A Note on Auto. Forms. for Quat. Algs.

Niven Achenjang

Fall 2023

These are notes on Automorphic Forms for Quaternion Algebras, following [Gee22, Section 4], written for the MF learning seminar. They reflect my understanding (or lack thereof) of the material, so are far from perfect. They are likely to contain some typos and/or mistakes, but ideally none serious enough to distract from the mathematics. With that said, enjoy and happy mathing.

These notes (and the accompanying talk) are pretty rough.

Contents

1 Reminder on Quaternion Algebras
2 Some Rep Theory

3 Modular Forms + Jacquet-Langlands

Our main reference is [Gee22, Section 4], though also see [Zho] (especially Lectures 13-17) for more details. The goal of this talk is not to cover all of [Gee22, Section 4], but to introduce enough of it for one to be able to read it on their own ahead of our last two talks after Thanksgiving.

1 Reminder on Quaternion Algebras

Note 1. For more info here, consult e.g. [Mil20, Chapter IV].
Setup 1. Let F be a field of characteristic not 2.
Definition 2. A quaternion algebra D / F is a 4-dimensional central simple F-algebra.
\diamond
Fact. Any such D is isomorphic to an algebra of the form $H(a, b)=H_{F}(a, b):=F\langle i, j\rangle /\left(i^{2}=\right.$ $\left.a, j^{2}=b, i j=-j i\right)$.

Fact. It is always the case that either $D \cong M_{2}(F)$ or D is a division algebra, i.e. every nonzero element is invertible.

Fact. $D \otimes_{F} \bar{F} \simeq M_{2}(\bar{F})$ is the algebra of 2×2 matrices over \bar{F}. Thus, quaternion algebras are twists of $M_{2}(F)$ (the converse holds to) and are classified by $H^{1}\left(F\right.$, Aut $\left.M_{2}(F)\right)=H^{1}\left(F, \mathrm{PGL}_{2}\right) \cdot{ }^{1}$
${ }^{1}$ All automorphisms of $M_{2}(F)$ are inner

Definition 3. On D, one can define a reduced norm $\mathrm{Nm}: D \rightarrow F$ such that $\alpha \in D$ is invertible if and only if $\operatorname{Nm}(\alpha) \neq 0$.

Example 4. If $D=M_{2}(F)$, then $\mathrm{Nm}: D \rightarrow F$ is simply the determinant.
Example 5. If $D=H_{F}(a, b)$, then

$$
\operatorname{Nm}(\alpha+\beta i+\gamma j+\delta k)=(\alpha+\beta i+\gamma j+\delta k)(\alpha-\beta i-\gamma j-\delta k)=\alpha^{2}-a \beta^{2}-b \gamma^{2}+a b \delta^{2}
$$

Notation 6. Given D, we consider the associated F-algebraic group $G_{D}:=\operatorname{Res}_{D / F} \mathbb{G}_{m}$ whose functor of points is

$$
G_{D}(R):=\left(R \otimes_{F} D\right)^{\times}
$$

for any F-algebra R.
Assumption. Now assume F is a number field.
Definition 7. For any place v of $F, D_{v}:=D \otimes_{F} F_{v}$ is a quaternion algebra over the completion F_{v}. We say that D is ramified at v if D_{v} is a division algebra. We let $S(D)$ denote the set of places at which D ramifies.

The fact that $H^{1}\left(F, \mathrm{PGL}_{2}\right) \cong \operatorname{Br}(F)[2]$ along with the short exact sequence (taking 2-torsion is left-exact, $(-)[2]=\operatorname{Hom}(\mathbb{Z} / 2 \mathbb{Z},-))$

$$
0 \longrightarrow \operatorname{Br}(F) \longrightarrow \bigoplus_{v} \operatorname{Br}\left(F_{v}\right) \xrightarrow{\sum \operatorname{inv} v} \mathbb{Q} / \mathbb{Z} \longrightarrow 0
$$

of class field theory shows that $S(D)$ classifies D up to isomorphism; it also shows that $S(D)$ can be any even cardinality set of real or finite places of F.

Example 8.

