle on this latter quantity using results from the geometry of numbers. With that said, let’s

get started.

Remark 2.8. Let n± denote the cardinality of the stabilizer in GL2(R) of any (all) v ∈ V ±R . By Proposition

1.12, n+ corresponds to the number of R-algebra automorphisms of any cubic R-algebra with positive

discriminant, so n+ = # AutR(R3) = 6. Similarly, n− = # Aut(R⊕C) = 2. Now, note that, for v ∈ V ±R ,

Fv will be the union of n± fundamental domains for the action of GL2(Z) on V ±R . This union will not be

disjoint, so we view Fv as a multiset where each point x ∈ Fv has multiplicity # {g ∈ F : gv = x}. That

is, x ∈ Fv has multiplicity n±/m(x), where m(x) = # StabGL2(Z)(x). This is because {g ∈ F : gv = x}
is in bijection with the group StabGL2(R)(x)/ StabGL2(Z)(x) via right-multiplication by any h satisfying

hx = v.

Remark 2.9. From Proposition 1.12, we know that the stabilizer in GL2(Z) of an irreducible element

x ∈ VZ is the group of ring automorphisms of the cubic ring R = R(x) corresponding to x. This

is equivalently the group of field automorphisms of the cubic number field FracR(x), so we see that

StabGL2(Z)(x) is either trivial of the cyclic group C3 of order 3, when x is irreducible. Thus, for any

v ∈ V ±R , the product n± ·N(V ±Z ;X) is the number of irreducible integer points in Fv having discriminant

less than X, if we count C3-orbits are counted with weight 1/3 in N(V ±Z ;X).

11



That is, if we set

N(V ±Z ;X) =
∑

x∈GL2(Z)\V ±Z
|Disc x|<X

1

# StabGL2(Z)(x)
=

∑
x∈GL2(Z)\V ±Z
|Disc x|<X

1

# AutZ(R(x))
,

then n±N(V ±Z ;X) exactly counts the number of irreducible integer points in Fv of absolute discriminant

less than X (v ∈ V ±Z ). We will see shortly that there are relatively few C3-points – not enough for the

difference in weighting to affect the main term in our asymptotics – so we will not stress this point too

much.

Notation 2.10. Now that we have made the above remark, for any GL2(Z)-invariant set S ⊂ VZ, we set

N(S;X) =
∑

x∈GL2(Z)\S
|Disc x|<X

1

# StabGL2(Z)(x)
=

∑
x∈GL2(Z)\S
|Disc x|<X

1

# AutZ(R(x))
.

As we mentioned this, directly counting these integral points would be difficult, so we will use an

averaging trick to make the problem more tractable. Before doing this do, show that there are “few”

reducible points, and “few” C3-points so that, for the sake of proving N(V ±Z ;X) ∼ cX (for some c ∈ R),

we may ignore them.

Notation 2.11. Let B ⊂ VR be come compact set. Given v ∈ B, we let

RX(v) := {w ∈ Fv : |Discw| < X} .

We first show that RX(v) has few reducible elements. Note that if f(x, y) = ax3 + bx2y+ cxy2 + dy3

has a = 0, then it is reducible since it has y as a factor. Thus, in counting irreducible points, we can

restrict to points with a 6= 0. With this in mind, we really show that RX(v) has few irreducible points

with a 6= 0.

Lemma 2.12. Let v ∈ B be any point of nonzero discriminant, where B is any fixed compact subset

of VR containing only elements having discriminant greater than 1. Then the number of integral binary

cubic forms ax2 + bx2y + cxy2 + dy3 ∈ RX(v) that are reducible with a 6= 0 is O(X3/4+ε), where the

implied constant depends only on B.

Proof. For an element f(x, y) = ax3 + bx2y + cxy2 + dy3 ∈ RX(v), we have f ∈ N ′A′KΛv where

0 < λ < X1/4, since Disc(λ · v) = λ4 Disc(v). This says that (recall t ≥ 4
√

3/
√

2, so t−1 bounded above)

f(x, y) =
1

det γ
v((x, y) · γ)

=
1

λ2
· v

(
(x, y) ·

(
1 0

n 1

)(
t−1 0

0 t

)(
cos θ sin θ

− sin θ cos θ

)(
λ 0

0 λ

))

=
λ3

λ2
· v

(
(x, y) ·

(
t−1 0

nt−1 t

)(
cos θ sin θ

− sin θ cos θ

))

= λ · v

(
(x, y) ·

(
t−1 cos θ t−1 sin θ

nt−1 cos θ − t sin θ nt−1 sin θ + t cos θ

))
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= λ · v
(
xt−1 cos θ + y(nt−1 cos θ − t sin θ), xt−1 sin θ + y(nt−1 sin θ + t cos θ)

)
By considering the x3 coefficient in the expansion of the last line above, we see that a = O(λt−3) =

O(X1/4). Similar considerations show that3

a = O(λt−3) = O(X1/4)

ab = O(λ2(t−4 + t−6)) = O(X2/4)

ac = O(λ2(t−2 + t−4 + t−6)) = O(X2/4)

ad = O(λ2(1 + t−2 + t−4 + t−6)) = O(X2/4)

abc = O(λ3(t−3 + t−5 + t−7 + t−9)) = O(X3/4)

abd = O(λ3(t−1 + t−3 + t−5 + t−7 + t−9)) = O(X3/4)

From this we see that the total number of forms f ∈ RX(v) with a 6= 0 and d = 0 is O(X3/4+ε). This

is essentially because there are O(X1/4) choices for a, and hence O(X1/4) choices for each of b, c as well

since ab, ac = O(X2/4).

