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1 Lecture 1 (2/17)

“You’re not required to wear a mask for the class”2

1.1 Intro to Class

We would like to cover (mostly following Bump’s “Automorphic forms and representations”)

• Tate’s thesis

• Automorphic forms on GL(2) (with a brief review of classical modular forms, then Hecke/Jacquet–
Langlands theory of L-functions)

• Representation theory of GL(2) over p-adic fields and of local Galois groups (e.g. the formulation
of Local Langlands correspondence for GL(2))

• Other topics: Arthur–Selberg Trace formula, Relative trace formula and applications (e.g. Jacquet–
Langlands correspondence, Waldspurger/Gross–Zagier formula)

We will not cover everything in the book (in particular, sounds like we barley touch chapter 2, if at all).
We begin with Tate’s thesis which gives the GL(1) story, and serves as good guidance/motivation for

the generalizations in the higher GL(n) cases. At the end of the semester, we move to more advanced
topics with the hope of giving more useful applications. The whole class is kinda centered on L-functions.

Here’s one motivation for being interested in special values of L-functions: they’re related to BSD.
We’ll see some of this if we talk about the Waldspurger/Gross–Zagier formula at the end.

One goal of the class is to make sure everybody gets used to computations using a(i)dèles. Also
something about functional equation and meromorphic continuation for L-functions arising in the GL(1)

and GL(2) cases.

Class stuff No final exam. Grade based on homeworks. Planning for 6/7 assignments, due every week
or other week. Collaboration is allowed, but acknowledge this when writing solutions.

To ask a question, unmute yourself and speak up. Lecture notes all available on dropbox.3 We’ll
spend first ∼ 2 weeks on Tate’s thesis.

1.2 Beginning of GL(1) Stuff

Notation 1.1. We let F denote a global field (e.g. Q or Fq(t)).

Tate’s thesis is a generalization of the following result probably already known to Riemann. Let Good refer-
ences (IMO)
include these
notes by
Poonen and
the book
‘Fourier
Analysis
on Num-
ber Fields’
by Ramakr-
ishnan and
Valenza

ζ(s) =
∑
n≥1 n

−s be the Riemann zeta function. Recall the Gamma function

Γ(s) =

∫ ∞
0

e−tts
dt

t
.

2it’s via Zoom
3Not sure if I’m supposed to share this link, so don’t tell them I sent you.

1

https://www.dropbox.com/sh/5j0s42bk6mw0ex9/AABgBFAQn4oYG2LeLPq3EgmVa?dl=0
http://math.mit.edu/~poonen/786/notes.pdf
http://math.mit.edu/~poonen/786/notes.pdf
http://math.mit.edu/~poonen/786/notes.pdf


Then, Γ
(
s
2

)
ζ(s) has a nice integral representation; up to simple factor (∗), it looks like

Γ
(s

2

)
ζ(s) = (∗)

∫ ∞
0

 ∑
n∈Z:n 6=0

e−tn
2

 ts
dt

t
.

Let θ(τ) =
∑
n∈Z q

n2

where q = e2πiτ and τ = x+ iy ∈ C with y > 0.
The main point is that we have an “integral representation of ζ(s).” This is used to eventually give

both the meromorphic continuation, and the functional equation of ζ(s). Tate’s thesis gives a similar
story for more general L-functions. Part of the appeal of Tate’s thesis is that it gives a uniform treatment
for general number fields.

Here are some sources of other L-functions

• Dirichlet characters χ : (Z/NZ)
× ! µ∞ ⊂ C×, where µ∞ =

{
e2πiq : q ∈ Q

}
is the group of roots

of unity.

• CM elliptic curves E : dy2 = x3−x = x(x2−1) (d ∈ Z nonzero and squarefree). Note this curve has
an order 4 automorphism (x, y) 7! (−x, iy), and indeed Aut(E) ' Z/4Z. In this case, can consider
the Hasse-Weil zeta function. Set

ap = (p+ 1)−#E(Fp)

(when p a prime of good reduction). It was know early on that from a CM elliptic curve, you can See sec-
tion 5.3.4
(page 100)
of the other
Bump book
(An intro to
Langlands),
I think

produce a Hecke grossencharacter. The punchline is that

L(E, s) =
∏
p

(
1− app−s + p1−2s

)−1
= L(χ, s)

for some Hecke character χ of F = Q(i).

This shows that even if only want to study phenomena over Q, you still need to understand what
happens for more general number fields.

Remark 1.2. The references for Tate’s thesis are Tate’s original thesis and the notes by Kudla (shared in
lecture notes). Kudla has a different treatment of the local theory than Tate, following an idea of Weil
(who has a Bourbaki talk on Tate’s thesis).

Recall 1.3 (Adeles/Ideles). Let v be a place on a global field F . We let Fv denote the completion of F
with respect to v, and when v is non-archimedean, we let OFv denote its valuation ring. The Adeles are
the restricted direct product

AF =
∏′

v

Fv ⊂
∏
v

Fv

consisting of the tuples (xv) ∈
∏
v Fv such that xv ∈ OFv for almost all v. We topologize this by giving

it the smallest topology which contains the sets∏
v∈S

Uv ×
∏
v 6∈S

OFv

2



where Uv ⊂ Fv is open for all v ∈ S and S is a finite set of places and which makes AF a topological ring.
This is not the subspace topology.

The Ideles, as an abstract group, are the units

A×F =
∏′

v

F×v

of the adeles. The restricted direct product here is with respect to O×Fv . We give it the analogous restricted
direct product topology (which is not the subspace topology).

Remark 1.4. Historically, ideles came first because of their connection to global class field theory.

Remark 1.5. Local class field theory gives the local Artin map

ϕv : F×v ! Gal(F ab
v /Fv)

(F ab
v is the maximal abelian extension of Fv). This map is continuous with dense image. In the p-adic

case, it is also injective.4

Global class field theory gives a continuous surjection

ϕ : A×F

∏
v ϕv
� Gal(F ab/F ).

This map actually factors through the quotient A×F /F× (this quotient called the idèle class group), i.e.
ϕ|F× = 1 (this is Reciprocity). Here F× ↪! A×F via the diagonal embedding x 7! (. . . , x, x, x, . . . ).

Fact. The diagonal embedding F× ↪! A×F has discrete image. The diagonal embedding F ↪! AF has
discrete image. These both follow from the “product formula”

x ∈ F× =⇒
∏
v

|x|v = 1

(when using the normalized absolute value).

Note that global class field theory tells us that{
characters of
Gal(F ab/F )

}
↪!

{
characters of

A×F /F×

}
.

Definition 1.6. Say χv : F×v ! C× is a (quasi)character5, i.e. a continuous homomorphism.

Definition 1.7. AHecke character (or grossencharacter, up to spelling) is a continuous homomorphism

χ : F×\A×F ! C×

Note that any character of the idele class group induces local characters on all F×v .
4Can’t be an iso since target compact but source is not
5Sometimes people use “character” to refer only to “unitary quasicharacters,” i.e. those landing in S1

3



Lemma 1.8. Let χ : A×F /F× ! C× be a Hecke character (really, enough to start with AF
χ
−! C×). For

each place v, let χv be the composition

χv : F×v ! A×F ! A×F /F
× χ
−! C×.

Then,
χv|O×Fv = 1

for almost all v. something
something
kernel of
χ is open
something
something?

By the above lemma, we can now see that

χ =
∏
v

χv,

i.e. for x = (xv)v ∈ A×F , χ(x) =
∏
v χv(xv) (the product is secretly finite by the previous lemma +

definition of A×F ).

Definition 1.9. We say χv is unramified if χv|O×Fv = 1.

Example. Let ClF denote the class group of F . Then,

ClF
∼
−! F×\A×F

/∏
v<∞

O×Fv ·
∏
v|∞

F×v


Hence, any character ρ : ClF ! C× produces a character χ : F×\A×F ! F× which is moreover unramified
at all non-arch places and trivial at all arch places. Conversely, given any such Hecke character will give
a character of the class group.

Example. Say F = Q. Then, we can get an isomorphism

Q×\A×Q/R
×
+ ·

∏
p-N

Z×p

∏
p|N

(1 +NZp)
∼
−! (Z/NZ)

×

due to the fact that

A×Q = Q×
(
R×+ ·

∏
p

Z×p

)

(since ClQ = 1 is trivial). Hence, LHS from before is isomorphic to

∏
p|N

( Z×p
1 +NZp

)
' (Z/NZ)

×
.

This tells you that a Dirichlet character of conductor N gives rise to a Hecke character (over Q) which is
unramified away from p | N . Note that, in this case, χ∞ is trivial or order 2 (depending on if Dirichlet
character is even or odd)

Example. Say E is the CM elliptic curve from before, and F = Q(i). In this example, it is harder to

4



write down the details, but the point is we get a character χ : F×\A×F ! C× such that6 χ∞ : C× ! C×

has infinite order.

Remark 1.10. Hecke characters are (basically) the GL(1)-automorphic forms.

Next time we’ll move onto L-functions, and give Tate’s construction of zeta integrals.

2 Lecture 2 (2/22)

Note 1. *A few minutes late*

Definition 2.1. Let F be a global field. It’s idèle class group if the quotient A×/F×. A Hecke
character

χ : A×/F× −! C×

is a continuous homomorphism.

Remark 2.2. Any Hecke character χ : A×/F× ! C× will decompose into a product χ =
∏
v χv of local

characters
χv : F×v ! C×

which are continuous homomorphisms. This decomposition comes from the continuity of χ.

We will focus on local characters today.

Definition 2.3. To a Hecke character χ : A×/F× ! C×, we attach the L-function

L(χ, s) =
∏
v

L(χv, s),

when the local factors are tbd.

This is meant to generalize Dedekind zeta functions and Dirichlet L-functions.

Example. When χ0 is the trivial character, we will get

L(χ0, s) = (∗)ζF (s),

the L-function will be the Dedekind zeta function, up to some archimedean factors. Recall,

ζF (s) :=
∏
v<∞

1

1− q−sv
.

Notation 2.4. Let v be a finite place. We set the notation

• ($v) ⊂ OFv ⊂ Fv

• kv = OFv/$v

• qv = #kv
6Note F∞ = C

5



2.1 Local Theory

Let F be a non-archimedean local field. It’s valuation ring is OF , and we fix a uniformizer $. Recall the
short exact sequence

1 −! O×F −! F×
val
−! Z −! 0.

Since we have chosen a uniformizer, this sequence is split, so F× ' O×F × ωZ. We know that O×F =

lim − (OF /$n)
× is a profinite abelian group (in particular, compact), so F× is locally compact.

Let χ : F× ! C× be a quasi-character. We will postpone discussion of characters on R,C to the
homework.

Remark 2.5. Set O×F,c := 1 + ($c), where 1 + ($0) := O×F , for c ≥ 0. Hence, we get a filtration

O×F = O×F,0 ⊃ O×F,1 ⊃ O×F,2 ⊃ . . .

with quotients O×F,c/O
×
F,c+1 ' k if c ≥ 1 while O×F,0/O

×
F,1 ' k×.

Lemma 2.6. χ|O×F has finite image. That is χ|1+($)c = 1 for some c ≥ 0. The smallest such c is called
the conductor of χ.

Proof. (No small subgroup argument) More generally, say

χ : G! GLn(C)

is a continuous homomorphism from a profinite group G to GLn(C) (with its usual Euclidean topology).
There exists an open neighborhood U of 1 ∈ GLn(C) such that U does not contain a nontrivial subgroup.7

Now, χ−1(U) ⊂ G is an open neighborhood of the identity, and so contains an open, finite-index subgroup
(these give base of neighborhoods around identity) N . Thus, χ(N) ⊂ U is a subgroup contained in U , so
χ(N) = 1, so χ factors through the finite group G/N .

Applying this in the case G = F× and using the filtration OF,c gives the claim. �

Definition 2.7. We call χ unramified if its conductor is c(χ) = 0, i.e. χ|O×F = 1.

Note that if χ is unramified, then χ($) ∈ C× is independent of the choice of uniformizer. We define
local L-functions

L(χ, s) :=


1

1− χ($)q−s
if χ unramified

1 if χ ramified

(s ∈ C). We now want to give a more complicated definition of this function.

Remark 2.8. When F is archimedean, the local factor will essentially be some Γ-function(s).

2.2 Local Zeta Integrals

Recall 2.9. Recall the Gamma function

Γ(s) = (∗)
∫ ∞

0

e−t
2︸︷︷︸

func on R

t−s︸︷︷︸
char for R×>0

dt

t︸︷︷︸
Haar measure

,

7Take a nontrivial element, and consider powers of it. It’ll eventually escape from the neighborhood

6



up to some simple factor (∗) (do a change of variables to usual definition).

Let F be any local field (possibly archimedean).

Definition 2.10. We introduce the space of Schwartz functions S(F ).

• When F is non-archimedean, this is S(F ) = C∞c (F ), locally constant functions with compact
support. Recall that F is totally disconnected.

• When F is archimedean, these are smooth functions ϕ : F ! C of rapid decay, i.e. (when F = R)

sup
x∈R
|P (x)|

∣∣∣∣∣
(
∂

∂x

)i
ϕ(x)

∣∣∣∣∣ <∞
for all i and polynomial P ∈ C[T ]. When F = C, we get a similar definition using C ' R × R (so
take derivatives in each variable).

Remark 2.11. For any variety X/R, can similarly define S(X(F )). Then are functions ϕ : X(R) ! C
such that supx∈X(F ) |Dϕ(x)| <∞ for every algebraic differential operator D on X.

Example. If X = A1, the differential operators are basically all p(x)
(
∂
∂x

)i
.

Example. If X = Gm = A1 \ 0, the differential operators look like p(x, x−1)
(
∂
∂x

)i
.

Definition 2.12. Let χ : F× ! C be a quasi-character, and let ϕ ∈ S(F ) be a Schwarz function. The
local zeta integral is the “Mellin transform”

ζ(χ, ϕ, s) =

∫
F×

ϕ(x)χ(x) |x|s d×x

(s ∈ C), where d×x is a Haar measure of F×. This is (absolutely) convergent when Re(s)� 0.

Remark 2.13. Given an additive Haar measure dx on F , one can set d×x = dx
|x| , where | · | : F

× ! R× is
the normalize absolute value. When F is non-arch, this is characterized by |$| = q−1 ($ a uniformizer
and q = #OF /($)).

Note that ζ(χ, ϕ, s) is convergent on some right half-place dependent on χ. Let |χ| be the character

|χ| : F× χ
−! C× | · |

−−! R×+.

One can show that there exists some unique c ∈ R such that TODO:
Convince
yourself this
adds up

|χ| (x) = |x|cF .

This c is called the exponent of χ.

Example. Say F = R. Then, ϕ(x) = e−πx
2

is a Schwartz function. If χ is trivial, then ζ(χ, ϕ, s) is
essentially a Γ-function (evaluated at s/2?)
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Example. Say F is non-archimedean. Then, ϕ(x) = 1OF (x) is a Schwarz function (indicator function
of OF ). In fact, any Schwarz function will be a linear combination of indicator functions,

ϕ =
∑
i

ci1ai+$niOF .

Note that

vol(O×F ,d
×x) =

∫
O×F

dx

|x|

=

∫
O×F

dx

=

∫
OF

dx−
∫
$OF

dx

= vol(OF ,dx)(1− q−1).

We normalize dx so that vol(OF ,dx) =
(
1− q−1

)−1 (so vol(O×F ,d
×x) = 1). Hence, for our earlier choice

of ϕ(x), we have

ζ(χ, ϕ, s) =

∫
F×

1OF (x) |x|sF χ(s)d×x

=
∑
n≥0

q−ns
∫

val(x)=n

χ(x)d×x

χ unram
=

∑
n≥0

q−nsχ($n)

=
1

1− χ($)q−s

(assuming χ unramified in second-to-last line), so we recover our definition of the local L-function.

In general, we get an interpretation of the L-function as a “gcd” of all these zeta integrals.

Recall 2.14. Given a Schwarz function ϕ ∈ S(F ), it has a Fourier transform ϕ̂ ∈ S(F ). We fix some
non-trivial additive character ψ0 : F ! C×. Then, we define

ϕ̂(x) :=

∫
F

ϕ(y)ψ0(xy)dy.

We normalize dy so that it is self-dual w.r.t ψ0, i.e.

̂̂ϕ(x) = cϕ(−x) with c = 1.

Theorem 2.15. Fix a quasi-character χ on F×. Then,

(1) ζ(χ, ϕ, s) has a meromorphic continuation to s ∈ C.

(2) L(χ, s) is the GCD of ζ(χ, ϕ, s) as we vary ϕ ∈ S(F ). Say F is non-archimedean. What we mean
is

ζ(χ, ϕ, s)

L(χ, s)
∈ C[qs, q−s].
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In particular, the poles of ζ(χ, ϕ, s) are at worse the poles of L(χ, s).

(3) (local functional equation)

ε(χ, s) · ζ(χ, ϕ, s)

L(χ, s)
=
ζ(χ−1, ϕ̂, 1− s)
L(χ−1, 1− s)

.

Note the epsilon factor does not depend on ϕ.

Note 2. Got distracted a missed some stuff...

Remark 2.16. Apparently ε(χ, s) = ε(χ, s, ψ) = 1 if χ and ψ are both unramified. What does it mean
for an additive character to be unramified? The conductor of ψ is

c(ψ) = max {c ∈ Z : ψ|$−cOF = 1} .

We say ψ is unramified if c(ψ) = 0.
The bit about the ε-factor being trivial when χ, ψ are unramified comes from ζ(χ,1OF , s) = L(χ, s)

(when χ unramified) + 1̂OF = 1OF when ψ unramified (compare to ϕ = e−πx
2

for F = R which also
satisfies ϕ̂ = ϕ).

Remark 2.17. The local L-factor L(χ, s) itself does not determine χ (e.g. it collapses all ramified char-
acters to 1). However, the pair (L(χ, s), ε(χ, s)) contains more information about χ (though maybe still
not enough to recover χ).

3 Lecture 3 (2/24)

In the previous two lectures, we discussed Hecke characters, and then moved to the local situation, and
gave the key result.

Let F be a non-archimedean local field.

Theorem 3.1. Fix a quasi-character χ on F×. Then,

(1) ζ(χ, ϕ, s) has a meromorphic continuation to s ∈ C.

(2) L(χ, s) is the GCD of ζ(χ, ϕ, s) as we vary ϕ ∈ S(F ). Say F is non-archimedean. What we mean
is

ζ(χ, ϕ, s)

L(χ, s)
∈ C[qs, q−s].

In particular, the poles of ζ(χ, ϕ, s) are at worse the poles of L(χ, s).

(3) (local functional equation)

ε(χ, s) · ζ(χ, ϕ, s)

L(χ, s)
=
ζ(χ−1, ϕ̂, 1− s)
L(χ−1, 1− s)

.

Note the epsilon factor does not depend on ϕ.

We defined L-functions for local characters, and saw that they are the gcd’s of local zeta functions
defined in terms of Schwartz functions ϕ ∈ S(F ) = C∞c (F ). We also see that we obtain a local functional
equation involving the “normalized ζ-integral” ζ\ := ζ(χ, ϕ, s)/L(χ, s).

9



Let’s spend a little time discussing the proof of this statement (for non-archimedean fields). When
F is archmidean, a similar statement is true, except ζ\ is no longer simply a polynomial in q±s. Our
argument follows the one given by Weil in his Bourbaki notes (also in Kudla’s notes).

There is an action F× y S(F ) induced by the natural action of F× y F = F× t {0} by right
translation. Recall

ζ(χ, ϕ, s) =

∫
F×

ϕ(x)χ(x) |x|s d×x.

Let r : F× ! Aut(S(F )) denote the induced group action. That is, for a ∈ F×,

(r(a)ϕ) (x) = ϕ(ax).

Note that
ζ(r(a)ϕ, χ, s) = χ−1(a) |a|−s ζ(ϕ, χ, s).

If we view the zeta integral as a linear function ζ : S(F )! C, then it is an eigenfunctional under the F×

action.
Continuing with this point of view, S(F ) is an (infinite-dimensional) representation of the abelian

group F×, and we have
ζ(−, χ, s) ∈ HomF× (S(F )⊗ χ| · |s,C) ,

i.e. it is a linear functional on this twisted representation. We want this to characterize the zeta integral.

Lemma 3.2. Let χ be a quasi-character. We claim that

dimC HomF× (S(F )⊗ χ,C) ≤ 1.

(we’ll later see it is 1-dimensional, but ≤ 1 suffices for uniqueness). One we have this, (3) of Theorem
3.1 is easy: both ζ\(−, χ, s) and ζ\(−̂, χ−1, 1− s) live in a(n at most) 1-dimensional vector space.

Remark 3.3. There are three actions on S(F ). There’s the action of F×, there’s the translation action
of F , and there’s the action fo the Fourier transform −̂. All three of these interact with each.

Proof of Lemma 3.2.

• The orbit decomposition F×
open
⊂ F and {0}

closed
⊂ F of F× y F induces a short exact sequence (of

F×-representations)
0 −! S(F×) −! S(F ) −! S({0}) −! 0.

Only non-obvious thing is surjectivity of last map. Note that S({0}) = C and any a ∈ S({0}) can
be lifted to ϕ = a1OF ∈ S(F ).

• Now twist, dualize and take invariants, to get an exact sequence

0! HomF×(S({0})⊗ χ,C)! HomF×(S(F )⊗ χ,C)! HomF×(S(F×)⊗ χ,C)

To simplify the argument, let’s say we’re in the case where χ 6= 1. Then, HomF×(S({0})⊗χ,C) = 0

by Schur’s lemma (S({0}) ' C as F×-reps).
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• Thus, it suffices8 to prove dimC HomF×(S(F×) ⊗ χ,C) = 1. There is an F×-equivariant iso-
morphism S(F×) ⊗ χ

∼
−! S(F×) e.g. by taking ϕ · χ  [ ϕ. Hence, we only need show that

dimC HomF×(S(F×),C) = 1. The point is that 1O×F
generates S(F×) as a F×-representation.

Something like if ` ∈ HomF×(S(F×),C), then O×F =
⊔
a∈O×F /(1+$n a · (1 + ($n)), so `(1a·(1+$n)) =

`(1O×F
)/#(∗), where #(∗) is the number of terms int he disjoint union from before.

�

What goes into the proof of (2) of Theorem 3.1? Say ϕ = ϕ1 + c1OF with ϕ1(0) = 0. Then,

ζ(ϕ, χ, s) = ζ(ϕ1, χ, s) + cζ(1OF , χ, s) = ζ(ϕ1, χ, s) + cL(χ, s).

Since ϕ1 has support away from zero, we have ϕ1 ∈ S(F×), so ζ(ϕ1, χ, s) ∈ C[qs, q−s] using F× =⊔
n∈Z$

nO×F (+ ϕ1 compactly supported). Thus,

ζ(ϕ, χ, s)

L(χ, s)
∈ C[qs, q−s]

For surjectivity, use group action. This also shows the meromorphic continuation.

Corollary 3.4. ε(χ, s) = ε(χ, 1
2 ) · q±N(s−1/2) with ε(χ, 1/2) 6= 0.

The point is that the functional equation tells you that the multiplication map

ε(χ, s) : C[q−s, qs]
∼
−! C[q−s, qs]

is an isomorphism.

Remark 3.5. Tate gives a different proof in his Thesis. He shows it suffices to prove the functional
equation for a single choice of ϕ,9 and then does it directly for well-chosen ϕ.

The argument we sketched can be applied in more general settings. The key is the group action
F× y F . This can be generalized e.g. to GLn(F ) y Mn×n(F ). This still has a unique open orbit,
though there are more of them ((n + 1) of them correspond to rank 0, 1, . . . , n). The generalization is
called Godement-Jacquet: given a (suitable) representation π ∈ Rep(GLn(R)) and a schwartz function
ϕ ∈ S(Mn×n(F )), they show10

dimC HomGLn(S(Mn×n)⊗ π ⊗ π∨ ⊗ χ,C) ≤ 1.

(something like this). This gives a similar result to Theorem 3.1.

3.1 Global Theory

Let F be a global field, and let χ : A×/F× ! C× be a character of the idèle class. We know χ =
∏
v χv

is a product of local quasi-characters.
8Always true, but only suffices in χ nontrivial case
9Using a Fubini trick

10GLn
det
−−! F×

χ
−! C×
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Definition 3.6. We define the Global L-function

L(χ, s) =
∏
v

L(χv, s),

convergent for Re(s)� 0 (Re(s) > 1 suffices when χ unitary).

Remark 3.7. There is a map
| · | : A× −! R×+

(χv) 7−!
∏
v

|χv|

where we use normalized absolute values at each place v. We let A1 = ker | · | ⊂ A×. The product
formula says |F×| = 1, so this descends to a map | · | : A×/F× ! R×+.

Fact. There is a splitting A× ∼
−! A1 ×R×+. Given, t ∈ R×+, you can form (t1/N , t1/N , . . . , t1/N︸ ︷︷ ︸

v|∞

, 1, 1, . . .︸ ︷︷ ︸
v-∞

) ∈

A×. Basically, use appropriate powers of t in archimedean places to get an idele with norm t.

Fact. A1/F× is compact (this is equivalent to Dirichlet’s unit theorem + finiteness of class group).

Note that χ|A1/F× is unitary since its source is compact. Thus, for any Hecke character χ, |χ| = | · |s

for a unique s ∈ R denoted s = exp(χ), the exponent of χ. Hence, χ| · |− exp(χ) is unitary, so assuming
characters are unitary is not a big deal.

Theorem 3.8. Assume χ is unitary, i.e. |χ| = 1. Then,

(1) L(χ, s) has meromorphic continuation to all s ∈ C

(2) There is a functional equation

L(χ, s) = ε(χ, s)L(χ−1, 1− s),

where ε(χ, s) =
∏
v ε(χv, s) (independent of choice of nontrivial global additive character ψ : A/F !

C×).

Remark 3.9. Taking a product of local functional equations over all v gives

ε(χ, s) ·
∏
v ζ(χv, ψv, s)

L(χ, s)
=

∏
v ζ(χ−1

v , ϕ̂v, 1− s)
L(χ−1, 1− s)

.

Hence, to prove the global functional equation, it is enough to prove∏
v

ζ(ϕv, χv, s) =
∏
v

ζ(ϕ̂v, χ
−1
v , 1− s).

We define the global zeta integral to be

ζ(ϕ, χ, s) =

∫
A×

ϕ(x)χ(x) |x|sA× d×x,
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where we use Haar measure d×x =
∏
v≤∞ d×xv, and we choose

ϕ ∈ S(A) =
⊗′

v≤∞

S(Fv),

i.e. ϕ = ⊗ϕv with ϕv ∈ S(Fv) and ϕv = 1OFv for almost all v. Above F∞ :=
∏
v|∞ Fv ' Rr1 ⊗ Cr2 .

Lemma 3.10. Say χ is unitary (exp(χ) = 0). Then, ζ(ϕ, χ, s) is absolutely convergent for Re(s) > 1.
(In the local case, when the exponent is 0, get convergence for Re(s) > 0, instead of 1)

Proof. Write ϕ = ϕ∞ ⊗ ϕ∞ with ϕ∞ ∈ S(Af ), a Schwarz function on the finite adeles. Note that it
is enough to consider ϕ∞ =

⊗
v<∞ 1OFv (every Schwartz function on Af is more-or-less a finite linear

combination of these guys).∫
A×
|ϕ(x)| |x|s d×x =

∏
v<∞

∫
ϕv(x) |x|s d×x ·

∏
v|∞

blah

=
∏
v<∞

1

1− q−sv
·
∏
v|∞

blah

which converges absolutely if Re(s) > 1 (think, Riemann-zeta). �

3.2 Some Fourier Theory

We still want the meromorphic continuation and functional equation of the global zeta integrals. Inspired
by the usual proof of these properties for Riemann-zeta, we do some Fourier analysis. In particular, we
want an analogue of Poisson summation.

Recall that F ↪! A discretely, with compact quotient A/F. Fix some nontrivial additive character
ψ : A/F ! C.

Notation 3.11. Let G be a locally compact Hausdorff abelian group. Its dual is

Ĝ := Homcts(G,S
1)

with the compact-open topology.

Pontryagin duality tells us that ̂̂G ∼= G, and compares some properties between G and Ĝ.

G Ĝ
compact discrete

H ⊂ G closed H⊥ = {χ : χ|H = 1} ∼= (̂G/H)

Table 1: Pontryagin duality

Lemma 3.12.
(̂A/F ) ' F

via ψa  [ a, where ψa(x) = ψ(ax).

Fact.
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(1) Fv
∼
−! F̂v via a 7! ψv,a upon fixing some nontrivial additive character ψv.

(2)
∏̂
Fv

∼
 −
∏
Fv in the way you expect. Furthermore,

Â ∼
 − A.

The facts more-or-less imply the lemma. We have F ↪! (̂A/F ), and we know (̂A/F ) is discrete
subgroup of Â = A. Something something have

F (̂A/F ) A

with F, (̂A/F ) both discrete F -vector spaces and A/F compact. Thus, F = (̂A/F ) something something.

4 Lecture 4 (3/1)

4.1 Global Functional Equation

Let χ : A×/F× ! C× be a global unitary character. Given some ϕ ∈ S(A), recall we had the global zeta
integral

ζ(χ, ϕ, s) =

∫
A×

ϕ(x)χ(x) |x|s d×x.

In the range of convergence (Re(s) > 1), we have

ζ(χ, ϕ, s) =
∏
v≤∞

ζ(χv, ϕv, s)

(recall ϕv = 1Ov for almost all places).
Recall A× ∼

−! A1 × R×+ and A1/F× is compact.

Theorem 4.1. Assume that χ is additionally trivial on R×+, so it’s really a character on A1/F×. Then,

(1) ζ(χ, f, s) has a meromorphic continuation to all s ∈ C

(2) ζ(χ, f, s) = ζ(χ−1, f̂ , 1− s)

(3) ζ(χ, f, s) is entire unless χ = 1 is trivial. When, χ = 1, there are simple poles at s = 0, 1 with
residue

Ress=1 ζ(1, f, s) = f(0) vol(A1/F×).

Global theory tells us that ∏
v

ζ(χv, fv, s) =
∏
v

ζ(χ−1
v , f̂v, 1− s),

while the local theory tells us that

ε(χv, s)
ζ(χv, fv, s)

L(χv, s)
=
ζ(χ−1

v , f̂x, 1− s)
L(χ−1

v , 1− s)
.
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Take a product over all places above, and then apply to global theory, and one sees that

L(χ, s) = ε(χ, s)L(χ−1, 1− s).

4.2 Global Theory: Proof Sketches

How does one proof something like theorem 4.1? Inspired by Riemann’s proof of functional equation for
Riemann zeta, we make use of Poisson summation.

Recall 4.2 (Poisson summation). For ϕ ∈ S(R), one has∑
n∈Z

ϕ(n) =
∑
n∈Z

ϕ̂(n).

Proof Sketch. Formally, consider Φ(x) =
∑
n∈Z ϕ(x + n) ∈ C∞(R/Z). It’s Fourier series expansion tells

us that

Φ(x) =
∑
n∈Z

(∫ 1

0

Φ(y)e−2πinydy

)
e2πinx

=
∑
n∈Z

(∫ ∞
−∞

ϕ(y)e2πinydy

)
e2πinx

=
∑
n∈Z

ϕ̂(n)e2πinx

In particular, ∑
n∈Z

ϕ(n) = Φ(0) =
∑
n∈Z

ϕ̂(n).

�

The same thing happens in the adelic world. Note that Z ↪! R is discrete and cocompact. Similarly,
F ↪! A is discrete and cocompact.

Theorem 4.3 (Poisson Summation for F ↪! A). For ϕ ∈ S(A), one has∑
ξ∈F

ϕ(ξ) = vol(A/F )
∑
ξ∈F

ϕ̂(ξ).

Recall 4.4. The measure on A =
∏′

Fv we chose was dx =
∏
v≤∞ dxv. Here, we have some additive

character ψ =
∏
v ψv : F\A ! C×, and each dxv is self-dual with respect to ψv. On the discrete group Secretly, the

product dx

is indepen-
dent of ψ.
This is a
consequence
of the prod-
uct formula.
Changing
ψ  ψa

changes
dx  

|a|±1/2
dx =

dx

F , we take the counting measure. These two choices induce a unique measure on the quotient A/F such
that, for example, Fubini holds.

I think, any-
ways

Corollary 4.5. vol(A/F ) = 1.

It is a non-negative number, and applying Poisson summation formula (PSF) twice shows that
vol(A/F )2 = 1.

Remark 4.6. vol(A/F ) = 1 says that the Tamagawa number for Ga is 1. For G/F an algebraic group over
a number field, can define a canonical measure on G(F )\G(A), and its volume vol(G(F )\G(A)) =: τG is
called the Tamagawa number of G.
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Notation 4.7. Given ϕ ∈ S(A) and α ∈ A×, let ϕα ∈ S(A) denote ϕα(x) := ϕ(αx).

Corollary 4.8. ∑
ξ∈F

ϕ(aξ) = |a|−1
∑
ξ∈F

ϕ̂

(
ξ

α

)
.

