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These are notes on Automorphic Forms for Quaternion Algebras, following [Gee22, Section

4], written for the MF learning seminar. They reflect my understanding (or lack thereof) of the

material, so are far from perfect. They are likely to contain some typos and/or mistakes, but ideally

none serious enough to distract from the mathematics. With that said, enjoy and happy mathing.

These notes (and the accompanying talk) are pretty rough.
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Our main reference is [Gee22, Section 4], though also see [Zho] (especially Lectures 13 - 17) for

more details. The goal of this talk is not to cover all of [Gee22, Section 4], but to introduce enough

of it for one to be able to read it on their own ahead of our last two talks after Thanksgiving.

1 Reminder on Quaternion Algebras

Note 1. For more info here, consult e.g. [Mil20, Chapter IV].

Setup 1. Let F be a field of characteristic not 2.

Definition 2. A quaternion algebra D/F is a 4-dimensional central simple F -algebra. ⋄

Fact. Any such D is isomorphic to an algebra of the form H(a, b) = HF (a, b) := F ⟨i, j⟩ /(i2 =

a, j2 = b, ij = −ji).

Fact. It is always the case that either D ∼=M2(F ) or D is a division algebra, i.e. every nonzero

element is invertible.

Fact. D ⊗F F ≃ M2(F ) is the algebra of 2 × 2 matrices over F . Thus, quaternion algebras are

twists of M2(F ) (the converse holds to) and are classified by H1(F,AutM2(F )) = H1(F,PGL2).
1

1All automorphisms of M2(F ) are inner
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Definition 3. On D, one can define a reduced norm Nm : D ! F such that α ∈ D is invertible

if and only if Nm(α) ̸= 0. ⋄

Example 4. If D =M2(F ), then Nm : D ! F is simply the determinant. △

Example 5. If D = HF (a, b), then

Nm(α+ βi+ γj + δk) = (α+ βi+ γj + δk)(α− βi− γj − δk) = α2 − aβ2 − bγ2 + abδ2. △

Notation 6. Given D, we consider the associated F -algebraic group GD := ResD/F Gm whose

functor of points is

GD(R) :=(R⊗F D)
×

for any F -algebra R.

Assumption. Now assume F is a number field.

Definition 7. For any place v of F , Dv := D ⊗F Fv is a quaternion algebra over the completion

Fv. We say that D is ramified at v if Dv is a division algebra. We let S(D) denote the set of

places at which D ramifies. ⋄

The fact that H1(F,PGL2) ∼= Br(F )[2] along with the short exact sequence (taking 2-torsion is

left-exact, (−)[2] = Hom(Z/2Z,−))

0 −! Br(F ) −!
⊕
v

Br(Fv)
∑

invv−−−−! Q/Z −! 0

of class field theory shows that S(D) classifies D up to isomorphism; it also shows that S(D) can

be any even cardinality set of real or finite places of F .

Example 8.

• S(D) = ∅ ⇐⇒ D ∼=M2(F )

• For F = Q, S(D) = {2,∞} ⇐⇒ D ∼= H = HQ(−1,−1) is the (most obvious Q-form of)

usual Hamilton quaternions. △

2 Some Rep Theory
Skip in talk?

Definition 9. A locally profinite group G is a topological group where every open neighbor-

hood of 1 ∈ G contains a compact, open subgroup. ⋄

Fact. (locally) profinite ⇐⇒ (locally) compact and totally disconnected.

