18.755 (Lie Groups and Lie algebras II) Notes

Niven Achenjang

Spring 2021

These are my course notes for “Lie Groups and Lie algebras II” at MIT. Each lecture will get its own
“chapter.” These notes are live-texed or whatever, so there will likely to be some (but hopefully not too
much) content missing from me typing more slowly than one lectures. They also, of course, reflect my
understanding (or lack thereof) of the material, so they are far from perfectEl Finally, they contain many
typos, but ideally not enough to distract from the mathematics. With all that taken care of, enjoy and
happy mathing.

The instructor for this class is Pavel Etingof. This class overlaps once a week with a seminar that I

am attending, so that might cause issue in these notes.
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1 Lecture 1 (2/16)

1.1 Class stuff

Homeworks assigned/due on Thursdays. Lecture notes here if you can acess the Canvas.

1.2 Review of material from last term
1.2.1 Lie groups

Definition 1.1. A real (complex) Lie group is a real (complex) manifold G which is also a group
such that G x G — G is regular (analytic). A homomorphism of Lie groups G — H is a group

homomorphism given by a regular map.

Example. Real: R",U(n),SU(n), GL,(R), O(p, ¢), Sps, (R)
complex: C", GL,(C), 0,(C),Sp,,,(C)

Every Lie group G has a connected component of 1 denoted G°. This is a normal subgroup, and
G/G" is discrete and countable.
Say (G is connected. Then its universal cover Gisa simply connected Lie group, and comes with a

map 7 : G —» G with kerm = Z , some central discrete subgroup, such that G /Z = G.

Example. G = S* then G = R and Z = Z. Hence, in this case 71 (S') = Z.

1.2.2 Lie subgroups

Definition 1.2. A Lie subgroup H C G is a subgroup which is also an immersed submanifold (i.e. H
is a Lie group and H — G is a regular map with injective differential at every point). A closed Lie

subgroup H C G is a subgroup which is an embedded submanifold (i.e. locally closed).
Remark 1.3. A closed Lie subgroup is equivalently a Lie subgroup which is closed in G.

Example. Q C R is a Lie subgroup, but not an embedded submanifold. However, Z C R is a closed Lie
subgroup.

Example. O,(R) C GL,(R) is a closed Lie subgroup.
Example. An irrational torus winding R C S' x S is a Lie subgroup which is not closed.
We will almost always work with closed Lie subgroups.
Fact (Did not prove last semester). Any closed subgroup of G is a closed Lie subgroup.
Fact (Did prove last semester). Any connected Lie group is generated by any neighborhood of 1.

Definition 1.4. Let H C G be a closed Lie subgroup. Then, the quotient G/H is a manifold with a

transitive G-action, i.e. a homogeneous G-space. If H is a normal subgroup, then G/H is a Lie group.

If G acts transitively on a manifold X (i.e. G x X — X regular), then for any x € X, we get a
stabilizer G, C G (a closed Lie subgroup), and G/G, = X. Hence, every homogeneous space is given by
a quotient of G.

More generally, say G acts on X not necessarily transitively. Then, there are orbits. For any = € X,

Gz C X is an immersed submanifold, and is isomorphic to G/G,.
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1.2.3 Representations

Reps are actions of G on a vector space by a linear transformations. We usually consider complex
representations, i.e. maps G — GL,(C) = GL(V).
We get the usual notions from representation theory: homomorphisms of reps (intertwiing operators

A :V — W), subreps, direct sums, duals, tensor products, irreps, indecomposable reps, etc.

Lemma 1.5 (Schur’s lemma). Let V,W be irreps. If they are not isomorphic then any A:V — W is
trivial (A =0). If they are isomorphic, then any A :V — V is scalar multiplication (A = \1d).

Example. G acts on itself by conjugation: g -2 = gzg~!'. This induces g, : T1G — T1G, and the map
Ad: g — g. gives the adjoint representation Ad : G — GL(g).

Definition 1.6. A unitary representation is one with an invariant positive def Hermitian form (v, w),
ie. (gv,gw) = (v,w), i.e. G — U(n) C GL,(C).

Recall that in general, indecompsoable (not a direct sum) is weaker than irreducible (no nontrival
proper subreps). However, any unitary representation is a direct sum of irreducible representations (so
unitary indecomposable = unitary irreducible).

If G is finite (or, more generally, compact), then any representation is unitary. Take a random positive
Hermitian form, and then average it over the group to get an invariant one. Thus, any finite dimensional

representation of G (finite or compact) is a direct sum of irreps (i.e. completely reducible).

1.2.4 Lie algebras

Note that G acts on itself by right translations, i.e. gox = xg. This is a right action. Fix a € T'G =: g.
Right translation gives rise to a tangent vector ag € T;G at g. Doing this at every point gives rise
to a left invariant vector field (since left multiplication commutes with right translation) R, on G (i.e.
Ral, = ag).

We know vector fields correspond to derivations of functions. We can consider the commutator
[Ra; Rb] = RaRb - RbRa7

another left-invariant derivation (vector field), so [R,, Ry] = R, for some [a,b] € g. Hence, for any
a,b € g, we get in this way a commutator [a,b] € g. This is a bilinear map g x g — g satisfying

o (skew-symmetry) [z,2] =0 = [z,y] = —[y, 7]

e (Jacobi identity)
[z, 9], 2] + [y, 2], 2] + [[z, 2], 9] = 0.

Definition 1.7. A Lie algebra over any field & is a k-vector space g with a bilinear operation [—, —] :

g X g — g satisfying skew-symmetric + Jacobi identity.
Example. If G is a Lie group, then g = TG is a Lie algebra. We also denote it by Lie(G).
Example. If G = GL,(C), then g = gl,,(C) = Mat,,(C) with Lie bracket [A,B] = AB — BA

Example. If G = O,,(C), then g = skew-symmetric n X n matrices with same Lie bracket.

Any left-

invariant
vector field
is deter-
mined by

its value at

the identity




Definition 1.8. A lie subalgebra fj C g is a subspace invariant under [—,—]. A Lie ideal is a Lie
subalgebra g C g such that [g, h] C b.

Example. The center 3 C g given by {2z € g | Vx € g: [z, 2] = 0} is a Lie ideal.

If H C G is a Lie subgroup, then Lie H C Lie G is a Lie subalgebra. If H is normal, then Lie H is a Lie

ideal.
The same representations theory notions apply to Lie algebras as well, e.g. an n-dimensional rep-

resentation of g/k is a homomorphism ¢ : g — gl, (k) of Lie algebras, i.e. ¢([a,b]) = [p(a), o(b)].

1.2.5 Exponential Map

Say G a Lie group and g = LieG. Given a € g, consider differential equation

g (t) = ag(t) and g(0) = 1.

This has a unique solution which we denote by g(t) = exp(ta). This defines a 1-parameter subgroup
v : R — G, p(t) = exp(ta). This satisfies

exp(ta) exp(sa) = exp((t + s)a).

Example. When G = GL,(K) (and K = R, C), this is usual matrix exponential

n

= t"a
exp(ta) = Z R
n=0

Setting ¢t = 1 gives the exponential map exp : g — G. The differential of this map at the idenity is
a map exp, : g — g which is actually the identity map exp, = id. Hence, exp is invertible near identity,
and the inverse map is called log : U C G — g (only defined on some open neighborhood U C G of the
identity).

This allows another definition of the commutator. One has

1
log(exp(a) exp(h)) = a+ b+ Lo, + -
Similarly (Note: exp(a)~! = exp(—a)),

log(exp(a) exp(b) exp(—a) exp(—b)) = [a,b] + - - - .

In either case, the - - - refers to higher order terms. The commutator measure the extent to which G° is

non-commutative, e.g. G° commutative <= [—,—] =0 on g.

)

1.2.6 Fundamental Theorems of Lie Theory

There are 3, and we proved 2 of them last semester?

Theorem 1.9. For any Lie group G, there is a bijection between connected Lie subgroups H C G, and

Lie subalgebras g C g = Lie G given (in one direction) by H — Lie(H).



Theorem 1.10. Let G, K be Lie groups with G simply connected. Then,
Hom(G, K) = Hom(g, )

where g = LieG and ¢ = Lie K. This iso is given by taking the derivative at the identity.

Theorem 1.11 (Did not prove). For any finite dimensional real or complex Lie algebra g, there exists a

Lie group G such that g = LieG.
We will prove this one this term.

Corollary 1.12. Say K = R,C. Then there is an equivalence of categories between simply connected

K-Lie groups and finite dimensional K-Lie algebras given by G +— LieG.

Any connected Lie group is of the form G/T where G is simply connected Lie group, and ' C G is a
central, discrete subgroup.

These give good classification of Lie groups in terms of Lie algebras.

1.2.7 Representations of sl (C), SLy(C)

sm(@{(a Z):adbcl} andg[z(C){<a Z):aerO}.

Recall 1.14. sl3(C) has basis given by

Recall 1.13.

satisfying
[eaf] = h, [hae] = 2e, and [haf] = —2f.

Let V,, be the (n + 1)-dimensional representation on homogeneous polynomials in x,y of degree n:
apx™ + a1z ly 4+ - 4+ a,y™. sly acts on Vj, by acting on z,y in the natural way.
Theorem 1.15.

(1) These representations (for n > 0) are all the irreps of sls.

(2) Every representation is a direct sum of irreps (i.e. completely reducible)

(3)

min(m,n)
Vo ®@ Vi = ‘/|m7n|+27,'71
1

1=

(Clebsh-Gordan, up to spelling)



1.2.8 Universal enveloping algebra

Let g be a Lie algebra. Get tensor algebra T'g = €D,,~,9%". The universal enveloping algebra is

Tg

Uw%:@®y—y®w—th

It is easy to see that representations of g are the same as reps of U(g).
Let z; be a totally ordered basis of g. Then we can form ordered monomials [, z;'* with n; > 0 (and

only finitely many nonzero). These span U(g).

Theorem 1.16 (PBW). Such monomials form a basis of U(g) (so they are linearly independent).