Let’s apply this to Tate’s global integral. Recall it is defined by

ζ =

∫
A×

ϕ(x)χ(x) |x|s d×x.

Note that χ(x) |x|s above is invariant under the action of F×. Hence, we can write This is Fu-
bini (proba-
bly)

ζ =

∫
A×/F×

 ∑
ξ∈F×

ϕ(ξx)

χ(x) |x|s d×x.

We now want to apply PSF:∑
ξ∈F×

ϕ(ξx) + ϕ(0) = |x|−1
∑
ξ∈F×

ϕ̂(ξ/x) + |x|−1
ϕ̂(0).

Applying this directly would given an integral over A×/F× of a constant function, which is worrisome
since A×/F× is not compact. Hence, we break into two pieces (abs. val ≤ 1 or > 1):

ζ =

∫
F×\A≤1

(blah) +

∫
F×\A≥1

(blah) =

∫ 1

0

∫
A1/F×

(blah) +

∫ ∞
1

∫
A1/F×

(blah)

(we’ve used the splitting A× ' A1 × R×+).

Lemma 4.9. The map
A× 3 x 7!

∑
ξ∈F×

ϕ(xξ)

has rapid decay as |x|!∞, i.e. it is bounded by |x|−N for all N > 0.

Example (Toy case). R 3 x 7!
∑
n∈Z\0 e

−nx2

has rapid decay as |x|!∞.

Lemma implies that ∫ ∞
1

∫
A1/F×

 ∑
ξ∈F×

ϕ(ξx)

 (blah)

is an entire function in s. Now, PSF let’s us rewrite∫ 1

0

∫
A1/F×

↔

∫ ∞
1

∫
A1/F×

where we have f̂ on the right instead of f , i.e. by exchanging f with its Fourier transform, we get an
integral which we know converges. In more detail, you get

∫ 1

0

∫
A1

 ∑
ξ∈F×

ϕ̂(ξ/x)

 |x|−1
χ(x) |x|s d×x,
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(plus contributions from ϕ(0) and |x|−1
ϕ̂(0)) and then substitute x 7! x−1, ending up with

∫ ∞
1

∫
A1/F×

 ∑
ξ∈F×

ϕ̂(ξx)

χ−1(x) |x|1−s d×x

(plus two additional terms). Combining what were originally the
∫∞

1
and

∫ 1

0
parts, one obtains something

like this
ζ(χ, ϕ, s) =

∫
F×\A≥1

[
ϕ(x) |x|s χ(x) + ϕ̂(x) |x|1−s χ−1(x)

]
d×x+ . . . .

Exercise. Actually bother carrying out the integral manipulations sketched here to prove Theorem 4.1.

This basically finishes the discussion of Tate’s thesis.

4.3 One Application: Class Number Formula

Let ψF =
⊗
ψv : A/F! C× be ψF = ψQ ◦ TrF/Q where ψQ =

⊗
p ψQp is determined by

ψR(x) = e2πix and ψQp(x) = e−2πi(x mod Zp).

Above, ψQp can be thought of as the composition

Qp � Qp/Zp = Z[1/p]/Z ↪! Q/Z e−2πix

−−−−! C×.

Thus, we can a canonical choice of ψF .
We can also choose some ϕ ∈ S(A). Let ϕv be a Gaussian if v | ∞ – i.e. ϕv(x) = e−πx

2

when v real
and ϕv(x) = e−πxx for v complex – and let ϕv = 1OFv if v -∞. Then,

ξ(1, ϕ, s) = (∗)ζF (s)

with some simple constant (∗) related to disc(F/Q) and ζF the complete zeta function. Applying theorem
tells us that Ress=1 = vol(A1/F×) · ϕ̂(0). Computing this gives the class number formula which says

Ress=1 ζF (s) = (∗) · regularator · class #.

4.4 Algebraic Hecke characters

Remark 4.10. For a CM elliptic curve E/Q, one obtains a Hecke character χ over some quadratic imag-
inary F , i.e. χ : A×/F× ! C×. This has the property that χ∞ : C× ! C× is nontrivial. However, this
character is still special. At infinite, it is χ∞(z) = z (or something like this), which is an algebraic map.

Fix some embedding Q ↪! C.

Question 4.11. When is L(χ, s) “algebraic,” i.e. χ($v) ∈ Q× for v <∞.

Recall 4.12. When χv is unramified, we have

L(χv, s) =
(
1− χv($v)q

−s
v

)−1
,
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so algebraicity is about requiring the coefficient χv($v) above to be algebraic.

Remark 4.13. Note that χv|O×Fv lands in µ∞, the roots of unity, so algebraicity for one choice of uniformizer
gives it for any choice.

Example (Weil). Let F be CM, so F is purely imaginary with a totally real subfield F0 ↪! F such that
F/F0 is quadratic. Write

χ =
∏
v≤∞

χv : A×/F× −! C×.

For v | ∞, we have F×v ' C×, so let
χv : F×v ' C× ! C×

be given by z 7! znvzmv for nv,mv ∈ Z (‘weights’) satisfying

nv +mv = N is independent of v ∈ HomQ(F,C).

Any Hecke character satisfying this condition (at ∞) is algebraic.

Later proved that these exhaust (almost?) all algebraic Hecke characters?
When χ is algebraic, L(χ, s ∈ Z) has special properties. These have been studied e.g. by Katz. One

likes to construct “p-adic L-functions.”
We’ll next start studying modular forms.

5 Lecture 5 (3/3)

5.1 What comes next?

We finished Tate’s thesis, so let’s shift to modular forms. Topics for next 2–3 weeks:

• (holomorphic) Modular forms (examples: Eisenstein series, Theta functions)

• Hecke operators

• Non-holomorphic module (Maass) forms, Eisenstein series

• L-functions, and Rankin-Selberg convolution

Our main references will be Serre’s ‘A course in arithmetic’ (chapter VII) and Bump (sections 1.2–4, 1.6,
1.9).

Remark 5.1. After studying Hecke characters χ : A×/F× ! C×, a natural thing to look at would be
continuous homomorphisms

ϕ : GL2(F )\GL2(A) −! C.

Historically, modular forms (which will give examples of such ϕ) were studied first, so it’s good to have
them in mind before looking at more abstract/general automorphic forms.
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5.2 Holomorphic modular forms

The modular group is Γ = SL2(Z) ⊂ SL2(R). We like this group because there’s a natural and
interesting action SL2(R) y H = {z ∈ C : Im(z) > 0} via fractional linear transformations(

a b

c d

)
︸ ︷︷ ︸
∈SL2(R)

· z︸︷︷︸
∈H

:=
az + b

cz + d
∈ H.

This action realizes the isomorphism Aut(H) ∼= PSL2(R).

Notation 5.2. I’m personally undecided on the ‘right’ notation for the upper half plane, so I may switch
between H, H, and H as I feel like until I decide to settle on one.

Definition 5.3. A congruence subgroup Γ ⊂ SL2(Z) is one containing

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0

0 1

)
(mod N)

}

for some N ≥ 1.

Example.

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
is a congruence subgroup.

Fact. As an abstract group, SL2(Z) is generated by the two matrices

S =

(
1

−1

)
and T =

(
1 1

0 1

)
.

Note that S · z = −1/z and T · z = z + 1 for z ∈ H. Inside PSL2(Z), one has S2 = I and (ST )3 = I. Question:
Are these
the defining
relations for
PSL2(Z)?

Fact. The action SL2(Z) y H has fundamental domain consisting of z ∈ H s.t. |z| > 1 and |Re(z)| ≤ 1
2 ,

pictured in Figure 1. In Figure 1, ρ = exp(2πi/3).

i

ρ ρ+ 1

Figure 1: A fundamental domain for SL2(Z) y H

Fact. For N ≥ 3, Γ(N) acts freely on H, i.e. StabΓ(N)(z) is trivial (this means contained in ±1, so
Γ(N)’s image in PSL2(Z) literally acts freely) for all z ∈ H.
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We call z ∈ H an elliptic point if Stab PSL2(Z)(z) 6= 1. Up to SL2(Z)-translation, the only el-
liptic points are i =

√
−1 with stabilizer StabPSL2(Z)(i) = 〈S〉 ' Z/2Z, and ρ = e2πi/3 with stabilizer

StabPSL2(Z)(ρ) = 〈ST 〉 ' Z/3Z.

Definition 5.4. A modular function f : H! C is a meromorphic function which is Γ-invariant.

Definition 5.5. A holomorphic modular form of weight k ∈ Z is a holomorphic map f : H ! C
satisfying

•

f

(
az + b

cz + d

)
= (cz + d)

k
f(z) for all

(
a b

c d

)
∈ Γ.

Above, (cz+d)k is called aweight k automorphy factor. Note that, this is equivalent to requiring
just

f(z + 1) = f(z) and f

(
−1

z

)
= (−z)kf(z).

In particular, periodicity in x let’s us write

f(x+ iy) =
∑
n∈Z

an(y)e2πinx,

but since f is holomorphic, one must actually have

f(z) =
∑
n∈Z

ane
2πinz

(Cauchy-Riemann =⇒ the terms an(y)e2πinx must be holomorphic).

• (holomorphic at ∞) an = 0 if n < 0, i.e.

f(z) =
∑
n≥0

anq
n where q = e2πiz.

Remark 5.6. If f : H! C is holomorphic and satisfies the first bullet point above, then the second bullet
point is equivalent to

|f(x+ iy)| ≤ CyN for some C,N > 0 as y !∞

(i.e. moderate growth). Intuitively, terms like e−2πinz = q−n will grow exponentially as Im z !∞.

Remark 5.7. If f is a weight k modular form, then taking

(
a b

c d

)
=

(
−1 0

0 −1

)
shows f(z) = (−1)kf(z),

so k better be even.

Notation 5.8. We let Mk(Γ) denote the vector space of (holomorphic) modular forms of weight k for
Γ = SL2(Z).

Note that the sum ⊕
k≥0

Mk(Γ)
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forms a graded ring in a natural way. Note that M0(Γ) = C. If f is holomorphic of weight 0, it is
SL2(Z)-invariant and bounded/holomorphic at ∞, so it is constant by maximum modulus principle or
whatever it’s called.11 Hence,

⊕
k≥0Mk(Γ) is even a graded C-algebra.

Example (Eisenstein series). For any even integer k ≥ 4, the function

Gk(z) =
∑′

m,n∈Z

1

(mz + n)k

(the prime ′ means sum doesn’t include (m,n) = (0, 0)) is holomorphic on H and Γ acts on it via weight
k automorphy. To conclude it’s a modular form, it suffices to show it is of moderate growth. For z ∈ D, This is prob-

ably not the
right phras-
ing, but
whatever. It
satisfies the
functional
equation you
want it to
satisfy

the fundamental domain, we use (z = x+ iy so x2 + y2 ≥ 1 and x ≥ −1/2)

|mz + n|2 = (mx+n)2 +m2y2 = m2x2 + 2mnx+n2 +n2y2 = m2(x2 + y2) + 2mnx+n2 ≥ m2−mn+n2

(with RHS a positive definite quadratic form) to see that

|Gk(z)| ≤
∑′

m,n

1

|mz + n|k
≤
∑′

m,n

1

m2 −mn+ n2
<∞.

Hence, Gk is indeed a modular form.

5.3 Structure of
⊕

Mk(Γ)

Assumption. Γ ' PSL2(Z) is the full modular group.

Notation 5.9. Let M(Γ) :=
⊕

k≥0Mk(Γ).

Eisenstein series look special, but they actually give all modular forms for SL2(Z) in the following
sense:

Theorem 5.10. Mk(Γ) =
⊕

4i+6j=k CGi4G
j
6. More concisely,

M(Γ) = C[G4, G6]

as graded C-algebras.

Note that the above let’s us determine dimCMk(SL2(Z)). Secretly, the above is usually proved by
first determining dimCMk(SL2(Z)) in order to show that the natural map C[G4, G6] ↪!M(SL2(Z)) is an
iso.

The actual tool for computing these dimensions is Riemann-Roch. The starting point is the isomor-
phism

Γ\H ∪ {∞} ∼−! P1

as complex manifolds. To make this rigorous, one needs to carefully take care of the elliptic points i
and e2πi/3, but we won’t sweat the details here. Let f be a modular function. It’s divisor is div f =∑

[z]∈Γ\H∪{∞} ordz(f)[z]. This will satisfy deg div(f) = 0 but again one needs to be careful about elliptic
points. Think of this as motivation for the following.

11More geometrically, it extends to a holomorphic function of H/ SL2(Z) = P1
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Definition 5.11. The order of vanishing of f(z) =
∑
anq

n at ∞ is

v∞ := min {n ∈ Z : an 6= 0} .

Note that v∞(f) ≥ 0 ⇐⇒ f is holomorphic at ∞.

Theorem 5.12. Let f be a nonzero modular function. Then,

∑
[z]∈Γ\H∪{∞}

vz(f)

#Γz
= 0,

where Γz = StabPSL2(Z)(z) is the stabilizer of z. Note that

#Γz =


2 if [z] = [i]

3 if [z] = [e2πi/3]

1 otherwise.

.

More generally,

Theorem 5.13. Let f be a nonzero weight k modular form. Then,

∑
z∈Γ\H∪{∞}

vz(f)

#Γz
=

k

12
.

Proof Idea. Let D be the usual fundamental domain. Apply the residue formula to the contour integral
around the boundary of D ∩ {Im z ≤ T}, and take a limit as T !∞. � May need

to do some-
thing about
the cusps at
ρ, ρ + 1. See
Serre’s book
for details

Corollary 5.14.

• When k = 0, one sees that vz(f) = 0 for all z, so f is constant, i.e. M0(SL2(Z)) = C.

• When k = 2, k/12 = 1/6, so there’s no possible solution, i.e. M2 = 0.

• When k = 4, k/12 = 1/3 so vρ(f) = 1 (and vz(f) = 0 for [z] 6= [ρ]), so f/G4 ∈ M0 = C, i.e.
M4 = CG4.

• When k = 6, k/12 = 1/2 so vi(f) = 1 (and vz(f) = 0 otherwise), so M6 = CG6.

• G8 = cG2
4 since dimM8 = 1.

• G10 = cG4G6 since dimM10 = 1.

• E3
4 − E2

6 = 1728∆ is a weight 12 cusp form.

Notation 5.15. One can compute that the constant term of Gk(z) is 2ζ(k), so we let

Ek(z) :=
1

2ζ(k)
Gk(z) = 1 +

∑
n≥1

anq
n

be the normalized Eisenstein series.
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Remark 5.16. G6(i) = 0 coming from the functional equation applied to S.

Fact.

∆ =
E3

4 − E2
6

1728
= q +

∞∑
n≥2

anq
n = q

∏
n≥1

(1− qn)
24
.

Definition 5.17. A modular form f(z) =
∑
n≥0 anq

n such that a0 = 0 is called a cuspidal modular
form. We let Sk(Γ) ⊂Mk(Γ) be the subspace of cusp forms.

Example. ∆ ∈ S12(SL2(Z)).

Lemma 5.18.

dimMk(SL2(Z)) =


⌊
k

12

⌋
if k ≡ 2 (mod 12)⌊

k

12

⌋
+ 1 otherwise.

The main point is that multiplication by ∆ ∈ S12(Γ) will give an isomorphism Mk(Γ)
∼
−! Sk+12(Γ)

(and Mk(Γ) = Sk(Γ)⊕ C when k even).

Lemma 5.19.

(1)

vz(∆) =

1 if z =∞

0 if z ∈ H

(2) Mk−12(Γ)
∼
−! Sk(Γ) via f 7! ∆f .

Corollary 5.20 (Theorem 5.10). M ' C[E4, E6] as graded C-algebras.

Corollary 5.21. The field of modular functions is C(j), where

j = E3
4/∆ =

1

q
+ 744 + 196, 884q + . . .

is holomorphic on H with a simple pole at ∞. Furthermore, j induces an isomorphism j : Γ\H∪{∞} ∼−!
P1 sending z 7! j(z) and ∞ 7!∞. In particular,

j(e2πi/3) = 0 and j(i) =
1728E3

4(i)

E3
4(i)− E2

6(i)
= 1728.

6 Lecture 6 (3/9)

Started talking about modular forms last time. Let’s keep doing that.

6.1 Arithmetic

Recall the Eisenstein series
Gk(τ) =

∑′

(m,n)

1

(mτ + n)k
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for k ≥ 4 (we now use τ ∈ H as our upper half plane parameter). We can compute it’s Fourier expansion.
The constant term will be the limit as q = e2πitτ ! 0 (i.e. τ ! i∞), so it’s easy to determine. In the
end one will get

Lemma 6.1.
Gk = 2ζ(k) + (∗)πk

∑
n≥1

σk−1(n)qn,

where
σk−1(n) =

∑
0<d|n

dk−1.

Recall we normalize by dividing to set the constant term to 1, i.e. we form

Ek = Gk/(2ζ(k)) = 1 + ck
∑
n≥1

σk−1(n)qn.

One can show that ck above is a rational number.

Remark 6.2. We won’t go over calculating this Fourier expansion. It is done e.g. in Serre’s book (and
also in the book by Diamond and Shurman). One makes use of some trigonmetric functions. Start with

sin(πz) = πz
∏
n≥1

(
1− z2

n2

)
,

and take log-derivative to get something like

1

π
cotan(πz) =

1

z
+
∑
n≥1

(
1

z − n
+

1

z + n

)
.

Taking the kth derivative will cause an Eisenstein series to show up.

We will see a 2nd proof later for non-holomorphic Eisenstein series.

Fact.
ζ(k) ∈ πk ·Q×

for all k ≥ 2.

Using this, one can show that Ek ∈ Q JqK for all k, i.e. normalized Eisenstein series have rational
coefficients. In fact, it is the case that Ek ∈ Z

[
1
6

]
JqK. One can use the fact that each Ek is a polynomial

in E4, E6 to reduce making showing this easier.
This let’s you derive some arithmetic information from Eisenstein series. For example, dimension

count + comparing constant terms shows that E8 = E2
4 and E10 = E4E6. Expansing their power series

then gives non-trivial identities involving divisor sums.

6.2 Connection to elliptic curves

Recall 6.3. A one-dimensional complex torus is always of the form C/Λ where Λ ⊂ C is a rank 2 lattice
in C, a discrete subgroup which is rank 2 (over Z) and cocompact.
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Definition 6.4 (Homothety). We say Λ ∼ Λ′ if ∃λ ∈ C× s.t. Λ = λΛ′.

Exercise. Up to homothety, {
rank 2 lattices

Λ ⊂ C

}
/∼
 ! SL2(Z)\H

via Z + Zτ [ τ.

Any one-dimensional complex torus has a canonical embedding C/Λ ↪! P2
C via the theory theory of

elliptic functions, given by z 7! (℘Λ(z), ℘′Λ(z), 1), with image the cubic curve

y2 = 4x3 − g4(Λ)x− g6(Λ),

where
gk = ckGk =

∑′

λ∈Λ

1

λk
.

(we’re ignoring the constants ck).
Recall that j-invariant j = E3

4/∆ where ∆ = E3
4 − E2

6 (up to constant; there’s a 1728 somewhere).
This gave an iso j : Γ\H ∪ {∞} ∼−! P1

C.

Theorem 6.5 ((A part of) Complex Multiplication). If [Q(τ) : Q] = 2, then j(τ) ∈ Q is algebraic.

(Apparently, this is corollary from stuff we’ve said so far).

Fact. If τ ∈ K, some imaginary quadratic field (so K = Q(τ)), then K(j(τ)) is an abelian extension of
K.

Note that we have formed a family

Eτ : y2 − 4x3 − g4(τ)x− g6(τ)

of elliptic curves (over H) and the transformation (g4, g6) 7! (λ−4g4, λ−6g6) does not change the iso class
of a memember of the family. Furthermore, this family contains (non-uniquely) all (complex) elliptic
curves. Since Eτ

∼= Eτ′ iff (Z ⊕ Zτ) ∼ (Z ⊕ Zτ′), we see that j = g3
4/∆ (up to a possibly missing 1728)

is the unique invariant classifying complex elliptic curves, i.e. j(E) = j(E′) ⇐⇒ E ' E′ over C.
Let’s show that j(τ) is algebraic when τ lives in an imaginary quadratic. We have Aut(C) y C, and

we want to prove that the orbit Aut(C) · j(τ) is finite (when [Q(τ) : Q] = 2). To prove this is finite, it
suffices to prove that Aut(C) · Eτ is a finite set (of iso classes of elliptic curves).

Lemma 6.6. Assume τ quadratic and Z[τ] = OK (i.e. Z[τ] is integrally closed/a maximal order). Then,
End(Eτ) = OK . Furthermore, for any quadratic imaginary K ⊂ C, there is a bijection By ‘endo-

morphism’
we mean
‘self-isogeny’

ClK
∼
−! {E/C : End(E) = OK}/'

via a 7! C/a(= (K ⊗ R)/a).

Remark 6.7. Hom(C/Λ,C/Λ′) ∼ − {λ ∈ C : λΛ ⊂ Λ′}

As a consequence,

End(C/a) ' {λ ∈ C : λa ⊂ a} = {λ ∈ K : λa ⊂ a} = OK .
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In general, for Λ ⊂ K, the set {λ ∈ K : λa ⊂ a} is an order in OK .
For Λ ⊂ C not contained in an imaginary quadratic, one has End(C/Λ) = Z. So End(C/Λτ) is Z

when [Q(τ) : Q] 6= 2, and is an order in an imaginary quadratic field when [Q(τ) : Q] = 2.

Lemma 6.8. [Q(τ) : Q] = 2 =⇒ Aut(C) · Eτ is finite.

Proof. Imagine applying σ to coefficients of y2 = 4x3 − g4(τ)x − g6(τ). Doing so does not change the
endomorphism algebra, so the orbit AutC · Eτ is contained in the finite set of elliptic curves E with
End(E) = End(Eτ). �

Remark 6.9. Above shows j(τ) is an algebraic number. In fact, j(τ) ∈ Z is an algebraic integer. Further-
more, if j(τ) is algebraic iff τ is quadratic.

Remark 6.10. We mentioned earlier that K(j(τ))/K is abelian. In fact, Gal(K(j(τ))/K)
∼
−! Cl(Oτ)

(where Oτ = End(C/Λτ) ⊂ OK). Furthermore,

K(j(τ)) ((Eτ)tors) = Kab

gives the maximal abelian extension of K.
(Reference: Serre in Cassels-Frohlich)

6.3 Analytic

Say f(τ) =
∑
n≥0 anq

n ∈ Mk(Γ) is a holomorphic modular form of weight k. As a number theorists,
when you see a sequence of numbers, you might think to turn it into a Dirichlet series

∑
n≥1 ann

−s. For
this to be useful, at minimum it needs to converge in a right half-plane, so we need some polynomial
bound on the growth of the an.

Example. For Eisensten series we have an ∼ σk−1(n) ≤ nk−1σ0(n) ≤ O(nk), so we’re good there.

What about cuspidal modular forms?

Lemma 6.11 (trivial bound). Say f ∈ Sk(Γ) is a weight k cusp form. Then,

an = O
(
n
k
2

)
,

i.e. {∣∣∣ an
nk/2

∣∣∣ : n ≥ 1
}

is bounded.

Proof. First note that τ 7! |f(τ)| yk/2 is Γ-invariant on the nose (this only requires f modular of weight
k). Since f is cuspidal, |f(τ)| yk/2 is in fact continuous (bounded?) near ∞. Hence, it gives a continuous
function on the compact domain Γ\H∪{∞}, so

∣∣f(τ)yk/2
∣∣ is bounded, say by C. Thus, |f(τ)| ≤ Cy−k/2.

Cauchy12 tells us that

an =
1

2πi

∫
|q|=δ>0

f(τ)

qn+1
dq

so |an| ≤ Cy−k/2e2πny for any y. Take y = 1/n to get

|an| ≤ C ′nk/2

12Cauchy/Fourier?
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as desired. �

Remark 6.12. Above bound is not optimal. Deligne (via Weil conjectures) proved that

|an| = O
(
n
k−1
2 +ε

)
for any ε > 0. This was earlier conjectured by Ramanujan (in the case of the ∆ function). Writing
∆ =

∑
n≥1 τ(n)qn (the unique, up to scaling, weight 12 cusp form for SL2(Z)), he conjectured

(1) τ(mn) = τ(n)τ(m) when (n,m) = 1

(2) τ(pi) is given by some (precise) formula of τ(pi), τ(pi−1)

(3) |τ(p)| ≤ 2p11/2

Deligne’s proof of the improved bound is the only one known. Note that Ramanujan’s conjecture
above is purely analytic in its statement. There’s an analogue of it for non-holomorphic modular forms
which is still open. One of Langland’s motivation for formulating his conjecture(s) was to allow for a
purely analytic proof of Ramanujan’s conjecture.

We will later see the Rankin-Selberg method which will give an analytic improvement to the trivial
estimate (though still not optimal). Langland’s functoriality conjecture would allow one to achieve the
optimal bound via analytic methods (for both holomorphic and non-holomorphic forms?).

The trivial bound shows that L(s, f) =
∑
n≥1 ann

−s converges when Re(s) > k/2 + 1 (by Deligne,
it even converges for Re(s) > (k − 1)/2 + 1). We’ll talk more about this L-function next time, and in
particular about when it has an Euler product.

7 Lecture 7 (3/10)

Recall the weight 12 cusp form

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn ∈ S12(Γ)

(Γ = SL2(Z)).

Remark 7.1. If you ever want examples, check out the LMFDB. Currently, the ∆ function is second in
its ‘Hall of Fame’ (behind Riemann zeta).

Conjecture 7.2 (Ramanujan’s Conjecture).

(1) τ(nm) = τ(n)τ(m) when (n,m) = 1.

(2) τ(p)τ(pi) = τ(pi+1) + p11τ(pi−1) for i ≥ 1.

Hence, the collection {τ(n)}n∈Z is really no more data than {τ(p)}p prime.

This was first proven by Mordell ca. 1920s.
The modern understanding of these facts comes from the theory of Hecke operators.
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7.1 Hecke Operators

There are multiple ways to describe these. Let’s start with one of them. Set

R =

{
lattices
Λ ⊂ C

}
,

and note that C× y R via scaling (the orbits of this action are the homothety classes from last time).
Say a function f : R! C has weight k if

f(λΛ) = λ−kf(Λ) for λ ∈ C× and Λ ∈ R.

If k = 0, this says that f is invariant under homothety, so it descends to a map on R/C× ∼
 − Γ\H.

Remark 7.3. The usual map
H −! R
τ 7−! Z + Zτ

(the one inducing the iso Γ\H ∼
−! R/C×) allows you to pullback the definition of ‘weight k’ from functions

on R to functions on H, and this agrees with our earlier definition. That is f : R ! C if of weight k iff
H ↪! R f

−! C is.

The point of the remark is that we can freely move between making definitions in terms of lattices
and in terms of the upper half-plane. We’ll use this to define Hecke operators using lattices.

Definition 7.4. Fix a positive integer n ≥ 1. We define a correspondence

Tn

R R

where
Tn = {(Λ,Λ′) : Λ ⊃ Λ′ of index n} .

Note that the fibers of the two maps Tn ⇒ R are finite, so given f : R ! C we can define the Hecke
operator T (n) = Tn by sending f to the function Tnf : R! C given by

(Tnf) (Λ) =
∑

(Λ,Λ′)∈Tn

f(Λ′) =
∑

Λ′⊆
n

Λ

f(Λ′).

Note that defining this operator does not require f being holomorphic.
Given λ ∈ C×, we also define the operator

(Rλf)(Λ) = f(λΛ).

Proposition 7.5.

• RλRµ = RµRλ for λ, µ ∈ C×

• RλTn = TnRλ for all n ∈ Z≥1 and λ ∈ R×
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• TmTn = Tmn when (m,n) = 1.13

• TpTpi = Tpi+1 + pTpi−1Rp for prime p and i ≥ 1.

Only the last property requires some work.

Corollary 7.6. Tpi is a polynomial of Tp and Rp.

We can repackage the previous proposition using a generating function. Consider

g(x) :=
∑
i≥0

Tpix
i

For convenience, set Tp−1 = 0. Then,

Tp ·
∑
i≥0

TpiX
i =

∑
i≥0

Tpi+1Xi + pRp
∑
i≥0

Tpi−1Xi =⇒ Tpg(x) = x−1 (g(x)− 1) + pRpxg(x).

Thus, we can solve

Corollary 7.7. ∑
i≥0

Tpix
i = g(x) =

1

1− Tpx+ pRpx2
.

At some point, we need to translate everything back to the language of modular forms and Fourier
coefficients and all that mess...

Definition 7.8. For any γ =

(
a b

c d

)
∈ GL+

2 (Q) (+ denotes positive determinant), we can define a

weight k action of γ
(f |γ,k) (τ) := (det γ)k−1(cτ + d)−kf(γτ).

Then, f is of weight k iff f |γ,k = f for all γ ∈ Γ = SL2(Z).

The above gives a group actions in the sense that

f |γγ′,k = (f |γ,k) |γ′,k.

This requires checking the “automorphy factor” (cτ + d) satisfies some cocycle condition. This leads into
the second definition of the Hecke operators Tn.

Consider Tn := M2×2(Z)det=n, the set of 2 × 2 integral matrices of determinant n. Note that Tn is
bi-Γ-invariant (as suual, Γ = SL2(Z)), i.e. ΓTnΓ = Tn. Furthermore, the corresponding double coset
space is finite, i.e.

#Γ\Tn/Γ <∞.

We can (re)define the Hecke operator as the (finite!) sum

Tnf :=
∑

γ∈Γ\Tn

f |γ,k.

13Λ ' Z2, so sublattices of index n are in bijection with subgroups G ⊂ (Z/nZ) of order n. With this in mind, this part
of the Proposition basically follows from Chinese Remainder Theorem
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We want to show this operator preserves the space of modular forms (a priori it’s an operator on all
functions H! C)

Recall 7.9. In the lattice formalism, the Tn came from the correspondence R Tn ! R. In the current
context, the relevant correspondences are coming from (finite index) subgroups of SL2(Z). For example,
we have the correspondence

Γ(N)\H

Γ\H Γ\H

(I’m not sure if this is the correspondence giving Tn. See chapter 5 of Diamond and Shurman. I think
they talk about the correspondence connection).

We want to understand how Tn acts on a modular form f by seeing what it does to its Fourier
expansion.

Lemma 7.10. Let Γ = SL2(Z) as usual. Then,

Tn =
⊔
a>0
ad=n

0≤b<d

Γ

(
a b

0 d

)

Example. If n = p is prime, then

Tp = Γ

(
p 0

0 1

)
t
⊔

0≤b<p

Γ

(
1 b

p

)
.

Hence, #Γ\Tp = (p+ 1).

Using this description, one can simply work out by hand that

Proposition 7.11. For f =
∑
n∈Z an(f)qn which is holomorphic on H (but not nec. at ∞) of weight k,

one has
am(Tnf) =

∑
0<d|(m,n)

dk−1amn/d2(f)

for all m ∈ Z (above n ≥ 1).

Corollary 7.12.

(1) a0(Tnf) = σk−1(n)a0(f)

(2) a1(Tnf) = an(f)

(3) am(Tnf) = amn(f) when (m,n) = 1

(4) When p prime, am(Tpf) = amp(f) + pk−1am/p(f) where am/p = 0 if p - m.

Corollary 7.13. If f =
∑
n∈Z an(f)qn is holomorphic at ∞ (i.e. an(f) = 0 for n < 0), then Tnf is also

holomorphic at ∞.
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So we have an action Tn yMk(Γ) preserving the subspace of cuspidal modular forms. Furthermore,
we have a Hermitian structure, an inner product on the cuspidal subspace.

Definition 7.14. The Petersson inner product on Sk(Γ) is given by

〈f, g〉Pet =

∫
Γ\H

f(τ)g(τ)yk
dxdy

y2
.

It is positive and Hermitian.

Remark 7.15. f(τ)g(τ)yk is Γ-invariant, and dxdy/y2 is a Γ-invariant measure.

Lemma 7.16. The Hecke operators Tn are all self-adjoint w.r.t 〈−,−〉Pet, i.e.

〈Tnf, g〉Pet = 〈f, Tng〉Pet

Corollary 7.17. Since {Tn}n≥1 are self-adjoint operators on the finite-dimensional vector space Sk(Γ),
they are each diagonalizable. In fact, since the Tn are pairwise commute, they can actually be simultane-
ously diagonalized!

Definition 7.18. Let
T := C[Tn : n ≥ 1] ⊂ EndC(Sk(Γ))

be the Hecke algebra. Note that it is a commutative C-algebra.

The previous corollary tells us that we have a decomposition

Sk(Γ) '
⊕
λ:T!C

Sk(Γ)[λ] where Sk(Γ)[λ] := {f ∈ Sk(Γ) : Tnf = λ(Tn)f}

of cusp forms into literal eigenspaces.

Recall 7.19. a1(Tmf) = am(f).