Now assume a 6= 0 and d 6= 0. Similar reasoning gives that the above estimates then show that the

total number of possibilities for the triple (a, b, d) is O(X3/4+ε). Now suppose a, b, d are fixed (d 6= 0),

and consider the number of possibilities for c so that f(x, y) = ax3 + bx2y + cxy2 + dy3 is reducible.

This requires it to have a linear factor rx + sy with r, s ∈ Z coprime. Hence, r must be a factor of a,

while s must be a factor of d. The number of divisors σ0(n) of a number n is o(nε), so there are o(Xε)

choices for the pair (r, s). Given a, b, d, r, s, one can recover c by solving f(−s, r) = 0, so we end up with

O(X3/4+ε)o(Xε) = O(X3/4+ε) possibilities in this case as well. This finishes the proof. �

We next show that there are few C3-points in RX(v), when v has positive discriminant. If v has

negative discriminant, then there are no C3-points in RX(v). This is because, for v ∈ V −Z , the cubic

field FracR(v) has a complex place; hence, writing FracR(v) = Q[x]/(g(x)), two roots of g are complex

conjugate pairs. Thus, 2 (the order of complex conjugation) divides the degree of the splitting fields of

g, and so FracR(v) 6= splitQg(x).

Lemma 2.13. Let v ∈ VR be any point of positive discriminant. Then the number of integral points in

VZ ∩RX(v) having stabilizer C3 in GL2(Z) is O(X3/4+ε), where the implied constant is independent of

v.

Proof. The number of integral points in RX(v) having stabilizer C3 in GL2(Z) is equal to the number

of isomorphism classes of cubic rings having automorphism group C3 and discriminant less than X.

This number is thus independent of v, so it suffices to prove the lemma for any single v with positive

discriminant.

Let v ∈ VZ be the binary cubic x3− 3xy2. Every binary cubic form f(x, y) = ax3 + bx2y+ cxy2 + dy3

has an associated binary quadratic form, the Hessian covariant

Hf (x, y) := (b2 − 3ac)x2 + (bc− 9ad)xy + (c2 − 3bd)y2.

3All that really matters below is the exponent on λ and the fact that t never has a positive exponent
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One can check by hand that, for g ∈ SL2(R), one has Hg·f (x, y) = (g ·Hf )(x, y). For our choice of v, we

have

Hv(x, y) = 9(x2 + y2).

Fix some g ∈ F ∩ SL2(R), and write

g =

(
1 0

n 1

)(
t−1 0

0 t

)(
cos θ sin θ

− sin θ cos θ

)
.

Then,

(g ·Hv)(x, y) = Hv

(
xt−1 cos θ + y(nt−1 cos θ − t sin θ), xt−1 sin θ + y(nt−1 sin θ + t cos θ)

)
= 9
[ (
t−2 cos2 θ + t−2 sin2 θ

)
x2+(

nt−2 cos2 θ − cos θ sin θ + nt−2 sin2 θ + sin θ cos θ
)
xy+(

n2t−2 cos2 θ − 2n cos θ sin θ + t2 sin2 θ + n2t−2 sin2 θ + 2n sin θ cos θ + t2 cos2 θ
)
y2
]

= 9
[
t−2x2 + 2nt−2xy + (n2t−2 + t2)y2

]
=

9
[
x2 + 2nxy + (n2 + t4)y2

]
t2

Recalling from Notation 2.7 that |n| ≤ 1/2 and n2 + t4 ≥ 1, we conclude that any quadratic form

A1x
2 + A2xy + A3y

2 in FHv must satisfy |A2| ≤ A1 ≤ A3. Thus, Fv consists of binary cubic forms

f(x, y) = ax3 + bx2y + cxy2 + dy3 satisfying

|bc− 9ad| ≤ b2 − 3ac ≤ c2 − 3bd.

Finally, if f ∈ Fv has a nontrivial stabilizing element γ of order 3 in SL2(Z), then γ will also stabilize Hf .

However, the only reduced binary quadratic form, up to scaling, having a nontrivial order 3 stabilizing

elements is x2 + xy+ y2. Thus, any C3-binary cubic f(x, y) = ax3 + bx2y+ cxy2 + dy3 in Fv will satisfy

|bc− 9ad| = b2 − 3ac = c2 − 3bd.

Hence, if a, b, d are fixed, then there are at most two solutions for c. Repeating the argument in Lemma

2.12, we see that the total number of possible triples (a, b, d) in Fv is O(X3/4+ε), so we win. �

2.2 The Count

2.2.1 Averaging Trick

We can now carry out our averaging argument. We start with a simple lemma allowing us to interchange

integrals over GL2(R) with those over V ±Z .