Example 10. Let K/Qp be a finite extension, and let D/K be a central simple algebra. Then,

GLn(K), D×,GLn(OK),O×
D (for OD ⊂ D a maximal order) are all locally profinite. Similarly,

GLn(Ẑ) and GLn(AQ,f ) are locally profinite. △
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Definition 11. Let V be a (possibly infinite dimensional) C-vector space, and let G be a locally

profinite group. A representation π : G ! GL(V ) (often abbreviated (π, V )) is smooth if the

stabilizer of any v ∈ V is an open subgroup of G. It is admissible if it is smooth and dimV U <∞
for all compact open U ⊂ G. ⋄

Assumption. Suppose that G supports a bi-invariant Haar measure µ. Thus, for any φ ∈
C∞

c (G) := {smooth compactly supported functions G ! C} – where smooth means there’s some

compact open K ⊂ G such that f(gk) = φ(g) for all g ∈ G, k ∈ K – we have∫
G

φ(g)dµ =

∫
G

φ(gh)dµ =

∫
G

φ(hg)dµ

for any h ∈ G.

Definition 12. We define the Hecke algebra to be the associative algebra H(G) := C∞
c (G) with

product given by convolution:

(φ ∗ ψ) (x) :=
∫
G

φ(g)ψ(g−1x)dµ(g).

Sometimes, one will specify a compact open K ⊂ G and then define H(G/K) := C∞
c (K\G/K). ⋄

Fact. Let (π, V ) be a smooth representation of G. Then, π induces a homomorphism H(G) !

EndC(V ) where φ ∈ H(G) acts on V via

π(φ) · v :=

∫
G

φ(g)π(g) · vdµ.

Remark 13. If K ⊂ Stab(v) and φ is right K-invariant (e.g. φ ∈ H(G/K)), then

π(φ) · v =
∑

g∈G/K

µ(K)φ(g)π(g) · v

is a finite sum. You can always arrange this by taking K sufficiently small. ◦

3 Modular Forms + Jacquet-Langlands

Setup 14. Let F be a totally real number field, and let D/F be a quaternion algebra. Recall the

algebraic group GD/F and the set S(D) of ramified places.

We first define our spaces of (cuspidal) modular forms.

Construction 15 (Cusp forms of weight (k, η)). For each (real) place v | ∞, choose some integers Warning:

lots of non-

canonical

choices in-

coming...

kv ≥ 2 and ηv ∈ Z such that w := kv+2ηv−1 is independent of v. Set k = (kv)v|∞ and η = (ηv)v|∞,

I have no

idea what

the signifi-

cance of this

w is

both in Z⊕[F :Q].
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As our next piece of notation, if γ =

(
a b

c d

)
∈ GL2(R) and z ∈ C \R, we set j(γ, z) := cz+ d.

One can check that

j(γδ, z) = j(γ, δz)j(δ, z). (3.1)

For each (real) place v | ∞, define a subgroup Uv ⊂(D ⊗F Fv)
×
= GD(Fv) along with a Uv-rep

(τv,Wv) as follows: What’s the

significance

of these

Uv’s? Uv

is the center

of GD(Fv)

times a max-

imal com-

pact

• if v ∈ S(D) (i.e. if Dv = D ⊗F Fv is a division algebra), then we set Uv := D×
v = GD(Fv) ∼=

H×, where H denotes the usual Hamilton quaternions (the unique non-trivial quaternion

algebra over R).

Let C2
v denote the 2-dimensional Uv-rep Uv ↪! GL2(F v) ∼= GL2(C) and then we let (τv,Wv)

denote the representation (
Symkv−2 C2

)
⊗
(∧2

C2

)ηv

.

• if v ̸∈ S(D) (i.e. if Dv
∼=M2(R)), then D×

v
∼= GL2(R). In this case, we take Uv = R× SO(2).

Furthermore, we take Wv = C and let Uv act on it via

τv(γ) = j(γ, i)kv (det γ)ηv−1

Now, set

U∞ :=
∏
v|∞

Uv, W∞ :=
⊗
v|∞

Wv, and τ∞ :=
⊗
v|∞

τv.

Let A = AQ be the adeles and let A∞ be the finite adeles. Finally, we let SD,k,η denote the space

of functions φ : GD(Q)\GD(A) !W∞ satisfying

(1) φ(gu∞) = τ∞(u∞)−1φ(g) for all g ∈ GD(A) and u∞ ∈ U∞ I guess this

is encoding

the trans-

formation

law of usual

modular

forms?