If f ∈ Sk(Γ)[λ] is an eigenform with eigenvalue λ, then an(f) = λna1(f) (where we’ve set λn :=

λ(Tn)), so the eigenvalues determine the Fourier coefficients an(f), up to constant. Specifically,

f = a1

∑
n≥1

λnq
n and λ1 = 1.

We call f ∈ Sk(Γ)[λ] a normalized eigenform if a1(f) = 1. In this case

f =
∑
n≥1

λnq
n =

∑
n≥1

λ(Tn)qn.

Remark 7.20. Recall that S12(Γ) = C∆ is a 1-dimensional space. Hence, ∆ is automatically an eigenform.
In fact, it is a normalized eigenform since the linear term of ∆ = q

∏
n≥1(1− qn)24 is 1 · q.

Recall 7.21. TmTn = Tmn when (m,n) = 1 and

∑
i≥0

Tpix
i = g(x) =

1

1− Tpx+ pRpx2
.
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Corollary 7.22. For f a normalized eigenform, one has

∑
i≥0

apix
i =

1

1− apx+ pp−kx2

(implicitly above, Rpf = p−kf). Recalling the L-function L(f, s) =
∑
n≥1 ann

−s. It has an Euler
product Seems there

was a mis-
take at some
point. The
1 − k in the
exponent
should really
be a k − 1

L(f, s) =
∏

p prime

1

1− app−s + p−2s+1−k .

Corollary 7.23. Ramanujan’s conjecture holds.

We see that the ‘Hecke theory’ is in some sense equivalent to the existence of the Euler product for
the L-function.

Recall Ramanujan conjectured |ap| ≤ 2p(k−1)/2. The Hecke polynomial at p is 1−apx+pk−1x2. This
has two complex roots both of absolute value p

k−1
2 . This is sounding more like the Weil conjectures, and

more like the Hecke polynomial at p behaving like a characteristic polynomial of Frobenius.

8 Lecture 8 (3/15)

8.1 The story of the incorrect factor from last time

Recall at the end of last lecture, we ended up with a p−2s+1−k that was supposed to be a p−2s+k−1.
It turns out our two descriptions of Hecke operators were not quite one in the same. In the second

description, there was the additional factor (det γ)k−1 in This factor
eliminates
annoying de-
nominators
in describ-
ing coef-
ficients of
Hecke opera-
tors applied
to modular
forms

(f |γ,k) (τ) := (det γ)k−1(cτ + d)−kf(γτ).

Recall Tn was attached to 2× 2 matrices with determinant n, so this factor adds an additional factor of
nk−1. That is T 2nd descrip

n = nk−1T 1st descript
n . The series

∑
i≥0

Tpix
i = g(x) =

1

1− Tpx+ pRpx2

for the 1st (lattice) description of Hecke operators becomes

∑
Tpx

i =
1

1− Tppk−1 + TBD

for the 2nd (analytic) description of them. TODO: Fin-
ish this tale

8.2 Today’s material

Picking up from last time, recall the Hecke polynomial at p is x2− apx+ pk−1, which has 2 roots each of
absolute value p(k−1)/2 (by Weil conjecture). Let αp, βp be the roots of the Hecke polynomial at p, so

L(f, s) =
∏
p

1

(1− αpp−s)(1− βpp−s)
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Note 3. Got distracted and missed some stuff.

Recall from yesterday that the Fourier coefficients of a normalized eigenform are determined by its
Hecke eigenvalues.

Theorem 8.1 (Multiplicity one). Let λ : T! C be some character of the Hecke algebra. Then,

dimC Sk(Γ)[λ] = 1.

This is just a restatement of eigenvalues determining coefficients, i.e. an(f) = a1(f)λ(Tn). In fact,
something stronger is true.

Theorem 8.2 (Strong Multiplicity One). Say f, g are two nonzero eigenforms. If ap(f) = ap(g) for
almost all p, then f = cg for some constant c ∈ C.

Might prove this later. It’s not easy.

Slogan. The right building blocks for modular forms are eigenforms.14

8.3 Connection to Galois representations

Fix a prime `.

Theorem 8.3 (due to Deligne and/or Eichler-Shimura it sounds like). Let f =
∑
n≥1 anq

n be a weight
k eigenform for SL2(Z). Then, there exists a unique `-adic (continuous) Galois representations

ρf : Gal(Q/Q) −! GL2(Q`)

such that

(1) ρf,` is unramified away from `.

(2) The characteristic polynomial of Frob−1
p (geometric Frobenius15) is the Hecke polynomial at p Something

something
can make
a twist by
some char-
acter to use
arithmetic
frobenius in-
stead some-
thing some-
thing

(3) ρf is “de Rham” at `

We have the above theorem for every `, so really what we get is a collection {ρf,`}`.

Remark 8.4. I version of Chebotarev density says that the Galois group is generated by (all but finitely
many) conjugacy classes of Frobenius, so the above theorem suggests the truth of strong multiplicity
one.16

Remark 8.5. We’ve been working this whole time with Γ = SL2(Z). We can replace this with a congruence
subgroup, e.g.

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
or

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
14I think I heard Wei say this.
15i.e. instead of inducing the pth power map on residue fields, it induces the inverse of that
16and maybe has it as a corollary? I’d need to think about this
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or
Γ(N) = ker (SL2(Z)� SL2(Z/NZ)) .

In any case, N is called the level.

Remark 8.6. Note that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N). Furthermore, Γ(N) ∼ Γ1(N2) are conjugate inside
GL2(Q).

One can tell the same story with these congruence subgroups. You get spaces Sk(Γ∗(N)) ⊂Mk(Γ∗(N))

of (cuspidal) modular forms. You also get a Hecke algebra T = Z[Tn]n≥1 (same definition if (n,N) = 1.
More annoying to defining if n,N are not coprime). And so one...

8.4 Old and New Forms

We first observe that you can ‘artificially’ raise the level of a modular form.

Example. If f ∈ Sk(Γ0(N/n)), then f(nτ) ∈ Sk(Γ0(N)).

Hence, inside of any space Sk(Γ0(N)) of cusp forms, there is a large subspace Sold
k (Γ0(N)) of oldforms

coming from forms of lower levels. The orthocomplemnt of this space w.r.t. the Peterssen inner product
is the space Snew

k (Γ0(N)) of newforms.

Theorem 8.7 (Multiplicity One). Let f, g be nonzero newforms of level N for T, with the same
eigenvalues. Then, f = cg for some c ∈ C.

This is not true if f, g are not required to be newforms because of trivial counterexamples coming
from the existence of oldforms (this isn’t in issue for level 1, i.e. for SL2(Z)).

8.5 Lattice and Theta Functions

We return to limiting ourselves to the level 1 case.

Example. The Jacobi theta function is

θ(τ) =
∑
n∈Z

qn
2

.

This satisfies17 θ(i/y) =
√
yθ(iy) (for y ∈ R>0), which can be proven using (classical) Poisson summation.

Recall S =

(
1

−1

)
∈ SL2(Z). More generally, one has

θ(−1/τ)
•
=
√
−τθ(τ)

(ambiguity in definition of square root18), so θ looks like a “modular form of weight 1/2”.

Can we observe this phenomena more generally?
17If τ = iy, then −1/τ = i/y
18τ in upper half-plane, so can easily fix a particular branch. However, still unclear (to me) if this should be an equality

or only an equality up to ± depending on τ
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8.5.1 Lattices

Let Λ be free Z-module of finite rank n. Say Λ comes equipped with a symmetric bilinear pairing
〈−,−〉 : Λ × Λ ! Z. Choosing a basis, Λ =

⊕k
i=1 Zei, write 〈ei, ej〉 = aij ∈ Z and form the n × n

symmetric matrix
A = (aij) ∈Mn×n(Z).

Definition 8.8. We call the form nondegenerate if detA 6= 0. We call it unimodular if detA = ±1,
i.e. A is invertible. We call it positive definite if A is positive definite, i.e. 〈a, a〉 ≥ 0 for all a ∈ Λ with
equality iff a = 0.

Remark 8.9. Attached to our pairing is a quadratic form q(x) = (x,x)
2 . Why bother dividing by 2?

Without it, we will end up with a more complicated transformation formula later on.

Definition 8.10. A symmetric bilinear pairing is called even if 〈x, x〉 ≡ 0 (mod 2) always.

Being even forces the associated quadratic form to be integer-valued.

Question 8.11. Are there any unimodular, positive definite, even quadratic forms?

Yes, but the smallest example lives in dimension 8.

Non-example. Z× Z! Z, (x, y) 7! 2xy is positive definite and even, but not unimodular.

Remark 8.12. Being unimodular is a condition at (finite) primes. In the previous example, the form is
unimodular at all primes away from 2 (i.e. 2 ∈ Z×p when p 6= 2). Being positive definite should be thought
of as a condition at the infinite place of Q.

Definition 8.13. Let
Latn :=

{
unimodular, even, positive definite

lattices Λ of rank n

}
/'

Example. The E8-lattice is one of these things. First note that the standard lattice Zn ⊂ Rn is positive
definite and unimodular (the matrix representing it is the identity), but is not even. To make it even,
could consider the sublattice

Λ1 :=

{
n∑
i=1

xi ≡ 0 (mod 2)

}
⊂ Zn.

This lattice is now even, but it has index 2 in Zn so it will not be unimodular. To fix this, consider

Λ = Λ1 + Z
(

1

2
,

1

2
, . . . ,

1

2

)
︸ ︷︷ ︸

f

which contains Λ1 as an index 2 sublattice. This is again positive definite and unimodular. Is it even?
We’ve only added one new vector, so we only need

q(f) =

n∑
i=1

(
1

2

)2

=
n

4

to be even, i.e. we only need 8 | n.
Thus, En = Λ ⊂ Rn is a unimodular, even, positive definite lattice when 8 | n.
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Example. E8 ⊕ E8 ∈ Lat16 3 E16 and these turn out to be legitimately different lattices.

Why are these lattices interesting?

8.5.2 Theta functions

Fix some Λ ∈ Latd. We define the theta function

θΛ(τ) :=
∑
x∈Λ

qQ(x) =
∑
x∈Λ

q
〈x,x〉

2

(Above, we use Q(x) for the quadratic form attached to Λ instead of q(x) to avoid a notation clash).
After choosing a basis and so obtaining a matrix A representing your form, this is the same as∑

n∈Zn
q

1
2x
tAx =

∑
n≥0

rn(Λ)qn,

where
rn(Λ) = # {x ∈ Λ : (x, x) = 2n} .

Remark 8.14. Our insistence of focusing on Latd (coming from restricted ourselves to SL2(Z)) means we
miss interesting lattices like A = I. This correspond to the form

∑d
i=1 x

2
i and so to the function

θ(τ) =

(∑
n∈Z

q1/2n2

)d

whose coefficients count the number of ways of writing a number as the sum of d squares (or something
like this). This will give a modular form of weight d/2 and level 2.

Theorem 8.15.

(1) If Λ ∈ Latd, then
θΛ ∈Md/2(SL2(Z)).

(2) Latd 6= ∅ ⇐⇒ 8 | d.

Proof Sketch. (1) Only need to check the transformation laws under T =

(
1 1

0 1

)
and S =

(
1

−1 0

)
.

Things work out for T since the lattice is even, and they work out for S by using Poisson summation (+
the lattice being unimodular). Specifically, Poisson summation will give (for y > 0)

θΛ

(
i

y

)
= yd/2θΛ(iy)

which gives the desired transformation law in general by analytic continuation.
(2) Note (ST )3 = 1 ∈ PSL2(Z). This should be all you need to know for this part apparently. �
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Application to rΛ(n) Note that the constant term of θΛ is always 1 since there’s a unique way to
represent 0 using the attached quadratic form. Fix some Λ ∈ Latd (so 8 | d). Then,

θΛ = 1 +
∑
n≥1

rn(Λ)qn ∈ Ed/2 + Sd/2(SL2(Z)),

where Ed/2 is the normalized Eisenstein series. Recall that

E d
2
(τ) = 1 + Cd/2

∑
n≥1

σd/2−1(n)qn,

and that the trivial estimate for cusp forms says their coefficients are always O(nk/2) = O(nd/4) (since Wei wrote
n
k
2 +ε in-

stead, but
I didn’t un-
derstand
why

k = d/2 in the present case). Note that σk−1(n) = O(nk−1+ε). The upshot of all of this is the following.

Corollary 8.16.
rn(Λ) = C d

2
σ d

2−1(n) +O(n
d
4 +ε)

for any ε > 0.

This argument can be generalized to not necessarily unimodular lattices as long as you understand
Eisenstein series of higher levels.

8.5.3 Connection to Eisenstein series

We’ve defined the set Latd for 8 | d and given a function

Latd −!M d
2
(SL2(Z)).

What is the image of this map?

Theorem 8.17 (Siegel(-Weil) formula). The weighted average

∑
Λ∈Latd

θΛ

# Aut(Λ)
= cdE d

2

is a multiple of an Eisenstein series with explicit constant cd (given by some product of ζ values).

(Originally due to Siegal but generalized by Weil?)

Remark 8.18. You should think of Latd not as a set, but as a groupoid. Note that Aut(Λ) is always
finite since it is compact and discrete (e.g. in O(n) and GLn(Z)).

Corollary 8.19 (of Siegal-Weil). ∑
Λ∈Latd

1

# Aut(Λ)
= cd.

Example. One can show that Lat8 = {E8} and compute the cardinality of its automorphism group.
One can show Lat16 = {E⊕2

8 , E16}.
One can show # Lat24 = 24

One can show # Lat32 > 80 million.
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9 Lecture 9 (3/17): Non-holomorphic world

We’ve spent time studying holomorphic modular forms, so let’s shift to the next type of automorphic
form: non-holomorphic modular forms.

Even if we only care about holomorphic modular forms, we’ll see it still makes sense to study non-
holomorphic ones. We begin with a key example.

Recall in the holomorphic case we had Eisenstein series Ek indexed by integers.

Example (Non-holomorphic Eisenstein series). Write z = x + iy ∈ H. Consider the real-valued
function Im : H! R sending z 7! y. As usual, let Γ = SL2(Z). Note that

Im(γz) =
Im z

|cz + d|2

(
=

Im(z)

(cz + d)(cz + d)

)
when γ =

(
a b

c d

)
∈ Γ.

This looks like it’s “holomorphic of weight 1 and antiholomorphic of weight 1.” Inspired by this, we
average (kill the subgroup preserving the imaginary part)

E(z, s) :=
1

2
π−sΓ(s)ζ(2s)

∑
γ∈Γ∞\Γ

Im(γz)s

to form a function which is (by definition) invariant under the SL2(Z) action (at least, when it converges).
Above, the factors out front are there to get a nice functional equation later19, and

Γ∞ =

{(
1 ∗
0 1

)}
⊂ Γ

is subgroup of matrices preserving the imaginary part. Note we have

E(z, s) :=
1

2
π−sΓ(s)ζ(2s)

∑
(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s
=

1

2
π−sΓ(s)

∑′

(c,d)∈Z2

ys

|cz + d|2s
.

This converges absolutely when Re(s) > 1 and is invariant under Γ.

Recall 9.1. For comparison, recall the (non-normalizes) holomorphic Eisenstein series were defined by

Gk(z) =
∑′

(m,n)

1

(mz + n)k

Remark 9.2. Apparently one can also p-adically interpolate the Eisenstein series Ek (k ∈ Z).

Remark 9.3. Can we get the holomorphic Eisenstein series from the non-holomorphic ones? Recall we
observed that Im(γz) has a holomorphic part and an anti-holomorphic part. Applying combinations of
∂
∂z and y ∂

∂z let’s you obtain expressions of the form

∑ ys

|cz + d|2s (cz + d)m(cz + d)n

19The 1
2
is coming from the difference between SL2(Z) and PSL2(Z)
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with m,n ≥ 0. Then evaluating at s = 0 gives various flavors of Eisenstein series, including the holomor-
phic ones from before. Details left as an exercise.

Theorem 9.4. E(z, s) has a meromorphic continuation to all of s ∈ C which satisfies the functional
equation

E(z, s) = E(z, 1− s).

It has a simple poles at s = 0, 1 both with residue 1/2 (independent of z). Moreover, it has “moderate
growth” at infinity, i.e.

|E(z, s)| = O
(
ymax{Re(s),1−Re(s)}

)
as Im(z)!∞.

Remark 9.5. For holomorphic modular forms, the “holomorphy at∞” was essentially equivalent to “mod-
erate growth”.

9.1 Fourier expansion of E(z, s)

We didn’t detail how to find the Fourier expansion of holomorphic Eisenstein series, but doing it for the
non-holomorphic ones is more general (get holomorphic ones via differential operators).

The full computation here is kinda tedious, so we just give a sketch. Start with

E(z, s) =
∑
n∈Z

an(y, s)e2πinx

coming from invariance under T =

(
1 1

0 1

)
. These coefficients are

an(y, s) = ysΓ(s)

∫ 1

0

∑′

c,d

1

|c(x+ iy) + d|s
e−2πinxdx

= ysΓ(s)

∫ 1

0

∑′

c,d

1

((cx+ d)2 + c2y2)s
e−2πinxdx

so the main point will be to compute the integral of something like

1

((cx+ d)2 + c2y2)s
e−2πinx.

One can do some integral trickery to end up with something like (when20 Re(s)� 0)∫ ∞
−∞

1

(1 + x2)s
e−2πiyxdx.

This is still not easy to compute, but wait, we have a Γ-factor which simplifies things. Throw that in
20Re(s) > 1 probably works
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there and change the order of integeration. You end up with
√
πΓ

(
s− 1

2

)
if y = 0

2πsys−
1
2Ks− 1

2
(2π |y|) if y 6= 0

(this is a different y because of substitutions/shifts taken in the interim). Above, the new notation is the
K-Bessel function

Ks(y) :=
1

2

∫ ∞
0

e−(t+ 1
t )yts

dt

t
where y > 0

which is entire in s ∈ C.
In the end, one obtains

Theorem 9.6. The Fourier coefficients of E(z, s) are

a0(y, s) = π−sΓ(s)ζ(2s)ys + πs−1Γ(1− s)ζ(2− 2s)y1−s

and
an(y, s) = 2 |n|s−

1
2 σ1−2s(|n|)y

1
2Ks− 1

2
(2π |n| y)

for n 6= 0.

Remark 9.7. Note that these coefficients all have meromorphic continuations to s ∈ C and are all invariant
under the change s↔ 1− s. I guess you

need to
know the
functional
equation of
the K Bessel
function to
verify this
for n 6= 0. I
don’t know
it

Lemma 9.8. For y > 4,
|Ks(y)| < e−y/2KRe(s)(2)

so the K-Bessel function has exponential decay.

“It’s easy to prove this asymptotic just by looking at the definition of the Bessel function.”
This implies the “moderate growth” stated in an earlier theorem.
One could have predicted that something like K Bessel should appear by looking at the differential

equation satisfies by the Eisenstein series.

Remark 9.9. Consider the Hyperbolic Laplacian

∆ = −y2

(
∂2

∂x2
+

∂

∂2
y2

)
(which is SL2(R)-invariant). Note that Im(z)s is an eigenfunction with eigenvalue s(1− s), i.e.

∆ Im(z)s = s(1− s) Im(z)s.

This property is invariant under addition and SL2(Z)-translation, so E(z, s) is a ∆-eigenfunction with
eigenvalue s(1− s). In fact, taking Fourier transforms does not invalidate this property, so also

∆
(
an(y, s)e2πnix

)
= s(1− s)an(y, s)e2πinx.
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If we write an(y, s) = y1/2bn(2π |n| y), then this mysterious new bn satisfies the differential equation(
y2 ∂

2

∂y2
+ y

∂

∂y
− (y2 + ν2)

)
bn = 0 where

1

4
− ν2 = (1− s)s.

Apparently this equation has two solutions, one involving K Bessel and one which does not. The one
which does not does not have rapid decay.

9.2 An Application: Prime Number Theorem

Let ϕ : Γ\H! C be a smooth function on the upper half plane which is invariant under SL2(Z). Suppose
it has rapid decay as y !∞, i.e. e.g. If f(z)

is a weight
k holomor-
phic cusp
form, then
we could
take ϕ(z) =

|f(z)| yk/2

|ϕ(z)| = O
(
y−N

)
for all N as Im(z)!∞.

Write it’s Fourier expansion
ϕ(z) =

∑
n∈Z

ϕn(y)e2πinx

(note each ϕn has rapid decay as y !∞).

Definition 9.10. The Mellin transform of ϕ0(y) above is

M(s, ϕ0(y)) =

∫ ∞
0

ϕ0(y)ts
dt

t
.

Recall 9.11. The Petersson inner product is

〈f, g〉Pet =

∫
Γ\H

f(z)g(z)
dxdy

y2

which is well-defined whenever f, g : H! C are Γ-invariant and either of f, g have rapid decay as y !∞
(with the other being of moderate growth).

Lemma 9.12. Suppose ϕ is as described in the beginning of this (sub)section. Then,

〈Es, ϕ〉Pet = c(s)M(s− 1, ϕ0(y)),

where c(s) = π−sΓ(s)ζ(2s).

Slogan. Inner products with Eisenstein series pick up the constant term.

The main point of the proof of the lemma is that this inner product (up to outside factors) is

∫
Γ\H

 ∑
γ∈Γ∞\Γ

Im(γz)s

ϕ(z)
dxdy

y2
=

∫
Γ∞\H

Im(γz)sϕ(z)
dxdy

y2

=

∫ ∞
0

(∫ 1

0

ϕ(x+ iy)dx

)
ys

dy

y2

=

∫ ∞
0

ϕ0(y)ys−1 dy

y
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= M(1− s, ϕ0(y)).

The version of the ‘Prime Number Theorem’ we will prove with this is that Riemann zeta ζ(s)

is nonvanishing when Re(s) = 1. This is equivalent to the usual ‘Prime Number Theorem’ that π(x) ∼
x/ log x.

Recall 9.13. The zeta function shows up in the constant term

a0(y, s) = π−sΓ(s)ζ(2s)ys + πs−1Γ(1− s)ζ(2− 2s)y1−s

of E(z, s).

Proof of ‘Prime Number Theorem’. Suppose ζ(1 + it0) = 0 for some t0 ∈ R. By taking complex conju-
gation, we see that also ζ(1 − it0) = 0. Let s0 = 1+it0

2 , so Es0 = E(−, s0) has vanishing constant term,
which is strange for an Eisenstein series. Looking at the remaining terms of its Fourier expansion, this
implies that Es0 has rapid decay as y !∞ (as if it were a cusp form). Now, the previous lemma tells us
that

〈Es, Es0〉Pet = c(s)M(s− 1, 0) = 0.

In particular, 〈Es0 , Es0〉 = 0 which implies Es0(z) = 0. So all its Fourier coefficients vanish, but this is The Peters-
son inner
product is
positive defi-
nite by con-
struction

certainly not the case because we calculated them earlier (the K Bessel function won’t vanish identically
as a function of y). �

Remark 9.14. This same idea can work to prove non-vanishing results for other L-functions. Some people
like to try to use the connection between ζ and E to get progress on zeta functions.

Next class we do Rankin-Selberg.

10 Lecture 10 (3/24)

We talked about non-holomorphic Eisenstein series last time, and saw them applied to a non-vanishing
result for Riemann-zeta. We will see one or two more serious applications today.

Recall
E(z, s) =

1

2
π−sΓ(s)ζ(2s)

∑
γ∈Γ∞\Γ

Im(γz)s,

where Γ = SL2(Z) and Γ∞ is the subgroup (of translations) fixing ∞.

10.1 Rankin-Selberg

Let f ∈ Sk(Γ) be a holomorphic cuspidal modular form of weight k. Expand

f =
∑
n≥1

anq
n.
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Recall that associated to f is an L-function L(f, s) =
∑
n≥1 ann

−s. If f is a normalized (i.e. a1 = 1)
Hecke eigenform, then we get an Euler product

L(f, s) =
∏
p

1

1− app−s + p−2s+k−1
.

Recall 10.1 (Trivial bound). |an| = O(n
k
2 ).

Ramanujan conjectured and Deligne proved |an| = O(n
k−1
2 ). Equivalently, if we factor Note

(αp, βp)

well-defined
up to Z/2Z-
action.

1− apx+ pk−1x2 = (1− αpx)(1− βpx),

then we see f gives rise to

(
αp

βp

)
∈ GL2(C)ss//conj for each p. That is, f gives rise to a collection

semisimple
element
well-defined
up to conju-
gation

{(
αp

βp

)}
p prime

of semisimple conjugacy classes in GL2(C).

History. (1930∼1940) People wanted to improve the trivial bound (this was before Deligne’s proof).
One idea (due to Rankin21) was to consider the modified L-function

∑
n≥1 anann

−s. If you can prove
nice analytic properties for this, this could help bound the square of the absolute value of an.

This idea leads one to consider the Rankin-Selberg convolution. Given f, g ∈ Sk(Γ), write f = Could take
forms of
different
weights,
and only one
needs to be
cuspidal, but
let’s keep it
simple

∑
anq

n and g =
∑
bnq

n. Say they are both normalized eigenforms. We can then form a new Dirichlet
series

“
∑
n≥1

anbnn
−s”.

This will not be quite the correction definition; we will need to modify it by some zeta-factors.
Recall f, g each have a collection of semisimple conjugacy classes (one for each prime p) attached to

them.

Fact (See Theorem 8.3). Attached to f is a 2-dimensional continuous Galois representation

ρf : Gal(Q/Q)! GL2(Q`)

which is unramified at all primes p 6= `. Further, the image of Frobp, up to semimplication, is(
αp

βp

)
.

Above, we’ve implicitly fixed and made use of some abstract isomorphism Q`
∼
−! C

One expects there to be a bijection between such f and such Galois representations.22 Roughly, there
21and independently to Selberg?
22Buzzwords: “Fontaine-Mazur” and “Langlands” and “Taniyama-Shimura”
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should be a ‘natural’ bijection{
Normalized Hecke

eigenforms

}
 !

{
2-dim Galois reps

ρ : Gal(Q/Q)! GL2(Q`)

}
such that the conjugacy class of Frobenius matches the conjugacy class coming from Hecke polynomials.
Put another way, both sides have L-functions

L(f, s) =
∏
p

Lp(f, s) and L(ρf , s) =
∏
p

L(ρf |Gal(Qp/Qp), s),

and this bijection is characterized by demanding L-functions to match up, i.e. L(f, s) = L(ρf , s).

Slogan. Operations of Galois representations should give rise to reasonable L-functions.

Example. Say V,W are two 2-dimensional `-adic Galois representations. Can form their tensor product
V ⊗W , now 4-dimensional.23 There should be some nice L-function attached to this tensor product.

This gives a way to see the ‘right’ definition of the Rankin L-function instead of just guessing that
you should multiply the coefficients termwise.

What, specifically, does this philosophy predict? Do things in terms of the local factors. Let

(
αp

βp

)

be the semisimple conjugacy classes attached to f , and let

(
α′p

β′p

)
be the semisimple conjugacy classes

attached to g. The “semisimple conjugacy class attached to f × g” should then be the tensor product(
αp

βp

)
⊗

(
α′p

β′p

)
,

so the correct definition of the Rankin-Selberg L-function is

L(f × g, s) :=
∏
p

1

(1− αpα′pp−s)(1− αpβ′pp−s)(1− βpα′pp−s)(1− βpβ′pp−s)
.

Lemma 10.2.∑
i≥0

apiX
i =

1

(1− αpX)(1− βpX)
and

∑
bpiX

i =
1

(1− α′pX)(1− β′pX)
.

And ∑
i≥1

apibpiX
i =

(1− αpα′pβpβ′pX2)

(1− αpα′pX)(1− αpβ′pX)(1− βpα′pX)(1− βpβ′pX)

Thus, we see that the Rankin-Selberg L-function differs from the naive guess by a zeta factor:

L(f × g, s) = ζ(2s+ 2k − 2)
∑
n≥1

anbnn
−s

(the arguments given to ζ above may be incorrect).
23Could also take Symn V which is (n+ 1)-dimensional, and could do other sorts of linear algebraic things if you want
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Conjecture 10.3 (Langlands). Given any fi ∈ Ski(Γ), can define L(f1 × f2 × . . . × fn, s) using an
Euler product analogous to what was done above. These should all have meromorphic continuations to
all s ∈ C and satisfy a function equation.

This is known (in much greater generality24) for n ≤ 3. Sounds like it’s known for all n in the
generality stated above.

Rankin-Selberg corresponds to the case n = 2, and we will prove it using Eisenstein series.

Lemma 10.4 (Lemma 9.12). Let ϕ : Γ\H ! C be a smooth function on the upper half plane which is
invariant under SL2(Z). Suppose it has rapid decay as y !∞, i.e.

|ϕ(z)| = O
(
y−N

)
for all N as Im(z)!∞.

Write it’s Fourier expansion
ϕ(z) =

∑
n∈Z

ϕn(y)e2πinx

(note each ϕn has rapid decay as y !∞). Then,

〈Es, ϕ〉Pet = c(s)M(s− 1, ϕ0(y)),

where c(s) = π−sΓ(s)ζ(2s) and M denotes the Mellin transform

M(s− 1, ϕ0(y)) =

∫ ∞
0

ϕ0(y)ts−1 dt

t
.

Note 4. Got distracted and missed some of what he was saying.

Say we have f, g ∈ Sk(Γ). Consider ϕ(z) = f(z)g(z)yk which invariant under Γ = SL2(Z). It is also
smooth and has rapid decay since f, g are cuspidal (in fact, enough for one of them to be cuspidal and
the other one having moderate growth). Then,

〈Es, ϕ〉Pet = c(s)M(s− 1, ϕ0).

Claim 10.5. M(s− 1, ϕ0) ∼
∑
anbnn

−s. Note: if g is
a normalized
eigenform,
its eigen-
values/co-
efficients
will be real
numbers so
bn = bn.
This follows
from the
Hecke oper-
ators being
self-adjoint.

We can just compute this. Write f =
∑
ane

2πin(x+iy) and g =
∑
bne
−2πin(x−iy). Then the constant

term of ϕ(z) = f(z)g(z)yk is

ϕ0(y) = yk
∑
n≥1

anbne
2πin(iy)−2πin(−iy) = yk

∑
n≥1

anbne
−4πny.

Hence,

M(s− 1, ϕ0) =

∫ ∞
0

(
yk
∑

(blah)
)
ys−1 dy

y

=
∑
n≥1

anbn

∫ ∞
0

e−4πnyys−1+k dy

y

24i.e. for automorphic forms on GL2 over a general number field
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= (∗)Γ(s+ k − 1)
∑
n≥1

anbn

(for Re(s)� 0). This gives

〈Es, ϕ〉Pet = (∗)L(f × g, s+ k − 1) =: Λ(f × g, s+ k − 1),

so we recover the Rankin-Selberg L-function up to some ‘simple factors’ (Γ-factors, π-powers, ζ-factors,
etc.). This is the complete Rankin-Selberg L-function (recall from Tate’s thesis that Γ-factors are
local L-factors at archimedean places). Hence,

Λ(f × g, s+ k − 1) =

∫
Γ\H

f(z)g(z)ykEs(z)
dxdy

y2
.

Since ϕ(z) = f(z)g(z)yk has rapid decay, this represents a holomorphic function (except possibly at the
poles of Es(z) when s = 0, 1). The residues at these two (simple) poles are

Ress=0,1 Λ(f × g, s+ k − 1) =
1

2
〈f, g〉Pet .

If f, g are normalized eigenforms, then they must be orthogonal or equal. When f = g, Res 6= 0. If
f 6= g, then 〈f, g〉 = 0 so Res = 0 and the complete L-function is entire. In either case, the equality
Es(z) = E1−s(z) implies the functional equation

Λ(f × g, s) = Λ(f × g, 2k − 1− s)

centered at s = (2k − 1)/2. This is the expected center. Recall the local factors

L(f × g, s)p =
1

(1− αpα′pp−s)(1− αpβ′pp−s)(1− βpα′pp−s)(1− βpβ′pp−s)
.

By Deligne, we know |αp| =
∣∣α′p∣∣ = |βp| =

∣∣β′p∣∣ = p
k−1
2 . Whence

∣∣αpα′p∣∣ = pk−1 (and so on), so∏
p Lp(f × g, s) converges absolutely for Re(s) > 1 + (k − 1) = k. This leads to the prediction that the

center should be at k − 1/2.
We’ll later see a generalization to automorphic reps on GLn×GLm (widely open if you take GLn1

×GLn2
×GLn3

unless n1 = n2 = n3 = 2).

A bit of history, I think Langlands wanted to prove Ramanujan’s conjecture. In one form, this says
|αp| = 1 when you normalize αp in an appropriate way. Doing this normalization makes things look nicer Divide by

p(k−1)/2, I
think

(e.g. eliminates awkward k’s showing up in complete Rankin-Selberg L-functions).
Note that these come in pairs (the reciprocal is also a root), so enough to show |αp| ≤ 1. To show

this, one might try to show
∣∣αnp ∣∣ ≤ pε for all n. Since

Symn

(
αp

βp

)
∼ diag

(
αipβ

n−1
p

)
0≤i≤n ,

this is the same as saying that L(Symn f, s) is absolutely convergent for Re(s) > ε for all n.