1.2.9 Solvable and nilpotent Lie algebras
Given a Lie algebra g, consider D(g) = [g, g].
Definition 1.17. g is solvable if D"(g) = 0 for some n.

Define Li(g) = g, L2(g) = [g9, L1(9)], L3(g) = [g, L2(g)],.... We say g is nilpotent if L, (g) = 0 for

some 7.

Remark 1.18. nilpotent = solvable, but the reverse does not always hold.

Example. (; *> is solvable, but not nilpotent.

o)

Theorem 1.19 (Lie). Working over C. If g is a f.d. solvable Lie algebra, then every irrep of g is

is nilpotent.

1-dimensional (false is positive characteristic). Hence, any f.d. rep has a basis in which all elements of

g act by upper triangular matrices.
Theorem 1.20 (Engel’s Theorem). A f.d. Lie algebra g is nilpotent <= all x € g are nilpotent

(i.e. adz : g — g given by adx(y) = [x,y] is nilpotent).

1.2.10 Semisimple and reductive Lie algebras

Everything from here on out is over C (and finite dimensional).

Definition 1.21. Let the radical rad(g) of g be the sum of all its solvable ideals (equivalently, the

largest solvable ideal).
Definition 1.22. We say g is semisimple if rad(g) = 0. The semisimplification is g,s := g/ rad(g).
Proposition 1.23. g, is semisimple, and g = gss X rad(g) (Levi decomposition)

Definition 1.24. g is simple if its only ideals are 0 and g.



Proposition 1.25. A semisimple Lie algebra is a direct sum of simple Lie algebras.

Really hard to classify general Lie algebras, but classifying (semi)simple Lie algebras is doable in

terms of Dynkin diagrams.

Definition 1.26. We say g is reductive if rad(g) = Z(g) (radical = center). Any reducitive Lie algebra
is of form g = h @ g5 with h abelian.

Example. sl,(C) is simple for n > 2.
gl,,(C) = C @ sl,,(C) is reductive.
50, (C) is simple for n > 3 except n = 4, where 504(C) = sly & sl is semisimple.

1.2.11 Killing form

Definition 1.27. The Killing form is
K(z,y) = trg(adz - ady).

Above adz(z) = [z, z]. This is symmetric bilinear form on g which is ad-invariant:
K([z, 2], y) = K(z, [2,9])-

Theorem 1.28 (Cartan’s Criteria). g is solvable iff [g, g] C ker K.

g is semisimple <= K 1is nondegenerate.

2 Lecture 2 (2/18)

Note 1. A few minutes late.

Continuing where we left off T think.

2.1 More general forms

Let V be af.d. rep of g, so p: g — EndV a Lie algebra homomorphism. We consider

By (z,y) = Trv (p(x)p(v)),

e.g. By = K is the Killing form.

Proposition 2.1. If By is nondegenerated for some V, then g is reductive, g = gss ® h with h abelian.

2.2 Semisimple Lie algebras
Consider g semisimple over C.

Theorem 2.2. FEvery f.d. representation of g is completely reducible

V=V



If g is semisimple, we can construct a G with Lie G = g. Take Aut(g) C GL(g), let G = Aut(g)°.
This may not be simply connected, but Lie G 2 g.

2.3 Jordan decomposition and Cartan subalgebras

Recall that any matrix can be written as the sum of a diagonal matrix and a semisimple matrix with the
two commuting (e.g. put it in Jordan normal form).
Let g be a semisimple Lie algebra. We say « € g is semisimple if adz : g — g is semisimple

(diagonalizable).

Theorem 2.3. Any x € g can be uniquely written as a sum x = xs+x, with x5 semisimple, x,,-nilpotent,

and [zs,x,] = 0.

Definition 2.4. The Cartan subalgebra ) C g is the maximal commutative subalgebra consisting of

semisimple elements.
Cartan subalgebras are also maximal w.r.t. commutative subalgebras.
Theorem 2.5. All Cartan subalgebras are conjugate under the action of the group G.
Hence, all Cartan subalgebras are of the same dimension 7, called the rank of G.
Example. g = sl,,. Then h) C sl,, consisting of diagonal matrices is a Cartan subalgebra.

T 0

where 1 +---+ 2z, = 0.

h=C" !, soranksl, =n— 1.

2.4 Root decomposition

Fix h C g Cartan. h ~ g via adjoint action, and we can decompose g into eigenspaces:

g=bo® @ Jas

aeh*\0

where

0o ={x €g:[hz]=alh)z forall heb}.

We call @ € h*\ 0 a root if g, # 0. There are only finitely many roots since dim g < co. The set R C h*
of roots is called the root system of g. Note that

(90> 88] C Batp

by Jacobi (maybe want a + 8 # 0).
Let B be a non-degenerate bilinear form (e.g. Killing form). Then, g, L gs unless a4 5 = 0. On the
other hand,

B:gaxg-a—C

Remember:

Always con-
sider s.s. Lie
algebras in
characteris-
tic 0




is a nondegenerate pairing. In fact, dimg, = 1 for all a € R, so
|R| = dimg — rank g.

By above nondegeneracy, dimg, = dimg_,,so« € R = —a € R.
The span span(R) = b of the roots is a real subspace of h) such that hg g C = . Write E for this

span (this is a Euclidean space since K

h; gives a positive definite inner product).

Example. A, is the root system of sl3. Here, dimsl; = 8 and ranksls = 2, so |R| = 6. One can check
that these roots form the vertices of a regular hexagon.

2.5 Abstract Root Systems

Let E = R"™ be a Euclidean space. Let R C R\ 0 be finite. If it satisfies the axioms
(1) Rspans E

(2) For all o, 8 € R,

(3) For all o, 8 € R,
5a(B) = B —nasa € R.

then we call R C E an abstract root system. We set rank(R) := dim E. We call it reduced if
a € R = 2a ¢ R. We call R irreducible if we can not write R = R; LI Ry (with E = FE; x Fy and
R; C E; root systems).

Fact. The set of roots of a semisimple Lie algebra form a reduced root system, which is irreducible iff

the Lie algebra is simple.
The reflections s, give the root system lots of symmetries.
Definition 2.6. The Weyl group is the subgroup W C O(FE) generated by s, for o € R.

Note that the Weyl group is finite since it acts faithfully on the roots R (so subgroup of permutation

group of roots).

Example. g = sl,, then F = {(x1,...,2,) € R": Y z; = 0} (coordinates on diagonal). The roots are

2

o = e;—ej where i, j € [1,n] and i # j, so n° —n roots. The reflections s,,; = (ij) act by transpositions.

Hence, W = S, is the symmetric group. This gives the root system A, _1 (n > 2).

Example. The root system B, (n > 2) comes from o(2n + 1).
The root system C,, (n > 3) comes from sp(2n).
The root system D,, (n > 4) comes from o(2n).

Example. There are 5 exceptional root systems Gs, Fy, Fg, 7, Eg.



2.5.1 Positive and Simple Roots

Pick some t € E such that (¢,«) # 0 for all & € R.

Definition 2.7. We say « is positive w.r.t to t if (¢,a) > 0 and negative if (¢,a) < 0. We call a a

simple root if it is positive, but not the sum of two other positive roots.

Pavel drew a picture of As-root system with a choice of polarization. If you want to see a picture,

track down and look at my notes from last semester...

Notation 2.8. Let Ry be the set of positive roots, and R_ be the set of negative roots. Let II be the

set of simple roots. These all depend on the polarization (choice of t).
Fact.
(1) Every positive root is a sum of simple roots
(2) If o, 8 are simple roots, and o # 8, then («, 5) < 0.
(3) II C R4 is a basis of E.
Any root can be written uniquely as

T
o = E n; o
=1

where n; € Z and 11 = {ay,...,a.}. Furthermore, n; > 0 for all ¢ if « € R4, and n; < 0 for all ¢ if
a€R_.

2.5.2 Dual root system
For R C E, we can attach to coroot a¥ € E* defined by s,(aV) = —a" and (a,a") = 2. Thus,
sa(?) =2 — (2,0")x

for any z. Write RV = {a" : « € R} C E*.
Example. B, = C,,. Other irreducible root systems are self-dual.

Definition 2.9. The root lattice if the Z-span of the roots (equivalently, Z-span fo simple roots), i.e.

it is
Q: <R> = <H> = {Zniai N EZ}.
i=1
The coroot lattice is Q¥ = (RY). The weight lattice is the dual lattice to Q"
P=(QV)" ={AeE:(\a")eZ forall acR}.

The coweight lattice is PV = Q*.

Example. #(P/Q) = n for sl,.



Inside the weight lattice are the fundamental weights w; € P satisfying

(wi,ajv) = dij,

i.e. they are the dual basis to simple coroots. A weight A = > z;w; is called dominant if z; > 0 for all

i. It is called integral if z; € Z (i.e. if A € P belongs to the weight lattice).

2.5.3 Cartan matrix and Dynkin Diagrams

We have simple roots aq,...,a,. Recall

73 nga; =

The Cartan matrix is A = (a;;). These satisfy
e a;; = 2 always.
o a; <0ifi+#j.
®q;; =0 < a;; =0.
e a;;a5; €{0,1,2,3}.
One can reduce classifying irreducible root systems to classifying indecomposable Cartan matrices.

Example. For sly, the Cartan matrix is

2 -1 0
-1 2 -1
0o -1 2
We visualize these using Dynkin diagrams. There are r = rank(R C EF) = dim E = |II| vertices

corresponding to the simple roots. Vertex i is connected to vertex j by a(n) (undirected) single edge if
a;j = —1. There is a (directed) double edge ¢ = j if a;; = —2 and a;; = —1. There is a (directed) triple

edge from i to j if a;; = —3 and aj; = —1. Set

if Ai5Q5; = 0
if AijQ5; = 1

if QijQ4; = 2

S e W N

if QijQ4; = 3

Let s; = s,, be the simple reflections. These already generated the Weyl group W = (s;), and satisfy

s? =1, (s;s;)™i = 1. These are the defining relations (no other ones needed).