Notation 2.14. Let R be a multiset, and let Rk denote its set of elements appearing with multiplicity

exactly k. If Rk is measurable for all k, and f : R! C is a measurable function on R’s underlying set,

then we define ∫
x∈R

f(x)dx :=
∑
k≥1

∫
x∈Rk

f(x)dx.
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Let dv denote the usual Euclidean measure on VR (normalized so VZ has co-volume 1), and let

dg = t−2dnd×tdkd×λ be the Haar measure of GL2(R) obtained from its Iwasawa decomposition, with

dk normalized to have measure 1 on SO2(R). Then,

Proposition 2.15. Let f : V ±R ! C be continuous, and choose any v± ∈ V ±R . Then,∫
g∈GL2(R)

f(g · v±)dg =
1

2π

∫
v∈GL2(R)·v±

f(v) |Disc(v)|−1
dv =

n±
2π

∫
v∈V ±R

f(v) |Disc v|−1
dv.

Proof Sketch. For the first equality, one can explicitly compute the Jacobian for the change of variable

sending g ∈ GL2(R) to v = g ·v± ∈ VR. The coordinates on g are the (k, t, n, λ) coming from the Iwasawa

decomposition, while the coordinates on v are the usual (a, b, c, d) describing its corresponding form. To

obtain the second equality, one simply uses that the multiset GL2(R) · v± is an n±-fold cover of V ±R . �

In particular, we see that |Disc v|−1
dv is a GL2(R)-invariant measure on VR since, for h ∈ GL2(R),

we have (using that dg is a Haar measure)∫
v∈V ±R

f(h·v) |Disc v|−1
dv =

2π

n±

∫
g∈GL2(R)

f(g·h·v±)dg =
2π

n±

∫
g∈GL2(R)

f(g·v±)dg =

∫
v∈V ±R

f(v) |Disc v|−1
dv.

We proved a couple results at the end of the previous section which made use of an auxillary compact

set B ⊂ VR. We know fix a choice of said set. Fix some C ≥ 1, and let

B = B(C) :=
{
w = (a, b, c, d) ∈ VR : 3a2 + b2 + c2 + 3d2 ≤ C and |Disc(w)| ≥ 1

}
.

Remark 2.16. B is K = SO2(R)-invariant. This is because a lengthy computation shows that the

expession 3a2 + b2 + c2 + 3d2 is itself invariant under the SO2(R)-action.

Let V irr
Z denote the subset of irreducible points of VZ. Recall from Remark 2.9 that

niN(V ±Z ;X) = #
{
x ∈ Fv ∩ V irr

Z : |Discx| < X
}
,

and note that this equality in fact holds for any GL2(Z)-invariant subset S ⊂ V ±Z taking the place of V ±Z .

Since the number of integral points in Fv ∩ Sirr is independent on the choice of v ∈ S, we obtain

N (S;X) =

∫
v∈B∩V ±R

niN(S;X) |Disc v|−1
dv

ni
∫
v∈B∩V ±R

|Disc v|−1
dv

=

∫
v∈B∩V ±R

#
{
x ∈ Fv ∩ Sirr : |Discx| < X

}
|Disc v|−1

dv

ni
∫
v∈B∩V ±R

|Disc v|−1
dv

(2.1)

We shall take (2.1) as the definition of N(S;X) for S ⊂ VZ not necessarily GL2(Z)-invariant. Note that

for disjoint S1, S2 ⊂ VZ, one has N(S1 t S2;X) = N(S1;X) +N(S2;X).

We would like to simplify the expression for N(S,X) as much as possible. In particular, given that

we have access to Proposition 2.15, we would like to be able to switch the roles of F and B, so that we

may compute N(S;X) by integrating over F (or a region in GL2(R) like it), and counting lattice points

in B (or a compact in VR like it) instead.

Fix v± ∈ V ±R , and choose maximal subsets H± ⊂ GL2(R) such that H± · v± = B ∩ V ±R . So, the
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multiset H± · v± is an n±-fold cover of B ∩ V ±R . The numerator on the RHS of (2.1) is now equal to∫
v∈B∩V ±R

#
{
x ∈ Fv ∩ Sirr : |Discx| < X

}
|Disc v|−1

dv =
∑

x∈Sirr:|Disc x|<X

∫
v∈B∩V ±R

# {g ∈ F : x = gv} |Disc v|−1
dv

=
2π

n±

∑
x∈Sirr:|Disc x|<X

∫
h∈H±

#{g ∈ F : x = ghv±}dh

=
2π

n±

∑
x∈Sirr

|Disc x|<X

∫
g∈F

#
{
h ∈ H± : x = ghv±

}
dg

=
2π

n±

∫
g∈F

#
{
x ∈ Sirr ∩ gH±v± : |Discx| < X

}
dg.