46



The actual conjecture made was L(Symn f, s) = L(πn, s) where πn is some automorphic representation
on GLn+1.

Note 5. Wei said more stuff, but I was distracted and didn’t write it down.

Sounds like Deligne learned about Rankin-Selberg from a class by Serre on modular forms. He then
adapted this technique as an ingredient in his proof of the Weil conjectures.

11 Lecture 11 (3/29)

Note 6. A minute or two (or more?) late.

11.1 Maass (wave) form

Something something Hyperbolic Laplacian operator (Note that ∆ is Γ = SL2(Z)-invariant, so
descends to an operator of Γ\H)

∆ = −y2

(
∂

∂x2
+

∂

∂y2

)
.

The sign is chosen to make this semipositive, 〈∆f, f〉Pet ≥ 0. It is also self-adjoint w.r.t the Petersson
inner product: 〈∆f, f〉 = 〈f,∆f〉. One can easily compute

∆y2 = −s(s− 1)y2 = s(1− s)y2.

Thus, the non-holomorphic Eisenstein series Es(z) = 1
2π
−sΓ(s)ζ(2s)

∑
γ∈Γ∞\Γ Im(γz)s also satisfies

∆Es = s(1 − s)Es. If we write s = 1
2 + ν, then the ∆-eigenvalue of Es is 1

4 − ν2 = s(1 − s). We
know the non-holomorphic Eisenstein series satisfies a functional equation relating s ↔ 1 − s, so the
“central critical line” occurs at Re(ν) = 0, i.e. ν ∈ iR (these will be “tempered” in a sense to be make
precise later).

To generalize this situation, we drop the explicit description of Es, but keep these eigenfunction
properties.

Definition 11.1. Let f : H! C be a smooth function. We call is a Maass form if it satisfies

(1) Γ-invariant

(2) ∆-eigenfunction: we write ∆f =
(

1
4 − ν

2
)
f with ν ∈ C.

(3) moderate growth as y !∞, i.e. |f(z)| = O(yN ) for some N as y !∞.

Consider also the condition

(3’) rapid decay, i.e. |f(z)| = O(y−N ) for all N as y !∞.

If f satisfies (1),(2),(3’), then we call is a cuspidal Maass form.

Compare above definition to that of (cuspidal) holomorphic modular forms.
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11.1.1 Fourier expansion

If f(z) is a Maass form, then Γ-invariant means we can write f(z) =
∑
n∈Z an(y)e2πinx where z = x+ iy.

The individual terms must satisfy

∆
(
an(y)e2πinx

)
=

(
1

4
− ν2

)
an(y)e2πinx.

When n = 0, this says that

−y2

(
∂

∂y

)2

an(y) =

(
1

4
− ν2

)
an(y).

One can see that this has two linearly independent solutions y
1
2±ν , so we must have a0(y) = λy

1
2−ν+µu

1
2 +ν

for some λ, µ ∈ C. This is the same as what happened with the Eisenstein series.
What about when |n| ≥ 1? The corresponding differential equation again has two independent

solutions, but now one of them is distinguished since it’s the only one of the two to have moderate growth
(the other has exponential growth).

Recall 11.2. Recall the K-Bessel function

Ks(y) :=
1

2

∫ ∞
0

e−(t+ 1
t )yts

dt

t
where y > 0.

Since f(z) satisfies moderate growth, one must have

an(y) = y
1
2Kν(2π |n| y) for some an ∈ C

when |n| ≥ 1 (note s− 1
2 = ν). The upshot is that we can write

f =
(
λy

1
2−ν + µy

1
2 +ν
)

+
∑
n≥0

any
1
2Kν(2π |n| y)e2πinx.

Compare to the holomorphic case where the terms are (multiplies of) e2πinz = e−2πinye2πinx. We have a
similar expression with e−2πny replaced by y1/2Kν(2π |n| y).

Notation 11.3. Set a+
0 := µ and a−0 := λ.

We see f is determined by the coefficients {an}n∈Z (implicitly a0 = (a+
0 , a

−
0 )).

Lemma 11.4. A Maass form f is cuspidal ⇐⇒ a±0 = 0.

Warning 11.5. It is hard to give any explicit example of cuspidal Maass forms. Nevertheless, they do
exist.

Notation 11.6. We let S(Γ, ν) denote the space of cusp forms with paramter ν.

Question 11.7 (Audience). Are there known dimension counts for space of cuspidal Maass forms?

Answer. More of this later, but for a quick answer: there is the Weyl law, something like dimS(Γ, ν) ∼
c
∣∣ν2
∣∣2 (exponent might be missing a factor of 1/2?). The proof of this is difficult; Selberg established

this using what’s now called the Selberg trace formula.
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Lemma 11.8 (Trivial estimate). Let f be a cusp form. |an| = O(n1/2) with implied constant depending
on ν and 〈f, f〉Pet.

(Cuspidal Maass forms behave like weight 1 cusp forms).
On S(Γ, ν), there is an involution σ : f 7! σ(f) where σ(f)(z) = f(−z). We say f is even if σ(f) = f

and is odd if σ(f) = −f . Equivalently, f is even/odd ⇐⇒ an = ±a−n. Let’s fix a parity ε = {±1}, so
only the positive coefficients of f matter. We then define the L-function

L(f, s) :=
∑
n≥1

ann
−s.

Theorem 11.9. Let f be cuspidal with σ(f) = εf . Then, L(f, s) extends to an entire function on C
with functional equation: For

Λ(f, s) := π−sΓ

(
s+ ε+ ν

2

)
Γ

(
s+ ε− ν

2

)
L(f, s),

one has
Λ(f, s) = (−1)εΛ(f, 1− s).

Recall 11.10. The functional equation for a weight k holomorphic modular form relates s ↔ k − s, so
we again see that Maass forms behave like weight 1 modular forms.

Proof Idea. Γ-invariant applied to

(
1

−1

)
∈ Γ gives f(−1/z) = f(z), so f(i/y) = f(iy). As usual, we

then take the Mellin transform

∫ ∞
0

f(iy)ys
dy

y
=

∫ ∞
0

∑
n 6=0

any
1
2Kν(2π |n| y)ys

dy

y

 .

To compute this, the essential part is understanding∫ ∞
0

Kν(y)y
1
2 +s dy

y
.

Plug in the integral representation of the K-Bessel function Kν(y) =
∫∞

0
e−y(t+1/t)tν dt

t , do some change
of variables, and watch the Γ-factors fall out. �

Remark 11.11. When proving the prime number theorem, we claimed at the end that the K-Bessel
function is nonvanishing. This follows from the below computation.

Lemma 11.12. ∫ ∞
0

Kv(y)ys
dy

y
= 2s−2Γ

(
s+ ν

2

)
Γ

(
s+ ν

2

)
Corollary 11.13. Kν(y) 6≡ 0 in y for any choice of ν ∈ C.

Remark 11.14. If f is cuspidal, we can also do Hecke theory. Hence, it’s possible to define Hecke
eigenforms f for Maass forms. These will again satisfy Tnf = anf for n ≥ 1. Hence, (if f normalized?),
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its L-function will have an Euler product

L(f, s) =
∏
p

1

1− app−s + p−2s

(compare last term in denom with p−2s+k−1).

Conjecture 11.15 (Generalized Ramanujan Conjecture). If you decompose the Hecke polynomials
1− apx+ x2 = (1− αpx)(1− βpx), then |αp| = |βp| = 1 for all p.

There is an archimedean analogue due to Selberg. Unclear to
me if this
was meant
to be under
the same
header as
‘generalized
Ramanujan’

Conjecture 11.16. If f is a cuspidal eigenform, then ν ∈ iR (i.e. |eν | = 1).

These are both still quite open. These Maass forms don’t have an algebro-geometric interpretation,
so Deligne’s argument (i.e. the Weil conjectures) for holomorphic modular forms does not apply.

11.2 Spectral Decomposition

What does the space of all Maass forms look like?

Note 7. Got distracted and missed some of what he was saying.

Sounds like we want to consider some space of functions (e.g. C∞(Γ\H) or L2(Γ\H)) and then
decompose it somehow...

Let C∞0 (Γ\H) ⊂ C∞(Γ\H) denote the subspace of cuspidal (smooth) functions, i.e. those for which∫ 1

0

f(x+ iy)dx = 0 for all y.

Similarly, let L2
0(Γ\H) ⊂ L2(Γ\H) denote the subspace of cuspidal (square-integrable) functions.

Fact. C∞(Γ\H) is dense in L2(Γ\H).

We have ∆ y C∞(Γ\H) and this action extends to one on L2(Γ\H).

Question 11.17. How do we decompose L2(Γ\H) into ∆-eigenspaces?

Let’s look at some classical examples.

Example. Say we have a compact space like S1 = R/Z. Set ∆ =
(
∂
∂x

)2
. This descends to an operator

on S1, and the eigenfunctions are x 7! e2πinx. Here,

L2(S1) =
⊕
n∈Z

Ce2πinx

(Hilbert space direct sum). It’s not true that every f ∈ L2(S1) is of the form
∑
n∈Z ane

2πinx, but
that they are in L2 (equality away from a measure zero subset). If f ∈ C∞(S1), this we do have
f(x) =

∑
n∈Z ane

2πinx pointwise.
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Example. Say we have a noncompact space like R. The eigenfunctions here are x 7! e2πixν for ν ∈ C.
The theory of Fourier transforms gives

L2(R)“ =′′
∫
y∈R

Ce2πixy.

What we mean by this is that any f ∈ L2(R) can be written as

f(x) =

∫
R
f̂(y)e2πixydy

inside L2(R) (if f ∈ S(R) is Schwartz, for example, above equality holds as honest functions, not just in
L2).

In the present case, for Γ\H, we’ll get a situation which is a mix of these two. First note that Γ\H ' C
is noncompact (Recall Γ = SL2(Z)).

Theorem 11.18.
L2(Γ\H) = C1⊕ L2

0(Γ\H)⊕
∫
iR
E

(
1

2
+ ν, z

)
dν.

Further, the cuspidal part is

L2
0(Γ\H) =

⊕
i≥1

Cfi where ∆fi = λifi and λ0 = 0 < λ1 ≤ λ2 ≤ · · ·

(with multiplicity). Above, we normalize fi s.t. 〈fi, fi〉 = 1.

There are the constant functions, the cuspidal functions, and the Eisenstein series. We say that

C1Γ\H ⊕ L2
0(Γ\H)

is the “discrete part,” a Hilbert direct sum of 1-dimensional spaces. The other part∫
iR
E

(
1

2
+ ν, z

)
dν

is called the “continuous part,” given by a direct integral instead of direct sum.

Fact. Say f : Γ\H! C is smooth of rapid decay. Then, there is an on-the-nose equality

f =
〈f, 1〉
〈1, 1〉

+
∑
i≥1

〈f, fi〉 fi +

∫
iR
E

(
1

2
+ ν,−

)〈
f,E

(
1

2
+ ν,−

)〉
dν

(note we normalized by the volume).

Note that we only need the “tempered” Eisenstein series to describe the spectral decomposition.

Remark 11.19. Implicitly, the decomposition tells us that for λ = 1
4 − ν

2, dimS(Γ, λ) < ∞. In fact, it
even says there are only countably many possible eigenvalues for cuspidal Mass forms. What ones do
appear is very mysterious.
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The Weyl law says
dim {f : ∆f = λf with |λ| ≤ T} ≈ cT ?

(with some explicit exponent).

Remark 11.20. Γ\H is non-compact. This was a source of complications. There exists some “arithmetic
subgroups” Γ ≤ SL2(R) such that Γ\H is compact. The spectral decomposition in these cases is easier;
it only has discrete parts: L2(Γ\H) =

⊕
i≥0 Cfi with ∆fi = λifi and

λ0 = 0 < λ1 ≤ λ2 ≤ . . . ,

so the Eisenstein series are an effect of the non-compactness.

In the future, we’ll try to incorporate/investigate these co-compact subgroups more.

12 Lecture 12 (3/31)

Note 8. *A little late again*

We will see that holomorphic modular forms and Maass wave forms both give examples of automorphic
forms on GL2(R) (to be defined). More generally, one can consider automorphic forms on GL2(A) with
A = ideles. What sort of properties/whatnot do these display? I kinda

jumped in
in the mid-
dle of this,
so I’m not
sure what
he’s going
for right now

• Analytic conditions (e.g. holomorphic or Laplacian eigenvector)

• “discrete” group theoretic conditions (e.g. automorphy for some Γ ⊂ SL2(Z))

We want to put everything under one umbrella.

12.1 Automorphic forms on GL2(R)

Assumption. As usual, we make the simplifying assumption Γ = SL2(Z).

Assumption. In the spirit of keeping things simple, let’s only consider the connected component G =

GL2(R)+.

For the next part, we mostly follow chpt. 2, sect. 1–2 of Bump. We won’t spend a ton of time on this
chapter in this course.

Remark 12.1. We will need a bit of Lie theory. We don’t want to assume too much, and we don’t want
to get sidetracked developing Lie theory, so we stick with the simplest case.

12.1.1 Crash Course on Lie Theory of GL2

Fact. The Lie algebra g = gl2(R) of G = GL2(R)+ is the set of 2 × 2 real matrices with Lie bracket
[X,Y ] = XY − Y X given by the commutator.

Note that g acts (by differential operators) on any vector space on which G acts.
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Example. Let C∞(G) be the space of smooth functions on G. Then, Gy C∞(G) by right translations,
called the right regular action. This induces a g-action. Given X ∈ g, one has Could have

used L2(G)

instead, but
we want to
keep things
easy

(X.f)(g) =
∂

∂t

∣∣∣∣
t=0

f
(
getX

)
.

Notation 12.2. We let U(g) denote the universal enveloping algebra of g.

Note that any g-action extends to an U(g)-action. Concretely, this is just saying that you can compose
differential operators, i.e. consider something like (X1X2 . . . Xn) · f (X1X2 does not refer to matrix
multiplication).

Of particular important is the center Z(g) := Z(U(g)) of the universal envoloping algebra.

Fact. For g = gl2(R) as we have here, Z(g) = C[Z,∆], where

Z =

(
1 0

0 1

)
∈ g and ∆ = Casimir element.

Note that Casimir elements exist for any reductive Lie algebra, and are built from a orthonormal basis
of the Killing form (restricting to the semisimplification of g).

note that gl2(R) = CZ⊕sl2(R) where Z =

(
1 0

0 1

)
as above. Here sl2(R) consists of trace 0 matrices,

and has a standard basis

h =

(
1

−1

)
, e =

(
0 1

0 0

)
, and f =

(
0 0

1 0

)

which satisfies
[e, f ] = h, [h, e] = 2e, and [h, f ] = −2f.

In this case (up to scaling), the Killing form is simply (X,Y ) = Tr(XY ) (here, XY is matrix multiplica-
tion). If e∗, f∗, h∗ ∈ sl2(R) is a dual basis w.r.t the Killing form (e∗ = f, f∗ = e, and h∗ = 1

2h), then the
Casimir element is

∆ = ee∗ + ff∗ + hh∗ = ef + fe+
1

2
h2.

Example. Let K = SO(2,R) be a maximal compact subgroup of GL2(R)+.25 Then, GL2(R)+/(R×+ ·
K)

∼
−! H via g 7! g ·

√
−1. Here, Stab(

√
−1) = R×+ ·K.

Example. The Casimir element ∆ gives rise to the Hyperbolic Laplacian y2

((
∂
∂x

)2
+
(
∂
∂y

)2
)
(maybe up

to scaling). By this we mean, under the natural ‘restriction’ map C∞(H)! C∞(G) (recall ∆ y C∞(G)),
the two actions line up.

We want to give a(n ad-hoc) definition of heights on G = GL2(R)+. Note that we have a closed
embedding G ↪! R4+1 via g 7! (G,det(g)−1). This is actually a closed embedding as varieties over R.

25If K ≤ H with H a compact subgroup, then K = H. Maybe do something like take the H-average of the standard
inner product on R2 to get H conjugate to SO(2,R)?
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There’s a natural norm on R5, so we pull this back to define the norm

‖ · ‖ : GL2(R) −! R+

g 7−!
(∑

|gij |2 + (det g)−2
)1/2

Fact. This norm is bi-K-invariant.

Note that this will never be 0 (in fact, it sounds like it is bounded away from 0). Furthermore, the
set

{g ∈ G : ‖g‖ ≤ T}

is compact for all T > 0.

12.1.2 Back to automorphic forms

As before, G = GL2(R)+.

Definition 12.3. A smooth function f : G! C is an automorphic form if it is

(0) (central character) The center ZG ∼= R×+ acts by a character f(gz) = ω(z)f(g) for all z ∈ ZG and
g ∈ G.

For simplicity, we’ll assume ω = 1 is trivial.

(1) Γ-invariant

(2) K-finite, Z(g)-finite

(3) of moderate growth, i.e. |f(G)| = O
(
‖g‖N

)
for some N .

What are these finiteness conditions in (2)?

Definition 12.4. We say f is K-finite if the set

{k · f | k ∈ SO(2,R) = K}

generates a finite dimensional C-vector space.

Example. If f is a K-eigenvector, i.e. (k · f)(g) = f(gk) = χ(k)f(g) for some character χ : K ! C×,
then f is K-finite.

Example. Working with C∞(S1). Consider f =
∑
n∈Z ane

2πinx. Let K = S1. Then, f is K-finite
⇐⇒ an = 0 for all but finitely many n. Thus,

C∞(S1)K-fin =
⊕
n∈Z

Ce2πinx,

where above we take the algebraic (not Hilbert) direct sum. Hence, we see K-finiteness is an algebraic
condition. We want to restrict to a subspace more amenable to purely algebraic techniques (w/o having
to worry about topologies).
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Note that SO(2,R) ∼= S1 is a torus, so we know all its characters. Write κθ :=

(
cos θ sin θ

− sin θ cos θ

)
where

θ ∈ R/2πZ. Then the characters of K are precisely

χn(κθ) = e2πinθ for n ∈ Z.

Above, χn is the “weight n character.”
Z(g)-finite has the same sort of definition.

Recall 12.5. Z(g) = C[Z,∆] and the action of Z is determined by the central character (since the center
of the Lie algebra g, z(g) = CZ, is generated by Z).

Definition 12.6. We say f is Z(g)-finite if there exists a nonzero polynomial p(∆) ∈ C[∆] such that
p(∆)f = 0. Equivalently, there is a ideal I ⊂ Z(g) of finite codimension which kills f .

Definition 12.7. We’ll say f is (K,Z(g))-finite if it is K-finite and Z(g)-finite.

Example (Mass forms are automorphic). Let f : Γ\H! C be a Mass more. Consider its pullback

f̃ : G� Γ\G/K · ZG
∼
−! Γ\H f

−! C.

Then, f̃ is automorphic. It is visibly Γ-invariant. We see K acts trivial so it is K-finite. It is Z(g)-finite
since f is a ∆-eigenvector. Finally, it inherits moderate growth from f .

Notation 12.8. We let A(G,Γ) denote the space of automorphic forms on G = GL2(R)+.

Embedding holomorphic forms into A(G,Γ) is a little more involved (have to translate holomorphic
condition and the weight k condition), so we postpone this until next time.

12.2 Adelic version of automorphic forms

Recall that for modular forms, you have the ability to change the level of the form.
Let F/Q be some number field (one can make sense of the below for function fields too), and let

A := AF be its adeles. Let G be any algebraic group of F (e.g. G = GL1 or G = GL2). Once can give
G(A) its adelic topology so that G(A) =

∏′

v
G(Fv) (i.e. (gv)’s s.t. gv ∈ G(OFv ) for almost all places

v), and then consider the quotient G(F )\G(A).

Recall 12.9. A Hecke character was a continuous homomorphism

χ : GL1(F )\GL1(A)! C×.

Notation 12.10. We let K∞ denote a maximal compact of G(F∞), where F∞ =
∏
v|∞ Fv.

Example. When F = Q, K∞ = O(2,R).

Fact. G(F ) ↪! G(A) is a discrete subgroup

Definition 12.11. We say a continuous homomorphism ϕ : G(A)! C is an automorphic form if
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(0) (central character)
ϕ(zg) = ω(z)ϕ(g)

for all z ∈ A×, the center of G(A), where ω : F×\A× ! C× is a Hecke character.

(1) it is G(F )-invariant (on the left)

(2) it is (K∞, Z(g∞))-finite, and is right-invariant under some compact open Kf ⊂ G(Af ). Here This is the
non-arch
analogue of
the finite-
ness condi-
tions

Af =
∏′

v-∞
Fv and G(Af ) =

∏′

v<∞
G(Fv).

(3) it is of moderate growth, i.e. for any gf ∈ G(Af )

|ϕ(g∞gf )| = Ogf
(
‖g∞‖N

)
for some N

(N depending on gf ).

Notation 12.12. We let A(G,ω) denote the space of all automorphic forms ϕ on G(A) with central
character ω. Note that

A(G,ω) =
⋃
Kf

A(G,ω,Kf )︸ ︷︷ ︸
Kf -invariant
auto forms

where Kf ranges over all compact opens in G(Af ).

Remark 12.13. If ϕ ∈ A(G,ω,Kf ) then it descends to a function

ϕ : G(F )\G(A)/Kf −! C

Remark 12.14. “Kf -invariant for some compact open Kf ” can equivalently be replaced by ϕ is finite
under some choice of maximal open compact K◦f . A standard choice is

K◦f =
∏
v<∞

GL2(OFv ).

Fact. Any two maximal compact opens are conjugate.

Say ϕ is Kf -invariant. Then, Kf ⊂ K◦f is finite index. This is because K◦f/Kf is compact (since K◦f
is) and discrete (since Kf is open).

Can we relate automorphic forms on G(A) with those on G(R)? That is, can we relate G(F )\G(A)/Kf One day I’ll
figure out a
nice-looking
way to dis-
play double
cosets

to Γ\GL2(R)?
The key is strong approximation (more on this next time).

Strong approximation As before F/Q some number field. Recall we have an embedding F ↪! Af .
One version of strong approximation says that SL2(F ) ↪! SL2(Af ) is dense, i.e. for any open Kf ⊂
SL2(Af ), we have ∏′

v

SL2(Fv) = SL2(Af ) = SL2(F )Kf .

We will give a proof of this next time. Here’s how it relates to the question we asked before.
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Application. Take F = Q and Kf =
∏
p<∞ SL2(Zp). Then,

SL2(Z)\ SL2(R)
∼
−! SL2(Q)\ SL2(AQ)/

∏
p<∞

SL2(Zp).

Question 12.15 (Audience). Which kinds of groups does strong approximation hold for?

Answer. Simply-connected, semisimple algebraic groups G for which G(F∞) is noncompact. Question:
πét1 (G) = 1?

Answer: No.
A different
notion of
fundamental
group based
on isogenies
instead.

Question:
Over OF ?

Assuming I
heard cor-
rectly

13 Lecture 13 (4/5)

13.1 Strong approximation

Let F be a global field (actually, say it’s a number field F/Q). Let A = AF =
∏′

v
Fv be its adeles, and

let Af =
∏′

v-∞
Fv be the finite adeles. We want to show SL2(F ) ↪! SL2(Af ) has dense image.

In fact, let’s show something stronger. Fix a finite set S of places. Define

AS =
∏′

v 6∈S

Fv.

Theorem 13.1 (Strong approximation). Assume S 6= ∅. Then,

(i) Let G = SLN . Then, G(F ) is dense in G(AS).

(0) Let G = Ga be the additive group. Then, F = G(F ) is dense in G(AS) = AS.

Remark 13.2. There is also weak approximation: for S a finite set, the embedding F ↪!
∏
v∈S Fv has

dense image. If S consists solely of non-archimedean places, then this is basically Chinese Remainder
Theorem.

In the proof of strong approximation, one can reduce (i) to (0). This is based on the following linear
algebraic lemma.

Lemma 13.3. Fix a field k. Any g ∈ SLN (k) can written as a product of unipotent matrices, where
X is unipotent ⇐⇒ (1 −X)m = 0 for some m ( ⇐⇒ after conjugating it’s upper triangular with 1’s
along the diagonal). Question:

Does this
follow from
exp : slN !

SLN having
image gener-
ating SLN?

There’s apparently at least one proof of this which writes things as products of (1 + λEij) where Eij
is the elementary matrix with a single nonzero entry, a 1 in slot ij.

Proof that (0) =⇒ (i) in Strong approximation. May assume g = 1 + λEij for some λ ∈ AS . (0) then
says λ can be approximated by F -points. �

Remark 13.4. The linear algebra lemma says SLN is generated by unipotent elements. Any group with
such properties can have a version of strong approximation.

Non-example. Gm = GL1 does not satisfy strong approximation. F× ↪!
(
AS
)× might not have dense

image, e.g. if S = {arch. places}, then A×f /
(
F× ·

∏
v<∞O×Fv

)
' ClF which might not be trivial. If the

image were trivial, this image would be trivial.
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In fact, F× ↪!
(
AS
)× never has a dense image. This is because there’s always some nontrivial ray

class group.

What does a general version of strong approximation look like? Let G be a simple F -algebraic group
(no proper (positive dimensional) normal F -algebraic subgroup). Also assume G is semisimple (trivial
(geometric) radical, i.e. no solvable part).

Proposition 13.5. Under the above hypotheses, G has strong approximation (i.e. G(F ) ↪! G(AS) has
dense image for all finite S 6= ∅) ⇐⇒ G(FS) is noncompact and G is simply connected, i.e. any
surjective isogeny G′ � G (so finite kernel) of F -groups is an isomorphism.26

Above, I think, FS =
∏
v∈S Fv, and you want this noncompact for all choices of S?

Example. If S is the set of all arch. places, then
∏
v∈S G(Fv) compact ⇐⇒ G(Fv) compact for all

v ∈ S.

Example. G = SLN works (‘type A’).
Could also consider other types. G = Sp2n (‘type C’) is simply connected. Orthogonal groups are not

simply connected, but spin groups G = Spin2n+1 (‘type B’) and G = Spin2n (‘type D’) are.

Example. Any forms/twists of above examples also work.

We still haven’t proved strong approximation for the additive group. Let’s give a proof in a simple
case.

Proof of Strong Approximation for Ga when S = {arch. places}. We want to show F ↪! Af has dense
image. It suffices to show that for any compact open subgroup U ⊂ Af , F + U = Af . WLOG, we may
assume

U =
∏
v∈T

$nv
v OFv ×

∏
v 6∈T

OFv

for some finite set T . In fact, it suffices to show this for U =
∏
v<∞OFv (any compact open subgroup

will contain aU for some a ∈ F×). Thus, we only need show the induced map

F −! Af

/∏
v-∞

OFv

is surjective. In fact, we can reduce to case F = Q (since you apply −⊗Z OF to get from this case to the
general case), i.e. we need show

Q −!
AQ,f∏
p Zp

=
⊕
p-∞

Qp
Zp

is surjective. This is the case because it’s the natural quotient map

Q� Q/Z ∼
−!
⊕

Qp/Zp.

26This implies π1(G(C)) = 0, and it sounds like this is actually equivalent to π1(G(C)) = 0.
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If S does not contain all archimedean places, use that OF ↪!
∏
v|∞ Fv is a (full rank) lattice, so

OF !
∏

v|∞
v 6=v0

Fv has dense image after removing any single place.

If S has no archimedean places, use/show that OF [1/S] is dense in F∞ =
∏
v|∞ Fv. For example,

Z[1/p] ↪! R has dense image.

�

Corollary 13.6. π0(SLN (F )\ SLN (Af )/Kf ) = 0 for any compact open Kf ⊂ SLN (Af ).

This is because, this quotient is (K ∩ SLN (F ))\SLN (F∞) which is the quotient of a connected topo-
logical space.

Example. Let B be a quaternion algebra over Q. In fact, let B = H be the Hamilton quaternions (over I’m not con-
vinced I’ll
ever know
the actual
definition of
a quaternion
algebra

Answer: It’s
a central
simple al-
gebra of di-
mension 4

Q).27 Note that B⊗QQ 'M2×2 (i.e. B is a form of 2× 2 matrices). Let G̃ = B× as Q-algebraic groups,
so G̃ is a form of GL2. In fact it’s a so-called “inner form of GL2.” Here G̃(R) = B×R . Note there is a
“determinant/reduced norm” map G̃ det

−−!
Nm

Gm. This is surjective, so let G be its kernel, i.e.

1 −! G −! G̃ −! Gm −! 1.

Then, G ⊗ Q ' SL2, so G is an inner form of SL2. Note that G(R) ' SU(2) (the unit sphere in the
quaternions over R) is compact. This G we denote SL(B) := G.

In this case, strong approximation still applies with extra conditions. If you choose S s.t. G(FS) is
non-compact, then G(F ) ↪! G(AS) has dense image.

If B is a quaternion algebra over F , can perform an analogous construction to get all “inner forms” of
GL2. More generally, if you have an n2-dimensional central simple algebra over F , this construction will
give all inner forms of GLn. In any case, you set G = B× and then G⊗F ' GLn,F . One can use this to
define a notion of automorphic form ϕ : G(F )\G(A)! C.

Fact. If B is ‘division at one place,’ i.e. B ⊗F Fv is a division algebra, then G(F )\G(A) is compact
where now G = SL(B).

Recall 13.7. SL2(Z)\ SL2(R) ' SL2(Q)\ SL2(AQ)/
∏
p<∞ SL2(Zp) (by strong approximation) is non-

compact. Furthermore, if we divide by K∞ = SO(2,R), then Γ\ SL2(R)/K∞ ' Γ\H is still non-compact,
but can be compactified by adding a single cusp point. This non-compactness complexifies things, e.g. it
caused the spectral decomposition of the L2 space to have a continuous part in addition to its discrete
part.

Compare the above to the following situation:

Fact (from global cft). {
quaternion
alg. /F

}
'
 !

{
Σ

∣∣∣∣finite set of places w/
#Σ = even

}
.

Above B 7! ΣB = {v : Bv division}.
27H = Q⊕ Qi⊕ Qj ⊕ Qk where i2 = j2 = k2 = ijk = −1.
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Example. Hamilton quaternions correspond to {∞, 2}. Given two non-archimidean primes p, q, get
some corresponding quaternion algebra B = B(p, q).

Now, strong approximate applies to show that

SL2(B)(Q)\ SL(B)(A)/Kf ×K∞ ' Γ\ SL(B)(R)/K∞ ' Γ\H,

where Γ = Kf ∩ SL(B)(Q) for Kf ⊂ Af any compact open. Now, Γ is co-compact (i.e. the above 3
equivalent spaces are compact) and the L2-decomposition is purely discrete:

L2(Γ\H) '
⊕̂

ϕi
Cϕi

with sum taken over ∆-eigenfunctions.
One of the things we’ll talk about in the future is the following.

Goal (Jacquet-Langlands correspondence). Each ϕi as above can be transformed into an eigenfunc-
tion ϕ for SL2.

Automorphic forms attached to different quaternion algebras are not all that different.

14 Lecture 14 (4/7): (g, K)-modules; spectral decomp revisited

We defined automorphic forms over real numbers and over adeles.
Let G = GL2(R)+ (or SL2(R)). We can consider L2(Γ\G) or just the automorphic forms A(Γ\G);

these are actually not in L2, but we set

A2(Γ\G) := L2(Γ\G) ∩ A(Γ\G).

Note that this contains cuspidal forms (but e.g. not Eisenstein series). Let A0(Γ\G) ⊂ A2(Γ\G) denote
the subspace of cuspidal automorphic forms, i.e. those automorphic f : Γ\G! C such that

const(f)(g) :=

∫
Γ∞\N(R)

f(ng)dn = 0 for all g

(i.e. the constant term vanishes). Here, Γ∞ =

{(
1 n

0 1

)
∈ Γ = SL2(Z) : n ∈ Z

}
, and N is the unipo-

tent radical of the Borel subgroup

N =

{(
1 ∗
0 1

)}
⊂ G.

If G = GL2(F ) for a number field F , we say f : G(F )\G(A)! C is a cuspidal automorphic form
if

const(f)(g) :=

∫
N(F )\N(A)

f(ng)dn = 0 for all g.

Remark 14.1. Why do we call this thing the ‘constant term’? Say we have f : N(F )\G(A)! C. Consider

ϕf,g : N(F )\N(A) −! C
n 7−! f(ng)
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Above, N(F )\N(A) is abelian and compact, so it has a Fourier expansion

ϕf,g(n) =
∑
ξ∈F

ϕ̂f,g(−)ψξ(−)

(Pontryagin dual of F\A is F ). The ‘constant term’ is precisely the coefficient associated to the trivial
character (i.e. ξ = 0 ∈ F ). That is

const(f) = ϕ̂f,g(0) =

∫
N(F )\N(A)

ϕf,g(n)dn =

∫
N(F )\N(A)

f(ng)dn.