2.6 Serre presentations

This, among other things, let’s you construct Lie algebras for the exceptional root systems.
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Let g be a simple Lie algebra. Let ag,...,q, be the simple roots (choose Cartan subalgebra and
polarization of root system). Then we get 1-dim spaces go, = (e;) and g_o, = (f;). We can normalize
our generates so that

lei, fi] = hi = ).

For fixed 4, the elements e;, f;, h; generate an sly triple with normal relations.
Theorem 2.10.
(1) As i varies, these e;, f;, h; generate all of g.

(2) They satisfy
[his hjl =0, [hisej] = asjey, [hi, ;] = —aijfj, and [e;, f;] = dih;.
In addition, they satisfy the Serre relations (for all i # j)

(adei)lf‘“jej =0 and (adfi)liaijfj =0.

(3) g is defined by these generators and relations.
(4) For any reduced, irreducible root system, this defines a simple f.d. Lie algebra.

Corollary 2.11. Simple f.d. Lie algebras correspond bijectively to the Dynkin diagrams A, By, Cy, Dy, Eg, Er, Es, Fy, Gs.

2.7 Representation Theory

We can write g = h & ny & n_ where ny = @Q€R+ 9o and similarly for n_.
Let A € b* (we call such things weights). We can consider

My = (vy |hvy = A(h)vy for all h € h,e;uy =0).
By PBW (PWB?), we can write U(g) =U(n_) @ U(h) ® U(n,). Then,
My =U(g) @uan,) Cax = U(n_)vy,

where C, = Cu,, is rep where hvy = A(h)vy and e;vy = 0. In particular, M) is a fee module of rank 1
over U(n_).
Definition 2.12. A highest weight module for g with highest weight A is a quotient of M.

Proposition 2.13. Any f.d. irreducible representation of g is a highest weight module.

Any rep V of g (= semisimple) splits as

V=Vl

neP

If V is f.d., there exists a “highest” weight A s.t. A + «; is not a weight for any i. For any A € h*, there

is a smallest quotient M, /Jy = Ly which is irreducible (but in general co-dimensional).

11



Theorem 2.14. L, is finite dimensional <= \ is a dominant, integral weight (i.e. A\ € Py ).

Hence, f.d. irreps of g correspond bijectively to A € Py via A +— Lj.
It is hard to understand Ly in general, but not when A € Py.

Theorem 2.15. For A € Py, A=) . nw;, we have

My,

Ly=—02>—.
P )

2.8 Weyl Character Formula

Write

V=Vl

(I missed the hypotheses on V needed to have this decomposition) with each V[u] fin dimensional. Let

Xv = ZdimV[,u] -et e 6[-]?]

If V is finite dimensional, then this is in the usual (non-completed) group algebra C[P]. Note that, for
heb,
try (e") = Z dim V [p] et ™.
“w

This is why xy above is called a ‘character’.

Recall W is the Weyl group and W C O(FE), so det W — =£1 makes sense. We can define this
combinatorially. If w = s;, ...s;, , then det(w) = (—1)™ (i.e. it gives the parity of the length of w).
Define Remember:

h*apzz:w,-:% Z a.
i=1

aERy

Theorem 2.16 (Weyl Character Formula).

> wew det(w)ewP+r)—p
Ha€R+(1 - e—oc)

XLx =

Example. If A = 0, then Ly = C with trivial action, and xr, = 1. Therefore, we get the Weyl

> det(w)e” " = ] (1—e).

weWw aERy

denominator formula

For sl,,, above becomes the Vandermonde determinant

det = H ((El —SC]').

n—1 n—1 1<j<i<n

Next time we start discussing new material. Homework out tonight; due in a week.
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3 Lecture 3 (2/23)

Today we start new material. We talked last time about the Weyl character formula, so a good place to

go next is the...

3.1 Weyl dimension formula

Let g be a semisimple (complex) Lie algebra. Recall that P, denotes the set of dominant, integral weights.
For every A € P, we get a f.d. irreducible highest weight representation Ly with highest weight A. For
h C g Cartan and h € b, we had a formula for the character

det (w(A+p)—p,h)
K@) =T, () = Y dimy[g)er) = Zewaw U o)
BEP(Ly) H(XER+ (]‘ - )

Note that dim Ly = xr, (€*)|n=0, but this is not so easy to compute directly. In fact, both the numerator

and the denominator vanish at h = 0.
Question 3.1. How to compute the limit as h — 0?

(We know this is possible since the character is secretly a polynomial)

Key idea: specialize to h = th, (t € R) where h, < p under identification h* < §. Then,

ZweW det(u))e(w()\“’/))*p,tp)
Ha€R+ (1 — et(a,p))
e tpe) Zwew det(w)e(W(A+p),tp)
[oer, (1 —e—tl@r)
-1
— ¢~ tpp) Dwew det(w)eP+etwp)
[Tocr, (1—etler)
—t(p,p) ZUJGW det(w)et()‘+/)7wl))
Mocn, (1—et)

XLy (thp) =

=€

(Above, we've used that (,) is W-invariant, and we’ve replace w — w~! at one point (noting detw =

detw™1)). At this point, we recall the Weyl denominator formula:

Z det(w)e"? = e H (1—e ).

weW acRy
Applying this to the previous displayed equation shows that
)et(p7>\+p) Ha€R+ (1 _ e—t(a,kﬂ))) 1 — g—tl@A+p)

— ot(Xp) - -
1 — e—tlep) —° H 1 — e—tlep)
HO&GR+(

a€ERy

ONCOE

Recall 3.2. L’Hopital let’s us see that
1—e* a

im-—- = —.
t—»ol—etb b

13



Thus, we now see that
(a,A+p)

XL (1) =dim Ly = H o)

a€ER

This is called the Weyl dimension formula.

3.2 Tensor products of fundamental representations
Fix some A € Py, s0 A = 3" miw;, with (w;, o)) = d;; and m; € Z.

Definition 3.3. The representations L,,, are called fundamental representations.

Consider .
Ty =) LE™.
i=1
Note that this contains vy = Zrzlvfim"', where v,,, is a highest weight vector of L, .

Proposition 3.4. Let V' be the subrepresentation of Q;_, LE™: generated by vx. Then, V = L.

Proof. Recall that P(V)) C A — Q4. Since vy € V is a vector of weight A\, we can write

V =Ly® @ maLy,
=<

where 1 < A means p € (A — Q+) N Py. Recall the Casimir element C' € U(g) (even in its center): for
x; any basis of g with dual basis 2} € g under the Killing formﬂ then

C’:inx;‘ = iy?JrQ Z fata
j=1

aERyL

(above, y; some orthonormal basis of h and e,, fo chosen so that (eq, fo) = 1). Then, C|, acts via

multiplication by (u, u + 2p). We have shown previously that if u < A, then
(ks 4+ 2p) < (X A+ 2p).

However, since V is generated by vy, we know that Cly = (A, A + 2p)Idy. Therefore, we must have

my, = 0 since C' has no other eigenvalues. |

3.3 Representations of SL,(C)

Recall 3.5. LieSL,(C) = sl,,(C) = {A € g1,,(C) : Tr A = 0} has a natural Cartan subalgebra h C sl,,(C)

consisting of diagonal matrices diag(z1,...,z,) (with £ + -+ + x, = 0). Hence, we may identify

b%(C":{(ml,...,xn)e({:”:zxizo}_
i=1

or any symmetric, ad-invariant, bilinear form

2
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Note that we then have

h* =C"/Cdiag = {(y1,---,yn) € C"} modulo shift (y1,...,yn) ~ (Y1 +¢ ..., yn + ).

Here, the simple coroots are

a) =10,...,0, ,0,...,0 | =e;—e€i41 fori=1,...,n—1.

1, -1
~~"—~~
% i+1

The fundamental weights w; satisfy (w;,e; —e;41) = 0;5, and it is easy to see that these are

w; =(1,1,...,1,0,0,...,0) for i =1,...,n=1.
—_——

7 times

We would like to construct representations corresponding to the fundamental weights. This turns out
to be each. Let V = C" be the standard/tautological representation. Let v1,...,v, € V be the standard
basis. It is not hard to see that V is irreducible. What is the highest weight? Recall g,, is generated
by e; = E; ;4+1. From this, it is not too hard to see that the highest weight vector (killed by all e;) is v;.
Note that h = (z1,...,2,) € C} satisfies hv; = 2101, so the highest weight is w; = (1,0,...,0). Hence,
V=L,.

Note 2. Pavel occastionally draws pictures to illustrate points, but I'm currently too lazy to draw these
and add them to the notes...

Now consider exterior powers /\m V for 1 < m < n. This has basis v;; Aviy A--- Aw;,, for i3 <ig <

-+ <ipy. Say v is a highest weight vector. Then, Eiov = 0, Fo3v =0,..., E,_1 ,v = 0. Note that

0 i i1, ... i £

Eijvi, Ae e Avi, = o, Ao A vy A A it =3
—~—

kth place

Thus, the highest weight vector is v1 Ava A« - Avy,. Note that h = (21,...,z,) satisfies h-vy A+ - Avy, =
(xr1+ 22+ -+ Tm)v1 A+ Avpy, so the highest weight is

wm = (1,1,...,1,0,0,...,0).
——

m times
Further, A™ V is irreducible (easy exercise), so L, = A" V.

Example. A"V =0 for m >n. A"V = C is the trivial representation (basically, matrices act by both

trace and determinant, but determinant = trace = 0). There is an invariant, nonndegenerate pairing

/\"_1V®VL>/\"V=<C,

so A"V 2 V*. More generally,

ey e

15



Say A = > myw;. Then, L is the subrep in
n—1 . XRmMm;
7
®(A'V)
i=1
generated by tensor product of highest weight vectors. This is fairly concrete construction of L.

Example. Take A = mw;. V" 3 v ® v1 @ --- @ v1. Say m = 2. To get Loy, , we start applying Lie
algebra elements to this, e.g.
Es1(v1 ®v1) = 11 @ v2 + v2 @ v1.