(2.2)

The second equality comes from Proposition 2.15. Note that we have succeeded in interchanging the

roles of F and B ∩ V ±R = H±v±. We can still rewrite things slightly. Recall that KB = B and that∫
Kdk = 1. Any g ∈ F can be written in the form g = hk with h ∈ N ′(a)A′Λ and k ∈ K, so (2.2) is

further equal to

2π

n±

∫
h∈N ′(a)A′Λ

∫
k∈K

#
{
x ∈ Sirr ∩ hkB ∩ V ±R : |Discx| < X

}
dhdk

=
2π

n±

∫
h∈N ′(a)A′Λ

∫
k∈K

#
{
x ∈ Sirr ∩ hB ∩ V ±R : |Discx| < X

}
dhdk

=
2π

n±

 ∫
h∈N ′(a)A′Λ

#
{
x ∈ Sirr ∩ hB ∩ V ±R : |Discx| < X

}
dh


 ∫
k∈K

dk


=

2π

n±

∫
h=natλ∈N ′(a)A′Λ

#
{
x ∈ Sirr ∩ natλB ∩ V ±R : |Discx| < X

}
dh,

where dh = t−2dnd×td×λ. Let

B(n, t, λ,X) = n

(
t−1

t

)
λB ∩

{
v ∈ V ±R : |Disc v| < X

}
.

We have shown that

N(S;X) =
1

M±

∫
g∈N ′(a)A′Λ

#
{
x ∈ Sirr ∩B(n, t, λ,X)

}
t−2dnd×td×λ (2.3)

where

M± := M±(C) =
n±
2π

∫
v∈B(C)∩V (i)

R

|Disc v|−1
dv.

2.2.2 Estimating Lattice Points

By equation (2.3), in order to get good asymptotics for N(V ±Z ;X), we will want good estimates for the

number of lattice points in B(n, t, λ,X). To do so, we will use version of theorem of Davenport which is
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applicable to multisets.

Definition 2.17. A multiset R ⊂ Rn is called mesurable if Rk is measurable for all k, where Rk
denotes the set of those points in R having multiplicity exactly k. Given a measurable multiset R ⊂ Rn,

we define its volume to be

Vol(R) =
∑
k

k ·Vol(Rk),

where Vol(Rk) denotes the usual Euclidean volume of Rk.

Theorem 2.18 (See [Dav51] and [Dav64]). Let R be a bounded multiset in Rn having maximum mul-

tiplicity m, and which is defined by at most k polynomial inequalities each having degree at most `. Let

R′ denote the image of R under any (upper or lower) triangular, unipotent transformation of Rn. Then

the number of integer lattice points (counted with multiplicity) contained in the region R′ is

Vol(R) +O(max{Vol(R), 1})

where Vol(R) denote the greatest d-dimensional volume of any projection of R onto a coordinate subspace

obtained by equating n − d coordinates to zero, where d takes all values from 1 to n − 1. The implied

constant in the second summands depends only on n,m, k, and `.

Corollary 2.19. The number of lattice points (a, b, c, d) in B(n, t, λ,X) ⊂ V ±R with a 6= 0 is 0 if Cλ < t3

Vol(B(n, t, λ,X)) +O(max{C3λ3t4, 1}) otherwise

Proof. First note than any binary cubic in B(n, t, λ,X) is of the form natλv for some cubic v =

(a′, b′, c′, d′) ∈ B (in particular, a′ ≤ C), i.e. is of the form

(natλv)(x, y) =
1

λ2
v

(
(x, y) ·

(
1 0

n 1

)(
t−1 0

0 t

)(
λ 0

0 λ

))
= λv

(
t−1x+ t−1ny, ty

)
,

and so has x3 coefficient a′λ/t3 ≤ Cλ/t3. This gives the first case in the claim; if Cλ/t3 < 1, then any

(a, b, c, d) ∈ B(n, t, λ,X) must have a = 0.

If Cλ/t3 ≥ 1, then λ and t are positive numbers bounded from below by ( 4
√

3/
√

2)3/C and 4
√

3/
√

2,

respectively. One can easily check that for any (a, b, c, d) ∈ B(n, t, λ,X), one has

a = O(Cλt−3) = O(Cλt−3)

b = O(Cλ(t−1 + t−3)) = O(Cλt−1)

c = O(Cλ(t+ t−1 + t−3)) = O(Cλt)

d = O(Cλ(t3 + t+ t−1 + t−3)) = O(Cλt3)

Maximizing the exponents of each factor individually, it is clear that each coordinate projection of

B(n, t, λ,X) has volume at most O(C3λ3t4). �

Remark 2.20. [BST13] obtain a O(max{C3λ3t3, 1}) where t has exponent 3 instead of 4. Recalling

Remark 2.2, this is the reason they obtain a smaller o(X) term in Theorem 2.1 than we do.
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In the above corollary, we only consider the points with a 6= 0 since we ultimately only want to count

irreducible integral points in B(n, t, λ,X).

Recall 2.21 (Notation 2.3). We have adopted the notation

f(x) � g(x) ⇐⇒ f(x) = g(x) + o(x).

In (2.3), the integrand will be nonzero only if t3 ≤ Cλ (by Corollary 2.19) and λ ≤ X1/4 (since B

consists only of points having discriminant at least 1). Thus, we may write, up to an error of O(X3/4+ε)

(due to Lemma 2.12), that

N(V ±Z ;X) � 1

M±

∫ X1/4

λ=( 4√3/
√

2)3/C

∫ C1/3λ1/3

t= 4√3/
√

2

∫
N ′(t)

(
Vol(B(n, t, λ,X)) +O(max{C3λ3t4, 1})

)
t−2dnd×td×λ.