- $S(D)=\emptyset \Longleftrightarrow D \cong M_{2}(F)$
- For $F=\mathbb{Q}, S(D)=\{2, \infty\} \Longleftrightarrow D \cong \mathbb{H}=H_{\mathbb{Q}}(-1,-1)$ is the (most obvious \mathbb{Q}-form of $)$ usual Hamilton quaternions.

2 Some Rep Theory

Definition 9. A locally profinite group G is a topological group where every open neighborhood of $1 \in G$ contains a compact, open subgroup.

Fact. (locally) profinite \Longleftrightarrow (locally) compact and totally disconnected.
Example 10. Let K / \mathbb{Q}_{p} be a finite extension, and let D / K be a central simple algebra. Then, $\mathrm{GL}_{n}(K), D^{\times}, \mathrm{GL}_{n}\left(\mathscr{O}_{K}\right), \mathscr{O}_{D}^{\times}$(for $\mathscr{O}_{D} \subset D$ a maximal order) are all locally profinite. Similarly, $\mathrm{GL}_{n}(\widehat{\mathbb{Z}})$ and $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}, f}\right)$ are locally profinite.

Definition 11. Let V be a (possibly infinite dimensional) \mathbb{C}-vector space, and let G be a locally profinite group. A representation $\pi: G \rightarrow \mathrm{GL}(V)$ (often abbreviated (π, V)) is smooth if the stabilizer of any $v \in V$ is an open subgroup of G. It is admissible if it is smooth and $\operatorname{dim} V^{U}<\infty$ for all compact open $U \subset G$.

Assumption. Suppose that G supports a bi-invariant Haar measure μ. Thus, for any $\varphi \in$ $C_{c}^{\infty}(G):=\{$ smooth compactly supported functions $G \rightarrow \mathbb{C}\}-$ where smooth means there's some compact open $K \subset G$ such that $f(g k)=\varphi(g)$ for all $g \in G, k \in K$ - we have

$$
\int_{G} \varphi(g) \mathrm{d} \mu=\int_{G} \varphi(g h) \mathrm{d} \mu=\int_{G} \varphi(h g) \mathrm{d} \mu
$$

for any $h \in G$.
Definition 12. We define the Hecke algebra to be the associative algebra $\mathcal{H}(G):=C_{c}^{\infty}(G)$ with product given by convolution:

$$
(\varphi * \psi)(x):=\int_{G} \varphi(g) \psi\left(g^{-1} x\right) \mathrm{d} \mu(g)
$$

Sometimes, one will specify a compact open $K \subset G$ and then define $\mathcal{H}(G / K):=C_{c}^{\infty}(K \backslash G / K)$. \diamond
Fact. Let (π, V) be a smooth representation of G. Then, π induces a homomorphism $\mathcal{H}(G) \rightarrow$ $\operatorname{End}_{\mathbb{C}}(V)$ where $\varphi \in \mathcal{H}(G)$ acts on V via

$$
\pi(\varphi) \cdot v:=\int_{G} \varphi(g) \pi(g) \cdot v \mathrm{~d} \mu
$$

Remark 13. If $K \subset \operatorname{Stab}(v)$ and φ is right K-invariant (e.g. $\varphi \in \mathcal{H}(G / K)$), then

$$
\pi(\varphi) \cdot v=\sum_{g \in G / K} \mu(K) \varphi(g) \pi(g) \cdot v
$$

is a finite sum. You can always arrange this by taking K sufficiently small.

3 Modular Forms + Jacquet-Langlands

Setup 14. Let F be a totally real number field, and let D / F be a quaternion algebra. Recall the algebraic group G_{D} / F and the set $S(D)$ of ramified places.

We first define our spaces of (cuspidal) modular forms.
Construction 15 (Cusp forms of weight (k, η)). For each (real) place $v \mid \infty$, choose some integers $k_{v} \geq 2$ and $\eta_{v} \in \mathbb{Z}$ such that $w:=k_{v}+2 \eta_{v}-1$ is independent of v. Set $k=\left(k_{v}\right)_{v \mid \infty}$ and $\eta=\left(\eta_{v}\right)_{v \mid \infty}$, both in $\mathbb{Z}^{\oplus[F: \mathbb{Q}]}$.

Warning: lots of noncanonical choices incoming...