One gets in the end that Ly,,, = Sym™ V (exercise).

Say A =mjwi + -+ mp_1wn_1. We can write this as a vector
m1(1,0,...,0) +ma(1,1,0...,0)+---=(my+ma+--+mp_1,ma+--+mp_1,...,Mp_1,0),
so dominant weights (of sl,,(C)) correspond exactly to nonincreasing sequences
PL2p2> - Zpn-120

of nonnegative integers.
Example. When n = 2, get one number p; > 0 which is exactly our old friend sly ~ V},,.
Ezercise. sl,(C) is simply connected, so it’s fine to not distinguish between representations of it and of

SL,(C).

3.4 Representations of GL,(C)

Recall 3.6. Lie GL,(C) = g[,,(C).

Warning 3.7. gl,,(C) is not semisimple, so our general theory does not directly apply. However, gl,,(C) =
50, (C) @& C so it’s close enough for us to be able to understand things.

On the Lie group side, GL,(C) is not quite a product of SL, (C), but instead one has
GL,(C) = (SLn(C) x C*) /pin,
where p,, is the group of nth roots of unity (in C). If (™ =1, then

¢
€ SL,,

¢

and we embed p, — (SL,(C) x C*) diagonally. This identification is given by

(SLn(C) X C)/ptn > (A, 2) = 24 € GL,(C).

16



Proposition 3.8. Rep GL,, = Rep(SL,, xC*) on which p, (embedding diagonally) acts tm’m’allyﬂ

Example. When n = 1, we just have C*. The Lie algebra is Lie C* = Ch, so a rep of the Lie algebra is
a choice of operator H : V — V such that e?™# =1 (since e>™* = 1). Hence, H is diagonalizable with
integer eigenvalues. Thus, every representation of C* is completely reducible (since H diagonalizable),

and its irreps are 1-dimensional corresponding to n € Z: x,(z) = 2".

For SL, xC*, all representations will be completely reducible. The irreducible representations are
Lyxn = Ly ® xy. What about for GL,,, i.e. when does the center act trivially? For GL,, you get the
Ly n for which |A] 4+ N is divisible by n.

We can look at this from another perspective. C™ = ) C gl,, consisting of diagonal matrices gives a
Cartan subalgebra (reductive Lie algebras have these as well). The dominant weights will correspond to
tuples (p1,p2,. ..

,Pn) With p; > py > -+ > p, € Z. The fundamental weights will be wy,wa, ...,w, with

w; = (1,1,...,1,0,0,...,0)
——

7 times

as before. Note that w, # 0 now (it gives the determinant character). Given A = mjwi + -+ + myuwy,

k Rmy
L,\C®(/\ V> with V = C",
k

.y Mp—1 > 0 while m,, € Z (possibly negative).

one has

and mq, ..

Remark 3.9. If x is a 1-dim representation and k£ < 0, we can and do set

XEF = ()PP,

Say A= (A,..., \p) With Ay > Ao >+ >\, € Z.

Definition 3.10. L) is polynomial if A\,, > 0.

Exercise. Ly is polynomial <= it is a direct summand in a tensor power of V.

Why are these called polynomial? Given z = (z;;) € GL,, v € Y, and f € Y*, can form the
matrix element (f, Xv). This gives a function on G = GL,, which is a polynomial for polynomial
representations. Note that GL,, C Mat,, is an open subset. Matrix elements will extend to functions on
Mat,, if they are polynomials. Note that any irreducible representation Ly will be of the form

®(—k)

L) = Poly rep ® (/\n V) for some k > 0,

so understanding polynomial representation will let us understand everything. We also see that general
matrix elements are % so only extend to all matrices if k& # 0 (need invertible determinant).

Note that Ay > --- > A, is a partition in n parts of
N=|A:=XA+"+ .

Partitions are usually denoted uses Young diagrams.

3Pavel uses the notation Mﬁiag to emphasize the diagonal embedding
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Example. The partition (5, 3,2) corresponds to the diagram

[ ]

Note that Ly occurs in VI e.g. L(5,3,2) occurs in V@10 Also, || is the eigenvalue of id € gl,, (when

acting on VV?)

Let’s look more closely at the structure of VY. We have

VoON — @ 7\ ® Ly where 7\ = HomGLn(LA7V®N)
A[A\=N

(consequence of complete reducibility). Note that ) = 0 if A has more than n parts.

How should we understand 7,7 The key is note: always in rep theory, if you decompose a representa-
tion into a direct sum, in order to understand the spaces showing up, you need to understand what acts
on those spaces; what acts on them normally is something that commutes with your group. Here, the
symmetric group Sy ~ VOV by permuting components. Therefore, Sy ~ each 7.

There’s a tight connection between rep theory of symmetric groups and rep theory of general linear
groups. Inside Endc(V®Y) there is an algebra A generated by U(gl,,) and another algebra B generated
by Sn. These two subalgebras commute: [A, B] = 0. They also satisfy a double centralizer property (one

is the centralizer of the other).
Theorem 3.11 (Schur-Weyl duality).
(1) The centralizer of A is B, and vice versa.
(2) If A has at most n parts, then ) is an irreducible representation of B (hence of Sy)

(8) If n = dimV > N, then 7wy exhaust all irreducible representations of sy (each occurring exactly

once).

The 7y correspond to partitions A of N with < n parts (this condition is meaningless if n > N), and

this correspondence is independent of n. More on this next time.

4 Lecture 4 (2/25)

4.1 Schur-Weyl duality

We started talking about this last time. Recall we have V = C" and GL(V) = GL,(C) naturally acts
on this space. We formed V& so GL(V) and gl(V) = gl,,(C) have an induced action on VEN. We
decompose

VeN = @ Ly ®my
AA=N

into a direct sum of irreps Ly each with ‘multiplicity’ 7y (note A ranges over partitions of N with < n
parts). Recall 7y = Homgr, (L, VEVN).
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At the same time, Sy acts on VOV by permuting the factors, and this action commutes with the one
of GL,,(C). We write Sy ~ VN .~ GL,(C) to emphasize that the actions commute. As a consequence,

S acts on each 7).
Let A be the image of U(gl,,) in Endc(V®Y), and let B C Endc(V®Y) be the image of the group

algebra CSy. Since the gl,, and Sy actions on V&Y commute, these two subalgebras commute with each
other. Beyond this...

Theorem 4.1 (Schur-Weyl duality).
(1) The centralizer of B is A, and vice versa.
(2) 7 is an irreducible representation of Sy, and the various wy’s are pairwise non-isomorphic.

(8) If n > N (so all partitions of N have < n parts), then the collection {my} gives the full set of

irreducible representations of Sn.

Slogan. Symmetric groups and general linear groups have equivalent representation theories.

For the proof, we will need several lemmas.

Lemma 4.2. Let U be a complex vector space. Then, SNU is spanned by vectors of the form x®--- @ x,
zeU.

Proof. Enough to consider finite dimensional U since any vector in SNU lies in the symmetric power
of some finite-dimensional subspace of U. Then, SVU is an irreducible representation of GL(U) (or of

gl(U)), and span{z ® --- @ x : € U} is a nonzero subrepresentation, so it must be everything. ]

Lemma 4.3. If R is an associative C-algebra, then the algebra SN R is a generated by elements
Ay@) =21l - 201)+(12z1 1)+ (- +1®---®@1®1)

(N summands). Can think of this as &1 +xo+ -+ zp withz; =1Q - ®1QxR1®---® 1 with x in
ith slot.

Proof. Consider z1,...,zy € C[z1,..., 2x]. By fundamental theorem on symmetric functions, there exists

a polynomial Py such that Py ("2, > 22,...,3.2N) = z... 2y (Newton polynomial). We apply

Py(An(z),An(z?),...,AN@") =2 - @ z.

By the previous lemma, these span SV R, so An(y), vy € R, generate R. |

Lemma 4.4 (Double Centralizer Lemma). Suppose B = @._, Maty, (F) is a direct sum of matriz
algebmﬁ over the field F'. Suppose also we embed B — Endp V' for some f.d. F-vector space V. Let

A CEndgV be the centralizer of B. Then, A is also a direct sum of r matriz algebras, and

=1

4apparently true for semisimple algebras over an algebraically closed field
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where U; ranges over the full set of irreducible representations of B, and W; ranges over the full set of
irreducible representations of A, and this decomposition is as a module over A ® B. In particular, there

is a bijection between irreps of B and of A, and also B is the centralizer of A.

Proof. We can write V = @._, W; ® U; with the U; irreps of B, and W; = Homp(U;, V). By definition,
the centralizer of B is A = Endg V = @,_, Endp(W;).

Question 4.5 (Audience). Why is the number of summands in the decomposition of V equal to the

number of summands in the decomposition of B?

Answer. All U; must occur as B — End(V) (so End(V) contains regular rep) and so W; # 0 for all

t=1,...,r. Similarly, A — End(V) so all of its irreps must occur, so the W; must be all of them.

“A good mathematical theorem is one that takes one minute to state and one hour to prove, and a
bad one is one that takes one hour to state but one minute to prove.” — Kirillov, paraphrased.

Now we return to Schur-Weyl duality.

Proof of Theorem[{.1 B is a direct sum of matrix algebras since representations of Sy are completely
reducible. We need to show that A is the centralizer of B. We know A C Z(B) that A is contained in
the centralizer. Note that

Z(B) = SN (EndV)

is the endomorphisms of V¥ which commute with the permutation action of Sy . The second lemma now
implies that Z(B) is generated by elements of the form Ay (x) for x € End V = gl,,. This is exactly the
action of z € gl,, on VOV so Ay(z) € A, the image of the enveloping algebra. Hence, Z(B) C A. At

this point, the third lemma applies, and we obtain everything else:
veN =@Pwi e U

with W; = L) representations of A, and U; = ) representations of B. This establishes (1),(2) of
Theorem 11

Recall that (3) said: if n > N, then 7 gives full set of irreps of Sy. If dimV > N, then we can
pick N linearly independent vectors vy,...,ux € V (and complete to a basis vy,...,v, of V). Then,
o(V1 @ ®UN) = V(1) @ - @ Uy are all linearly independent for different . Hence, CSy - (v1 @+ ®
vn) =2 CSy, so B = CSy — Endc(V®Y). Hence double centralizer story tells us that the {my} do give

all representations of Sy. |
Corollary 4.6. RepSy < partitions X\ of N.