Remark 14.2. Say G = GL2(R)+ (or SL2(R)) and K = SO(2). We have embeddings

L2(Γ\G) A2(Γ\G) A(Γ\G)

L2
0(Γ\G) A0(Γ\G)

⊂dense ⊂

⊂

⊂dense

⊂
Note that L2(Γ\G) and L2

0(Γ\G) are Hilbert spaces. The spaces of automorphic forms though have no
topology; they are just C-vector spaces. On the LHS, there is a G-action. On the RHS there is no
G-action, but there is an action by the Lie algebra gC = LieG⊗RC. There’s also (on the RHS) an action
by the maximal compact K.

14.1 (g, K)-modules

Definition 14.3. A (g,K)-module (really should be gC) is a C-vector space V along with representations
πg : g ! End(V ) (a Lie algebra homomorphism) and πK : K ! GL(V ) (a group homomorphism) such
that

(a) K-action is locally finite, i.e. any v ∈ V is K-finite. Let V (v) = CK · v be the (f.dim) vector
space generated by v under the K-action. We require that K y V (v) be a smooth action.

(b) Let k := Lie(K). The induced action dπK : k! End(V ) must be the restriction πg|k.

(c) We have the following compatibility condition: for any X ∈ g and k ∈ K,

πK(k)πg(X)πK(k)−1 = πg(Ad(k)X).

Example. Say G acts on some separable (so countable basis) Hilbert spaceV. Can consider the subspace
V∞ of smooth vectors, i.e. those v for which ϕv′ : G! C, g 7! (gv, v′) is smooth for all v′ ∈ V. Inside
V∞ is V := VK-fin consisting of the K-finite vectors. If V is an admissible G-rep in the sense that
V|K =

⊕̂
σi∈Irr(K)σ

mi
i with mi <∞, then V will be a (g,K)-module.

Definition 14.4. A (g,K)-module V is admissible if

V |K '
⊕

σi∈Irr(K)

σmii

(algebraic direct sum) with mi <∞.
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A natural question is to try and classify all irreducible (g,K)-modules. Bump’s book (section 2.5)
does this for g = sl2 and K = SO(2); in this case, one is in luck since K is abelian (so all its irreps
are 1-dim/characters). In this case, V =

⊕
k∈Z Vk has a ‘weight decomposition’ for the K-action (here,

dimVk ≤ 1).
I’m not sure where we’re going, but coming up next...

Recall 14.5. Recall vectors f ∈ A(Γ\G) are required to be K-finite and finite under Z(U(gC)).

Theorem 14.6.

(1) For any f ∈ A(Γ\G), U(gC) · f is an admissible (g,K)-module.

(2) Fix a finite codimensional ideal I ⊂ Z(gC) and an irrep σ ∈ Irr(K). Then,

A(Γ\G, (I, σ)) := {f ∈ A(Γ\G) : I.f = 0 and CK · f ' σm as K-reps}

is finite-dimensional.

Example. Say σ = 1 is the trivial rep, and I = (∆− λ) ⊂ Z(gC). Then, (2) says that A(Γ\G/K)∆=λ

is finite-dimensional (i.e. A(Γ\G/K) has f.dim ∆-eigenspaces). Compare with finite dimensionality of
spaces of Maass forms.

Say G = SL2 (and K = SO(2)). For Maass forms, we have A(Γ\G/K)∆=λ ⊂ A(Γ\G) and the
larger space is a (g,K)-module. Given f ∈ A(Γ\G/K)∆=λ, it turns out that U(gC) · f is an irreducible
(g,K)-module πλ. One can show that, as a K-rep, one has πλ|K =

⊕
i≡0 (mod 2) πλ(i) with dimπλ(i) = 1.

What about for holomorphic modular forms of weight k? By one of the homework problems, this
is identified with A(Γ\G)weight k,L=0 where L ∈ U(gC) is some differential operator (‘weight lowering
differential operator’). If you take some f in here, then U(gC)f is again an irreducible (g,K)-module πk,
but one of a different flavor. Again ∆ y πk by a scalar; this time the scalar is k

2

(
k
2 − 1

)
(or something

like this), and we get a decomposition of K-reps (assume k even)

πk =
⊕

i≡0 (mod 2)
i<2−k or i>k−2

πk(i).

Again, dimπk(i) ≤ 1.

Note 9. Got distracted and missed a little.

Remark 14.7. Non-trivial analysis goes into proving some of the claims we made, but we want to keep
the discussion as algebraic as we can. We also don’t want to get distracted, so that we have time later
to talk more about automorphic representations and applications to L-functions.

Remark 14.8. One can study automorphic forms over function fields (e.g. F = Fp(t)). In this case,
there’s no analysis or Lie groups, and things are often easier.
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14.2 More adelic situation (?)

Let F/Q be a number field with adeles A = AF . Let G = GL2 and consider G(A). Fix a central character
ω : A×/F× ! C×. We have defined A(G(F )\G(A), ω) previously. This space is huge, but we can write

A(G(F )\G(A), ω) =
⋃

Kf⊂G(Af )

A (G(F )\G(A)/Kf , ω)

where Kf ⊂ G(Af ) runs over open, compacts.

Remark 14.9. By strong approximation, A(G(F )\G(A)/Kf , ω) is basically A(Γ\G(R), ω). We saw this
for SL2 at the end of Lecture 12. For GL2, use the exact sequence

1 −! SL2 −! GL2
det
−! Gm −! 1.

By strong approximation,

GL2(F )\GL2(Af )/K
det
∼
−! F×A×f / detKf =: I

and the RHS (MHS?) is finite. Thus, in actuality,

A(G(F )\G(A)/Kf , ω) =
⊕
i∈I
A(Γi\G(R), ω)

(I think there’s a literal iso as above).

Note that A(G(F )\G(A), ω) is a G(Af )×(g,K)-module (a (g,K)-module and has an action by G(Af )

(and these actions commute I guess?)); this bigger space has the advantage of having more symmetries,
and we’ll see more concretely how this is helpful in the future.

Definition 14.10 (Quite possibly the most important one). Write [G] = G(F )\G(A), and call this the
automorphic quotient.

Can look at L2([G], ω). This is a Hilbert space with a G(A)-action. Recall A0([G], ω) ⊂ L2
0([G], ω).

Theorem 14.11 (spectral decomposition). Let’s just state the result for the cuspidal part.

L2
0([G], ω) =

⊕̂
π∈Irr(G(A))

πm(π),

where m(π) ≤ 1 (multiplicity one). Similarly,

A0([G], ω) =
⊕

π irr. adm.
(g,K)×G(Af )-module

πm(π).

In particular, the spectrum (for the cuspidal part) is discrete.

There’s a version for the full L2-space which involves Eisenstein series.
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Recall 14.12. Let F = Q, Kf =
∏
p<∞G(Zp), and K = K∞ ×Kf . Taking K-invariants,⊕

ϕi ∆-Eigenform

Cϕi = L2
0(Γ\H) ' L2

0([G], ω)K .

Above decomposition should match up with

L2
0([G], ω)K =

(⊕̂
π∈Irr(G(A))

πm(π)

)K
.

Let T = C[Tn : n ≥ 1] be the Hecke algebra. If I heard correctly, ϕi should be a (∆,T)-eigenform. Wei
said a little more about this, but I did not follow... sounds like we define a Hecke algebra TKf :=

C∞c (G(Af )//Kf ).
We’ll say more about this Hecke stuff another time. We’d like to prove (a simple version of) the

spectral decomposition at some point. We’d like to discuss Selberg trace formula at some point.

15 Lecture 15 (4/12): A bit on the proof of the spectral decom-

position

We stated the spectral decomposition last time (at least the discrete part).

Corollary 15.1 (spectral decomposition for cuspidal part).

L2
0([G], ω) =

⊕̂
π∈Irr(G(A))

πm(π),

where m(π) ≤ 1. Similarly,
A0([G], ω) =

⊕
π irr. adm.

(g,K)×G(Af )-module

πm(π)

(algebraic direct sum above).

First version more topological while second more algebraic, but the two are related. Taking K-finite
vectors of first version will more-or-less give second version.

We would like to say something of the proof. The whole thing is long/complicated, so we won’t go
through it all, but we can at least prove a simplified version.

15.1 Proof of Simplified Spectral Decomposition

Instead of working with the adeles, let’s just do something over R. Note that in the statement for GL2(A),
we got ‘multiplicity one’ (m(π) ≤ 1). It sounds like you don’t get multiplicity one if you use SL2(A)

instead, but that this difficulty disappears when working with R instead of all of A (in the sense that you
don’t get multiplicity one in either case).

Let G = SL2(R), and let Γ ⊂ G be a cocompact, discrete subgroup (e.g. coming from a quaternion
division algebra over Q). Let X = Γ\G which is compact.

Non-example. Γ = SL2(Z) is not cocompact, SL2(Z)\ SL2(R) is not compact (e.g. since it has C =

SL2(Z)\ SL2(R)/SO(2) as a quotient).
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Note that Gy X and so on L2(X). We will prove the following.

Theorem 15.2 (Simplified Spectral Decomposition).

L2(X) =
⊕̂

π
πm(π),

where π ranges over irreducible representations of G = SL2(R), and 0 ≤ m(π) <∞ always.

(Note there’s no multiplicity one here).

Recall 15.3. Say H is a separable Hilbert space (so has a countable basis). We speak of continuous Question:
Can G be
any topolog-
ical group
here?

G-actions G y H in the sense that π : G × H ! H is continuous. Equivalently, for any v ∈ H, the
function G! H, g 7! π(g, v) is continuous28. Equivalently, for any u, v ∈ H the matrix coefficient

Φuv : G −! C
g 7−! 〈gu, v〉

is continuous.

Recall 15.4. Let H be a (separable) Hilbert space. An operator T : H ! H is called compact if it
sends the unit ball to a (relative) compact in H, i.e. the closure of the image of the unit ball is compact.

Example. Any bounded (i.e. image of unit ball is bounded) finite rank operator (i.e. dim im(T ) <

∞) is compact.
More generally, if Tn is a sequence of finite rank operators, and Tn ! T (in the strong/norm topology,

i.e.29 ‖Tn − T‖! 0), then T is compact.

Example (Hilbert-Schmidt Operator). Write H =
⊕̂

i≥1Cei. If T ∈ End(H) with∑
i,j

|〈Tei, ej〉|2 <∞

(T an infinite matrix with square-integrable entries), then T is compact. Equivalently, if {ei} form an
orthonormal basis, then this says

‖T‖2HS :=
∑
i

‖Tei‖2H <∞.

Call ‖T‖HS (the square root of the above sum) the Hilbert-Schmidt norm.

Why do we care about this compact operators?

Fact (spectral theory of compact operators). Say T : H ! H is a self-adjoint (i.e. 〈Tu, v〉 =

〈u, Tv〉 for all u, v ∈ H), compact operator. Then, H has a decomposition

H =
⊕
λ∈R

Hλ

into eigenspaces s.t. λ 6= 0 =⇒ dimHλ <∞.

Say we have G y H and H some Hilbert space. We want to decompose this G-action, so we’d
really like some compact operator. We know the fact cannot apply to g ∈ G since it’s unitary (hence Part of def-

inition of
acting on
a Hilbert
space, I be-
lieve

28This is equivalent using uniform boundedness
29Recall that the norm of a bounded operator T is ‖T‖ = supx∈B1

‖T (x)‖H
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only has eigenvalues of | · | = 1, so only eigenvalues ±1 if self-adjoint so no f.dim eigenspaces). The
key is to consider C∞c (G) with the convolution product. This algebra has no unit, but it does have an
approximation of a unit in the sense that there are functions “ϕn ! δ1” (we’ll make sense of this later,
see Lemma 15.12).

Construction 15.5. Given ϕ ∈ C∞c (G), we may define

π(ϕ) :=

∫
G

ϕ(g)π(g)dg ∈ End(H)

Concretely, given v ∈ H,

π(ϕ)v =

∫
G

ϕ(g)(π(g)v)dg ∈ H

(convergent since ϕ has compact support).

These will be compact, and even Hilbert-Schmidt, operators.

Example. Recall X = Γ\G. Say we have f ∈ L2(X) and ϕ ∈ C∞c (G). Given x = Γh ∈ X (h ∈ G), we
have

(π(ϕ)f)(x) =

∫
G

ϕ(g)f(xg)dg =

∫
G

ϕ(h−1g)f(Γg)dg =

∫
Γ\G

∑
γ∈Γ

ϕ(h−1γg)

 f(Γg)dg.

At this point, we see that this operator attached to ϕ is actually an ‘integral operator’ in the sense that
we may write

(π(ϕ)f)(x) =

∫
X

Kϕ(x, y)f(y)dy where Kϕ(x, y) =
∑
γ∈Γ

ϕ(h−1γg) if x = Γh and y = Γg.

Note thatKϕ(x, y) above is (left) Γ-invariant separately in each variable. We sayKϕ is a kernel function
attached to ϕ ∈ C∞c (G).

Lemma 15.6. π(ϕ) is Hilbert-Schmidt.

Proof. By the most recent example, we see that

π(ϕ)f(x) = 〈f,Kϕ(x,−)〉X .

We want to show that ‖π(ϕ)‖HS <∞. One can compute that

‖π(ϕ)‖2HS =
∑
i

‖π(ϕ)ei‖ =

∫
X×X

|Kϕ(x, y)|2 dxdy = ‖Kϕ(−,−)‖L2(X×X).

This is finite since Kϕ(−,−) is continuous30 on the compact space X ×X, so bounded. �

Note 10. Our treatment here is based off of section 2.3 of Bump’s book, but hopefully a little more
streamlined (Bump wants to unify the proofs of the L2 and automorphic versions).

We’re starting to run of out time, so we’ll try to pick up the pace a bit.
30This should follow from ϕ being continuous with compact support
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Notation 15.7. π is a little overloaded, so we switch up notation. From now one, let

R(ϕ) :=

∫
G

ϕ(g)π(g)dg ∈ End(H)

denote the action of C∞c (G) we’ve been talking about.

Here’s a natural question: what is the adjoint of R(ϕ)?

Proposition 15.8. R(ϕ)∗ = R(ϕ∗) where ϕ∗(g) := ϕ(g−1), so ∗ gives an involution on C∞c (G) =: C.

We also want a notion of trace.

Definition 15.9. Let T ∈ End(H) and let {ei} be an orthonormal basis of H. Then, the trace of T is

trace(T ) = Tr(T ) =
∑
i

〈Tei, ei〉

(when this converges).

Remark 15.10. If T = AB with A,B both Hilbert-Schmidt, then Tr(T ) converges absolutely. Indeed,∑
i

|〈Tei, ei〉| =
∑
i

|〈ABei, ei〉|

=
∑
i

|〈Bei, A∗ei〉|

≤
∑
i

(
‖Bei‖2 + ‖Aei‖2

)
≤ ‖B‖2HS + ‖A∗‖2HS
<∞

Let’s remind ourselves of what we’re after. We have a representation G y H = L2(X) inducing an
action of C = C∞c (G) by HS operators. We want to decompose H into irreps with finite multiplicities.
We claim that these properties are all that is needed.

Theorem 15.11. Let H be a G-rep such that C = C∞c (G) acts by Hilbert-Schmidt operators (e.g.
H = L2(X)). Then,

H =
⊕̂

π
πm(π)

with π ranging over irreducible G-reps, and m(π) <∞.

In fact, C above does not necessarily have to be C∞c (G).

Lemma 15.12 (Approximation Lemma, Bump Lemma 2.3.2). Fix a nonzero vector v ∈ H. For any
ε > 0, there exists a self-adjoint function ϕ ∈ C (i.e. ϕ∗ = ϕ) such that ‖R(ϕ)v − v‖ < ε.

Proof of Theorem 15.11. We want to do induction. We need to show that any nonzero such H has a Question:
Does this
really mean
apply Zorn’s
lemma?

(nontrivial) irreducible G-invariant closed subspace.
Fix some nonzero v ∈ H. By the approximation lemma, there exists ϕ = ϕ∗ ∈ C such that R(ϕ) 6= 0.

Then we can apply spectral theory of self-adjoint, compact operators to write H =
⊕

(eigenspaces of
R(ϕ)). Let λ0 6= 0 be some eigenvalue of R(ϕ), so dimHλ0 <∞.
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Let V ⊂ H be a G-invariant subspace such that Vλ0
6= 0 and dimVλ0

minimal (among G-invariant
subspaces W with Wλ0

6= 0). Choose some nonzero v0 ∈ Vλ0
, and let W be the closed subspace (subrep?)

generated by v0. We claim W is in fact irreducible (even as a C-module). We have V = W ⊕W ′, so also
Vλ0

= Wλ0
⊕W ′λ0

. By minimality, Wλ0
= 0 or W ′λ0

= 0; by construction, Wλ0
6= 0; hence, Vλ0

= Wλ0
.

Hence, we may take V = W (i.e. we may assume V is generated by a single element as a C-rep).
Now, suppose W = W1 ⊕W2. Again, take eigenspaces: Wλ0

= W1,λ0
⊕W2,λ0

. Again, by minimality, Remember:
Our repre-
sentations
are unitary

we have Wλ0
= W1,λ0

(swap W1,W2 if it’s the other way), but W is generated by v0 ∈ Wλ0
= W1,λ0

, so
we must have W1 ⊃W . Thus, W = W1, so W is irreducible.

This suffices to conclude the existence of a decomposition

H =
⊕̂

π
πm(π).

We still need finite multiplicity. For this, we use traces. Consider ϕ = ϕ1 ∗ ϕ2 ∈ C∞c (G). Then,

∞ > Tr(R(ϕ)) =
∑
π

Tr(π(ϕ)) ·m(π)

(with first equality since ϕ1, ϕ2 act by HS operators). Now, there exists ϕ = ϕ1 ∗ϕ2 such that π(ϕ) 6= 0.
This forces m(π) <∞. �

Remark 15.13 (Audience). Here’s an alternate proof of finite multiplicity (w/o needing to introduce
trace). Say we have an irrep π ⊂ H, and fix some ϕ = ϕ∗ ∈ C∞c (G) with R(ϕ) 6= 0. Then, since ϕ is HS,
there exists λ s.t. πλ 6= 0 but dimπλ <∞ and dimHλ <∞. Thus, m(π) ≤ dimHλ/ dimπλ <∞ too.

Non-example. Apparently there’s no irreducible invariant subspace when R y L2(R) (sounds like we’ve
seen this example before?)

Sounds like we’ll talk in the future out understanding/computing TrR(ϕ).

16 Lecture 16 (4/14): Automorphic representations, tensor prod-

uct theorem, etc.

We want to introduce the concept of automorphic representations and introduce the fundamental tensor
product theorem. Then we will outline the plan for the rest of the course (no class on Monday).

On Monday’s class, we saw a bit about automorphic functions giving representations of archimedean
groups. Today we move to the adelic language; the archimedean places will have some complications not
arising for the non-arch places, but we will brush these under the rug.

16.1 Auto reps

Note 11. This corresponds roughly to Bump 3.3 (and a bit from 4.2).

Let G = GL2, fix a global field F , and consider the finite ideals Af ⊂ A =
∏′

v
Fv. We fix a choice

of maximal compact

K =
∏
v<∞

G(OFv ) ·
∏
v|∞

O(2,R) if v real

U(2) if v complex
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in G(A). We write this as Kf ×K∞ = K =
∏
vKv with Kv as above.

We want to define so-called ‘inner forms’ of GL2. These are B× for B a quaternion algebra.

Recall 16.1. [G] = G(F )\G(A), I think.

Consider L2([G], ω) for some fixed central character

ω : ZG(F )\ZG(A) = F×\A× unitary
−−−−! S1 ⊂ C×.

Note 12. Got distracted and missed some of what Wei said. Something about relating Eisenstein series
to parabolic subgroups, I think...

Remark 16.2. There was something about cuspidal L2
0([G], ω) that I didn’t quite get. Also apparently

B× has no parabolic subgroups defined over F if B is a division algebra?

ConsiderA0([G], ω) ⊂ L2
0([G], ω) (cuspidal implies square-integrable); elements here are (Z(gC),K∞)×

Kf -finite. There is a (discrete) spectral decomposition

L2
0([G], ω) =

⊕̂
π
πm(π)

(each π a unitary rep (of [G]?)).
We still haven’t gotten to what is usually called an ‘automorphic representation.’ Let π be an irre-

ducible, unitary representation of G(A). We want to only care about the k-finite vectors in π. This is no
longer a rep of G(A) but is a (g∞,K∞)×G(Af )-module. Recall

G(Af ) =
∏′

v<∞
G(Fv)

with G(Fv) locally compact and totally disconnected.
Keep in mind that, for automorphic stuff, we want to “forget the topology.”

Recall 16.3. In Tate’s thesis, we considered continuous characters χ : F×v ! C×. The continuity
condition on these homomorphisms was equivalent to the kernel being open. That is χ is a continuous
character ⇐⇒ it is invariant for some open compact; these forgets about the topology of the target so
gives a condition that makes sense for any target (e.g. replace C× with Q×` ).

Notation 16.4. To simplify notation, (temporarily?) let G refer to either G(Af ) or G(Fv). Also, fix a
maximal open compact Kmax ⊂ G.

Definition 16.5. Let V be a vector space, and let π : G ! GL(V ) be an abstract representation. We
say (π, V ) is a smooth representation if V =

⋃
K V

K with K ranging over (compact) open subgroups
of G, i.e. any v ∈ V has open stabilizer.

Example. A character χ : F×v ! C× is continuous iff it is smooth in the above sense.

Definition 16.6. A smooth (π, V ) is furthermore admissible if dimV K <∞ for all K (compact open).

Lemma 16.7. (π, V ) is admissible iff for any irrep ρ ∈ K̂max := {irr (smooth?) reps of Kmax}, the
ρ-isotypic component V (ρ) is finite dimensional.
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Recall 16.8. K profinite (e.g. lim −
m

GL2(OFv/$
m
v )). Then, ρ ∈ K̂ ⇐⇒ ρ factors through a finite

quotient. Hence,
V =

⊕
ρ∈K̂max

V (ρ) where V (ρ) :=
∑

(all subreps ' ρ) ⊂ V.

Hence, the condition above is saying every ρ appears with finite multiplicity.

Definition 16.9. A ρ ∈ K̂ is called a K-type.

Proof of Lemma. Exercise. Note you can take K to be a subgroup of Kmax (at least up to conjugation).
�

We want to study smooth, admissible representations at non-arch places.

Definition 16.10. A smooth (admissible) “representation” ofG(A) is a smooth (admissible) (g∞,K∞)×
G(Af )-module.

These are not really representations of G(A) because of the archimedean places.

Definition 16.11. We say (π, V ) is an irreducible automorphic representation of G(A) if it is a
smooth (g∞,K∞)×G(Af )-module appearing as a subquotient of A([G], ω).

Can have a 3-step filtration 0 ≤W1 ⊂W2 ⊂ A([G], ω) with V 'W2/W1.

Theorem 16.12. Say (π, V ) ⊂ L2
0([G], ω) is an irreducible sub G(A)-rep (this is a literal representation).

Then, (π, VK-fin) is an irreducible, admissible automorphic (g∞,K∞)×G(Af )-module.

Apparently, the non-arch part of this it not too difficult.

Proof Sketch of Admissibility. Recall K = K∞ × Kf . Any ρ ∈ K̂ is of the form ρ = ρf ⊗ ρ∞.31 The
finite part ρf must factor through some finite quotient of Kf . Let Kf,1 := ker ρf , so this is a compact
open. Note that

V (ρ) ⊂ V Kf,1(ρ∞).

By strong approximation, we have (pretend32 G = SL2)

G(F )\G(A)/Kf,1 ' Γ\G(F∞) where Γ = Kf,1 ∩G(F ).

Hence, we have V Kf,1 ⊂ L2
0(Γ\G(F∞)) and these are reps of the archimedean G(F∞). This is annihilated

by the a finite codimension ideal I ⊂ Z(gC) in the center of the universal enveloping algebra and contained
in the K-type at infinite, so

V Kf,1 ⊂ L2
0(Γ\G(F∞))(ρ∞, I)

and one can show the latter space is finite. �

From now on, we will simple say “G(A)-representation” to mean (g∞,K∞)×G(Af )-module (maybe
unless we’re talking about L2).

Fact. A smooth, irreducible G(A)-representations is automatically admissible.
31Bump’s book has a proof that every rep of K is actually a tensor product
32For GL2, make use of the center and the exact sequence 1! Z(GL2)! GL2 ! SL2 ! 1
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16.2 Tensor product theorem

We would like to write representations as tensor products over places.

Recall 16.13. Consider χ : A×F ! C× an idèle class character. When studying Tate’s thesis, we showed
this is always of the form χ =

∏
v χv with χv unramified for almost all places v (so the product is finite

for any given element).

Fix representations πv of G(Fv) with each πv smooth admissible (when v - ∞?). We want to make
sense of

⊗′

v
πv. This requires a choice of distinguished vector for almost all places.

Fix some v <∞ (i.e. non-arch) place. G(Fv) = GL2(Fv) ⊃ Kv := GL2(OFv ).

Assumption. Assume all our reps are smooth.

Definition 16.14. We say a (smooth) representation πv is unramified (or spherical) if πKvv 6= 0, i.e.
there’s a nonzero vector fixed by the maximal compact.

Fact (to be proved later). If πv is irreducible, then dimπKvv ≤ 1.

Hence, the unramified case is the ‘maximal’ case.

Recall 16.15. π a smooth G(A)-rep, so π =
⋃
Kf compact open π

Kf .

Construction 16.16. Assume we have a collection of irreducible (admissible) representations {πv}v such
that πv is unramified for almost all v, with 0 6= e0

v ∈ πKvv . We define the restricted tensor product⊗′

v

πv = span
{
⊗vev : ev = e0

v for almost all v
}
.

This is a (smooth admissible) G(A)-module. If (gv) ∈ G(A), then gv ∈ G(OFv ) for almost all v (i.e. gv is
in the compact open for almost all v), so (gv) preserves this space.

Theorem 16.17 (Tensor Product Theorem). Let π be an irreducible, admissible G(A)-module. Then,
π =

⊗′

v
πv with πv unramified for almost all v, and the πv’s are determined uniquely, up to iso, by π.

We haven’t done enough preparation to give the proof. Also, the proof techniques themselves do not
really reappear in our later discussion, so we can safely ignore it.

16.3 What’s next?

• One can consider (cuspidal) automorphism representations for G = GL2 and GB = B× (B a
quaternion algebra). We’d like to prove the Jacquet-Langlands correspondence.

• We’d also like to study the L-functions L(π, s). We’ve looked at the case of holomorphic modular/-
Maass forms before; we’d like to prove corresponding results for all π (cuspidal automorphic rep of
GL2 over any global field).

This will require some local representation theory (i.e. rep theory of GL2(F ) for F a non-arch local
field).

• “Langlands functoriality” via trace formula. We’d like to go over two examples. One is Jacquet-
Langlands. The other is automorphic induction.
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• Relative trace formula and special values of L-functions (related to things like BSD).

How much of this we get through depends on how fast we go in our last month.
We can already formulate some of this stuff already with what we’ve seen so far.

Theorem 16.18 (Jacquet-Langlands correspondence). Let GB = B×,33 and also consider GL2.
Then there is an injective map{

not-1-dim cuspidal
auto rep of GB

}
↪−!

{
cuspidal auto rep

of GL2

}
πB =

⊗′

v

πB,v 7−! π =
⊗′

v

πv

characterised by the fact that for almost all v, Bv = M2×2(Fv) (so GBv ' GL2,Fv) and πB,v ' πv.

Note 13. If you need more time on the homework, feel free to send an email; no issue with making an
extension.

17 Lecture 17 (4/21): GL(2) L-functions

For the last month, we first want to give a GL(2) analogue of Tate’s thesis, understanding L-functions
attached to cuspidal automorphic representations. Sounds like this is due to Hecke (then generalized by
Jacquet-Langlands),

Recall 17.1 (Tate’s thesis). Let F be a global field, and say we have χ : A×/F× ! C×. To this, we can
attach an L-function

L(χ, s) :=
∏
v

L(χv, s) where χ =
∏
v

χv.

This satisfies a functional equation

L(χ, s) = ε(χ, s)L(χ−1, 1− s).

The product formula for L(χ, s) is initially only defined for Re(s)� 0. To get a meromorphic continuation
to C (e.g. so that the functional equation makes sense), the key was to consider the auxilliary integrals

ζ(ϕ, χ, s) :=

∫
A×

ϕ(x)χ(x) |x|s dx =
∏
v

ζ(ϕv, χv, s),

for ϕ ∈ S(A) a Schwarz function, and then cleverly applying Poisson summation.

What are the analogues in the GL2-case?
Say G = GL2(A). Consider some cuspidal automorphic representation

π =
⊗′

v

πv ⊂ A0([G], ω) where [G] = G(F )\G(A),

and fix a central character ωπ = ω : A×/F× ! C×.
33Really the algebraic group with functor of points GB(R) = (R⊗B)×
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The archimedean and non-archimedean local factors require separate treatments. We will only go
over the non-archimedean case.34 We want to define a global L-function

L(π, s) :=
∏
v

L(πv, s)

as a product of local L-functions.

17.1 The (non-arch) local case

Let G = GL2(F ) where F is a non-arch local field.

Assumption. All our G-reps are assumed to be smooth.

Remark 17.2. Note that G is a totally disconnected, locally compact topological group. Everything we
say will work in this generality.

A basic technique is ‘parabolic induction’. The basic idea is that representations can be inducted
from parabolic (co-compact?) subgroups. In the present case, consider the Borel subgroup

B =

{(
a b

0 d

)}
⊂ G.

Remark 17.3. We know G = BK0 by Iwasawa, where K0 = GL2(OF ). Hence, G/B is compact e.g. since
K0 � G/B.

Note that B = AN = NA where

A =

{(
∗
∗

)}
' F× × F× and N =

{(
1 ∗

1

)}
' F.

Note we have an exact sequence
1 −! N −! B −! A −! 1.

Consider a character χ : A! C×. We can inflate this to a character B ! A
χ
−! C× of B, also denoted χ.

Definition 17.4 (smooth induction). Define the representation IndGB(χ) from B to G is

IndGB(χ) := {f : G! C : f(bg) = χ(b)f(g)}

with f above (implicitly) required to be “locally constant” , i.e. there exists K such that f(gk) = f(g)

for all g ∈ G and k ∈ K.
This has a G-action given by

(π(g)f)(x) = f(xg),

and it is a smooth representation of G

Recall 17.5. A smooth representation V of G is one where V =
⋃
K cmpt. open V

K .

34If you want, F is a function field, F = k(X) for some smooth X/k (k = Fq), so all its places are non-archimedean

73



In turns out to be useful to normalize our induction. For this, consider the (modulous?) character

δB : B ! R× given by

(
a b

0 d

)
7! |a/d|.

Definition 17.6 (smooth induction, normalized). Define the representation IndGB(χ) from B to G is

IndGB(χ) :=
{
f : G! C : f(bg) = δB(b)1/2χ(b)f(g)

}
with f above (implicitly) required to be “locally constant” , i.e. there exists K such that f(gk) = f(g)

for all g ∈ G and k ∈ K.
This has the benefit that the induction of a unitary representation will still be unitary, assuming I

heard correctly.

Note that IndGB is smooth and admissible (for admissible, uses that B\G/K is finite).

17.1.1 There are two special cases

For the first case, take K = GL2(OF ), and consider Question:
What’s go-
ing on here?πK =

{
f(bgk) = δ(b)1/2χ(b)f(g) for b ∈ B, k ∈ K

}
.

Since G = BK (Iwasawa decomposition), we see that dimπK ≤ 1 and that Question:
Why?

dimπK = 1 ⇐⇒ χ unramified.

Since χ is a character of A = F× × F×, we can write χ = (χ1, χ2) and then χ unramified ⇐⇒ χ1, χ2

both unramified.
In the second case, consider η̃ = “η ◦ det ” : G! C× with η̃(bg) = η̃(b)η̃(g) and

η̃

(
a b

d

)
= η(a)η(d) =

∣∣∣a
d

∣∣∣1/2 χ1(a)χ2(d)

where
χ1(a) = η(a) |a|1/2 and χ2(d) = η(d) |d|−1/2

.

That is, χ1/χ2 = | · |±1 is the absolute value character. When this happens, IndGB(χ) is reducible, with
a 1-dimensional subspace or a 1-dimensional quotient.

Exercise. If χ1/χ2 = |·|−1, then IndGB(χ) has a one-dimensional invariant quotient.

17.1.2 Classification of reps

Theorem 17.7 (Classification of Irreducible, Smooth, Admissible Representations of G).

(0) There are the 1-dimensional reps η̃ = η ◦ det

(1) (principal series) IndGB(χ) where χ1/χ2 6= | · |±1.
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(2) (Twisted by η Steinberg representations) Stη defined as

0 −! η̃ −! IndGB

(
η| · |1/2, η| · |−1/2

)
−! Stη −! 0.

(3) (“supercuspidal representations”) everything else.

What about the other case, where χ1/χ2 = |·|−1? Can show that the reps arising here are isomorphic
to the Steinberg reps.

Remark 17.8. Can check Stη = St1 ⊗ η ◦ det

We can also classify irreducible, unramified representations.