I have no idea what the significance of this w is

As our next piece of notation, if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ and $z \in \mathbb{C} \backslash \mathbb{R}$, we set $j(\gamma, z):=c z+d$. One can check that

$$
\begin{equation*}
j(\gamma \delta, z)=j(\gamma, \delta z) j(\delta, z) \tag{3.1}
\end{equation*}
$$

For each (real) place $v \mid \infty$, define a subgroup $U_{v} \subset\left(D \otimes_{F} F_{v}\right)^{\times}=G_{D}\left(F_{v}\right)$ along with a U_{v}-rep $\left(\tau_{v}, W_{v}\right)$ as follows:

- if $v \in S(D)$ (i.e. if $D_{v}=D \otimes_{F} F_{v}$ is a division algebra), then we set $U_{v}:=D_{v}^{\times}=G_{D}\left(F_{v}\right) \cong$ \mathbb{H}^{\times}, where \mathbb{H} denotes the usual Hamilton quaternions (the unique non-trivial quaternion algebra over \mathbb{R}).

Let \mathbb{C}_{v}^{2} denote the 2-dimensional U_{v}-rep $U_{v} \hookrightarrow \mathrm{GL}_{2}\left(\bar{F}_{v}\right) \cong \mathrm{GL}_{2}(\mathbb{C})$ and then we let $\left(\tau_{v}, W_{v}\right)$ denote the representation

$$
\left(\operatorname{Sym}^{k_{v}-2} \mathbb{C}^{2}\right) \otimes\left(\bigwedge^{2} \mathbb{C}^{2}\right)^{\eta_{v}}
$$

- if $v \notin S(D)$ (i.e. if $D_{v} \cong M_{2}(\mathbb{R})$), then $D_{v}^{\times} \cong \mathrm{GL}_{2}(\mathbb{R})$. In this case, we take $U_{v}=\mathbb{R}^{\times} \mathrm{SO}(2)$.

Furthermore, we take $W_{v}=\mathbb{C}$ and let U_{v} act on it via

$$
\tau_{v}(\gamma)=j(\gamma, i)^{k_{v}}(\operatorname{det} \gamma)^{\eta_{v}-1}
$$

Now, set

$$
U_{\infty}:=\prod_{v \mid \infty} U_{v}, \quad W_{\infty}:=\bigotimes_{v \mid \infty} W_{v}, \quad \text { and } \tau_{\infty}:=\bigotimes_{v \mid \infty} \tau_{v}
$$

Let $\mathbb{A}=\mathbb{A}_{\mathbb{Q}}$ be the adeles and let \mathbb{A}^{∞} be the finite adeles. Finally, we let $S_{D, k, \eta}$ denote the space of functions $\varphi: G_{D}(\mathbb{Q}) \backslash G_{D}(\mathbb{A}) \rightarrow W_{\infty}$ satisfying
(1) $\varphi\left(g u_{\infty}\right)=\tau_{\infty}\left(u_{\infty}\right)^{-1} \varphi(g)$ for all $g \in G_{D}(\mathbb{A})$ and $u_{\infty} \in U_{\infty}$
(2) There is a nonempty open subset $U^{\infty} \subset G_{D}\left(\mathbb{A}^{\infty}\right)$ such that $\varphi(g u)=\varphi(g)$ for all $u \in U^{\infty}$, $g \in G_{D}(\mathbb{A})$
(3) Let S_{∞} denote the set of infinite places of F and fix some $g \in G_{D}\left(\mathbb{A}^{\infty}\right)$. By condition (1), the function

$$
\begin{array}{ccc}
\mathrm{GL}_{2}(\mathbb{R})^{S_{\infty} \backslash S(D)} & \longrightarrow & W_{\infty} \\
\left(\gamma_{v}\right)_{v \in S_{\infty} \backslash S(D)} & \longmapsto & \tau_{\infty}(\gamma) \varphi(g \gamma)
\end{array}
$$

where $\gamma=\left(\gamma_{v}\right)_{v \mid \infty}$ (and $\gamma_{v}=1$ if $\left.v \in S(D)\right)$ descends ${ }^{2}$ to a function

$$
(\mathbb{C} \backslash \mathbb{R})^{S_{\infty} \backslash S(D)} \longrightarrow W_{\infty}
$$

We require the above function to be holomorphic (for all $g \in G_{D}\left(\mathbb{A}^{\infty}\right)$).