Remark 4.7 (Sanity check). Number of irreps of finite group G = number of conj. classes of G. Conjugacy

classes of Sy are determined by cycle types, but these exactly correspond to partitions of V.

Remark 4.8. Schur-Weyl duality gives a new proof that reps of gl,, are completely reducible.
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Remark 4.9. The algebra A appearing above is called the Schur algebra. It is always a quotient of

U(gl,,) since this is infinite-dimensional while A is finite-dimensional.

We've given an assignment
partitions A — representations 7y of Sy

making use of some GL,, for n > N.
Claim 4.10. This assignment is independent of the choice of n.

Proof. Say A has < n parts. Let V = C™ be basis e1,...,e,. Consider V & Ce,11. Then,

(VeO)®N =P Lyt @+,
o

7T§\(n+1))

with exponents signifying which GL,, these come from. Pick some Lg\(nﬂ)) ® . What happens

when we restrict it to GL(V) C GL(V @ C), i.e. matrices of the form
(* 0) with * € GL,(C).
0 1

Let v/(\"H) € LE\"H) be a highest weight vector. Note that vf\nﬂ) € VON c (V& C)®N since A =

(A3 A, 0). Then, "™ @ 2 (z € 7{""") generates L™ as a rep of gI(V). This implics that it

() (") o i) "

generates a copy of Lg‘n) ® as a GL,, x.S,-module, so ™

4.2 Schur functors
Definition 4.11. Let A be a partition (say |\| = N). Then, the Schur functor S* on the category of
vector spaces (or of representations of a Lie group) is

SV = Homg,, (71')\, V®N) .

We can restate Schur-Weyl duality in terms of these functors:

veN = P SVem.
A part of N
If V is the standard representation of GL(V'), then SAV = Lj.

Example. SNV = Ly, =SNV.
UM = ANV

Example.

Vev=52vec,sstvec. =sve \V,

where C; is trivial rep of Sy, and C_ is the alternating/sign rep.

3
VeveV=50veC,estVeC etV eC’ =5 Ve \ Ve stIvec
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Note that ,
V®V®V—W®VWﬂ”ﬁ§V®W@<A&%ﬂ)

(first factor contains $3, 52! and second contains A*, 52! for some reason) so
2 3
SVeV=5$Vaes 'V ad \ Vev=/ Vaes>V

This gives two descriptions of S>'V:
e 12 symmetric tensors in V®? whose full symmetrization is zero.
e 12 antisymmetric tensor in V®3 where full antisymmetrization is zero.

What are dim S*V where dim V = N? We have the Weyl formula. One can check that we may take
p=(N—-1,N—-2,...,1,0) (smth smth replace gl with sl,, smth smth). Then,

dim SV = H Qtpo)
a>0 (p’a) ’

where as usual o;; = e; —e; (for i < j). Note that (p, ;) = j — i and (A, a;5) = A; — \;. Hence,

i J—t
1<i<j<N
Say A has k parts. Then above becomes -
Ai— XN +j—1 Ai— XN +j—1
dmstv = [ AoEIZtooqp Asstist
- J—1 ) . J—1t
1<i<j<k 1<i<k<j<N

B H Ai+j—i H (N+1—4)...(N+ X —1)
- SRR ETENY S S CES D NP

Proposition 4.12. dim S*V = P\(N) is a polynomial of degree |\| with Q-coeffs, and it has integer

roots all lying in [1 — A1,k — 1] (and the endpoints are always roots). Further, Py(N) has integer values

at integers which means it’s a Z-linear combination of binomial coefficients (ﬁ) See e.g.

Example. dim "V = (V771 = P, (N), and dim A"V = () = P__1)(N). ) TP i

" chapter 1 of
Example. Say a > b. One can work out that

Hartshorne
P (N)_a—b+1 N+a—1\(N+b—-2\ whena=b 1 (N+a—-1\(N+a—-2 where he
(@) Ca+l a b B a+1\ N-1 N-2 ) talks about

. ) . . Hilbert poly-
The a = b case gives Narayana numbers which combinatoralists apparently care about. .
nomials and

. numerical
4.3 Characters of symmetric group

polynomials

Recall
T

ChLA =Tr |L,\:S>‘V

Ln
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By Weyl character formula, this is

Y ves, detoo (a:i‘ﬁn*lacg‘ﬁnf2 . J;f‘L")

ch L)\ =
Hi<j (zi — x5)
B Y es, det(o)xﬁz;r)"*l ... x?’(n)
[Lic;(zi —z5)
det (2777) - det (a2
= —d = =: S\(x)
det (x?ij) N Hz‘<j (i — ;)
i,j
which is called the Schur polynomial in z = (z1,...,2,).
Z1
Let V = C" as usual, and consider V®¥. Act on it by the pair (x,0) = ,o | (with

Tn
o € Sn). Let’s compute Tr |y e~ (2,0) in two ways.

e I'm not sure how to type notes on what he’s saying right now... The upshot is that if ¢ has m;
cycles of length ZEI then

Te(w,0) = [[ (Trlv(@)™ =[] @i+ +a1) ™

i A

e Recall Schur-Weyl V&V = @ Ly ® 7, with z acting on first factor and o acting on the second.

Therefore,

Tr(z,0) = Z Sx(@)xa(o)
)

with x an Sy-character and Sy the Schur polynomial.

Thus,
ZSA(:C)XA(U) = H (zll 4o +I;)m1 .
A

)

Multiply by [[(z; — ;) to get

Z (Z det(s)zr zﬁ") xa(o) = H(Il —z;) H (zf+- -+ I;)ml .

A i<j i
Thus,
Theorem 4.13 (Frobenius Character Formula). x» (o) is the coefficient of

A1+n—1

"I’.]_ An

..z

in the product

H (xiij)H(zﬁJr...eriL)mi.

1<i<j<n i

SNote >, im; = N
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5 Lecture 5 (3/2)

Last time we finished with the character formula for representations of the symmetric group using Schur-
Weyl duality. We will next take a quick look at invariant theory; in particular, we want to prove the

‘fundamental theorem of invariant theory’ (due to Weyl).

5.1 Invariant Theory

Suppose we have a collection of tensors T; € V®™i @ (V*)®" (“m; times contravariant and n; times
covariant’), ¢« = 1,...,k, where V is a f.dim vector space. We want to classify invariant functions of
Ty,...,T}, i.e. functions of the form F(Ty,...,T)) (we'll restrict to polynomial functions).

In one perspective, we are looking for functions which we can write in a coordinate-free way. Physicist-
s/engineers think about tensors not as elements of tensor products, but as collections of numbers which
change in a specific way when you go from one basis to another. Then one can write various invariant
expressions, usually obtained using ‘Einstein summation’. If you have T € V®™ @ (V*)®" and ¢, a basis
of V', then you can write this as

— Jirodng ... . .. er
T - Til i e]l ® ® e]m ® eil ® ® ein,'

s tm

Note 3. Pavel said more things about how physicists think about tensors, but I didn’t care enough to

write it down.

We look for polynomial functions invariant under the GL(V')-action.
Example. If T is a linear operator, then det and Tr are both invariant functions.

It is enough to classify invariant functions of degree d; with respect to each T;. This is equivalent to

looking for invariants in

®Sdi (V®mi ® (V*)@ﬂz)*

(above S is symmetric power). Finding invariant functions in this space looks formidable, but in fact it
isn’t.

To describe such invariant functions, attach to each ‘variable’ T; a vertex:

NS

: . :
we give the vertex n; outgoing edges and m; incoming edges. Put on the plane d; such vertices of each

type 4. Invariant functions can be built by contractions of tensors: draw a graph by connecting vertices

in a way which respects directions and which makes use of each edge/stub attached to a vertex.

Example. Say T € V®2 ® (V*)®? and we want a degree 3 invariant. Then we could form a graph as in
Figure
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Figure 1: An example graph giving an invariant function

Apparently these graphs are related to Feynman diagrams. To every such graph I', one can attach an

invariant Fr.

Theorem 5.1 (Fundamental Theorem of Invariant Theory). Such functions Fr, as T varies, span

the space of invariant functions.
Note no linear independence claim above.

Example. Say you have a linear operator T': V — V so T € V ® V*. Say we want degree d invariant
polynomials. Then we need to start with d copies of a vertex with one outgoing edge and one incoming
edge. Then we need to connect them in some way. The graph in Figure [2] for example, corresponds to
the function Fr = Tr(T?) - Tr(T?). Each cycle corresponds to the trace of T' to the length of that cycle.

=4
N\

/\ NGO

Figure 2: A graph corresponding the the invariant function Tr(7?)?
Hence, in this case, the theorem says that degree 4 invariant functions are spanned by

Tr(T)*, Te(T?) Tx(T)?, Tr(T?)?, Te(T?) Te(T), Te(T?).

Hence, the algebra of invariant polynomials of T'is generated by traces of powers of T, i.e. Tr(T), Tr(T?), Tr(T?), . ...

Observe that these are not linearly independent (e.g. characteristic polynomial can be used to get some

linear dependence between them; if T'is n x n, then should only need to know Tr(7%) for i < n).
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Proof of Theorem[5.1] An invariant function can be viewed as an element of the tensor product
k ®(—di) J J
Q (ver @ vetn) = Homg (VX yZmid ),
i=1

We want GL(V')-invariants in this space. By Schur-Weyl duality, nonzero invariants only exist if >, n;d; =

>, m;id; (i.e. same number of incoming and outgoing arrows). If so, then Schur-Weyl duality also tells us

that the invariants are spanned by permutations (i.e. a matching of incoming arrows to outgoing arrows).
This means that these invariants are spanned by the Fr’s for various I'.