(2.4)

The integral of the first summand in (2.4) is (note the limits for t)

1

2πM±

∫
v∈B∩V ±R

Vol(RX(v)) |Disc v|−1
dv− 1

M±

∫ X1/4

λ=( 4√3/
√

2)3/C

∫ ∞
t=C1/3λ1/3

∫
N ′(t)

Vol(B(n, t, λ,X))t−2dnd×td×λ.

(2.5)

Now, as a consequence of Proposition 2.15, Vol(RX(v)) does not depend on the choice of v ∈ V ±R . Since

Vol(B(n, t, λ,X)) = O(C4λ4), e.g. from the estimates on the coordinates of any w ∈ B(n, t, λ,X) given

in the proof of Corollary 2.19, we see that (2.5) is equal to

Vol(RX(v))

n±
+O

(
C10/3X5/6

M±(C)

)
.

What about the second summand in (2.4)? This is

1

M±

∫ X1/4

λ=( 4√3/
√

2)3/C

∫ C1/3λ1/3

t= 4√3/
√

2

∫
N ′(t)

O(max{C3λ3t4, 1})t−2dnd×td×λ =

∫ X1/4

λ=( 4√3/
√

2)3/C

∫ C1/3λ1/3

t= 4√3/
√

2

O

(
C3λ3t2

M±(C)

)
d×td×λ

=

∫ X1/4

λ=( 4√3/
√

2)3/C

O

(
C11/3λ11/3

M±(C)

)
d×λ

= O

(
C11/3X11/12

M±(C)

)
All these remains at this point in computing Vol(RX(v±)) for any fixed v± ∈ V ±R . Proposition 2.15 tells

us that the measure 2π |Disc v±|λ4dg/n± pushes forward, along the map g 7! g ·v±, to the usual measure

Euclidean measure dv on V ±R
∼= R4. We may assume |Disc v±| = 1. Lemma 2.13 tells us that, up to

O(X3/4+ε) = o(X) error, every point in the multiset RX(v±) has multiplicity n±, so

Vol(RX(v))

n±
� 2π

n±

∫ X1/4

λ=0

λ4d×λ

∫
h∈N ′(a)A′K

dh =
2π

n±

X4

4

π

6
=

π2

12n±
X,

where we have quoted [BST13, Beginning of Section 5.4] in using that∫
h∈N ′(a)A′K

dh = Vol(GL2(Z)\GL±2 (R)) =
π

6
.
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Combining the various displayed equations in this section, we have shown

N(V ±Z ;X) � 1

M±

∫ X1/4

λ=( 4√3/
√

2)3/C

∫ C1/3λ1/3

t= 4√3/
√

2

∫
N ′(t)

(
Vol(B(n, t, λ,X)) +O(max{C3λ3t4, 1})

)
t−2dnd×td×λ

=

[
Vol(RX(v))

n±
+O

(
C10/3X5/6

M±(C)

)]
+O

(
C11/3X11/12

M±(C)

)
=

π2

12n±
X +O(X11/12)

which proves Theorem 2.1.

2.3 Including Congruence Conditions

Now that we have Theorem 2.1, we would like to use results from Section 1.2 to obtain an asymptotic

count of maximal irreducible cubic rings from our current count of irreducible cubic rings. This will

involving placing infinitely many local maximality conditions on our rings, one for each prime p. As a

stepping stone to a result allowing us to do this, we first obtain a version of Theorem 2.1 which allows

for a finite number of local conditions.

Theorem 2.22. Fix an integer m ≥ 1, and consider the natural projection maps q± : V ±Z ⊂ VZ ∼= Z4 �

(Z/mZ)4. Let S = q−1
± (S) ⊂ V ±Z for some S ⊂ (Z/mZ)4; we say that S is defined by finitely many

congruence conditions. Then,

lim
X!∞

N(S ∩ V ±Z ;X)

X
=

π2

12n±

∏
p|m

µp(S),

i.e. N(S ∩ V ±Z ;X) =
(

π2

12ni

∏
p µp(S)

)
X + o(X), where µp(S) denotes the p-adic density of S in VZ,

n+ = 6, and n− = 2.