[^0]What's the significance
of these
U_{v} 's? U_{v} is the center of $G_{D}\left(F_{v}\right)$
times a max-
imal com-
pact

I guess this is encoding the transformation law of usual modular
forms?
I suppose
this is ask-
ing φ to be 'smooth'. I
think also
corresponds
to the level
of usual
modular
forms
Skip this
during the talk, just write "holomorphy condition"
(4) If $S(D)=\emptyset$ (i.e. $D=M_{2}(F)$), then we also ask that \qquad

$$
\int_{F \backslash \mathbb{A}_{F}} \varphi\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right) g\right) \mathrm{d} x=0 \text { for all } g \in G_{D}(\mathbb{A})=\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)
$$

If, furthermore, $F=\mathbb{Q}$, then we also demand that the function

$$
\begin{array}{ccc}
\mathrm{GL}_{2}(\mathbb{R}) & \longrightarrow & W_{\infty} \\
\gamma & \longmapsto & \varphi(g \gamma)|\operatorname{Im}(\gamma(i))|^{k / 2}
\end{array}
$$

is bounded, for all $g \in G_{D}\left(\mathbb{A}^{\infty}\right)$.
Note that $G_{D}\left(\mathbb{A}^{\infty}\right)$ acts on $S_{D, k, \eta}$ via right translation, i.e. via

$$
(g \varphi)(x)=\varphi(x g)
$$

Example 16 ([Gee22], Exercise 4.9). Take $F=\mathbb{Q}, S(D)=\emptyset$ (so $G_{D}=\mathrm{GL}_{2, \mathbb{Q}}$), $k_{\infty}=k$, and $\eta_{\infty}=1$. Define

$$
U_{1}(N)=\left\{g \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}}): g \equiv\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\}
$$

(1) The intersection of $\mathrm{GL}_{2}(\mathbb{Q})^{+}$and $U_{1}(N)$ inside $\mathrm{GL}_{2}\left(\mathbb{A}^{\infty}\right)$ is $\Gamma_{1}(N)$, the matrices in $\mathrm{SL}_{2}(\mathbb{Z})$

> | Gee takes |
| :--- |
| $\eta_{\infty}=0$ |
| instead, but |
| I'm confused |
| by why |

Proof. Say $\gamma \in \mathrm{GL}_{2}(\mathbb{Q})^{+} \cap U_{1}(N) \subset \mathrm{GL}_{2}\left(\mathbb{A}^{\infty}\right)$. Then, $\operatorname{det} \gamma \in \mathbb{Q}^{+} \cap \widehat{\mathbb{Z}}^{\times}=\{+1\}$ (positive rational numbers which are p-adic units for all primes p), so $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. The condition on $U_{1}(N)$ then becomes that $\gamma \equiv\left(\begin{array}{ll}1 & * \\ & 1\end{array}\right) \bmod N$, so $\gamma \in \Gamma_{1}(N)$. Convince yourself of the other inclusion if you don't yet see it.
(2) The space $S_{D, k, 0}^{U_{1}(N)}$ of $U_{1}(N)$-invariant cusp forms can be identified with the usual space $S_{k}\left(\Gamma_{1}(N)\right)$ of weight k holomorphic cusp forms for $\Gamma_{1}(N)$.

Proof Sketch. Take for granted the following facts:

$$
\mathbb{A}^{\times}=\mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}^{\times} \times \mathbb{R}_{>0}^{\times} \text {and } \mathrm{GL}_{2}(\mathbb{A})=\mathrm{GL}_{2}(\mathbb{Q}) U_{1}(N) \mathrm{GL}_{2}(\mathbb{R})^{+}
$$