Theorem 17.9 (Classification of irreducible, unramified G-reps). Let π be unramified and irre-
ducible. Then either

• π is 1-dimensional, π = η̃ = η ◦ det for η unramified; or

• π = IndGB χ with χ unramified and χ1/χ2 6= | · |±1.

Remark 17.10. In general, Rep GLn has parabolics in bijection with partitions n = n1 + n2 + · · ·+ nr of
n. For each partition, you get a parabolic P consisting of matrices preserving a flag with spaces whose
dimensions are given by the partition. Each P has a decomposition P = MN where M ∼=

∏
i GLni(F ) is

“the diagonal” (and N is the “unipotent part”). On M , get reps
⊗
σi with σi cuspidal reps of GLni , and

then can consider the reps IndGP (
⊗r

i=1 σi) of G = GLn. The reps you cannot get like this, the primitive
ones, will be the cuspidal representations.

Note 14. Wei said more that I did not quite get.

Remark 17.11. Apparently there is a natural bijection between supercuspidal representations of GL2(F )

and irreducible, 2-dimensional representations of Gal(F/F ). The other smooth, irreducible, admissible
reps will give non-semisimple reps of Gal(F/F ). Requiring a compatibility with induction in the local
Langlands correspondence let’s you reduce things to the primitive case (where the Galois reps are nicer)
though. We’ll talk about local Langlands correspondence later when we have more definitions, and can
say more than “there is a bijection.”

17.1.3 Back to L-functions

Say π an irreducible representation of G = GL2(F ) of infinite dimension.35 Then, we define the L-
function

L(π, s) =


L(χ1, s)L(χ2, s) if π = IndGB χ and χ1/χ2 = | · |±1

L(η, s+ 1/2) if π = Stη

1 if π = supercuspidal.

Recall 17.12 (Tate’s thesis).

L(χ, s) =


1

1− χ($)q−s
if χ unram

1 if χ ram.
35Can also define L-functions in the 1-dimensional case
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Globally, if π =
⊗′

πv, then its L-function is simply the product L(π, s) :=
∏
v L(πv, s).

Later, we will define an ε-factor ε(π, s) =
∏
v ε(πv, ϕv, s). Then obtain the theorem.

Theorem 17.13 (Hecke, Jacquet-Langlands). Say π is a cuspidal automorphic representation. Then,
L(π, s) has a holomorphic continuation to s ∈ C (i.e. no poles) and satisfies a functional equation

L(π, s) = ε(π, s)L(π∨, 1− s)

for a suitable notion of dual/contragredient.

Note that (π, V ) is a smooth representations iff V =
⊕

ρ∈K̂ V (ρ) with K = GL2(OF ) a maximal
compact. Its contragredient is

V ∨ = {“smooth” ` : V ! C} =
⊕
ρ∈K̂

V (ρ)∗ ⊂ Hom(V,C)

where ∗ denotes the usual dual.

Fact. If (π, V ) is admissible (i.e. dimV (ρ) <∞ always), then (π∨)
∨ ' π.

While we’re at it, let’s also state a converse theorem. We know π =
⊗′

v
πv is a tensor product.

Here’s a natural question: if we take some local places {πv}v (with πv unramified for almost all v, and
ω =

∏
ωπv : A×/F× ! C× is an idele class character), then when will the restricted tensor product⊗′

v
πv be automorphic? If it always is, our studied can purely be reduced to the local case.

However, there must be some obstruction (e.g. since only countably many cuspidal auto reps once
you fix a central character).

Remark 17.14. The modularity conjecture amounts to saying that L-functions of elliptic curves are
automorphic.

Theorem 17.15 (Converse Theorem, Weil, Jacquet-Langlands). π defined above is cuspidal auto-
morphic iff L(π ⊗ η, s) is “nice” for all η : A×/F× ! C×.

Here, (π ⊗ η)v = πv ⊗ (ηv ◦ det). Furthermore, “nice” means ‘entire, satisfies a functional equation,
and some more analytic properties on critical strip 0 ≤ Re ≤ 1.’

For a long time, using this theorem was the main strategy for proving something was an automorphic
form. There are more strategies now, e.g. based on Wile’s work on modularity.

18 Lecture 18 (4/26)

Last time we stated the global functional equation. This week we give an overview of the proof, skipping
some details in order to not take too much time.

18.1 Fourier expansion

Say π is a cuspidal automorphic representation of GL2(A) = G(A), and write

π =
⊗′

πv.
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It is realized as a subspace π ⊂ A0([G]) so an element ϕ ∈ π is a function Question: Is
this an as-
sumption or
by defini-
tion?

Answer: By
a theorem
(specifi-
cally, the-
orem 14.11).
A0([G]) is
semisimple
so all sub-
quotients are
subreps

ϕ : [G] = G(F )\G(A) −! C.

We let F denote our global field (so A = AF ).

Notation 18.1. AN = B ⊂ G = GL2 where

N =

{(
1 ∗
0 1

)}
, A =

{(
∗ 0

0 ∗

)}
, and B =

{(
∗ ∗
0 ∗

)}
.

Note that [N ] ∼= F\A is compact, so ϕ|[N ] has a Fourier expansion. Note that

̂N(F )\N(A) ' F̂\A ' F.

Fix a choice of nontrivial character
ψ =

∏
v

ψv : A/F ! C×,

so the characters of [N ] are all of the form ψa(x) = ψ(ax) for some (unique) a ∈ F . Thus, we may write

ϕ|[N ] =
∑
a∈F

〈
ϕ|[N ], ψ−a

〉︸ ︷︷ ︸
Wϕ,a

ψa.

The pairing above is given by

Wϕ,a =

∫
[N ]

ϕ(n)ψ−a(n)dn.

Restricting to [N ] loses some information. To combat this, note (when F a function field) there’s an
action36 G(A) y A0([G]) (G(A) acts by right translation). Thus, we can decompose π(g)ϕ[N ] as well
and get

Wπ(g)ϕ,a =

∫
[N ]

π(g)ϕ(n)ψ−a(n)dn =

∫
[N ]

ϕ(ng)ψ−a(n)dn.

To keep notation simpler, we write Wϕ,a(g) := Wπ(g)ϕ,a for g ∈ G(A). Note this satisfies Wϕ,a(ng) =

ψa(n)Wϕ,a(g) for all n ∈ N(A). Let’s name this property.

Definition 18.2. Let37 In
archimedean
case, second
condition
should be
K-finite

Wψ :=

{
w : G(A)! C

∣∣∣∣w(ng) = ψ(n)W (g) for all n ∈ N(A), g ∈ G(A)

invariant under some compact open K

}
.

We call this the space of Whittaker functions. Thinking back to induced representations from last
time, we see

Wψ = Ind
G(A)
N(A) ψ.

36In the number field, say the phrase (g,K)-module instead
37Invariance under K on the right, i.e. w(gk) = w(g) for all k ∈ K and g ∈ G(A)
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Thus, we get a G(A)-equivariant map

π −! Wψ

ϕ 7−! (g 7!Wϕ,ψ(g))

where we’ve slightly changed notation by now saying

Wϕ,ψ(g) =

∫
[N ]

ϕ(ng)ψ(n)dn.

This map will be an embedding, and one will be able to recover π from its image.
Note we have an evaluation map ev1 : Wψ ! C. The composition π !Wψ

ev1−−! C sends ϕ 7!Wϕ,ψ(1).
Note that

Wψ : ϕ 7!

∫
[N ]

ϕ(n)ψ(n)dn

defines an element of HomN(A)(π,Cψ). That is the composition is N(A)-equivariant where N(A) y C
via the character ψ. By Frobenius reciprocity, one has

HomN(A)(π|N(A),Cψ) ∼= HomG(A)(π, Ind
G(A)
N ψ).

Recall 18.3 (Frobenius reciprocity for smooth induction). Given a closed subgroup H ⊂ G (to-
tally disconnected) and a representation σ ∈ Rep(H), we can form the induced representation IndGH(σ).
Reciprocity says that for any π ∈ Reg(G), there is a natural isomorphism

HomH(π|H , σ)
∼
−! HomG(π, IndGH σ).

The upshot is that the maps π !Wψ and π ! Cψ are more-or-less equivalent (I think).

Question 18.4. Can we characterize the image π ↪!Wψ?

I missed/didn’t follow some stuff, but think about the symbols

Wψ ∈ HomN(A)(π|N(A),Cψ)
?
=
⊗′

v

HomN(Fv)(πv,Cψv )

18.2 Local Theory

Now say F is a local non-archimedean field, and let π ∈ Rep(G) be some smooth representation. We
would like some sort of ‘local Fourier expansion.’

Formally, we would like something like

“
∑
a∈F
〈π|N , ψa〉ψa”

Define
πN,ψ := VN,ψ =

V

〈π(n)v − ψ(n)v | n ∈ N, v ∈ V 〉
,

the maximal quotient where N acts by ψ.
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Example. When ψ = trivial, πN := πN,triv is the N -coinvariants, the maximal quotient where N acts
trivially. One calls this a Jacquet functor I think.

Remark 18.5. A (the diagonal matrices) normalizes N (i.e. aNa−1 = N for a ∈ A), so the coinvariants
πN has an A-action. When ψ is nontrivial, you simply get a vector space.

Recall (parabolic induction?) we saw how to take a representation of A, inflate it to one of B, and
then get an induced rep of G. Frobenius reciprocity tells us that taking N -coinvariants and induction
give an adjoint pair,

HomG(π, IndGB σ) ' HomB(π|B , σ) ' HomA(πN , σ)

(recall B = AN and B/N = A) for any σ ∈ Rep(A).
What about the twisted version? If ψ 6= 1, then we still get

HomG(π, IndGN ψ) ' HomN (π|N , ψ) ∼= HomVect(πV,ψ,C).

Let’s state the main result.

Theorem 18.6.

(a) If ψ = 1 is trivial, the Jacquet functor is an exact functor Rep(−) is
smooth rep-
resentations
of −

Rep(G)! Rep(A)

which sends admissible representations to admissible representations.

(b) If ψ is nontrivial, still get an exact functor

Rep(G) −! VectC .

Moreover, if π is an irrep of G, then dimπN,ψ ≤ 1.

Definition 18.7. An irreducible π is called “ψ-generic” if dimπN,ψ = 1 for ψ nontrivial.

Lemma 18.8. For G = GL2, irreducible π is generic iff π is ∞-dimensional. Equivalently, irreducible
π is non-generic iff it is 1-dimensional. Fact: Any

f.dim rep of
GL2 over
a (non-
arch) local
field is 1-
dimensional

Lemma 18.9. Say π unramified generic and ψ “unramified” (i.e. trivial on OF , but non-trivial on
$−1OF ). Then, any nonzero linear function ` ∈ HomN (π,Cψ) ' C is nonzero on K-invariants, i.e.
`|πK 6= 0.

Recall that πK ⊂ π is only 1-dimensional.

Remark 18.10. If you want `|πK 6= 0, this forces ψ|N(OF ) = 1. This is because N(OF ) acts on ` by ψ and
something else I didn’t catch...

18.3 Back to Global case

Returning to the question at the end of the Fourier expansion section, we indeed have
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Theorem 18.11. Consider π =
⊗′

πv. Then,

HomN(A)(π, ψ) ∼=
⊗′

HomN(Fv)(πv, ψv).

Let’s make sense of this.

Recall 18.12. For almost all v, πv is unramified and ψv is unramified.

Recall 18.13.

π =
⊗′

πv =
⋃

S finite

⊗v∈Sπv =

{⊗
v

ϕv : ϕv = ϕ◦v ∈ πKv for almost all v

}

(something like this)

Given `v ∈ HomN(Fv)(πv, ψv), it might not make sense to talk about the infinite product
⊗

v `v.
However, we can normalize so the `v(ϕ0

v) = 1 for almost all v. Then,

⊗
v

`v

(⊗
v

ϕv

)
=
∏
v

`v(ϕv)

makes sense since ϕv = ϕ0
v for almost all v. Thus, we get a map⊗′

v

HomN(Fv)(πv, ψv)! HomN(A)(π, ψ).

Checking this is an iso is not too hard.

Note 15. This is only for F = function field. For the number field case, also need to muck around with
(g,K)-modules.

Corollary 18.14.
dim HomN(A)(π, ψ) ≤ 1.

It might happen that one of the factors is trivial.

Theorem 18.15. If π is cuspidal automorphic, then

HomN(A)(π, ψ) 6= 0.

In particular, π =
⊗′

πv with πv infinite dimensional for every v.

Recall the Whittaker functional

HomN (π, ψ) ' HomG(π, IndGN ψ︸ ︷︷ ︸
Wψ

).

We see that there is only one way to embed π inside this space Wψ of Whittake functions. Hence, π can
be recovered from its image.

Definition 18.16. Given, ` ∈ HomG(π,Wψ), Whittaker model of π is Im(`) ⊂ Wψ with its G-action.
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This exists when π generic.
Suppose we have a function ϕ ∈ π ⊂ A0([G]). Recall

Wϕ,ψ(g) =

∫
ϕ(ng)ψ(n)dn

which gives a map π !Wψ, ϕ 7!Wϕ,ψ.

Lemma 18.17 (Fourier-Whittaker expansion). One has (when π cuspidal automorphic)

ϕ(g) =
∑
a∈F×

Wϕ,ψ

((
a

1

)
g

)
.

Proof. By G(A)-equivariance, it’s enough to prove this when g = 1, i.e. that

ϕ(1) =
∑
a∈F×

Wϕ,ψ

(
a

1

)
.

By Fourier expansion, we know that
ϕ(1) =

∑
a∈F

Wϕ,ψa(1)

[N ]
∼
−! F\A via

(
1 n

1

)
7! n so 1 ∈ [N ] corresponds to 0 ∈ A/F . Hence, there’s no “ψa(1)" factor

above because it’s really ψa(0) = 1.

Since ϕ cuspidal, when a = 0, Wϕ,ψ0
(1) = 0. When a 6= 0,

Wϕ,ψa(1) =

∫
[N ]

ϕ(n)ψ−a(n)dn

=

∫
A/F

ϕ

(
1 n

1

)
ψ(−an)dn

n 7!n/a
=

∫
A/F

ϕ

(
1 n/a

1

)
ψ(−n)dn

=

∫
A/F

ϕ

((
a−1

1

)(
1 n

1

)(
a

1

))
ψ(−n)dn

=

∫
A/F

ϕ

((
1 n

1

)(
a

1

))
ψ(−n)dn

= Wϕ,ψ

(
a

1

)
�

As a result, we see that ϕ 7!Wϕ is nonvanishing, and so an embedding (since π irreducible). We can
also recover π ⊂ A0([G]) =

⊕
π π

m(π).

Corollary 18.18 (multiplicity one). m(π) = 1 when π cuspidal automorphic.
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Note 16. I missed the reasoning on why this is the case, but hopefully it’s recoverable from what I did
manage to write down. Also, something about Wψ[π]! A0([G]).

19 Lecture 19 (4/28): Local theory

Note 17. Wei’s notability background is black instead of white today. And every
day after-
wards

Working with G = GL2 as always. Let π =
⊗′

v
πv be a cuspidal automorphic representation with

central character ωπ. We want to prove nice properties of the L-function L(π, s) =
∏
v L(πv, s). Let F

be our global field. We let A ⊂ G denote the diagonal torus (so A ' G2
m) which contains the center ZG

(' Gm the scalars).

Construction 19.1. Given any ϕ ∈ π ⊂ A0([G]), we can define the zeta integral

ζ(ϕ, s) =

∫
A×/F×

ϕ

(
a

1

)
|a|s−

1
2 da.

Note this is holomorphic for all s ∈ C because of the rapid decreasing property of the cuspidal form ϕ.
Think of this as an integral over A/ZG, I think? Like, you want to integrate over the diagonal, but

don’t want the center there artificially inflating things or something?

Remark 19.2. This is in some sense ‘simpler’ than Tate’s thesis since we do not need to introduce auxiliary
Schwartz functions.

Remark 19.3. ϕ 7! ζ(ϕ, s) defines an element of HomA(A)(π ⊗ | · |s,Cωπ ) (I think. This is at least true
if ωπ = 1. Not sure if there should be any sort of inverting or anything in general).

Compare this with the Whittaker model involving HomN(A)(π,Cψ) which we know is at most 1-
dimensional (recall: π generic ⇐⇒ exactly 1-dimensional).

Fact. dim HomA(A)(π ⊗ | · |s,C) ≤ 1 as well.

This discussion has been global so far. We would like a local theory, and hopefully also an Euler
product.

19.1 Global to local

Fix a nontrivial additive character ψ : A/F ! C×.

Recall 19.4. A/F ' N(A)/N(F ), and for ϕ ∈ π, we have the “Fourier coefficient”

Wϕ(g) =

∫
[N ]

ϕ(ng)ψ(n)dn.

We proved that these satisfy

ϕ(g) =
∑
a∈F×

Wϕ

((
a

1

)
g

)
Among other things, this shows cuspidal automorphic reps are generic.
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This let’s us write (at least formally)

ζ(ϕ, s) =

∫
A×/F×

( ∑
a∈F×

Wϕ

(
a

1

))
|a|s−

1
2 da

=

∫
A×

Wϕ

(
a

1

)
|a|s−

1
2 da

Notation 19.5. Let Wψ(π) denote the image of π in Ind
G(A)
N(A) ψ under ϕ 7! Wϕ, so in particular,

π
∼
−!Wψ(π).

We can write
Wψ(π) =

⊗′

v

Wψv (πv)

normalized so that for unramified v, there is a distinguished vectorW 0
v ∈ Wψv (πv)

Kv such thatW 0
v (1) = 1.

Keep in mind W 0
v is a function G(Fv)! C.

If ϕ = ⊗vϕv is a pure tensor, then we can write

Wϕ(g) =
∏
v

Wϕv (gv) for g ∈ G(A)

as a product. Furthermore,
ζ(ϕ, s) =

∏
v

ζ(Wϕv , s)

where the local zeta integral is

ζ(Wϕv , s) :=

∫
F×v

Wϕv

(
a

1

)
|a|s−

1
2

v dav.

This gets us to working locally.

Question 19.6. What is the space {ζ(W, s) : W ∈ W(πv)}?

Maybe, like in Tate’s thesis, the “gcd” will be the local L-function. Maybe we’ll also get some sort of
functional equation involving an ε-factor.

19.2 Local

Fix F a local field.

Assumption. Let’s identity a representation π with its (unique) Whittaker model W(π) ⊂ IndGN ψ. Remember:
Elements
of IndGN ψ

are certain
C-valued
functions on
G

Notation 19.7. Let

A0 :=

{(
a

1

)}
⊂ A

What are the functions {W |A0
: W ∈ W(π)}?
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Definition 19.8 (“Miraculous parabolic”). We define the mirabolic group

B0 :=

{(
a b

1

)
∈ B

}
⊂ B.

This is not a parabolic, but is close to one.

Remark 19.9. Think of B as the stabilizer of some line in C2. Then, B0 is the stabilizer of a fixed element
of that line. Note B0 ' N ·A0.

Since we know howN acts (it transforms functions via additive character) understanding {W |A0 : W ∈ W(π)}
is equivalent to understanding {W |B0 : W ∈ W(π)}.

Lemma 19.10. Identify A0 ' F×. If π is generic irreducible, the map38

π ' W(π) −! C∞(F×)

W 7−! W |A0

is injective, and its image K(π) is called the Kirillov model of π.

Theorem 19.11 (“local Fourier expansion”). Let π be a smooth representation of GL2. Then the natural
map

π −!
⊗
x∈F

πN,ψx ,

to the product of all of π’s twisted Jacquet modules, is injective. That is,⋂
x∈F

ker (π ! πN,ψx) = 0.

Note 18. Proof in Wei’s lecture notes (on the dropbox).

This of RHS as space of Fourier coefficients, one for each additive character. This theorem proves the
injectivity in Lemma 19.10.

Lemma 19.12 (Reformulation of Lemma 19.10). Say we have nonzero Λ ∈ HomN (π,Cψ). Consider the
map

π 3 v 7−! Λ(π(g)v) ∈ W(π).

Then, This is equiv
to Lemma
19.10

“Λ

(
π

(
a

1

)
v

)
= 0 for all a” =⇒ v = 0.

Proof. The linear functional

Λa : v 7! Λ

(
π

(
a

1

)
v

)
belongs to HomN (π,Cψa) = (πN,ψa)∗ (up to possibly needing to replace a by a−1 somewhere).

If Λa(v) = 0 for all a 6= 0, then image of v in πN,ψa vanishes for all a 6= 0. If we had vanishing for all
a (including a = 0), we could conclude v = 0. Consider v0 = v− π(n)v for any n ∈ N ; then the image of

38smooth means locally constant when F non-arch (as you should think of it as being here since we’ve been ignoring arch
places)
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v0 in πN,ψa is equal to 0 for all a ∈ F . Hence, v0 = 0, so v is N -invariant (can choose any n ∈ N). Since Question:
Why?v ∈ π with π smooth, we know v is invariant under some open K ⊂ G.

Exercise. Let H be the group generated by N,K. Then, H ⊃ SL2(F ).

This forces π to be ≤ 1-dimensional, which is a contradiction (π assumed generic in Lemma 19.10). �

We can now identify π with its Kirillov model

π ' W(π) ↪! C∞(F×)

W 7−! W |A0

What is the image K(π) ⊂ C∞(F×)?

Theorem 19.13. There is an exact sequence

0 −! C∞c (F×) −! K(π) −! πN −! 0

for any generic, irreducible π.

That is, the kernel of the natural map K(π) ' π � πN from π to its Jacquet module is independent
of π.

Warning 19.14. There’s no simple formula for the group action G y K(π) thought of as a space of
smooth functions, i.e. as a subspace of C∞(F×).

Remark 19.15.

dimC πN =


2 if principal

1 if Steinberg twist

0 if supercuspidal.

In particular, if π is supercuspidal, then K(π) = C∞c (F×).

Description of ΠN First recall the Jacquet functor

Rep(G) −! Rep(A)

π 7−! πN .

What does this look like, say when π = IndGB χ for χ = (χ1, χ2) : A! C×. By Frobenius reciprocity, we
know We initially

forgot to in-
clude the
normaliza-
tion δ1/2

below, so
some of the
stuff after it
is missing a
δ1/2 factor

HomG(σ, IndGB χ) = HomB(σ|B , χδ1/2) ' HomA(σN , χδ
1/2).

Hence if σ irreducible, then σN 6= 0 ⇐⇒ σ ⊂ IndGB χ for some χ.

Exercise. Any admissible representation of A ' F× × F× has an irreducible quotient (reps of A are not
always semisimple).

Recall 19.16. We defined σ supercuspidal if σ is not a subrepresentation of any IndGB χ.

However, we have just shown the following.
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Proposition 19.17. σ supercuspidal iff σn = 0

(“constant term of σ vanishes”)
Say σ = Indχ, so Hom(σN , χ) 6= 0. Hence, χ is a qutoeint of σN .

Notation 19.18. Given χ = (χ1, χ2) its transpose is χt = (χ2, χ1).

Lemma 19.19.

(1) If χ1 6= χ2 (χ 6= χt), then (
IndGB χ

)
N
' δ1/2χ⊕ δ1/2χt

as reps of A.

(2) If χ1 = χ2 (χ = χt), then Question:
What?

(Indχ)N ' δ
1
2χ

(
1 val(t1/t2)

1

)
where (t1, t2) ∈ A ' F× × F×.

How does one prove Theorem 19.13? We want to show ker(K(π) ! πN ) = C∞c (F×). Here’s an
observation probably due to Kirillov. Recall the mirabolic B0, and consider the compact induction Something

like consider
only func-
tions with
compact
support in
definition
of (smooth)
induction

IndB0

N,c(ψ) ' C∞c (F×).39

Lemma 19.20. IndB0

N,c(ψ) is an irreducible B0-rep.

Proof. Exercise (apparently ‘easy’) �

Now one wants to show that ker(K(π)! πN ) ⊂ IndB0

N (ψ) ' C∞(F×), and is invariant under B0. We
know by definition that

ker(π ! πN ) = 〈π(n)v − v : n ∈ N, v ∈ π〉

so it is easily seen to be invariant under B0 = NA0 (N invariance is immediate. Sounds like maybe a
little bit of work for A0 invariance). By invariance/irreducibility, it’s now enough to show ker(K(π) !

πN ) ⊂ C∞c (F×) (since this kernel must be nonzero). We can check this just for vectors of the form
π(n)v − v. That is, we want to show that

F× 3 a 7−!W

((
a

1

)(
1 b

1

))
−W

(
a

1

)
= (ψ(ba)− 1)W

(
a

1

)

has compact support. This will always have compact support as a!∞ by the group action or something.

When a ! 0, the (ψ(ba) − 1) factor above goes to 0. We conclude that π

(
1 b

1

)
v − v gets sent to a

function with compact support, and so this finishes the proof of Theorem 19.13.

20 Lecture 20 (5/3)

Let’s continue the discussion on GL(2) L-functions. Recall we want to prove meromorphic continuation,
functional equation, etc.

39There’s a split exact sequence 1! N ! B0 ! F× ! 1. In other words B0 = N oA0
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Fix π =
⊗′

πv a cuspidal automorphic form. Say G = GL2 over a global field F . Consider a pure
tensor

⊗vϕv = ϕ ∈ π ⊂ A0([G]).

We defined the global zeta integral (s ∈ C)

ζ(ϕ, s) =

∫
A×/F×

ϕ

(
a

1

)
|a|s−

1
2 d×a.

Remark 20.1. This function is entire because ϕ is cuspidal (decays quickly).

The hard part is relating this integral to L-functions.

Remark 20.2. If F is a function field, e.g. F = Fq(t), then any cuspidal automorphic form on GL2 has
compact support. That is, ϕ ∈ A0([G]) =⇒ supp(ϕ) is compact modulo center. In this case, the
ζ-integral is essentially a finite sum, ζ(ϕ, s) ∈ C[q−s, qs] with q = #(residue field).

Recall 20.3 (Fourier expansion w.r.t. ψ : A/F! C×). Define

Wϕ(g) :=

∫
A/F

ϕ

((
1 x

1

)
g

)
ψ(−x)dx.

Then, Wϕ(g) ∈ Ind
G(A)
N(A) ψ (strictly speaking, this is only true for function fields. Need to be more careful

when archimedean places are involved). Then,

ϕ(g) =
∑
a∈F×

Wϕ

((
a

1

)
g

)
.

Remark 20.4. When ϕ = ⊗vϕv is a pure tensor, we get a decomposition

Wϕ(g) =
∏
v

Wϕv (gv).

These remarks/recalls combine to give

ζ(ϕ, s) =
∏
v

ζ(Wϕv , s) where ζ(Wv, s) =

∫
F×v

Wv

(
a

1

)
|a|s−

1
2 da

(note ζ(wv, s) convergent for Re(s) > 0). Finally, recall that we have previously defined the local L-
functions L(πv, s).

Theorem 20.5. Let v be a non-arch place, and let F = Fv (so π a local rep). Then,

(0) There is a meromorphic continuation to all s ∈ C.

(1) The space
{ζ(w, s) : w ∈ W(πv)} = L(π, s) · C[q−sv , qsv]

of ζ-integrals “has gcd L(π, s)".
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(2) We have the functional equation

ζ(w, s)

L(π, s)
ε(s, π) =

ζ(w∨, 1− s)
L(π∨, 1− s)

,

where ε(s, π) = cNs− 1
2 for some c ∈ C× and N ∈ N.

Remark 20.6. Above, π∨ is the contragradient representation (defined in Lecture 17?). Furthermore,

W∨(g) := W (gw) where w :=

(
1

−1

)
.

If W ∈ W(π), then W∨ ∈ W(π∨).
In the present case (for GL(2)), π∨ ∼= π ⊗ ωπ, π twisted by the central character.

Example. IndGB(χ)∨ ' IndGB(χ−1). When π = IndGB χ, the central character is ωπ = χ1χ2 (where
χ = (χ1, χ2)). One sees that IndGB(χ−1) ' IndGB(χ)⊗ ωπ.

Use π ' IndGB(χt) where χt = (χ2, χ1) and that twisting here just multiplites the two characters.

Remark 20.7. Say χ : F× ! C×. Can consider the operation π  π ⊗ χ. This leads us to consider the
3-variable ζ-integral

ζ(W,χ, s) :=

∫
F×

W

(
a

1

)
χ(a) |a|s−

1
2 d×a.

Note that W

(
a

1

)
χ(a) ∈ A(π⊗ χ), so can apply same result to this ζ integral by using the represen-

tation π ⊗ χ. Explicitly, one gets

ζ(W,χ, s)

L(π ⊗ χ, s)
ε(π ⊗ χ, s) =

ζ(W∨, χ−1ω−1
π , 1− s)

L(π∨ ⊗ χ−1, 1− s)
.

Recall 20.8. Recall the Kirillov model

K(π) =

{
W

(
a

1

)
: W ∈ W(π)

}
⊂ C∞(F×).

This sits in an exact sequence

0 −! C∞c (F×) −! K(π) −! πN −! 0

with dimπN ∈ {0, 1, 2}.

Remark 20.9. The “Mellin transform"

C∞(F×) −! functions on C

W

(
a

1

)
7−!

∫
F×

W

(
a

1

)
|a|s−

1
2 d×a.

After taking this Mellin transform, the space of ζ-integrals is more-or-less the underlying space of the
Kirillov model (?)
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Consider ϕ(a) = W

(
a

1

)
∈ ker (K(π)� πN ) = C∞c (F×). Then its Mellin transform is (compact

support =⇒ bounded above and below, so supported on some annulus)

∫
F×

ϕ(a) |a|s−
1
2 d×a =

N∑
i=−N

∫
val(a)=i

(blah) ∈ C[qs, q−s].

Any such polynomial can be realized. This proves the result for supercuspidal representations (those for
which πN = 0 so K(π) = C∞c (F×)). Recall L(supercuspidal, s) = 1.

To extend proof to other two cases (Steinberg and principal series representations) is to extend things
to πN . Since dimπN ≤ 2, can just choose one or two representations spanning this quotient space and
check things there.

Fact (Representatives of πN in K(π)).

(1) When π = IndGB χ irreducible with χ1/χ2(t) 6= |t|±1. Then,

• If χ1 6= χ2, then can take |t|1/2 χ1(t), |t|1/2 χ2(t) (|t| ≤ 1 and 0 outside this range)

• If χ1 = χ2, can take
|t|1/2 χ1(t) and |t|1/2 χ1(t) val(t)

(again for |t| ≤ 1 and vanishing outside this range)

(2) For π = Stη, can take |t| η(t) for |t| ≤ 1

What’s important above is the behaviour as ! 0. We see that the behaviour of ϕ(t), for ϕ ∈ K(π),
as t! 0 is determined by π (?).40

Let’s consider the principal series case, so π =
∫ G
B
χ, say with χ1 6= χ2. Note first that∫

|t|≤1

|t|1/2 χ1(t) |t|s−1/2
d×t =

∫
|t|≤1

χ1(t)dt× = L(χ1, s)

with last equality if measure normalized so that vol(O×F ) = 1. Similarly for the other representation. We
see from this that

gcd {ζ(W, s) : W ∈ W(π)} = gcdL(χ1, s), L(χ2, s) = L(χ1, s)L(χ2, s) =: L(π, s).

Remark 20.10. Any thing in the Kirillov model is of the form ϕ(a) = ϕ0(a) +λ1ϕ1(a) +λ2ϕ2(a) with ϕ1

the χ1 guy and ϕ2 the χ2 guy. Hence,∫
ϕ(a) |a|s−

1
2 d×a ∈ C[qs, q−s] + λ1L(χ1, s) + λ2L(χ2, s) = L(χ1, s)L(χ2, s)C[q−s, qs]

where we recall that

L(χb, s) :=


1

1− χb($)q−s
if χ unramified

1 if χ ramified

40Something like, when π not supercuspidal, can recover χ1, χ2 or η from this behavior
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is the reciprocal of a polynomial (b ∈ {0, 1})

Let’s transition to talking about the functional equation. To show it, we’d like to apply a uniqueness
result. First note that we can view the ζ-integral as a linear functional

ζs : π −! C

W 7−!

∫
F×

(
a

1

)
|a|s−

1
2 d×a

where we’ve identified π with its Whittaker model. This defines ζs ∈ HomA(π,Cs− 1
2
) where A = The sub-

script s−1/2

is missing af-
ter what’s
written
below. It
should be
there

{(
∗

1

)}
.

Lemma 20.11. dim HomA(πsC) ≤ 1 and is = 1 if π generic. Here, πs = π ⊗ | · |s.

When
dimπ = 1,
this may
be 0-
dimensional,
but the 1-
dimensional
π case is
overall eas-
ier, so can
handle it
separately

Let’s prove a weaker version of this.

Lemma 20.12. Say π generic. Then, dim HomA(πs,C) = 1 for all s ∈ C/(2πi log q)Z with at most 2

exceptions

Proof. Use Kirillov model. Recall K(π) does not really remember how G acts, but does remember how
the diagonal elements act; they act by translation. We have

HomA(K(π),C) ⊂ C∞(F×) where A ' F× y F×.