To obtain Theorem 2.22, suppose that S ⊂ V ±Z is defined by finitely congruence conditions, so S =

q−1
± (S) for some S ⊂ (Z/mZ)4. Then, S = V ±Z ∩U where U is the union of k = #S translates L1, . . . , Lk

of the lattice m · VZ. If S = {q±(e1), . . . , q±(ek)} with e1, . . . , ek ∈ V ±Z , then Li = m · VZ + ei. For each

lattice translate Lj , we use formula (2.3) along with the discussion following it to compute N(Lj∩V (i)
Z ;X),

where each d-dimensional volume is scaled by a factor of 1/md to reflect the fact that our new lattice has

been scaled by a factor of m. With these scalings, the volumes of the d = 3, 2, 1 dimensional projections

of B(n, t, λ,X) are seen to be at most O
(
m−3C3t3λ3

)
, O

(
m−2C2t4λ2

)
, O

(
m−1Ct3λ

)
, respectively, so

they are all at most O(m−3C3t4λ3).4 Let a ≥ 1 be the smallest nonzero first coordinate of any point

in Lj . Then, analogous to Corollary 2.19, the number of lattice points in B(n, t, λ,X) ∩ Lj with first

coordinate nonzero is  0 if Cλt−3 < a

Vol(B(n,t,λ,X))
m4 +O

(
C3t4λ3

m3

)
otherwise

Carrying out the integral for N(Lj ;X) as before, we obtain, up to O(X3/4+ε) error (coming from Lemma

4Not combining these three bounds yet would get one an O(X5/6) error in the end, instead of a O(X11/12) error
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2.12) that

N(Lj ∩ V (i)
Z ;X) � Vol(RX(v))

m4n±
+O

(
C10/3X11/12

M±(C)a1/3m3

)
.

Summing over the k values of j, this gives

N(S;X) � k

m4

Vol(RX(v))

n±
+O

(
kX11/12

m3

)
.

Finally, Theorem 2.22 follow from

k

m4
=
∏
p

µp(S) and
Vol(RX(v))

n±
� π2

12n±
X.

3 Wrapping Things Up

We are in the home stretch now. All that remains is to obtain a version of Theorem 2.22 allowing for

infinitely many congruence conditions, and apply it using the densities for Up obtained in Corollary 1.21.

In order to carry this out, we will need a uniform estimate on the error terms appearing when only finitely

many conditions are taken into account, so we obtain this first.

As before, let Vp denote the set of all f ∈ VZ for which R(f) is maximal at p, but in which p does not

totally ramify. Furthermore, let Zp = VZ − Vp. We can and do partition this as Zp = Wp t Yp where

Wp consists of all forms f ∈ VZ whose corresponding cubic rings are not maximal at p, while Yp consist

of all forms whose ring is maximal at p, but is also totally ramified there.

3.1 Counting Cubic Number Fields

Lemma 3.1. Let f(x, y) = ax3 + bx2y + cxy2 + dy3 be an integral binary cubic form, and let g =

gcd(a, b, c, d). Then, g is the maximal integer n such that R(f) = Z + nR′ for some other cubic ring R′.

We call this value g the content of f (or of R(f)), and denote it by either of ct(f) = ct(R(f)).

Proof Sketch. This is a consequence of (1.3). �

Proposition 3.2. N(Wp;X) = O(X/p2), where the implied constant is independent of p.

Proof. Let us say that a cubic ring R is primitive at p if p - ct(R). From Proposition 1.11, we easily

see that if R is primitive at p, then it has at most 3 index p subrings. At present, we wish to bound the

number of cubic rings which are not maximal at p, and which have absolute discriminant less than X.

Suppose R is such a ring. By Lemma 1.9, it has a Z-basis 〈1, ω, θ〉 such that one of

(i) R′ = Z+Z(ω/p) +Zθ
[
Disc(R′) = Disc(R)/p2

]
(ii) R′′ = Z+Z(ω/p) +Z(θ/p)

[
Disc(R′′) = Disc(R)/p4

]
is also a cubic ring.

Assume first that we are in base (i). Then, Disc(R′) < X/p2, so there are at most O(X/p2) possible

choices for R′, by Theorem 2.1. If R′ is primitive at p, then since R is index p in R′, there are at most 3

possible R for each R′, so this gives O(X/p2) choices for R when R′ primitive at p. If R′ is not primitive at
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p, there exists a ring S such that R′ = Z+pS. Note that R′ ⊂ S is index p2 since S/R′ = (S/Z)/p(S/Z),

so R ⊂ S is index p3 and Disc(S) = Disc(R)/p6 < X/p6. Hence, again by Theorem 2.1, there are O(X/p6)

choices for S, and so the same number of choices forR′ = Z+pS. Finally, since Z2 ∼= (R/Z) ⊂ (R′/Z) ∼= Z2

is index p, there can at most post p + 1 choice of R given R′, so we get O((p + 1)X/p6) choices for R

when R′ is not primitive at p. All in all, there are O(X/p2) = O(X/p2) + O((p+ 1)X/p6) choices for R

in case (i).

Now, assume we are in case (ii). Then, R = Z+pR′′ and Disc(R′′) < X/p4. Hence, there are O(X/p4)

choices for R′′, and so the same number of choices for R. Thus, N(Wp;X) = O(X/p2) + O(X/p4) =

O(X/p2) as claimed. �

The above proposition suffices to get the asymptotic count of cubic fields. For determining the average

size of 3-torsion in class groups, however, we will also need an analogous result for N(Yp;X), i.e. we

will need to bound the number of cubic fields not ramified at p. We will obtain this later. For now, let’s

prove Theorem 1.