(these are related to \mathbb{Q} having class number 1 and strong approximation for SL_{2}). Thus, the domain of any $\varphi \in S_{D, k, 0}^{U_{1}(N)}$ can be identified with

$$
\begin{aligned}
\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{A}) / U_{1}(N) & =\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{Q}) U_{1}(N) \mathrm{GL}_{2}(\mathbb{R})^{+} / U_{1}(N) \\
& =\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{Q}) \mathrm{GL}_{2}(\mathbb{R})^{+} U_{1}(N) / U_{1}(N)
\end{aligned}
$$

$$
\begin{aligned}
& \simeq\left(\mathrm{GL}_{2}(\mathbb{Q}) \cap U_{1}(N) \cap \mathrm{GL}_{2}(\mathbb{R})^{+}\right) \backslash \mathrm{GL}_{2}(\mathbb{R})^{+} \\
& =\Gamma_{1}(N) \backslash \mathrm{GL}_{2}(\mathbb{R})^{+}
\end{aligned}
$$

where the $U_{1}(N)$ and the $\mathrm{GL}_{2}(\mathbb{R})^{+}$commute because $U_{1}(N) \subset \mathrm{GL}_{2}\left(\mathbb{A}^{\infty}\right)$ (and $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)=$ $\left.\mathrm{GL}_{2}\left(\mathbb{A}^{\infty}\right) \times \mathrm{GL}_{2}(\mathbb{R})\right)$. Observe that $S_{D, k, 0}^{U_{1}(N)}$ is identified with the space of functions φ : $\Gamma_{1}(N) \backslash \mathrm{GL}_{2}(\mathbb{R})^{+} \rightarrow \mathbb{C}\left(W_{\infty}=\mathbb{C}\right.$ since $\left.v \notin S(D)\right)$ satisfying
(1) $\varphi\left(g u_{\infty}\right)=j\left(u_{\infty}, i\right)^{-k} \varphi(g)$ for all $g \in \mathrm{GL}_{2}(\mathbb{R})^{+}$and $u_{\infty} \in \mathbb{R}_{>0}^{\times} \mathrm{SO}(2)$.

I chose $\eta_{\infty}=1$ instead of 0 in order to get no determinant appearing above.
(2) No need for an analogue of condition (2) in Construction 15 since the φ here are already invariant under $U_{1}(N)$.
(3) The function

$$
\begin{array}{ccc}
\tilde{\varphi}: \quad \mathrm{GL}_{2}(\mathbb{R})^{+} & \longrightarrow & \mathbb{C} \\
\gamma & \longmapsto j(\gamma, i)^{k} \varphi(\gamma)
\end{array}
$$

descends ${ }^{3}$ (along $\mathrm{GL}_{2}(\mathbb{R})^{+} \rightarrow \mathbb{H}, g \mapsto g(i)$) to a holomorphic map $\mathbb{H} \rightarrow \mathbb{C}$ (note $\mathbb{H}=$ $\mathrm{GL}_{2}(\mathbb{R})^{+} /\left(\mathbb{R}_{>0}^{\times} \mathrm{SO}(2)\right)$ since $\left.\mathbb{R}_{>0}^{\times} \mathrm{SO}(2)=\operatorname{Stab}_{\mathrm{GL}_{2}(\mathbb{R})^{+}}(i)\right)$.
(4) cuspidality condition.

As already hinted at above, the assignment $\varphi \mapsto \widetilde{\varphi}\left(\right.$ where $\widetilde{\varphi}: \mathbb{H}=\mathrm{GL}_{2}(\mathbb{R})^{+} /\left(\mathbb{R}_{>0}^{\times} \mathrm{SO}(2)\right) \rightarrow$ \mathbb{C} is $\left.\widetilde{\varphi}(\gamma)=j(\gamma, i)^{k} \varphi(\gamma)\right)$ identifies the space of such functions with the space $S_{k}\left(\Gamma_{1}(N)\right)$ of weight k holomorphic cusp forms for $\Gamma_{1}(N)$.

If you want, fill in some of the details missing above.
Example 17 ([Zho], Lecture 16). Call D a definite quaternion algebra if $S_{\infty} \subset S(D)$. In this case, if $U \subset G_{D}\left(\mathbb{A}^{\infty}\right)$ is an open subgroup, then $S_{D, 2,0}^{U}$ is simply the set of \mathbb{C}-valued functions on the finite set $G_{D}(\mathbb{Q}) \backslash G_{D}(\mathbb{A}) / G_{D}(\mathbb{R}) U$.