In order to pass from tensor products to symmetric power, simply project using symmetrization. This
will cause some a priori different graphs to correspond to the same invariant, but this does not affect

spanning. |

Remark 5.2. SW duality tells us that if dimV > 0 (dimV > ", n;d;, I think), then invariants cor-
responding to different permutations are linearly independent (in the tensor product). Symmetrization
identifies some of these, but if you remove the redundant ones, what are left are still linearly independent.

From this one can deduce that for large dim V' and fixed d;, m;, n;, the invariants Fr corresponding to
non-isomorphic graphs I' are linearly independent. In this way, one gets a basis fo the space of invariant

functions.

Example. Suppose T1,...,T) are operators V' — V', so all vertices have 2 arrows, one incoming and
one outgoing. Hence, all graphs I" are unions of cycles. Each cycle gives the trace of the product of the
graphs appearing in the cycle

The upshot is that the algebra of polynomial invariants of k linear maps T1,..., Ty : V — V is

generated by traces Tr(T;, ...T;, ) of cyclicﬂ words in T1,...,T;. These generators are “asymptotically

im

algebraically independent” in the sense that for a fixed degree d and dimV >, 0, these generators do

not satisfy any nontrivial relations in degree d.
Corollary 5.3. There are no universal polynomial identities for (square) matrices of all sizes.

Proof. Suppose P(X1,...,X,) = 0 for all X;,...,X,. Introduce another variant X, 11, and consider
F =Tr(P(Xy,...,Xn)Xnt1) = 0. Traces of words are asymptotically independent, so if it vanishes for
all sizes of matrices, then P = 0. ]

If you fix a size, then such identities do exist, e.g. for size 1 you have XY —Y X = 0 (i.e. multiplication
of scalars is commutative). For size 2, you have [(XY — Y X)?2, Z] = Oﬂ This fails for size 3.

In general, for size n, there is the Amitsar-Levitzk identity: for Xy, ..., X, of size n,

Z sign(o)Xa(l) cen XU(Zn) =0

oc€San

(homework).

6i.e. words defined only up to cyclic permutation

“Why? XY — Y X has trace 0 and is generically diagonalizable, so looks like diag(), —)). Hence, it’s square looks like
A2] which is in the center.
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5.2 Howe Duality

Let V, W be two f.dim complex vector spaces. Then consider S™(V ® W) as a representation of GL(V') x
GL(W).

Theorem 5.4 (Howe duality).

SV o W) @ SV @ SAW
At A=

(if A has > dim V' or > dim W parts, then the corresponding summand is Q).

Proof. Note that

Sn
STV e W) ((V ® W>®n) = (Vo ® W®">Sn

Shn

P svem|e| @B sWen,

A A|=n il pl=n

= D sSfeoswemen)™
Az Al=lpl=n

Now we know that the character of 7 is integer-valued (e.g. by Frobenius formula) so 7\ = 73 (character

fixed by complex conjugation), so
() ® ﬂ#)s" = Homg (), wu)S" = Homg, (mx, 7).
Schur-Weyl duality tells us that 7y are irreducible and pairwise non-isomorphic, so we conclude that

SV oW) = @ SV @ S*W
A=

as desired. |
Not important above that V, W are finite dimensional.
Corollary 5.5 (Cauchy identity). If x = (z1,...,2,) andy = (y1,...,Ys), then
S o =T =
sa(z
paligeade 1—zz;y;

Proof. We use the Molien formula: let A:V — V be a linear operator on f.d. vector space V' (over
any field), and let S™A : SV — S™V be the induced action of A, then

- 1
S T(s Ay s
o det(1 —zA)
This is easy to prove. Let z1,...,x, be the eigenvalues of A (so r = dim V'), then the eigenvalues of S™ A
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are m’lnl co.x st mp 4+ -+ +my = n. Hence,

Tr(S"A) = Z el = hp(x1, .. @),

mi+---4my=n

the complete symmetric function. The generating function of these is

- n m m . 1 1
;hn(xlv )2 =Y (@)™ ()™ = 1;[1 1— 22 det(l—24)
Now, to prove Cauchy, consider
T Y1
g= and h =
x'l" yS

SogV =C"and h ~ W = C?. Then,

TrS"(g®@h) =Trgnvew)(g®h)

= Y T TS W)
X A|l=n

= Z sx(z)sx(y)-

A A|=n

Hence,

;sm)smy)z'*‘ =2 SN = o e H 1—zaiy;’

by

5.3 Minuscule weights

Let g be a simple Lie algebra over C.

Definition 5.6. A dominant, integral weight w € P, is minuscule if for all positive coroots , we have
(w,B) <1 (ie. (w,B) € {0,1}). This is equivalent to requiring that for all coroots 3, |(w, 8)| < 1.

Example. w = 0 is always a (trivial) minuscule weight.

Example. For sl,, all fundamental weights are minuscule. Recall the fundamental weights are w; =
(1,1,...,1,0,...,0), so we see (w;,e; —ex) =0,1 (with j < k).

Proposition 5.7. Every nonzero minuscule weight w # 0 is fundamental.

Proof. The inner products (w, ;") = 0,1 for minuscule weights. However, it can be 1 only for one i since

otherwise (w,6") > 2, where the maximal coroot is ¥ = > mya) with my > 0 for all k. [ ]

Warning 5.8. Not all fundamental weights are minuscule.
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Proposition 5.9. A fundamental weight w; is miniuscule <= m; =1, where 0¥ =Y. m;a;.

Proof. m; = (w;,0Y) so for minuscule w;, we have m; = 1. If m; = 1, the for all coroot 3, (w;,3) <1

(e.g. since B € ¥ — Q) so w; is minuscule. |

Exercise. G4 has no minuscule weights except 0.

Here’s a theorem we will discuss next time.

Theorem 5.10. w € Py is minuscule <= all weights of L, are in the Weyle group orbit of highest
weight.

Corollary 5.11. When w minuscule, ch L, =Y €Y. In particular, all weight multiplicities are 1.

yeEWw

6 Lecture 6 (3/4)

Note 4. Video for last class not up yet, so we’ll see how much things make sense today...

6.1 Last Time

Recall 6.1. Let g be a simple Lie algebra. A dominant, integral weight w € P, is called minuscule if
for all positive coroots 8, we have (w, 5) <1 (€ {0,1}). Equivalently, for all coroots 3, |(w, )| < 1.

Remark 6.2. Any integral weight can by conjugated to a dominate one via an element of the Weyl group.
Example. w = 0.

Example. Say g = sl,,. All fundamental weights are minuscule w; = (1,1,1,...,1,0,0,...,0) (with ¢

ones).
Recall 6.3. Every nonzero minuscule weight is fundamental.
Recall 6.4. Let 6V be a maximal coroot. Then, w; is minuscule <= m; = (w;,0") = 1.

Remark 6.5. 0¥ =% m;a).

6.2 This Time: minisucle weights

Lemma 6.6. If w € Q, and |(w,B)| < 1 for all coroots B, then w = 0. Hence, there are no nonzero |Remember:

miniscule weights in the root lattice. Q is the root

lattice

Proof. Suppose w =Y, m;a; (with m; € Z) is a counterexample minimizing ), |m;|. Then,
0< (w,w) = Zmi(w,ai),
i

so there’s some index j s.t. m; and (w,«; are nonzero and of the same sign. Replacing w by —w if

needed, we may assume m;, (w, ;) > 0. Since ozjV is a positive multiple of «;, we have also (w, a;-/) > 0.

By hypothesis, we know ’(w, aJV)’ <1, 50 (w,a)) = 1. Consider

— Ny — () — (v — ! ovs
sjw=w— (w,a))a; =w—a; = E mpa;
i
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where m} = m; if i # j and m/; = m;—1. Note that ) [m;| = >, |m;|—1, but s;w is also a counterexample

(modifying by Weyl group does not affect property). [ ]
Example. For G5, P = Q (weight lattice = root lattice), so there are no nonzero miniscule weights.
Proposition 6.7. A weight w € Py is minuscule iff for all a € Q4 (a #0), w — «a is not dominant.

Proof. (—) Suppose w = wy, is miniscule and « € @4 is nonzero. Suppose also that wy — « is dominant.
We can write @ = ), m;oy with m; € Zy. If m; = 0 for some j # k, then reduces to smaller rank
(can delete vertex j from Dynkin diagrarxﬂ), so we may assume m; > 0 for j # k. Then, for all positive

coroots (3,

(aaﬂ) = (wkaﬂ) - (wk - aaﬂ) S (Wkaﬁ) § 1

(wg — @ dominant = (wy — @, 8) > 0) with equality if 8 involves «). If 8 does not involve a/, then
(e, 8) < 0. In particular, (o, ;) <01if i # k and (o, 0)) < 1.

Now, if (a, @) < 0, we'd get (o, ) < 0, a contradiction (« positive linear combination of positive
roots). Thus, (a,@)) = 1. As a consequence, my > 0 (my =0 = (o, @)) < 0 since only involves
simple roots/coroots with different indices and those entries in Cartan matrix are always < 0). Thus,
(a,0¥) >1s0 (wp —,0Y) =1—(,0") <0 which forces wy, —a = 0. Hence, wy, € Q, a contradiction to
previous lemma.

(«) Suppose w is not miniscule. We’ll produce an « € Q4 s.t. w — « is dominant. Since w is not
miniscule, there exists a positive root v s.t. (w,vyV) > 2. Considexﬂ w — 7. We first claim this is not

conjugate to w. Observe

(w=7w=7)=(w,w) = 2(y,w) + (7,7)-

Since 2(v,w)/(7,7) = (vV,w) > 2 > 1, we see that 2(y,w) > (v,7), so (w — v,w — ) < (w,w) which
means w — v € Ww. Now, pick w € W such that A := w(w — ) € Py. Then, A # w, but w — A € Q4+
because w — v is a weight of L, (for the Vectoﬂ fyuw). [ |

Remark 6.8. We have a classification of root systems/semisimple lie algebras from last time, so in prin-
ciple, we could just go through the list and check which roots are miniscule. This would be unsatisfying,

so we don’t do that.
Question 6.9. Why are minuscule weights interesting?