Let U =
⋂
p Up. Then, U is the set of v ∈ VZ corresponding to maximal cubic rings R. Recall that

Corollary 1.21 shows us that the p-adic density of Up is µp(Up) = (1− p−2)(1− p−3). Suppose Y is any

positive integer. Theorem 2.22 let’s us see that

lim
X!∞

N
(⋂

p<Y Up ∩ V
±
Z ;X

)
X

=
π2

12n±

∏
p<Y

(
1− p−2

) (
1− p−3

)
.

We would like to prove (the second equality in)

lim
X!∞

N
(
U ∩ V ±Z ;X

)
X

= lim
X!∞

lim
Y!∞

N
(⋂

p<Y Up ∩ V
±
Z ;X

)
X

= lim
Y!∞

lim
X!∞

N
(⋂

p<Y Up ∩ V
±
Z ;X

)
X

= lim
Y!∞

π2

12n±

∏
p<Y

(
1− p−2

) (
1− p−3

)
=

π2

12n±

1

ζ(2)ζ(3)

=
1

2n±ζ(3)
. (3.1)

This would give Theorem 1. For notational convenience, set

NY (X) :=
N
(⋂

p<Y Up ∩ V
±
Z ;X

)
X

and N(X) :=
N
(
U ∩ V ±Z ;X

)
X

.

To switch the limits in (3.1), it will suffice to show that

lim
Y!∞

lim
X!∞

NY (X)−N(X)

X
= 0.
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Using Proposition 3.2, this holds because

NY (X)−N(X)

X
=
N
(⋃

p≥Y Wp ∩ V ±Z ;X
)

X
≤
O(X)

∑
p≥Y p

−2

X
= O(1)

∑
p≥Y

p−2 Y!∞
−−−−! 0

with the tail vanishing in the limit since the sum
∑
p p
−2 ≤ ζ(2) is convergent. Finally, taking lim

Y!∞
lim
X!∞

of
N(X)

X
=
NY (X)

X
− NY (X)−N(X)

X

now gives

lim
X!∞

N
(
U ∩ V ±Z ;X

)
X

= lim
X!∞

N(X)

X
= lim
Y!∞

lim
X!∞

NY (X)

X
=

1

2n±ζ(3)

as desired.

3.2 Average Size of 3-torsion in Class Groups of Quadratic Number Fields

We begin by explaining the connection between cubic fields and 3-torsion in the class groups of quadratic

fields.

Let F/Q be a quadratic field, and letHF denote its Hilbert class field, soHF /F is F ’s maximal abelian,

unramified extension, and Gal(HF /F ) ' ClF . Since ClF [3] = Hom(ClF , C3) = Hom(Gal(HF /F ), C3),

we see that each nontrivial element of ClF [3] gives an unramified C3-extension L/F of F (including an

iso Gal(L/F )
∼
−! C3). Since # Aut(C3) = 2, we see that every unramified C3-extension L/F has two

isomorphisms Gal(L/F )
∼
−! C3, and so corresponds to 2 nontrivial elements of ClF [3]. Thus, the number

of unramified C3-extensions of F is # ClF [3]−1
2 .

Fact. Let K/Q be a non-Galois cubic field. Let L/Q be the Galois closure of K, so Gal(L/Q) ' S3, and

L has a unique quadratic subfield F/Q. This situation is summed up in the diagram

L

K F

Q

2 C3

3 2

In this situation, Disc(K) = f2 Disc(F ) where f is the conductor of L/F , equal to the product of rational

primes totally ramifying in K/Q.

The above fact tells us that counting C3-extensions of F is roughly the same thing as counting non-

Galois cubics (which, by Lemma 2.13 is ‘almost all cubics’). Recall that we had earlier defined the set

Yp, consisting of cubic fields not totally ramified at p, and let V =
⋂
p Vp. We see now that

∑
0<Disc(F )<X

# ClF [3]− 1

2
� N(V ∩ V +

Z ;X)

∑
−X<Disc(F )<0

# ClF [3]− 1

2
� N(V ∩ V −Z ;X), (3.2)

22



where the � again denotes up to o(X) (coming from the cyclic cubics). This is the connection we will

exploit. To perform another sieve in order the count unramified cubics (hence the average size of ClF [3]),

we will need a good bound for N(Yp;X). We obtain this below.

Notation 3.3. Given a number field F , let CF = A×F /F× denote its idèle class group, so C3-extensions

of F correspond to continuous surjections CF � C3.

For f ∈ Z≥1, let ω(f) denote its number of rational prime divisors.

Lemma 3.4. The number of closed, index 3 subgroups H ⊂ CF is O
(
9ω(f)# ClF [3]

)
.

Proof. The group CF fits into an exact sequence5

1 −!

∏
v O×v
O×F

−! CF −! ClF −! 1,

where the product is taken over places v of F . Taking Hom(−, C3), we obtain the exact sequence

0 −! Hom(ClF , C3) −! Hom(CF , C3) −! Hom

(∏
v O×v
O×F

, C3

)
. (3.3)

Now, note that the notion of the conductor of a map CF ! C3 equally makes sense for a map
∏

v O×v
O×F

! C3,

and the restriction map Hom(CF , C3) −! Hom
(∏

v O×v
O×F

, C3

)
above preserves conductors. With this in

mind, we will introduce an f superscript to indicate the subset of maps of conductor f , e.g. Hom(CF , C3)f .