Definition 18. A cuspidal automorphic representation of $G_{D}\left(\mathbb{A}^{\infty}\right)$ of weight (k, η) is a (smooth, admissible) irreducible subquotient of $S_{D, k, \eta \cdot}{ }^{4}$

Fact. Any such representation is of the form $\pi=\bigotimes^{\prime} \pi_{v}$ with $\pi_{v}^{\mathrm{GL}_{2}\left(\mathscr{O}_{v}\right)} \neq 0$ for almost all v, with π_{v} smooth, irreducible (+ admissible) rep of $G_{D}\left(F_{v}\right)$ for all v, and with the restriction in this restricted tensor product being that the v th component of a vector is in $\pi_{v}^{\mathrm{GL}_{2}\left(\mathscr{O}_{v}\right)}$ (which is 1-dimensional) for almost all v.

Fact (global Jacquet-Langlands).
(1) The only f.dimensional cuspidal automorphic representations of $G_{D}\left(\mathbb{A}^{\infty}\right)$ are 1-dimensional representations which factor through the reduced norm; these only exist if $D \neq M_{2}(F)$.

[^1](2) There is a bijection between infinite-dimensional cuspidal automorphic representations of $G_{D}\left(\mathbb{A}^{\infty}\right)$ of weight (k, η) and cuspidal automorphic representations of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}^{\infty}\right)$ of weight (k, η) which are discrete series for all finite places $v \in S(D)$.
This bijection is compatible with (and so determined by) a local Jacquet-Langlands correspondence ${ }^{5}$

Remark 19. Jacquet-Langlands allows one to attach Galois reps to infinite-dimensional cuspidal automorphic representations of $G_{D}\left(\mathbb{A}^{\infty}\right)$.

Remark 20. One can use cyclic base change to show that if $r: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ becomes modular when restricted to G_{E}, for some finite solvable Galois extension E / F of totally real fields, then r must have been modular to begin with.

Fact. Let K be a number field, and let S be a finite set of (finite or infinite) places of K. For each $v \in S$, let L_{v} be a finite Galois extension of K_{v}. Then, there is a finite solvable Galois extension M / K such that, for each place w of M above a place $v \in S$, there is an isomorphism $L_{v} \cong M_{w}$ of K_{v}-algebras.

These facts will allow us to reduce our modularity lifting theorem to the case where we're working a quaternion algebra D over a totally real field F such that $S(D)=S_{\infty}$ (in which case, $S_{D, k, \eta}$ is especially simple; see Example 17).

Remark 21. In particular, even if we only care about $F=\mathbb{Q}$, the desire to make such a reduction would lead us to want to state the final theorem for (totally real) number fields beyond \mathbb{Q} (there's no quaternion algebra D / \mathbb{Q} with $S(D)=S_{\infty}=\{\infty\}$ since this set has odd cardinality).

References

[Gee22] Toby Gee. Modularity lifting theorems. Essential Number Theory, 1(1):73-126, oct 2022. 1, 5
[Mil20] J.S. Milne. Class field theory (v4.03). https://www.jmilne.org/math/CourseNotes/ CFTc.pdf, 1996 (Revised 2020). 1
[Zho] Rong Zhou. Modularity lifting theorems. https://users.math.yale.edu/~rz289/ Galois_reps.pdf. 1, 6

[^2]
[^0]: ${ }^{2}$ along the $\operatorname{map} \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{C} \backslash \mathbb{R}, g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto g(i)=\frac{a i+b}{c i+d}$

[^1]: ${ }^{3}$ Use (3.1) to know that $\widetilde{\varphi}$ is invariant under right-translation by $U_{\infty}=\mathbb{R}_{>_{0}}^{\times} \mathrm{SO}(2)$
 ${ }^{4} S_{D, k, \eta}$ is already semisimple and admissible, so I think this parenthetical is technically unnecessary

[^2]: ${ }^{5}$ If $v \notin S(D)$, then $\mathrm{JL}(\pi)_{v}=\pi_{v}$ and if $v \in S(D)$, then $\mathrm{JL}(\pi)_{v}=\mathrm{JL}\left(\pi_{v}\right)$