Note that dimC(C∞c (F×),C) = 1. This proves things in the supercuspidal case.

From Tate’s
thesis?

For the other two cases, we know for ζ◦(W, s) := ζ(W, s)/L(π, s) ∈ C[qs, q−s] that 0 6= ζ◦s ∈
HomA(π,C) so dim HomA(πs,C) ≥ 1. Rest of the details omitted... �

We have ζ◦s ∈ HomA(πs,C).

Claim 20.13.
W 7!

ζ(W∨, 1− s)
L(π∨, s)

is also invariant for the A-action.

Corollary 20.14. There must be some constant ε(π, s) ∈ C× so that

ε(π, s)ζ◦(W, s) = ζ◦(W∨, 1− s).

This holds for all W ∈ W(π). Can use this to show ε(π, s) = cπq
N(s−1/2) for some cπ ∈ C×.

Remark 20.15. (G = GL2, A) is a ‘Galfand pair ’ in the sense that dim HomA(π,C) ≤ 1 for all π.

This more-or-less finishes our discussion of the local theory.

20.1 Back to Global Theory

Say F a global field, and we have ϕ ∈ π = ⊗′vπv a pure tensor. Recall

ζ(ϕ, s) =
∏
v

ζ(Wϕv , s) =
∏
v

L(πv, s)

(∏
v

ζ◦(Wϕv , s)

)
.
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We need some global input (recall Poisson summation in Tate’s thesis). Note that ϕ is invariant by

GL2(F ) (automorphic form on [G] = G(F )\G(A)). Get global function equation (w =

(
1

−1

)
and we

assume ωπ = 1 for simplicity)

ζ(ϕ, s) =

∫
A×/F×

ϕ

(
a

1

)
|a|s−

1
2 d×a

=

∫
A×/F×

ϕ

(
w

(
a

1

))
|a|s−

1
2 d×a

=

∫
ϕ

(
a

(
a−1

1

)
w

)
|a|s−

1
2 d×a

a 7!1/a
=

∫
ϕ

((
a

1

)
w

)
|a|(1−s)−

1
2 d×a

=
∏
v

ζ(W∨ϕv , 1− s)

= L(π∨, 1− s)
∏
v

ζ◦(W∨ϕv , 1− s)

(Note this doesn’t really use that π is automorphic, just the Fourier expansion which just used left-
invariancy under Borel).

Making use of the local function equations as well now implies that

L(π, s) = L(π∨, 1− s)ε(π, s),

so we have the global functional equation. Note this is entire since

ζ(ϕ, s) = L(π, s)
∏
v

ζ◦(Wϕv , s)

is entire (for any ϕ cuspidal) and ∃ϕ ∈ π s.t.
∏
v ζ
◦ = 1.

Next time we’ll start a new topic. For the remaining 5 lectures, we try to say something about some
more advance topics.

21 Lecture 21 (5/5)

We start by making a remark we forgot last time.

Recall 21.1. We had the decomposition

ζ(ϕ, s) =
∏
v

L(πv, s)
∏
v

ζ◦(Wϕv , s).

We should mention that the product over the normalized zeta integral is finite (since things are
unramified almost everywhere). Specifically, ζ◦(Wv, s) = 1 for “unramified data,” i.e. πv unramified, ψv
unramified, and Wv ∈ π

K◦v
v (K◦v = GL2(OFv ) maximal compact) with normalizations Wv(1) = 1 and
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vol(O×Fv ) = 1. This is something to prove. It does not follow immediately from our discussion.

Lemma 21.2 (Homework). ζ◦(Wv, s) = 1 for unramified data.

There is an explicit formula for Wv in terms of “Satake parameters.” πv = IndGB χ with χ = (χ1, χ2).
These parameters are the pair (

χ1($)

χ2($)

)
∈ GL2(C)/conjugacy.

You can switch the order of the characters, so only this pair is well-defined.
In the remaining lectures (including today), we want to look at two applications of trace formulas

(TFs).

• Arthur-Selberg TF

Has applications to Jacquet-Langlands correspondence as well as (cyclic) base change for GL2.

• Relative TF

Applications to Waldspurger’s formula.

21.1 Jacquet-Langlands

Let G′ = GL2 over a global field F , and let π′ = ⊗′vπ′v be an irreducible cuspidal automorphic represen-
tation. To simplify life, we’ll say the central character ωπ′ = 1 is trivial.

Jacquet-Langlands wants to relate automorphic forms on GL2 to those on inner forms of GL2. Let
PGL2 = GL2 /Z(GL2) be the ‘adjoint group’ of GL2. Then inner forms of GL2 are characterized by the
pointed set H1(F,PGL2). Elements of this set are in bijection with (iso classes) quaternion algebras B
over F , i.e. H1(F,PGL2) ' Br(F )[2] (so it secretly is a group after all).

Remark 21.3. The distinguished element of the set of quaternion algebras over F is B ∼= M2×2(F ), so
this corresponds to G′ = GL2. In general, the quaternion algebra B corresponds to G = B×, viewed as
an algebraic group over F , i.e.

G(R) = (B ⊗F R)
×

for any F -algebra R.

Remark 21.4. We can give an even more explicit description of these inner forms. By class field theory,
Br(F )[2] = H2(F,Gm) = H2(Gal(F s/F ), (F s)

×
) sits in an exact sequence

0 −! Br(F ) −!
⊕
v

Br(Fv)
∑
v Invv

−−−−−! Q/Z −! 0,

where Invv is an invariance map
Invv : Br(Fv)! Q/Z .

This is an isomorphism if v non-archimedean while Br(R)
∼
−! 1

2Z/Z and Br(C)
∼
−! 0.

We see from this that Br(Fv)[2] ' Z/2Z (unless v complex), so exactly two choices for quaternion
algebra over Fv (the split one and some division quaternion algebra).
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Continuing trying to make these inner forms feel more familiar, we get a third description of H1(F,PGL2);
it is in bijection with Question:

Finite set of
non-complex
places?

{
finite set of places
w/ even cardinality

}
.

Fact. [G] = G(F )\G(A) is compact modulo center ⇐⇒ B is a division algebra (i.e. B 6'M2×2).

Say π = ⊗′vπv cuspidal with trivial center character and is infinite dimensional.

Remark 21.5. The one-dimensional reps are all of the form π ' χ ◦ det where det : B× ! Gm is the
reduced norm map and χ : A×/F× ! C× a Hecke character. These are simpler and can be handled
separately.

What are we after?

Theorem 21.6 (Local Jacquet-Langlands). Let F be a local field, and let G = B× with B a division
quaternion algebra of F (so G/F× is compact). Then there is an injective map

JL : Rep(G) ↪! Rep(G′)

form smooth, irreducible reps of G into those of G′. Say this sends π 7! π′. This injection satisfies

(1) Image = discrete series of G′ (i.e.41 Stη or supercuspidal)

On the LHS, everything is discrete since G basically compact, so we have a bijection Repdisc(G)
∼
−!

Repdisc(G′).

(2) (characterization of JL) JL(π) = π′ iff

θπ(γ) = −θπ′(γ′)

for all regular semisimple γ ↔ γ′, where θπ is the character of π (note G compact mod center), and
θπ′ is the Harish-Chandra character, characterized by

f ∈ C∞c (G′) =⇒ tr(π′(f)) =

∫
G′
θπ′(γ

′)f(γ′)dγ′

with θπ′ conjugate-invariant, locally L1 on G′ = GL2, and smooth on G′r.s. (elements whose char-
acteristic polys have distinct roots). Note G′r,s is open,dense in G′.

We also need to explain this matching γ ↔ γ′. Note γ ∈ G has a characteristic polynomial in
F [x]deg=2 (same def with det replaced by reduced norm). We write γ ↔ γ′ to denote char(γ) =

char(γ′), their char polys agree.

Remark 21.7. char : G′ ! F [x]deg=2 is surjective while char : G ! F [x]deg=2 is not. For the
division algebra, only elliptic elements appear in the image.42 Question:

What does
elliptic mean
here?

(3) Say χ : F× ! C× is a character. Then,

JL(χ ◦ det) = Stχ.

41There’s also an intrinsic definition of discrete series. Equivalently, matrix coefficients are all in L2(G′). Recall matrix
coefficients are g 7! (gϕ1, ϕ2) with ϕ1, ϕ2 ∈ π′ ⊗ (π′)∨

42Related to not being able to embed F × F ↪! B or something like this?
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This explains the − sign in (2).

Remark 21.8. Recall we have a short exact sequence

0! Stχ ! Ind χ̃! χ ◦ det! 0.

Get embedding G/conj ↪! G′/conj with image the elliptic elements. Can check that

θStχ(γ′) = −χdet(γ′).

Trace of middle rep must vanish because of something about parabolic v. elliptic having trivial
intersection or something? I’m still not sure what elliptic is here...

Note this gives a recipe for obtaining supercuspidal representations of G′. Note that, since G/F×

compact, elements of Rep(G) (which we require are smooth and irreducible) are f.dim.

Theorem 21.9 (Global Jacquet-Langlands). Let F be a global field. Let

A0(G) = {π : π ∞-dimensional cuspidal automorphic} .

Then, there is a unique injection
A0(G) ↪! A0(G′)

sending ⊗′πv = π 7! π′ = ⊗′π′v characterized by

(1) π′v = JLv(πv) for all v.43

(2) ⊗π′v = π′ is in the image iff π′v is discrete for all v ∈ ΣB, where ΣB = {v : Bv non-split}.

This is obviously unique if it exists. The content of this is that the tensor product π′ := ⊗′JLv(πv)
is automorphic.

Remark 21.10. Let B,B′ be division algebras. If ΣB′ ⊂ ΣB , then you also get a Jacquet-Langlands
correspondence JL : A0(G)! A0(G′) where G = B× and G′ = (B′)

×.

21.2 Trace formula

Recall the time we spent talking about Hilbert-Schmidt stuff (the spectral theorem stuff). Given π and
f ∈ C∞c (G(A)), we want to understand tr(π(f)).

Recall 21.11. G(A) acts on L2([G], ωπ = 1). Say G = B× with B nonsplit so we’re in the cocompact
case. Let X = [G]/center. We have the integral operator

R(f)ϕ(x) =

∫
X

Kf (x, y)ϕ(y)dy

for f ∈ C∞c (G(A)) where the kernel function is

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy).

43If Bv non-split apply local Jacquet-Langlands. If it is split, then GV ' G′v ' GL2 and we want π′v ' πv

94



This is a finite sum for any given x, y since it only involves γ ∈
(
x supp(f)y−1

)
∩ G(F ) (compact and

discrete set), so Kf ∈ C(X ×X) ⊂ L2(X ×X) (X compact). Hence, R(f) is Hilbert-Schmidt.

Remark 21.12. Say T1, T2 are Hilbert-Schmidt (HS). Let T = T1T2 be their product. Then the trace

Tr(T ) =
∑
i∈I

(Tei, ei)

makes sense and is independent of the choice of basis {ei}i∈I . Note that

Tr(T ) =
∑
i

(T2ei, T
∗
1 ei) =

∑
i,j∈I

(T2ei, ej)(T ∗1 ei, ej) ≤
1

2

∑
i,j

|(T1ei, ej)|2 + |(T ∗1 ei, ej)|
2
<∞.

Lemma 21.13. Say f ∈ C∞c (G(A)). Then, tr(R(f)) if of trace class, i.e. this trace makes sense.
Furthermore,

tr(R(f)) =

∫
X

Kf (x, x)dx.

Proof sketch. The convolution map

C∞c (G(R))⊗ C∞c (G(R)) −! C∞c (G(R))

f1 ⊗ f2 7−! f1 ∗ f2

is surjective (Dixmier-Malliavin Theorem). Hence, any f ∈ C∞c (G(R)) can be written as

f =
∑
i∈I

f
(i)
1 ∗ f

(i)
2 with #I <∞.

This + the previous remark shows that tr(R(f)) is well-defined. Specifically, if f = f1 ∗ f2, we see that

Tr(R(f)) = 〈Kf1 ,Kf2〉X×X =

∫
X

Kf (x, x)dx.

�

Recall 21.14. Question:
Should
this be
L2([G], ωπ =

1) = L2(X)

on the left?

L2([G]) =
⊕
π

mππ

This gives tr(R(f)) =
∑
πmπ tr(π(f)). This is sort of the “spectral” side. For more info, we need to

turn to the “geometric” side (look at conjugacy classes).
Recall Kf =

∑
γ∈G(F ) f(x−1γy). The Lemma says to compute the trace we can compute an integral

tr(R(f)) =

∫
X=[G]

Kf (x, x)dx

(we’re ignoring issues with the center, but will state a correct result in the end).

Notation 21.15. For a conjugacy class γ ∈ G(F )/conj,

G(A)γ :=
{
g ∈ G(A) : g−1γg = γ

}
.
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Fix a measure on G(A) as well as on G(A)γ (assuming existence of (nice) measure on this stabilizer).

Definition 21.16. For a conjugacy class γ ∈ G(F )/conj. The orbital integral is

Orb(γ, f) := vol(Gγ)

∫
G(A)/G(A)γ

f(g−1γg)dg

where
vol(Gγ) := vol (G(F )γ\G(A)γ) .

We’ll justify later that these are well-defined.

Remark 21.17. The easiest way to not have to deal with center issues is to just use G = PB× = B×/F×,
so let’s do this.

Theorem 21.18. Fix some f ∈ C∞c (G(A)). Then,

tr(R(f)) =
∑

γ∈G(F )/conj

Orb(γ · f).

This is (the simplest case?) of the Arthur-Selberg Trace formula; more generally, for any f ∈
C∞c (G(A)) in the Hecke algebra, one has∑

π

m(π) tr(π(f)) =
∑

γ∈G(F )/conj

Orb(γ · f)

(LHS ‘spectral’ and RHS ‘geometric’).

Remark 21.19. Compare this with the fact from finite group rep theory that the number of irreps of a
finite group is the same as its number of conjugacy classes.

The Jacquet-Langlands correspondence is a statement of the spectral side. To use it, we’ll compare
the geometric sides for G and G′, and then use this trace formula to obtain a comparison on the spectral
sides.

22 Lecture 22 (5/10): Jacquet-Langlands, continued

We want to outline the proof of Jacquet-Langlands via the Arthur-Selberg trace formula.
Let B/F be a quaternion division algebra, and let G = PB× = B×/F×. Hence, [G] = G(F )\F (A)

is compact. Let G′ = PGL2 /F , so [G′] is not compact. For this lecture, we will ignore the technical
difficulties caused by [G′] not being compact (e.g. stuff involving Eisenstein series/the continuous part
of its spectrum).

Consider some f ∈ C∞c (G(A)) acting on L2([G]). Recall the automorphic kernel function

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy) for x, y ∈ [G]. (1)

Note this is smooth in both variables. Last time we established that

TrR(f) =

∫
[G]

Kf (x, x)dx.
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Recall the spectral decomposition
L2([G]) =

⊕
π

π⊕m(π)

(using compactness of [G]), and that the trace is given by

TrR(f) =
∑
π

m(π) trπ(f).

On the RHS (1), we have ∫
[G]

Kf (x, x)dx =
∑

γ∈G(F )/conj

vol([Gγ ])Orb(γ, f),

where Gγ :=
{
g ∈ G : g−1γg = γ

}
is the centralizer of γ (stabilizer under conjugation action), vol[Gγ ] =

vol
(
Gγ(A)
Gγ(F )

)
, and

Orb(γ, f) :=

∫
G(A)γ\G(A)

f(g−1γg)dg

(implicitly, we’ve chosen a Haar measure on G(A) and on Gγ(A), and then the corresponding measure of
G(A)/Gγ(A)).

Warning 22.1. There’s some subtly with choosing measure consistently everywhere. To make life a
little easier, it sounds like the product vol([Gγ ])Orb(γ, f) is independent of the choice of measure of Gγ .

The upshot is we have ∑
π

m(π) trπ(f) =
∑

γ∈G(F )/conj

vol([Gγ ])Orb(γ, f). (2)

We see that ∫
[G]

Kf (g, g)dg =

∫
G(F )\G(A)

∑
G(F )

f(g−1γg)

 dg

We can form a sum over conjugacy classes:∫
[G]

∑
γ∈G(F )/conj

∑
δ∈G(F )/Fγ(F )∼=G(F )·γ

f(g−1δ−1γδg)dg

Put another way

Kf (g, g) =
∑

γ∈G(F )/conj

Kf,γ(g, g) where Kf,γ(g, g) =
∑

δ∈G(F )/Gγ(F )

f(g−1δ−1γδg).

Let’s interchange the order (worry about convergency later)∫
[G]

Kf (g, g)dg =
∑

γ∈G(F )/conj

∫
[G]

Kf,γ(g, g)dg

=
∑

γ∈G(F )/conj

∫
Gγ(F )\G(A)

f(g−1γg)dg
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=
∑

γ∈G(F )/conj

vol (Gγ(F )\Gγ(A))

∫
Gγ(A)\G(A)

f(g−1γg)dg︸ ︷︷ ︸
Orb(γ,f)

.

Recall our case of interest is G = PB× or G′ = PGL2. Here conjugacy classes can more-or-less be
characterized by characteristic polynomials. There’s a normalization issue for PGL2, so let’s pretend
we’re working with GL2. We have

char : GL2 −! F [x]deg=2 ' A2.

Definition 22.2. γ is regular semisimple if char(γ) has distinct roots, i.e. the discriminant ∆(γ) is
nonzero.

Remark 22.3. For GL2, the elements which are not (regular semisimple) look like(
λ

λ

)
or

(
1 λ

1

)
,

up to conjugacy.

Example. Say λ =

(
a

d

)
∈ GL2(F ) with a 6= d. Its centralizer is the diagonal torus

Gγ ∼= A =

{(
∗ 0

0 ∗

)}
.

In this case, we look at the integral ∫
A(A)\G(A)

f(g−1γg)dg

If we assume f = ⊗fv is a pure tensor, we can write this as an Euler product∫
A(A)\G(A)

f(g−1γg)dg =
∏
v

∫
A(Fv)\G(Fv)

fv(g
−1
v γgv)dgv.

So the question is local. Locally, fv = 1GL2(OFv ) for almost all v (note we’ve been writing G = GL2 for
this example). Recall the Iwasawa decomposition G(Fv) = A(Fv)N(Fv)K where K = GL2(OFv ) (and
N unipotent upper triangular matrices?). This decomposition is useful because of the left-invariance by
A(Fv). If we write g = nak under such a decomposition, then dg = dadndk. Let’s choose these so
vol(K) = 1. Then (second equality since fv is bi-k-invariant44)

Orb(γ, fv = 1K) =

∫
N

∫
K

fv(k
−1n−1γnk)dkdn

=

∫
N'Fv

fv

((
1 −x

1

)(
a

d

)(
1 x

1

))
dn

44In general, K is compact anyways so the integral over K being there doesn’t really affect convergence much
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=

∫
Fv

fv

(
a (a− d)x

0 d

)
dx

This being nonzero =⇒ a, d ∈ OF×v and (a− d)x ∈ OFv . Under this assumptions, this is

Orb(γ, fv = 1K) = vol

{
x ∈ Fv : x ∈ 1

a− d
OFv

}
=

|a− d|
−1
v if a, d ∈ O×Fv

0 otherwise.

Remark 22.4. First note that maximal tori in GL2 are parameterized by semisimple quadratic algebras
over F , i.e. E a quadratic field extension of F or E = F × F . For such an E, its multiplicative group
E× ↪! GL2 gives a maximal torus (embedding unique up to conjugation). Given γ regular semisimple,
we can consider E = F [x]/(char γ) to get a (potentially non-split) torus.

WhenG = PB× forB a quaternion division algebra, recall there is a finite set ΣB = {v : B ⊗F Fv nonsplit}.
Can consider

E(B) = {E : E quad and E ↪! B} .

Exercise.
E(B) = {E : E ⊗ Fv nonsplit at all v ∈ ΣB} .

In particular, there are “more” tori in G′ = PGL2 than in G = PB×.

Example. For GL2(Fv) and γ ∈ E× ↪! GL2(Fv) with E nonsplit, one has Gγ ' E×. Can compute, for Question:
Implicitly
assuming
γ regular
semisimple?

example, ∫
Gγ\G(Fv)

fv(g
−1γg)dg where fv = 1G(OFv ) = 1K .

The point of all these integral calculations is to get a sense of where convergence comes from in our
earlier formal manipulations. To summarize, we get

Theorem 22.5 (Arthur-Selberg trace formula). When [G] is compact,∑
π

m(π) trπ(f) =
∑
γ

vol(Gγ)Orb(γ, f).

What about the non-compact case?
Say G′ = PGL2, so [G′] is non-compact. Can still get “simple trace formulas” by imposing conditions

on f ∈ C∞c (G(A)), e.g. the formula still holds if f = 0. Ideally, we can satisfy it for enough f to not lose
two much information. Say f = ⊗vfv and fix a non-arch place v0. Assume fv0 = matrix coefficient of
some supercuspidal representation σv0 of G(Fv).

Recall 22.6. Given ϕ ∈ σ and ϕ∨ ∈ σ∨, the give rise to the matrix coefficient

fϕ,ϕ∨ : g 7! 〈σ(g)ϕ,ϕ∨〉 .

Fact. A rep σv of G(Fv) is supercuspidal iff all matrix coefficients have compact support (modulo
center)45

45true for general p-adic reductive groups
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Apparently, trπ(f) 6= 0 =⇒ πv0 ' σv0 (π cuspidal automorphic representation).

Warning 22.7. Globally being cuspidal ; there’s a place where local representation is supercuspidal.

Hence, this condition does eliminate some representations on the LHS (of trace formula). Nevertheless,
this condition is still useful.

Definition 22.8. Let’s call f = ⊗vfv a cuspidal function if fv0 is a matrix coefficient of a supercuspidal
representation σv0 of G(Fv0).

Theorem 22.9. When f cuspidal, we have∑
π

m(π) trπ(f) =
∑

γ∈G(F )/conj

vol(blah)orb(γ, f).

Corollary 22.10. Any supercuspidal representation globalizes. That is, for σv0 supercuspidal, there exists
a global cuspidal automorphic representation π (of PGL2?) such that πv0 ' σv0 .

Fact. orb(γ, fϕ,ϕ∨) is more-or-less the character θσv0 (γ) (when γ regular semi-simple) and so is nonzero.

You can use this fact to show the RHS of the theorem is nonzero which then implies the corollary
(the existence of some π such that trπ(f) 6= 0, i.e. so that πv0 ' σv0).

Remark 22.11. There is a more sophisticated simple trace formula s.t. you can keep all cuspidal π. Using
this version, can strengthen corollary to say that all discrete series representations of PGL2(Fv0) can be
globalized.

Fact (to be proven later). The mutiplicities m(π) are all equal to 1.

We’re now in position in prove (a version of) Jacquet-Langlands.

Claim 22.12. Say π a cuspidal automorphic rep of G = PB×. Then, there exists a cuspidal automorphic
rep π′ of G′ = PGL2 s.t.

π′v = πv for all v 6∈ ΣB .

Proof. For f ∈ C∞c (G(A)), apply trace formula∑
π

trπ(f) =
∑
γ

orb(γ, f).

For f ′ ∈ C∞c (G′(A)) chosen appropriately, we similarly have∑
π′

trπ′(f ′) =
∑
γ′

orb(γ, f).

Let’s identity G(Fv) ' G′(Fv) for v 6∈ ΣB . For v ∈ ΣB , these are genuinely different (e.g. G(Fv) compact
while G′(Fv) = PGL2(Fv) is not). We’ll need to introduce ‘transfer’

Definition 22.13. Locally at v ∈ ΣB , we say fv, f ′v are transfers of each other, fv ↔ f ′v, if orb(γ, fv) =

orb(γ′, f ′v) whenever char(γ) = char(γ′) (in this case, we say γ, γ′ are transfer of each other as well) and
γ, γ′ regular semisimple. We should probably also require orb(γ′, f ′v) = 0 when γ′ split.
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Fact. transfers exist

Back to comparison. Given f = ⊗vfv. Define f ′ = ⊗vf ′v where f ′v = fv if v 6∈ ΣB and f ′v ↔ fv if
v ∈ ΣB . Then, orbit integrals match up, so we have the identity∑

π

trπ(f) =
∑
π′

tr(π′(f ′)).

Pick a set S ⊃ ΣB s.t. πv is unramified for all v 6∈ S. Write f = fS ⊗ fS with fS = ⊗v∈Sfv and
fS = ⊗v 6∈Sfv. Consider fS ∈ H(G(AS)//KS) =

⊗′

v 6∈S
H(G(Fv)//Kv) in the Hecke algebra (note this

is commutative). Let πS =
⊗′

v 6∈S
πv. We get a character

λπS : HS −! C
fS 7−! trπS(fS).

By Strong multiplicity one for G′, these λπ′S ’s are linearly independent linear functions on HS .
Let’s pretend this sum over π only has finitely many terms... Given π′, get an identity like (recall

fS = f ′S) ∑
tr(πS(fS)) trπS(fS) =

∑
tr(π′S(f ′S)) trπS(fS).

Now we want to use linear independence. We conclude that, given σS , we must have∑
π:πS'σS

trπS(fS) =
∑

π′:π′S'σS
trπ′S(fS).

Given π on G, showing nonvanishing on LHS will allow us, via transfer, to conclude that there exists π′

s.t. π′S ' πS . �

We’ll go over the argument again next time since the idea is one that shows up repeatedly.

23 Lecture 23 (5/12)

23.1 Comparison of trace formulas, i.e. Jacquet-Langlands argument but
more slowly

Let G = B×/F× and G′ = PGL2, where B is a quaternion division algebra over F . Recall that [G] is
compact.

Recall that we have been looking at trace formulas of the form∑
π cuspidal

m(π) trπ(f) =
∑

γ∈G(F )/conj

Orb(γ, f)

(for f ∈ C∞c (G(A))). The LHS is the ‘spectral’ side while the RHS is the ‘geometric’ side. This holds for
all f in the case of G (the co-compact case).

Recall 23.1. For G′ = PGL2, the multiplicities m(π′) are all 1. We proved this before using (uniqueness
of) the Whittaker model. This existed as a consequence of having a Borel defined over the ground field
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(assuming I heard correctly). The co-compact groups G are not quasi-split, so no Borel with which
to define a Fourier expansion, so no Whittaker model argument. We will still be able to deduce that
m(π) = 1 (for G) using Jacquet-Langlands.

For G′, we have similar trace formulas∑
π′

trπ′(f ′) =
∑
π′

m(π′) trπ′(f ′) =
∑

γ∈G′(F )/conj

Orb(γ′, f ′)

for some f ′ ∈ C∞c (G(A)). One of the more important ingredients for JL was the notion of transfer.

• We can match characteristic polynomials between (regular semi-simple elements of) G(F )/conj and
G′(F )/conj, writing γ ↔ γ′ when they’re char pols agree. A priori, there are more characteristic
polynomials in G′(F ) than in G(F ), but we don’t make use of all of them.

• ((smooth) transfer) Say

C∞c (G(Fv)) 3 fv  ! f ′v ∈ C∞c (G′(Fv))

have transfer if they have the same orbit integral, i.e.

Orb(γ′, f ′v) =

Orb(γ, fv) if γ ↔ γ′

0 otherwise.

Fact (transfer exists). For all fv, there exists (non-unique) f ′v such that above identity holds.

Starting from a pure tensor f = ⊗fv, we can choose transfers f ′v ↔ fv for v ∈ ΣB (the places where B
is division), and choose f ′v = fv for v 6∈ ΣB (places where G′(Fv) ' G(Fv) not division). We let f ′ = ⊗f ′v.
Then, the geometric sides of the two trace formulas match, so we get an equality∑

π

m(π) trπ(f) =
∑
π′

trπ′(f ′).

over the spectral side, for such choices of f, f ′.
For π = ⊗′πv, note we have trπ(f) =

∏
v trπv(fv). For unramified πv (with v 6∈ ΣB?), we have46 (or

want?) fv ∈ Hv := C∞c (G(Fv)//Kv), the Hecke algebra at v (I think). This is a commutative algebra
Hv = C[Tv] with

Tv = 1Ev where Ev := Kv

(
$v

1

)
Kv,

the Hecke operator at v. Note that πv(fv) ⊂ πKvv where we recall

πv(fv)ϕ =

∫
G(Fv)

fv(g)π(g)ϕdg for ϕ ∈ πv.

Recall πKvv = Cϕ◦v is 1-dimensional. Thus, for fv ∈ Hv, the trace is simply the eigenvalue of fv y Cϕ◦v,
46Here Kv is a maximal compact
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so we name the homomorphism

λπv : Hv −! C
fv 7−! eigenvalue of πv(fv) on πKvv .

We see this depends only on the Satake parameters47 of πv = IndGB χ. Question:
Why is πv
a principal
series here?

Fix a finite set S ⊃ ΣB of places (containing all the ‘bad’ places). Write f = fS ⊗ fS as we did last
semester. We fix fS but vary

fS ∈ HS :=
⊗′

v 6∈S

Hv.

Consider the linear functional
fS 7!

∑
π

tr(πS(fS))λπS (fS).

as well as the linear functional This makes
sense since
fS fixed and
fS contained
only in the
good places

fS 7!
∑
π′

trπ′S(f ′S)λπ′S (fS)

on the same space.

Warning 23.2. To avoid dealing with infinite sums, we will pretend that both sums are finite.

Lemma 23.3 (Linear independence of characters). Given (finitely many) distinct irreducible unram-
ified representations πSi of G(AS) =

∏′

v 6∈S
PGL2(Fv), the λπSi ∈ Hom(HS ,C) are linearly independent.

(Exercise: prove this)
Fix any σS =

⊗′

v 6∈S
σv irreducible and unramified. The spectral identity

∑
π

tr(πS(fS))λπS (fS) =
∑
π

tr(πS(fS))λπS (fS)

along with linear independence implies that we must have∑
π:π'σS

trπS(fS) =
∑

π′:π′S'σS
trπ′S(f ′S) (3)

for all transfers fS ↔ f ′S .

Example. Can choose σS = π′S0 for π′0 cuspidal on [G′]. By strong multiplicity one for G′ (proved using
Kirillov and Whittaker models. See lecture notes on the dropbox), the RHS of (3) has at most one term:∑

π:πS'π′S
tr(πS(fS)) = trπ′S(f ′S).

Note that both sides only involve finitely many places v ∈ S. This means we’re now reduced to local
theory. What can we deduce from this equality?

• If trπS(f ′S) 6= 0 for some f ′S , then LHS 6= 0. Thus, ∃π cuspidal such that πS ' π′S . This is already
non-trivial.

47The set {χ1($), χ2($)}
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To get the whole of Jacquet-Langlands, you want linear independence for functions

trπv : C∞c (G(Fv))! C.

This will imply, for example, that given π = πS ⊗ πS , there exists π′ cuspidal on G′ s.t.

• πS ' π′S and for all v ∈ S; and

•
∏
v trπv(fv) =

∏
v trπ′v(f

′
v) for all transfers fv ↔ f ′v

This second property in particular will imply the local Jacquet-Langlands.48

Remark 23.4. The key of all of this is the existence of transfers. This is what gave the bridge between G
and G′. That combined with their individual trace formulas is what allows one to compare reps between
the two.

23.2 What’s next?

The next two examples of applications of trace formulas we want to see are

• base change for GL2

• Waldspurger formula

These will need to make use of a “relative trace formula.”

Base change for GLn The motivation for this is Langlands reciprocity which (morally, at least)
conjectures the existence of a bijection{

cuspidal automorphic
reps of GLn,F

}
 !

{
irred n-dimensional
reps of Gal(F/F )

}
.

This predicts a lot of things for cuspidal automorphic reps. On the Galois side, there are many operations
one can apply to representations (restriction, tensor product, etc.) which should have analogs in for
cuspidal automorphic reps.

Example. Say E/F be a finite extension. Given an n-dimensional GalF -rep ρ, one can form the n-
dimensional GalE-rep ρ|GalE given by restriction.

By reciprocity, one conjectures the existence of a base change operation BC s.t. given by π for GLn,E

one can form Π = BC(π) for GLn,F so that ρΠ = ρπ|GalE .

Remark 23.5. By strong multiplicity one for GLn, Π = BG(π) is characterized by the following (re-
call E/F finite): let v be an unramified place of F , and write Ev '

∏
w|v Ew; then, we want Πv ∈

Repn(GLn(Ev)) (GLn(Ev) =
∏
w|v GLn(Ew)). Say πv is unramified, i.e. πv = IndGB χ for χ =

(χ1, . . . , χn) with each χi : F×v ! C× unramified. We have a norm map E×v
Nm
−−! F×v , so can lift χi

to a character of E×v . We require
Πv = Ind

G(Ev)
B(Ev)(χ ◦Nmv).

This condition characterizes base change. For writing
down this
characteri-
zation, we
don’t actu-
ally need
v unrami-
fied, and we
don’t actu-
ally need πv
unramified.
We just need
πv a princi-
pal series

48Really need to get rid of the product and in fact prove trπv(fv) = − trπ′v(f ′v)
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The point is strong multiplicity one allows us to ignore finitely many places (e.g. ignore all the ramified
ones).