(2) There is a nonempty open subset U∞ ⊂ GD(A∞) such that φ(gu) = φ(g) for all u ∈ U∞,

g ∈ GD(A)

I suppose

this is ask-

ing φ to be

‘smooth’. I

think also

corresponds

to the level

of usual

modular

forms

(3) Let S∞ denote the set of infinite places of F and fix some g ∈ GD(A∞). By condition (1),

the function

Skip this

during the

talk, just

write “holo-

morphy con-

dition”

GL2(R)S∞\S(D) −! W∞

(γv)v∈S∞\S(D) 7−! τ∞(γ)φ(gγ),

where γ = (γv)v|∞ (and γv = 1 if v ∈ S(D)) descends2 to a function

(C \ R)S∞\S(D) −!W∞.

We require the above function to be holomorphic (for all g ∈ GD(A∞)).

2along the map GL2(R) ↠ C \ R, g =

(
a b
c d

)
7! g(i) = ai+b

ci+d
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(4) If S(D) = ∅ (i.e. D =M2(F )), then we also ask that Cuspidality

condition∫
F\AF

φ

((
1 x

1

)
g

)
dx = 0 for all g ∈ GD(A) = GL2(AF ).

If, furthermore, F = Q, then we also demand that the function

GL2(R) −! W∞

γ 7−! φ(gγ) |Im(γ(i))|k/2

is bounded, for all g ∈ GD(A∞).

Note that GD(A∞) acts on SD,k,η via right translation, i.e. via

(gφ)(x) = φ(xg). 8

Example 16 ([Gee22], Exercise 4.9). Take F = Q, S(D) = ∅ (so GD = GL2,Q), k∞ = k, and

η∞ = 1. Define Gee takes

η∞ = 0

instead, but

I’m confused

by why

U1(N) =

{
g ∈ GL2(Ẑ) : g ≡

(
∗ ∗
0 1

)
(mod N)

}
.

(1) The intersection of GL2(Q)+ and U1(N) inside GL2(A∞) is Γ1(N), the matrices in SL2(Z)

congruent to

(
1 ∗

1

)
mod N .

Proof. Say γ ∈ GL2(Q)+ ∩ U1(N) ⊂ GL2(A∞). Then, det γ ∈ Q+ ∩ Ẑ× = {+1} (positive

rational numbers which are p-adic units for all primes p), so γ ∈ SL2(Z). The condition on

U1(N) then becomes that γ ≡

(
1 ∗

1

)
mod N , so γ ∈ Γ1(N). Convince yourself of the other

inclusion if you don’t yet see it. ■

(2) The space S
U1(N)
D,k,0 of U1(N)-invariant cusp forms can be identified with the usual space

Sk(Γ1(N)) of weight k holomorphic cusp forms for Γ1(N).

Proof Sketch. Take for granted the following facts:

A× = Q× × Ẑ× × R×
>0 and GL2(A) = GL2(Q)U1(N)GL2(R)+

(these are related to Q having class number 1 and strong approximation for SL2). Thus, the

domain of any φ ∈ S
U1(N)
D,k,0 can be identified with

GL2(Q)\GL2(A)/U1(N) = GL2(Q)\GL2(Q)U1(N)GL2(R)+/U1(N)

= GL2(Q)\GL2(Q)GL2(R)+U1(N)/U1(N)
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≃ (GL2(Q) ∩ U1(N) ∩GL2(R)+)\GL2(R)+

= Γ1(N)\GL2(R)+,

where the U1(N) and the GL2(R)+ commute because U1(N) ⊂ GL2(A∞) (and GL2(AQ) =

GL2(A∞) × GL2(R)). Observe that S
U1(N)
D,k,0 is identified with the space of functions φ :

Γ1(N)\GL2(R)+ ! C (W∞ = C since v ̸∈ S(D)) satisfying

(1) φ(gu∞) = j(u∞, i)
−kφ(g) for all g ∈ GL2(R)+ and u∞ ∈ R×

>0 SO(2).