Proposition 6.10. w is minuscule <= the Weyl group W acts transitively on the weights of the irrep
L.

Proof. (—) Let p be a weight of L,,. Pick w € W such that wy is dominant. Then, wu = w — « for some
a € Q. This implies that wy = w, so p = w™w.
(<) If w is not miniscule, take 7 as in the previous proof, and consider w —+, the weight of f v, € L.

This is nonzero so w — +y is a weight not in the orbit of w. |
Corollary 6.11. All weight spaces of L, are 1-dimensional when w miniscule.

Remark 6.12. The converse of this is false. Think about reps of sly, for example.

8Pass to root subsystem generated by «; for i # j
9«Just for fun, let us use representation theory.”
10This is nonzero since hayvw = (Y, w)vw # 0
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Corollary 6.13. The character of L, is

Xw = Z 6)\.

AeEWw

You could also compute this using Weyl’s character formula. Comparing the two would lead to some

nontrivial identity.

Corollary 6.14. If « is a root of g, then Ly|(s1,), is a direct sum of 1-dimensional and 2-dimensional

representations of (slz)q.

Proof. Let v € L, be a highest weight vector for (sls),, of some weight X\. Then,
hov = (A, oY) = (ww,a¥)v € {v,0, —v}.

It can’t be —1 (since v highest weight), so it’s 0 or 1. Hence, v generates a 1-d or 2-d rep of (sly),. W

Note 5. Pavel worked out an example looking at By, but I did not pay attention. I should go back and

watch the video and add it in later...

Corollary 6.15. If w is minuscule and A\ € Py, then

Lw ® L)\ - @ L)\+,u
peEWw

(if N+ p & Py, the corresponding term drops out, i.e we really sum over p € Ww s.t. A+ pu € Py)

Proof. We use Weyl character formula: I possibly
made some
XLo®Ly = Z et D vew det(v)e? 0] typos below
w A

peWw Ha>0(€a/2 - e—a/Z)

ZHEWW7UEW det(v)eU(Aer)Jru
[loer, (e2/2 — e—/2)
_ Zueww,vew det(y)ev(M—w*lu_}p
[Toso (e2/2 —e/2)
Zueww,wew det(w)ewOFre)
[Toso(e?/? —e=2/2)

= Z XLxjo+

veWw

IfA+v ¢ Py, then (A + v, ), there exists ¢ s.t. (A4 v, ) <0. But (A\,a;) > 0 and |(v,))| <1, so

A+ v, o)) = (v,)) = —1 which means (A, o)) = 0. We know (p,a;) =1, so
A +v+paf)=0.

This means s;(A+ v 4 p) = A+ v+ p, so the terms det(w)e? P *2) and det(ws;)e”s A ¥+) will cancel.

This justifies ignoring the terms not in P;. |
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Recall all fundamental representations of sl,, are miniscule.
Corollary 6.16. Let V = C™ be the vector representation of GL,. Then, for any partition X,
n
V@ Ly =D Late,
i=1
(if A+ e; is not nonincreasing, drop it’s term,).

Example. Take L 0,...0,—1) = s/(V), the adjoint representation. Then,

V@sl(V) = Lio,..0-1) + Laa,...0-1) + Laoi,...—1)+ -+ Lao,..o0

but only the first two and last terms survive. Hence, V ® sl(V) = V@®(two other irreps).

We can give a combinatorial interpretation of the previous corollary. Recall that partitions correspond

to Young diagrams, e.g. A = (5,3,1,1,0) (say n = 5) is the diagram

[ |

What is the diagram corresponding to V' ® L)? The X\ + ¢;’s are
(7,3,1,1,0),(6,4,1,1,0),(6,3,2,1,0),(6,3,1,2,0), (6,3,1,1,1)

Note that these each correspond to adding a square a square to one row of A. If adding the square
produces another Young diagram (preserves monotonicity), we call it an addable box. Thus, we see
that
VoLi= Y Ly
N=x+0
(sum over addable boxes). We can do the same thing for exterior powers.

Recall L, = /\1 V with weights given by (a1,...,a,) s.t. a; € {0,1} and there are exactly ¢ copies

of 1. Adding A + (a1, ...,a,) corresponds to adding ¢ boxes to different rows of A. Since w; is miniscule,
we have '
1
/\ V X L)\ = @ L)\—l-el .
Ic{1,...,n}
[1]=i

Graphically, /\l V ® L) is a sum over Young diagrams obtained from A by adding i boxes in different

Trows.

Example. Say n = 3. Let’s compute /\2 V ® L(3,2,1)- Note that A = (3,2, 1) looks like
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The diagrams in the sum are

i.e.
2
N\ V®Lis21) =Lusy + Laze + L

Similarly, one gets )
/\ V&L = Lagn + L)

If we were over GL4, there would be extra summands, e.g. an L4111y and an Lz21,1)-

Proposition 6.17. Every coset of P/Q contains a unique minuscule weight, so there’s a bijection between

P/Q and minuscule weights.

Proof. Consider Cy = a+ @ C P, the coset of a. Look at the intersection C, N P;. Take w € Cy N Py,
an element with smallest 2(w, p¥') € Z. Weights of L, are all in C,. If w, is not minisucle, there exists
A€ Py st. 0# w, — A € Qy which implies 2(\, p¥) < 2(w, p¥). This contradicts minimality, so w, is
minuscule.

If w1, wy € C, are both miniscule, consider there different w; — w9 € Q. If it is nonzero, by a previous
lemma, there exists a coroot 8 s.t. (wy — wsy, B) > 2. This forces (wy,8) =1 and (wq, 8) = —1. But the

first forces beta to be positive while the second forces beta to be negative, and this is a contradiction. W
Corollary 6.18. The number of miniscule weights is #P/Q = det A, where A is the Cartan matriz.

Example. B,, (0(2n+1)) has det = 2 so there’s only one (nonzero) miniscule weight. The corresponding
representation here is called the ‘spinor representation’.

Cp (sp(2n)) has det = 2 so there’s again one minuscule weight. One can check that it corresponds to
the vector representation.

D,, (0(2n)) has det = 4, so 3 miniscule weights. These are the vector representation V' and two spinor

representations S*.

More on rep theory of orthogonal and symplectic groups next time. After that, we will start looking

at the theory of compact Lie groups.

7 Lecture 7 (3/11)

7.1 Fundamental weights/representations for classical Lie algebras
7.1.1 Type C,

We begin with the symplectic Lie algebra g = sp,,,. Let B = Z?zl ; A\ ;1 be our symplectic form. A

natural choice of Cartan subalgebra is

_ <diag(a1, e ,an) ~ ("

—diag(aq, ... 7an)>
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In R™, the roots are

. . 1
ai:ei_ei+1:a;/ for i=1,...,n—1 and «, = 2e, with ax:enzian.

The fundamental weights are w; = (1,...,1,0,...,0) with ¢ copies of 1.

Recall 7.1. The Dynkin diagram for C,, is

Figure 3: The Dynkin Diagram C,,

Recall 7.2. The number of miniscule weights equals the determinant of the Cartan matrix.

Here, the determinant is 2 so there is 1 nonzero miniscule weight. It is the weight 1 corresponding to

the vertex on the left end of the Dynkin diagram.

Example. Consider the representation V = C2". Its weights are e, ..., e, and —eq, ..., —e,. The Weyl
group is W = S,, x (Z/nZ)" (S, permutes while (Z/nZ)"™ changes signs). Note V' ~ V*. The highest

weight here is e; = w; which is the miniscule weight.

What about other fundamental representations? Well, g has the same fundamental weights as GL,,
so maybe we should expect L, = /\i V7 This is true for ¢ = 1.
But it is not true for ¢ = 2! /\2 V is not irreducible (but has correct highest weight). The symplectic

form B is non-degenerate, so we can invert it
2
B!l = in}_,/\xf € /\ Vv
i
and B~! ¢ /\2 V' generates a copy of the trivial representation C. We can write

/\2V=<C<B—1>@/\zv where /\zV:{ye/\QV:(y,B)zo}.

. 2 o . .
Ezercise. \gV is 1rredu01ble

2 .
Hence, L., = Ay V so our intuition was not bad.

Example. For sp(4), only two fundamental weights, V = C* and A’V = C @ /\g V is 6-dimensional.

Recall sp(4) ~ o(5) which has a 5-dimensional vector representation.

What happens for other i?
They will be contained in exterior powers, but some pieces will fall off. Consider the exterior algebra

AV= @AY

HLook at weights, or write character formula, or show directly
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Recall we have B € /\2 V*. Hence, given T' € /\i+1 V', we can form (5T € /\if1 V. In the other direction,

we may wedge with B! to move from mp : A””' — A
Proposition 7.3.
(1) The operators mp,ip, and h (hT = (i —n)T with T € \') form an sly-triple.

(2) The operator
i+1 i—1
ZEV AN
is surjective for i < n and injective for i > n (so an iso for i = n). Let /\fJ V :=kerivg. This is
irreducible if 1 <1i <mn, and /\8 V = L,
3) )
AV =@ ot
i=0

where wg = 0 and L,_; is the sI(2)-rep with highest weight n — i and dimension n — i+ 1. This is an-

other in-

(4) Every irreducible representation of sp,, occurs in VEN for some N (since all fundamental reps stance of
do)m the double
Proof. HomeworkE B | centralizer

property

Remark 7.4. Note dim /\i V= (QZ") so these dimensions form a Bell curve shape.