Theorem 23.6. Suppose E/F is cyclic.

(a) For any cuspidal auto π of GLn,F , there exists a unique Π automorphic for GLn,E such that

Πv = BC(πv)

for unramified πv (more generally, for principal series).

Warning 23.7. The basechange may no longer be cuspidal.

(b) Say Π cuspidal auto for GLn,E. Then Π is a basechange iff it is Gal(E/F )-invariant.49

Warning 23.8. Describing non-cuspidal reps in the image is more difficult.

(c) The fiber of BC is precisely
{
π ⊗ η : η|NmA×E

}
so one has

A×F /F× C×

A×F /F× ·NmA×E Gal(E/F )

η

∼
CFT

The number of such η is precisely # Gal(E/F ) = [E : F ].

Remark 23.9. Base change for general (non-Galois) extensions is still open. From the cyclic case, though,
one can at least deduce the solvable Galois case.

For GL2, this is due to Langlands. For GLn, it is due to Arthut-Clozel.

Remark 23.10. The GLn case implies Artin’s conjecture for ρ : GalF/F ! GLn(C) (finite image) with
solvable image. Question: ?

Langlands-Tunnel proved Artin conjecture for GL2 when the image is solvable. This was a key
ingredient in Wiles’ proof of modularity. Given an elliptic curve E/Q, looking at 3-torsion gives a rep

ρE,3 : GalQ −! GL2(F3) ∼= S4

(and S4 is solvable). Can embed GL2(F3) ↪! GL2(C) to get an Artin representation with solvable image.
From here, Wiles can apply his modularity lifting result and eventually prove modularity.

Let’s say a bit about the proof strategy. Say G = GLn,F and G′ = GLn,E . Given π on G we want
Π = BC(π) on G′. We have (simple, since GLn not compact) trace formulas∑

π

trπ(f) =
∑
γ

Orb(γ, f) and
∑
Π

tr Π(f ′) =

for some f ∈ C∞c (G(A)) and some f ′ ∈ C∞c (G′(A)). We should not expect these to be equal; the RHS
should have ‘more’ automorphic representations. Can we instead design a different trace formula so that
the spectral side only contains Π which are Gal-invariant?

49Gal(E/F ) y GLn(AE) so given σ ∈ Gal(E/F ) gives rise to π  σ(π)
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Next time: “twisted trace formula” s.t. spectral side on GLn,E only contains Π s.t. σ(Π) = Π.

24 Lecture 24 (5/17): Base change

The remaining two lectures will be about base change for GLn and about a result of Waldspurger.

Setup. Say E/F is a cyclic extension of number fields and G = GL2 (or GLn).

Goal. We want to defines a ‘basechange map’{
cuspidal auto
rep of GF

}
BC
−!

{
auto rep
of GE

}
sending π 7! BC(π) = Π with image containing all Galois invariant cuspidal Π of GE .

How do we approach this? The idea is to compare the Arthur-Selberg trace formula for GF to a
“twisted” trace formula for GE . On the E side, we only want to keep Galois invariant automorphic reps.
Without this restriction, we cannot hope for a direct comparison between∑

π cusp

tr(π(f)) and
∑
Π

tr(Π(fE)).

Recall 24.1. We assume E/F is cyclic, so let σ ∈ Gal(E/F ) be a generator.

We only want Π = σΠ.

Recall 24.2.
tr(R(f)) =

∫
[G]

Kf (x, x)dx

where Kf (x, y) =
∑
γ∈G(F ) f(x, y) is a function on [G]× [G].

Consider some π cuspidal automorphic. Choose some orthonormal basis ON(π) of π. Can consider

Kf,π(x, y) =
∑

ϕ∈ON(π)

π(f)ϕ(x)ϕ(y).

Recall that L2
0([G]) = L2

cusp([G]) =
⊕

π π. We have R(f) acting on this space.

Note 19. I’ve probably said this before, but reminder that the lecture notes in the dropbox contain extra
details not gone over in lecture.

One has
Kf,cups =

∑
π cusp

Kf,π
∗
= Kf

with last equality holding of [G] compact (not the case for G = GLn) or if one restricts only to ‘special’
choices of f (this is what you do for G = GLn). Apparently one sees that

trπ(f) =

∫
[G]

Kf,π(x, x)dx.
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Keep in mind we’d like to incorporate the Galois-invariancy condition σΠ = Π. We start with

L2
0([GE ]) =

⊕
Π.

To test whether two representations are the same or not, one can use inner products (different reps are
orthogonal). If 〈ϕ,ψ〉 6= 0 with ϕ ∈ Π1 and ψ ∈ Π2, then Π1 ' Π2. Recall this inner product is

〈ϕ,ψ〉 =

∫
[GE ]

ϕ(g)ψ(g)dg =

∫
[GE ]

(ϕ⊗ ψ)(g, g)dg.

Let G̃E := GE × GE , so Π1 � Π2 is an automorphic rep on G̃E . The above integral over (the diagonal
of) G̃E can be used to detect whether two reps are isomorphic.

Definition 24.3. Given algebraic groups H ⊂ G over F (= number field?) and π a cuspidal auto rep
(on G?). For ϕ ∈ π, its automorphic period integral is

℘H(ϕ) =

∫
[H]

ϕ(h)dh.

Note this is a map ℘H : π ! C and is H(A)-invariant.

Example. Take G = GLn,E ×GLn,E and H = ∆(GLn,E) the diagonal (or use σH = graph of σ, i.e. the
image of h 7! (h, σ(h)))

Warning 24.4. As often, we’re ignoring issues caused by having a nontrivial center.

Example. Can take G = GL2,F and H = A =

{(
∗
∗

)}
⊂ G. Hecke-Jacquet-Langlands says

℘A(ϕ) =

∫
[A]

ϕ(a)da
s=1/2∼ L(π, 1/2)

(there should be some local factors on the right, and imagine a factor of |a|s−1/2 in the integrand on the
left)

Definition 24.5. We say π is H-distinguished if ℘H(ϕ) 6= 0 for some ϕ ∈ π.

Remark 24.6. π is H-distinguished =⇒ HomH(A)(π,C) 6= 0.

Recall we want a nice way to detect whether or not Π is Galois invariant. This led us to considering
representations of the product GLn,E ×GLn,E . Consider the diagram

H1 := ∆(GLn,E) ↪! GLn,E ×GLn,E .

Let Σ = Π1 �Π2 be some product rep. Then,

Fact. Σ is H1-distinguished ⇐⇒ Π1 ' Π∨2 .

(the contragradient comes from taking complex conjugation at some point)
Let H2 = Γσ be the graph of σ ∈ Gal(E/F ). Then,
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Fact. Σ is H2-distinguished ⇐⇒ Π1 ' σ
Π∨2 .

Corollary 24.7. Σ is both H1 and H2-distinguished iff it is of the form Σ ' Π�Π∨ where Π ∼= σΠ.

Now we want to design a trace formula.

24.1 (Relative) Trace formula stuff, I think

Say G some algebraic group (e.g. G = GLn,E ×GLn,E) with chosen subgroups H1, H2 ⊂ G. Can consider
the integral

I(f) :=

∫
[H1]

∫
[H2]

Kf (x, y)dxdy.

Warning 24.8. We’re going to ignore non-cuspidal contributions.

Spectral side We get something like

Iπ(f) :=

∫
[H1×H2]

Kf,π =
∑

ϕ∈ON(π)

℘H1
(π(f)ϕ)℘H2

(ϕ).

Then, Iπ(f) 6= 0 for some f ∈ C∞c (G(A)) ⇐⇒ π is distinguished by both H1 and H2.

Example. We’re interested in the case G = GLn,E ×GLn,E , H1 = ∆ = Γid, and H2 = Γσ.

The trace formula one gets like this is called a relative trace formula or twisted trace formula.

Example. When G = H ×H and H1 = H2 = ∆(H), one recovers the Arthur-Selberg trace formula for
H. One has something like Σ = π � π∨ and∫

[H]

∫
[H]

Kf (blah) 
∫

[H]

Kf1∗f2(x, x)dx where f = f1 ⊗ f2 on (H ×H)(A).

Geometric side Let’s (formally) consider a general case, so still have G with subgroupsH1, H2. What’s
the geometric side of the relative trace formula attached to (G,H1, H2)? Recall Kf =

∑
γ∈G(F ) f(x−1γy).

One gets (w/o worrying about convergence)

I(f) =

∫
[H1]

∫
[H2]

Kf (x, y)dxdy

=
∑

γ∈H1(F )\G(F )/H2(F )

vol(Hγ)Orb(γ, f)

Note H := H1 ×H2 acts on G via (h1, h2) · g := h−1
1 gh2. Above,

Orb(γ, f) :=

∫
Hγ(A)\H(A)

f(h−1
1 γh2)dh1dh2,

where Hγ = StabH(γ) (for γ ∈ G).
Note the parameter space fo the sum on the geometric side is the double coset spaceH1(F )\G(F )/H2(F ).
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24.2 Back to base change

What is the double coset space

∆(GLn(E))\GLn(E)×GLn(E)/Γσ?

Can first consider the quotient on the left to see this is

GLn(E)//σ GLn(E),

where //σ means take quotient by σ-conjugation:

h · γ =
σ
h−1γh for h, γ ∈ GLn(E).

Definition 24.9. We call an element of GLn(E)/σ-conjugation a σ-conjugacy class.

We want to relate this to GLn(F )/conj.

Recall 24.10. Recall the norm map Nm = NmE/F : E× ! F×. This sends x 7! Nm(x) =
∏d−1
i=0 σ

i(x),
where d = [E : F ].

We want to generalize this from GL1 to GLn. For any γ ∈ GLn(E), we define

Nm γ =

d−1∏
i=0

σi(γ) ∈ GLn(E)

(note that the order matters). Say γ′ is σ-conjugate to γ, i.e. γ′ = gγσ(g)−1. Then,

Nm γ′ = γ′σ(γ′) . . . σd−1(γ′)

= gγσ (g)
−1
σ(g)σ(γ)σ2(g−1) . . .

= gNm(γ)σd(g−1)

= gNm(γ)g−1

That is, Nm “untwists” conjugacy. Note that the image of Nm is contained in GLn(E), not GLn(F ).
However, one can check that the characteristic polynomial of Nm γ has F -coefficients (even in Nm γ

itself does not). Hence, there will always be some δ ∈ GLn(F ) such that δ ∼
GLn(E)

Nm γ, i.e. δ is

GLn(E)-conjugate to Nm γ. Thus, Nm does in fact induce a map

Nm :
GLn(E)

σ-conj
−!

GLn(F )

conj

(where, as usual, we restrict attention to regular semisimple elements only).

Remark 24.11. Sounds like this Nm map is injective (at least, on regular semisimple elements).

Notation 24.12. We now understand Nm γ to refer to the associated conjugacy class of GLn(F ).

To compare the trace formulas for GLn,F and GLn,E , we need to obtain identities between orbital
integrals.
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Recall 24.13. For f ∈ C∞c (G(E)),

Orb(γ, f) =

∫
GLn(E)/ Stab

f(gγσ(g)−1)dg.

For f ′ ∈ C∞c (GLn(F )),
Orb(δ, f ′)

This comparison is a local question, so can assume E/F local. One should expect

Orb(γ, f) = Orb(Nm γ, f ′)

when f, f ′ are appropriately related. Recall the Hecke algebra HE = C∞c (GLn(E)//KE). It turns out
that there is a map (really, C-algebra homomorphism)

BC : HE ! HF

‘dual’ to basechange of representations so that Orb(γ, f) = Orb(Nm γ,BC(f)) (Fundamental Lemma).

Recall 24.14. There’s
BC : Repunr(GLn(F )) −! Repunr(GLn(E))

for unramified reps. It sends π = IndGFBF χ to BC(π) = IndGEBE (χ ◦Nm).

For f ∈ HE , BC(f) is characterized by

Tr(BC(π)(f)) = Tr(π(BC(f))).

In other symbols, 〈BC(π), f〉 = 〈π,BC(f)〉. The fundamental lemma

Orb(γ, f) = Orb(Nm γ,BC(f))

is one of the harder parts of carrying out this comparison.

Note 20. Got distracted and missed some stuff. I thinkWei said something about who proved fundamental
lemmas for various groups and how base change leads to something called ‘endoscopy functoriality’.
Apparently Ngô won a fields medal in part for proving one (or many?) fundamental lemma(s?).

This is all we’ll say about basechange.

24.3 Waldspurger Theorem

Let G = PGL2 and let A ⊂ G be the diagonal torus as usual. Let E/F be a quadratic field. Choosing
a basis of E/F gives rise to an embedding E ↪!M2(F ) inducing E×/F× ↪! GL2(F ) (this embedding is
unique up to conjugation). Let T be the image of this embedding, a non-split (since E a field, not F ×F )
maximal torus.

Let π be a cuspidal automorphic rep of G(A). Recall the period integral

℘T (ϕ) =

∫
[T ]

ϕ(t)dt.
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Remark 24.15. [T ] is compact. Note that

[T ] = T (F )\T (A) ' E×\A×E/A
×
F .

Recall that E×\A1
E is compact (where A1

E is the norm 1 ideles).

Theorem 24.16 (Waldspurger’s Theorem). TFAE

(i) π is T -distinguished (℘T (ϕ) 6= 0 for some ϕ ∈ π)

(ii) L(π, 1
2 )L(π ⊗ ηE/F , 1

2 ) 6= 0

(and HomT (A)(π,C) 6= 0) This is
a local
condition:
HomT (Fv)(πv,C) 6=
0 for all v

Above, ηE/F : F×\A×F ! {±1} is F×\A×F � F×\A×F /A
×
E
∼
−! {±1} (recall E/F quadratic).

Note that if we let πE = BC(π) (exists since E/F quadratic so cyclic), then

L(πE , s) = L(π, s)L(π ⊗ η, s)

(unclear to me if this a theorem or follows quickly from definitions).
This result is related to B-SD. Let A/Q be an elliptic curve. B-SD concerns L(A, s) = L(π, s+ 1

2 ) where
A  π for GL2,Q (by modularity). Leet E/Q be a quadratic extension, so L(A/E, s) = L(πE , s + 1

2 ).
Then B-SD predicts

L(A/E, 1) 6= 0 =⇒ rankA(E) = 0 and #X(A/E) <∞.

This has been proved using Waldpurger’s theorem (along with other stuff).
In the last lecture, we will try to indicate how to design a trace formula needed to prove Waldspurger.

25 Lecture 25 (5/19): Last lecture (AKA Waldspurger’s theo-

rem)

Last lecture, so let’s be more relaxed.
Let’s state a more general version of Waldspurger’s result than last time.
Let F be a global field, and let E/F be a quadratic extension. Let B be some quaternion algebra of

F with an embedding E ↪! B of F -algebras (⇐⇒ all places in ΣB are non-split in E). Let G = B×/F× For v ∈ ΣB ,
Bv is a di-
vision al-
gebra. If v
is split in E,
Ev = F1×F2

will locally
be a prod-
uct, and so
cannot em-
bed into a
division al-
gebra.

and G′ = PGL2. Given (cuspidal automorphic) π on G, let π′ = JL(π) on G′ correspond to it by
Jacquet-Langlands.

For H = E×/F× ⊂ G (a nonsplit torus), recall the period integral

℘H(ϕ) =

∫
[H]

ϕ(h)dh

(so ℘H ∈ HomH(A)(π,C)). Recall we say that π is (globally50) H-distinguished ⇐⇒ ℘H(ϕ) 6= 0 for
some ϕ.

50Note this notion depends upon the embedding π ↪! A0([G])
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Theorem 25.1 (Waldspurger’s Theorem). TFAE: for all B ⊃ E

(a) π is H-distinguished

(b) L(π′E ,
1
2 ) 6= 0 (with E denoting base change to E)

(and HomH(A)(π,C) 6= 0, i.e. π = ⊗′vπv locally distinguished51)

Remark 25.2. Say we’re given π′ = ⊗′vπ′v cuspidal auto rep of G′ = PGL2.

Fact. There is at most one quaternion algebra B s.t HomH(A)(π
B ,C) 6= 0, i.e. where πB locally distin-

guished

(Above, πB ↔ π via Jacquet-Langlands). In fact,

dim HomH(Fv)(π
′
v,C) + dim HomH(πBvv ,C) = 1,

so there’s some dichotomy here.

How does one prove Walspurger? Let’s ignore the ‘locally distinguished’ stuff. The idea is to compare
two local trace formulas. We rewrite

(a) π is H-distinguished

(b) π′ = JL(π) is A-distinguished and (A, η)-distinguished

(Note L(π′E ,
1
2 ) = L(π, 1

2 )L(π ⊗ ηE/F ,
1
2 ) where η = ηE/F is the character attached to the quadratic

extension).
For seeing that this (b) is equivalent to the earlier (b), recall that

L(π′,
1

2
) ∼

∫
[A]

ϕ(a)da and L(π′ ⊗ η, 1

2
) ∼

∫
[A]

ϕ(a)η(a)da,

for suitable choice of automorphic form ϕ.

Relative trace formula For f ∈ C∞c (G(A)), we have our old friend the kernel function Kf (x, y). We
can attach to this the integral

I(f) =

∫
[H]

∫
[H]

Kf (x, y)dxdy.

• On the spectral side (cuspidal part), one has∑
π

Iπ(f) where Iπ(f) =
∑

ϕ∈ON(π)

℘H(π(f)ϕ)℘H(ϕ).

One has Iπ(f) 6= 0 for some f ∈ C∞c (G(A)) ⇐⇒ ℘H 6= 0 ∈ Hom(π,C). One calls Iπ(f) a “relative
trace” of π(f).

Note 21. Wei said more on this, but I was distracted.

This relative trace detects distinction by this subgroup.
51This is almost like just requiring HomH(Fv)(πv ,C) 6= 0 for all v
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We can do the same thing for G′ = PGL2. For f ′ ∈ C∞c (G′(A)), we set

J(f ′) =

∫
[A]

∫
[A]

Kf (x, y)η(y)dxdy.

(Note the quadratic twist. Without it, the J side has no information on the quadratic fields). On the
spectral side, one similarly gets Jπ′(f ′).

Hence, Waldspurger can be written as Iπ 6= 0 ⇐⇒ Jπ′ 6= 0. Thus, to prove it, suffices to relate Jπ′
and Iπ.

Comparing orbits The minimal thing one can do is match “orbits,” the double cosets

H(F )\G(F )/H(F ) ! A(F )\G′(F )/A(F ),

i.e. we’d like a bijection between ‘good’ (think: regular semisimple) orbits. Once one can matchup orbits
like these, you want transfers and fundamental lemmas, i.e. you want identities between orbit integrals.

For all f , you want some f ′ such that Orb(γ, f) = Orb(δ, f ′) for any corresponding orbits γ ↔ δ.
This will let you compare the geometric sides of the trace formulas. Also want HK 3 f = f ′ ∈ H′K′ (with
HK ∼= H′K′) to imply that the orbit integrals match; this is not a tautology (even though the groups are
the same in this case, the subgroups are not the same). You want∫

(H×H)(Fv)

f(h−1
1 γh2)dh1dh2 =

∫
(A×A)(Fv)

f ′(h−1
1 δh2)η(h2)dh1dh2.

How do we understand orbits? Say for GL2, so we’re looking at the double coset space A\GL2 /A

(A =diagonal torus). Note there’s a map

A\GL2 /A −! P1

δ =

(
a b

c d

)
7−!

bc

ad
.

This really lands in P1 \ {1} ∼= A1 since det δ = ad − bc 6= 0. What are the “good” orbits? We have
A × A y G, and we like the orbits which are closed subschemes of G = GL2. Also, we like finite
stabilizers. These con-

ditions in-
spired from
GIT if I
heard cor-
rectly

Definition 25.3. We’ll say δ is regular semisimple iff Inv(δ) 6∈ {0,∞}.

Hence, we can classify the bad δ, e.g.

• Inv(δ) = 0 ⇐⇒ bc = 0, giving thee bad orbits (b = 0, c 6= 0), (b 6= 0, c = 0), (b = c = 0). Note that

the orbits of

(
1 1

0 1

)
and

(
1 0

1 1

)
are not closed (e.g. the closures of their orbits contain

(
1 0

0 1

)
).

That stabilizer of

(
1 0

0 1

)
is too big, I think (I didn’t quite hear).

To summarize, A\G/G ' P1 \ {1} is a variety with good orbits A\Greg, s.s./A
∼
−! P1 \ {0, 1,∞}.

Remark 25.4. Really understand A\G/A as G/A×A. Can view this as a GIT quotient, but here they’re
identified with familiar schemes.
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Warning 25.5. There’s no guarantee that one has e.g.

A(F )\G(F )/A(F ) ' P1(F ) \ {1}.

This turns out to actually hold in our case though (everything we said makes sense on the level of
points).

Back to the non-split torus, so G = B×.

Lemma 25.6. Any quaternion algebra B ⊃ E is of the form

Bε :=

{(
α β

εβ α

)∣∣∣∣∣α, β ∈ E
}
⊂M2×2(E).

Note E ↪! Bε ‘diagonally’, α 7!

(
α 0

0 α

)
. Above, Bε is unique for choice of ε ∈ F×/NE×.

One has an invariant map

Inv : G = B×ε −! P1 \ {1}

γ =

(
α β

εβ α

)
7−!

εββ

αα
=
εNmβ

Nmα

This is H ×H-invariant, and identifies H\G/H ' P1 \ {1}.

Warning 25.7. On F -points,
G(F )! (P1 \ {1})(F )

is not surjective. Not everything is of the form εNmβ/Nmα. The image of this map is only εNm(E)∪
{∞}.

As before, our good orbits will be those with invariant 6= 0,∞. Hence, the good orbits have invariants
in εNm(E×).

Lemma 25.8. There is a bijection of good orbits⊔
B⊃E

E×\B×/E× ∼
−! A\G′/A.

Recall 25.9. This lemma (after taking invariants) is really just saying⊔
ε∈F×/Nm(E×)

εNm(E×) = F×,

which is true by definition.

This is why, in the our first statement of Waldspurger, we had to use all the divison algebras. This
concludes our discussion of Waldspurger.
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25.1 Some Remarks

Remark 25.10. The argument via relative trace formulas that we outlined is due to Jacquet. Wald-
spurger’s original proof was more ad hoc.

Remark 25.11. The Arthur-Selberg trace formula (for H) is the relative trace formula attached to G =

H ×H with chosen subgroups H1 = H2 = ∆(H).

Hence, the Arthur-Selberg trace formula is about GL2×GL2 while the ones coming up in Waldspurger
really only involve GL2 (or B×) and so our simpler in some sense.

Remark 25.12. When talking about base change, we also saw a twisted trace formula for GLn. We
have a (cyclic) Galois extension E/F and a (generator) σ ∈ Gal(E/F ); we used G = GLn,E ×GLn,E ,
H1 = ∆(GLn,E), and H2 = Γσ.

We see from these examples that the choice of triple is not something ‘purely mechanic.’ We also see
some limitations in this last example. If the Galois group is not cyclic, one would like to consider more
than two subgroups, but then you run into the issue that the kernel function Kf (x, y) only takes two
parameters.52

Open Question 25.13. non-solvable base change, even for GL2?

In another direction, one application we didn’t have time to get to is the Gross-Zagier formula.
Waldspurger says that ∣∣∣∣∣

∫
[H]

ϕ(t)dt

∣∣∣∣∣
2

∼ L(πE ,
1

2
)

with E/F quadratic. This can be used to prove B-SD when ords= 1
2
L = 0. Gross-Zagier extended things

by producing a formula for the first derivative L′(πE , 1
2 ), at least when π∞ is a discrete series of GL2(R)

(so assuming F = Q or some other totally real field). Their formula took the form

〈yH , yH〉NT ∼ L
′
(
πE ,

1

2

)
.

They used this formula to prove B-SD when ords=1/2 L = 1.
The automorphic period integral for H is replaced by a shimura variety; H ⊂ G becomes yHShH ⊂

ShG for G some Shimura curve/F (and ShH corresponding to CM points). The integral itself is replaced
by the height pairing 〈yH , yH〉.

Open Question 25.14. Higher derivatives L(r)
(
πE ,

1
2

)
?.

52If the Galois extension is solvable, you can get around this by repeating the cyclic case over and over
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26 List of Marginal Comments

o Good references (IMO) include these notes by Poonen and the book ‘Fourier Analysis on Number
Fields’ by Ramakrishnan and Valenza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

o See section 5.3.4 (page 100) of the other Bump book (An intro to Langlands), I think . . . . . 2
o something something kernel of χ is open something something? . . . . . . . . . . . . . . . . . . 4
o TODO: Convince yourself this adds up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o Secretly, the product dx is independent of ψ. This is a consequence of the product formula.

Changing ψ  ψa changes dx |a|±1/2
dx = dx . . . . . . . . . . . . . . . . . . . . . . . . . 15

o I think, anyways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
o This is Fubini (probably) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
o something like this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
o Question: Are these the defining relations for PSL2(Z)? . . . . . . . . . . . . . . . . . . . . . . 19
o This is probably not the right phrasing, but whatever. It satisfies the functional equation you

want it to satisfy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
o May need to do something about the cusps at ρ, ρ+ 1. See Serre’s book for details . . . . . . . 22
o By ‘endomorphism’ we mean ‘self-isogeny’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o Seems there was a mistake at some point. The 1− k in the exponent should really be a k − 1 . 32
o This factor eliminates annoying denominators in describing coefficients of Hecke operators ap-

plied to modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o TODO: Finish this tale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o Something something can make a twist by some character to use arithmetic frobenius instead

something something . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
o Wei wrote n

k
2 +ε instead, but I didn’t understand why . . . . . . . . . . . . . . . . . . . . . . . 37

o I guess you need to know the functional equation of the K Bessel function to verify this for
n 6= 0. I don’t know it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

o e.g. If f(z) is a weight k holomorphic cusp form, then we could take ϕ(z) = |f(z)| yk/2 . . . . . 41
o The Petersson inner product is positive definite by construction . . . . . . . . . . . . . . . . . . 42
o Note (αp, βp) well-defined up to Z/2Z-action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
o semisimple element well-defined up to conjugation . . . . . . . . . . . . . . . . . . . . . . . . . 43
o Could take forms of different weights, and only one needs to be cuspidal, but let’s keep it simple 43
o Note: if g is a normalized eigenform, its eigenvalues/coefficients will be real numbers so bn = bn.

This follows from the Hecke operators being self-adjoint. . . . . . . . . . . . . . . . . . . . . . 45
o Divide by p(k−1)/2, I think . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
o Unclear to me if this was meant to be under the same header as ‘generalized Ramanujan’ . . . 50
o I kinda jumped in in the middle of this, so I’m not sure what he’s going for right now . . . . . 52
o Could have used L2(G) instead, but we want to keep things easy . . . . . . . . . . . . . . . . . 53
o This is the non-arch analogue of the finiteness conditions . . . . . . . . . . . . . . . . . . . . . 56
o One day I’ll figure out a nice-looking way to display double cosets . . . . . . . . . . . . . . . . 56
o Question: πét1 (G) = 1? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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o Answer: No. A different notion of fundamental group based on isogenies instead. . . . . . . . . 57
o Question: Over OF ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
o Assuming I heard correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
o Question: Does this follow from exp : slN ! SLN having image generating SLN? . . . . . . . . 57
o I’m not convinced I’ll ever know the actual definition of a quaternion algebra . . . . . . . . . . 59
o Answer: It’s a central simple algebra of dimension 4 . . . . . . . . . . . . . . . . . . . . . . . . 59
o Question: Can G be any topological group here? . . . . . . . . . . . . . . . . . . . . . . . . . . 65
o Part of definition of acting on a Hilbert space, I believe . . . . . . . . . . . . . . . . . . . . . . 65
o Question: Does this really mean apply Zorn’s lemma? . . . . . . . . . . . . . . . . . . . . . . . 67
o Remember: Our representations are unitary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
o Question: What’s going on here? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
o Question: Is this an assumption or by definition? . . . . . . . . . . . . . . . . . . . . . . . . . . 77
o Answer: By a theorem (specifically, theorem 14.11). A0([G]) is semisimple so all subquotients

are subreps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
o In archimedean case, second condition should be K-finite . . . . . . . . . . . . . . . . . . . . . 77
o Rep(−) is smooth representations of − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
o Fact: Any f.dim rep of GL2 over a (non-arch) local field is 1-dimensional . . . . . . . . . . . . . 79
o And every day afterwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
o Remember: Elements of IndGN ψ are certain C-valued functions on G . . . . . . . . . . . . . . . 83
o This is equiv to Lemma 19.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
o We initially forgot to include the normalization δ1/2 below, so some of the stuff after it is missing

a δ1/2 factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
o Question: What? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
o Something like consider only functions with compact support in definition of (smooth) induction 86
o The subscript s− 1/2 is missing after what’s written below. It should be there . . . . . . . . . 90
o When dimπ = 1, this may be 0-dimensional, but the 1-dimensional π case is overall easier, so

can handle it separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
o From Tate’s thesis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
o Question: Finite set of non-complex places? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
o Question: What does elliptic mean here? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
o Question: Should this be L2([G], ωπ = 1) = L2(X) on the left? . . . . . . . . . . . . . . . . . . 95
o Question: Implicitly assuming γ regular semisimple? . . . . . . . . . . . . . . . . . . . . . . . . 99
o Question: Why is πv a principal series here? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
o This makes sense since fS fixed and fS contained only in the good places . . . . . . . . . . . . 103
o For writing down this characterization, we don’t actually need v unramified, and we don’t

actually need πv unramified. We just need πv a principal series . . . . . . . . . . . . . . . . . 104
o Question: ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
o This is a local condition: HomT (Fv)(πv,C) 6= 0 for all v . . . . . . . . . . . . . . . . . . . . . . . 111
o For v ∈ ΣB , Bv is a division algebra. If v is split in E, Ev = F1 × F2 will locally be a product,

and so cannot embed into a division algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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o These conditions inspired from GIT if I heard correctly . . . . . . . . . . . . . . . . . . . . . . 113
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Converse Theorem, 76
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Dixmier-Malliavin Theorem, 95

eigenform, 31
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Fundamental Lemma, 110
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Global Jacquet-Langlands, 94
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Hecke algebra, 31, 64, 96
Hecke algebra at v, 102
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Hecke operator, 28, 29
Hecke operator at v, 102
Hilbert-Schmidt norm, 65
Hilbert-Schmidt Operator, 65
holomorphic at ∞, 20
holomorphic modular form of weight k ∈ Z, 20
Homothety, 25
Hyperbolic Laplacian, 40
Hyperbolic Laplacian operator, 47

idèle class group, 3, 5
Ideles, 3
inner forms, 69
irreducible automorphic representation, 70

Jacobi theta function, 34
Jacquet functor, 79
Jacquet-Langlands correspondence, 60, 72

K-Bessel function, 40
kernel function, 66
Kirillov model, 84

Langlands, 45
Langlands reciprocity, 104
level, 34
Linear independence of characters, 103
local Artin map, 3
local functional equation, 9
Local Jacquet-Langlands, 93
local zeta integral, 7, 83
locally finite, 61

Maass form, 47
matrix coefficient, 65, 99
Mellin transform, 41, 88
mirabolic group, 84
moderate growth, 20, 39, 54, 56
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modular group, 19
Multiplicity One, 34

Multiplicity one, 33
multiplicity one, 63, 81
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nondegenerate, 35
norm, 54
normalized ζ-integral, 9
normalized eigenform, 31
normalized Eisenstein series, 22

odd, 49
of rapid decay, 7
of weight k, 29
oldforms, 34
orbital integral, 96

parabolic induction, 73
Petersson inner product, 31, 41
Poisson summation, 15
Poisson Summation for F ↪! A, 15
positive definite, 35
Prime Number Theorem, 42
principal series, 74
product formula, 3, 12

Ramanujan’s Conjecture, 27
Rankin-Selberg L-function, 44
Rankin-Selberg convolution, 43
rapid decay, 41, 47
Reciprocity, 3
regular semisimple, 98, 113
relative trace formula, 108
restricted tensor product, 71
right regular action, 53

Schwartz functions, 7
self-adjoint, 65
Siegel(-Weil) formula, 37
Simplified Spectral Decomposition, 65
simply connected, 58
smooth, 61
smooth induction, 74
smooth representation, 69, 73
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smooth vectors, 61
spectral decomposition, 63
spectral theory of compact operators, 65
spherical, 71
Steinberg representations, 75
Strong approximation, 57
strong approximation, 56
Strong Multiplicity One, 33
supercuspidal, 85
supercuspidal representations, 75

Tamagawa number, 15
Tensor Product Theorem, 71
theta function, 36
trace, 67
transfer, 100
trivial bound, 26

Trivial estimate, 49
twisted trace formula, 108

unimodular, 35
unipotent matrices, 57
unitary, 12
unramified, 4, 6, 9, 71, 104

Waldspurger’s Theorem, 111, 112
weak approximation, 57
weight k action of γ, 29
weight k automorphy factor, 20
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Weyl law, 52
Whittaker functions, 77
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