I chose η∞ = 1 instead of 0 in order to get no determinant appearing above.

(2) No need for an analogue of condition (2) in Construction 15 since the φ here are already

invariant under U1(N).

(3) The function

φ̃ : GL2(R)+ −! C
γ 7−! j(γ, i)kφ(γ)

descends3 (along GL2(R)+ ! H, g 7! g(i)) to a holomorphic map H ! C (note H =

GL2(R)+/(R×
>0 SO(2)) since R×

>0 SO(2) = StabGL2(R)+(i)).

(4) cuspidality condition.

As already hinted at above, the assignment φ 7! φ̃ (where φ̃ : H = GL2(R)+/(R×
>0 SO(2)) !

C is φ̃(γ) = j(γ, i)kφ(γ)) identifies the space of such functions with the space Sk(Γ1(N)) of

weight k holomorphic cusp forms for Γ1(N). ■

If you want, fill in some of the details missing above. △

Example 17 ([Zho], Lecture 16). Call D a definite quaternion algebra if S∞ ⊂ S(D). In this

case, if U ⊂ GD(A∞) is an open subgroup, then SU
D,2,0 is simply the set of C-valued functions on

the finite set GD(Q)\GD(A)/GD(R)U . △

Definition 18. A cuspidal automorphic representation ofGD(A∞) of weight (k, η) is a (smooth,

admissible) irreducible subquotient of SD,k,η.
4 ⋄

Fact. Any such representation is of the form π =
⊗′

πv with π
GL2(Ov)
v ̸= 0 for almost all v,

with πv smooth, irreducible (+ admissible) rep of GD(Fv) for all v, and with the restriction in

this restricted tensor product being that the vth component of a vector is in π
GL2(Ov)
v (which is

1-dimensional) for almost all v.

Fact (global Jacquet-Langlands).

(1) The only f.dimensional cuspidal automorphic representations of GD(A∞) are 1-dimensional

representations which factor through the reduced norm; these only exist if D ̸=M2(F ).

3Use (3.1) to know that φ̃ is invariant under right-translation by U∞ = R×
>0 SO(2)

4SD,k,η is already semisimple and admissible, so I think this parenthetical is technically unnecessary

6



(2) There is a bijection between infinite-dimensional cuspidal automorphic representations of

GD(A∞) of weight (k, η) and cuspidal automorphic representations of GL2(A∞
F ) of weight

(k, η) which are discrete series for all finite places v ∈ S(D).

This bijection is compatible with (and so determined by) a local Jacquet-Langlands corre-

spondence5

Remark 19. Jacquet-Langlands allows one to attach Galois reps to infinite-dimensional cuspidal

automorphic representations of GD(A∞). ◦

Remark 20. One can use cyclic base change to show that if r : GF ! GL2(Qp) becomes modular

when restricted to GE , for some finite solvable Galois extension E/F of totally real fields, then r

must have been modular to begin with. ◦

Fact. Let K be a number field, and let S be a finite set of (finite or infinite) places of K. For each

v ∈ S, let Lv be a finite Galois extension of Kv. Then, there is a finite solvable Galois extension

M/K such that, for each place w of M above a place v ∈ S, there is an isomorphism Lv
∼= Mw of

Kv-algebras. Recall that

the absolute

Galois group

of a local

field is solv-

able

These facts will allow us to reduce our modularity lifting theorem to the case where we’re

working a quaternion algebra D over a totally real field F such that S(D) = S∞ (in which case,

SD,k,η is especially simple; see Example 17).

Remark 21. In particular, even if we only care about F = Q, the desire to make such a reduction

would lead us to want to state the final theorem for (totally real) number fields beyond Q (there’s

no quaternion algebra D/Q with S(D) = S∞ = {∞} since this set has odd cardinality). ◦
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