The sequence (3.3) tells us that

∣∣∣Hom (CF , C3)
f
∣∣∣ ≤ |Hom(ClF , C3)|

∣∣∣∣∣Hom

(∏
v O×v
O×F

, C3

)f ∣∣∣∣∣ ≤ |Hom(ClF , C3)|

∣∣∣∣∣∣Hom

(∏
v

O×v , C3

)f ∣∣∣∣∣∣ .
(3.4)

Now, each p | f has at most 2 places v above it in F , so the number of places of F at which L/F ramifies

is at most 2ω(f). For such such place, # Hom(O×v , C3) ≤ 3 if v - 3. There are only finitely many v | 3, and

for each such v, Qv is a quadratic extension of Q3; since there only only finitely many such extensions,

# Hom(O×v , C3) is uniformly bounded for v | 3. This combined with (3.4) gives

# Hom(CF , C3)f = O
(

32ω(f)# ClF [3]
)

as claimed. �

Proposition 3.5. N(Yp;X) = O(X/p2), where the implied constant is independent of p.

Proof. Recall that the discriminant of a non-cyclic cubic field K is of the form Disc(K) = f2 Disc(F )

where F is the unique quadratic subfield of the Galois closure of K/Q. Combining this with Lemmas

2.13 and 3.4, we see that

N(Yp;X) = O

 ∑
f>0,p|f

∑
F quad

±Disc(f)≤X/f2

9ω(f)# ClF [3]

+O(X3/4+ε).

5If v | ∞, we set O×
v = Fv
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We expect the first summand to be linear in X, so we ignore the second summand for now. Note that∑
F quad

±Disc(F )≤X/f2

# ClF [3] = N(V ∩ V ±Z ;X/f2) + o(X) ≤ N(V ±Z ;X/f2) + o(X) = O(X/f2).

Hence (using p | f ⇐⇒ f = mp),6

N(Yp;X) � O

∑
m≥1

9ω(m)
∑

F quad
±Disc(f)≤X/(mp)2

# ClF [3]

 = O

(∑
m

9ω(m) X

p2m2

)
= O

X

p2

∑
m≥1

9ω(m)

m2

 = O

(
X

p2

)
,

where we have used that

∑
m≥1

9ω(m)

m2
=
∏
`

(
1 +

9

`2
+

9

`4
+ · · ·

)
≤
∏
`

(
1− 9

`2

)−1

<∞ since
∑
`

9

`2
<∞.

This finishes the proof. �

Corollary 3.6. N(Zp;X) = O(X/p2), where the implied constant is independent of p.

Proof. Recalling that Zp =Wp ∪ Yp, this is Propositions 3.2 and 3.5. �

This brings us to the end. The proof of Theorem 1 in section 3.1 (the part after Proposition 3.2)

works equally well in the present case (with Up replaced by Vp, Wp replaced by Zp, and Proposition 3.2

replaced by Corollary 3.6) to show that

lim
X!∞

N(V ∩ V ±Z ;X)

X
=

π2

12n±

∏
p

(1− p−2)2 =
π2

12n±

1

ζ(2)2
=

3

n±π2
.

Using (3.2) along with the well-known fact7

lim
X!∞

∑
0<Disc(K2)<X 1

X
=

3

π2
= lim
X!∞

∑
−X<Disc(K2)<0 1

X
,

we now obtain

lim
X!∞

∑
0<Disc(K2)<X h

∗
3(K2)∑

0<Disc(K2)<X 1
= 1 + 2 lim

X!∞

N(V ∩ V +
Z ;X)∑

0<Disc(K2)<X 1
= 1 + 2

3/(6π2)

3/π2
= 1 +

6

18
=

4

3

and

lim
X!∞

∑
−X<Disc(K2)<0 h

∗
3(K2)∑

−X<Disc(K2)<0 1
= 1 + 2 lim

X!∞

N(V ∩ V −Z ;X)∑
−X<Disc(K2)<0 1

= 1 + 2
3/(2π2)

3/π2
= 1 +

6

6
= 2.

This is Theorem 2.

6Below, we have ω(m) instead of ω(mp) since ω(mp) ≤ ω(m) + 1, and this 1 only contributes a factor of 9 to the
expression

7Every quadratic field F is of the form F = Q(
√

DiscF ), so this basically amounts to counting square-free integers
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Recalling the basic observation # Sur(ClF ,Z/3Z) = # ClF [3]− 1 all the way from the introduction –

along with the motivation coming from Cohen-Lenstra’s predicted statistics for class groups of quadratic

fields and the notation µ±X – this in turn gives

lim
X!∞

EF∼µ+
X

[
# Sur

(
ClF ,

Z
3Z

)]
= lim
X!∞

EF∼µ+
X

[# ClF [3]− 1] =
4

3
− 1 =

1

3

lim
X!∞

EF∼µ−X

[
# Sur

(
ClF ,

Z
3Z

)]
= lim
X!∞

EF∼µ−X [# ClF [3]− 1] = 2− 1 = 1

as desired.
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