7.1.2 Type B,

We now have the Lie algebra g = 09,41. The roots here are o; = e; — ;41 forv =1,...,n — 1 and
an = e,. The dual roots for af = a; fori =1,...,n—1 and o,/ = 2e,, = 2a,,. The fundamental weights
are

w;=(1,...,1,0,...,0) for i=1,...,n—1
——

o= (L1
n=(303)

The Weyl group is W = S,, x (Z/2Z)" (permute coordinates and change signs). The Cartan matrix

and

Figure 4: The Dynkin Diagram B,

again has determine 2 (transpose of previous one?), so only one nontrivial miniscule weight. This time it

is wy,.

12This should follow from rep theory of sl

13This will not be true for the orthogonal groups and is “the reason our world exists” (something about spin in physics)

Should be “easy” after establishing you have an sla-rep. Irreducibility should come from looking at characters (correct
highest weight and correct dimension)

35




Warning 7.5. L, =V = C?"*! is the vector representation, but is not miniscule.

Example. The weights of C° (for s0(5)) include 0, but 0 is not a weight of miniscule representations

(Weyl group acts transitively on weights).

FExercise. /\Z V' are irreducible for 1 < i < mn, so
/\lV:Lwi for i <n-—1 and /\nV:ngn.

Remark 7.6. For C,, we have an invariant skew-symmetric form. For B,, we now have an invariant
symmetric form. Hence something falls off for symmetric powers instead of for exterior powers.

Definition 7.7. L, is called the spinor representation and denoted S.

What are its weights? It’s miniscule, so it’s weights should be an orbit under Weyl group. Hence,
they’ll be (i%7 i%, cee i%) for any choice of signs. Hence, dim S = 2. What is the character of S7
We are using the quadratic form Q = z12, 11+ + TpTon + x%nH, 50 0(2n + 1) fixes this form. The

natural Cartan subalgebra is
h = {diag(ai,...,an,—a,...,—an,0)} = C".
Note that for h € b, its exponential is
el = diag(x1, . .. ,xn,xfl, TR B )

We want to compute it’s trace on S. This gives the character
1 1 1 _1 1 1
XS :ZinQ fo = (xf + 2y 2) (xf; —l—x,ﬁ).

What’s up with these 1/2 powers? Square root of a complex number is only defined up to sign, so does
this make sense? What does this mean. It means this representation does not lift to the orthogonal
group SO(2n + 1). The point is that the orthogonal group is not simply connected, so not all Lie algebra
representations lift to it For the same reason, S does not occur in V®¥. Elements of S are called

spinors.

Definition 7.8. The universal cover of SO2,,41(C) is called the Spin group, denoted Spin,,, ;(C).
Now, S gives a representation of Spin,,,  ;(C).

Theorem 7.9. m1(S0,(C)) =Z/2Z for any n > 3E

Example. When n = 3, SL2(C) = Sping is a double cover of SO(3). What is the map SLy(C) — SO(3)?
Take the 3-dimensional representation of SLs; this is the adjoint representation which has an invariant
form, the Killing form. The kernel of this map is Z/2Z = {£I}, the center of SLy, so we see the exact

sequence
1—17Z/2Z — SLy — SO3 — 1.

15Tt will however, lift to its universal cover.
1671 (SO2(C)) = Z, apparently.
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Lemma 7.10. Let X, = {(z1,...,2,) €C": 28 +---+22 =1}. Then, X, is simply connected for
n >3, and mo(X,) =1 forn > 4.

Proof. Consider XE = X, NR® = §"~! C R". This is simple connected for n > 3, so it suffices to show
that X,, deformation retracts onto X~. Consider some z € X,, and write z = x + iy with =,y € R™.

Then,

2_9y?’=1and z-y=0.

l=22=2—y* +2v-y = z
Now, consider the homotopy f; : X,, — X, given by
T+ ity

(note (z +ity)? = 22 — 2y + 2izx -y = 2% — t2y? > 22 — y? = 1). Note that f; = Id while fo(z + iy) =

z/|z| € XE. Furthermore, filxz = Idxe for all ¢, so XE is a deformation retract of X,,, finishing the

fi(z +iy) =

proof. |

Note that when n = 4, we have X4 = {ad —bc=1:a,b,c,d € C} = SLy(C), so this lemma recovers
the fact that SLy(C) is simply connected.

Proof of Theorem[7.9. We will induct in n. Note that we already know the theorem when n = 3. Note
that SO, ~ X, transitivelym so X, is a homogeneous space. What is the stabilizer?

Stabson (61) =S0,,_1

since if it preserves e; it’ll also preserve the orthocomplement of e;. Hence, X,, = SO,, /SO,,_1, so we

have a fiber sequence SO,,_1 — SO,, - X,,. Thus, we get an exact sequence
m2(Xp) — m(SOp—1) — m(SO,) — 71 (X,).

The previous lemma shows 7 (X,,) = 1 for n > 3 and m2(X,,) =1 for n > 4. Hence, we win. |

Corollary 7.11. Spin, (C) is a double cover of SO, (C) for n > 3.

7.1.3 Type D,

Finally, we consider the Lie algebra g = 02,. As usual, V = C?" is the vector representation. The
simple roots are oty = e; —€g,...,ap_1 = €,_1 — €, and a, = e,_1 + e,. The fundamental weights are
w1 = (1,0,...,0),ws = (1,1,0,...,0) up to wy,—o = (1,...,1,0,0) and then

1 11 1 1 11
wn-1=\|=yooey=,—= ) and wp,={=,..., =, = | .
! 2 2’ 2 2 279

We know have two spinor representations, L, , = S_ and L, = Si. In this case, the Cartan

matrix has determinant det A = 4, so there are 3 miniscule fundamental weights. These are w,_1,wy,w; -

Example. The weights of L,, =V areej,...,e, and —eq,..., —en.

17Can always move any vector to ej
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Wn—1

7

w1 w2 ce Wn—2

N

Wn

Figure 5: The Dynkin Diagram D,
Our quadratic form is Q = 1241 + - - - + TpTay, so our Cartan subalgebra is

[J = {diag(alv sy Qpy =015y _an)} :

The Weyl group here is S,, x (Z/ QZ)S where the 0 subscript means elements whose coordinates sum to 0.

Remark 7.12. Exterior powers are irreducible for ¢ < n — 1 still. Hence, for i <n — 2,

/\iV:LM.

Some aspects of orthogonal groups are uniform and some depend on even or odd. Some even depend
on residue mod 4, and some even depend on residue mod 8. This is related to Bott periodicity. More on

this on a homework.

Example. ST = 5, or S7 = S_ depending on n mod 4. When S% = S, it has an invariant inner

product. Is it symmetric or skew-symmetric? This depends on n mod 8.

What do the spinor representations S+ look like? The Weyl group allows us to permute factors and

change an even number of signs. Thus, the weights of S are the vectors

1 1
4+, ko

with an even number of +’s while the weights of S_ are those with an odd number of +’s ( <= an odd

number of —’s). Thus, we get the characters
n 1 1
X5y = H(xiz"i'x'z) )
i=1 +

so Sy, S_ don’t occur in V&V and they don’t lift to SO,,. We again define Spin,,, to be the universal
cover of SO, (again a double cover by previous theorem).

8 Lecture 8 (3/16)

8.1 Last time

We talked about representations of of o(V). When V = C2" this is type D,,. When C' = C2"*1  this is

type B,,. We also talked about spinor representations.
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For 09,41, the spinor representation is associated to w, = (1/2,1/2,...,1/2) and has dimension
dim § = 2.

For 09, there are two spinor representations S = L, and S_ = L, _, wherew,_; = (1/2,...,1/2,-1/2)
and w, = (1/2,...,1/2,1/2).

Question 8.1. How can we construct these explicitly?

We know they don’t occur in the tensor products of vector representations, so we have to do something

new.

8.2 Clifford algebra

We know S does not occur in V®" (its weights have half-integer coordinates), but S ® S* does occur (its

weights have integer coordinates). One can show that
even 2 4
Ses =N V=C+ N V+A\V+...

We need to “extract a square root” roughly in the sense that the space of vectors is a “square root” of the

space of matrices. This is the idea behind Clifford algebras.

Definition 8.2. Let V be a f.d. k-vector space (k = k and chark # 2) with a symmetric (non-

degenerate) inner product (—,—). The Clifford algebra CI(V) of V is generated by V with defining

relations v? = 1(v,v) for v € V.

Remark 8.3. Given a,b € v, one has

ab4+ba=(a+b)?—a?>-b*==[(a+Dba+b)—(a,a)— (bb)] = (a,b).

N =

Thus, an equivalent set of defining relations is
ab+ba = (a,b) - 1.

Can we describe this in terms of a basis?

Example. When dim V' = 2n, we can find a basis a1, ...,an,b1,...,b, of V so that
(ai,a;) = (b;,b;) =0 and (a;,b;) = d;;.
Then the relations are
a;a; +aja; =0, bib; +b;b; =0, and a;b; + bja; = &;5.

This is a deformation of A V'; we’ll make this more precise later.

Example. When dimV = 2n 4 1, we can find a basis ai,...,an,b1,...,bs, 2z with a;,b; as above and

(z,a;) = 0 = (z,b;) while (2, z) = 2. The relations here are all the ones from before along with
za; +a;z=0=2b; + bz and 22 = 1.
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This is again a deformation of A V.

What is this deformation business we’re claiming/alluding to?

There is a filtration on Cl(V') obtained by setting degv = 1 for v € V. In general, for x € CI(V),
deg(x) is the smallest d € Z, such that x is a sum of monomials of degrees < d. We filter by degree;
FoCI(V) C F1 Cl(V) C .... The associated graded

(V)= Fir/
gr; CI(V)
fits into a natural surjective homomorphisms
p: \V — grCI(V).
This is because the RHS’s of the defining relations for CI(V') all have degree strictly smaller than the
LHS’s so all vanish in the associated graded.
Theorem 8.4. ¢ is an isomorphism.
Equivalently, ¢ is injective ( <= dim Cl(V) = 24im V),
Remark 8.5. This is similar to the PBW theorem for Lie algebras:
U(g) =(a €g:ab—bala,b]).
The natural surjection
¢ : Sg — grU(g)

is an isomorphism.

In fact, PBW generalizes to “Lie superalgebras” and this theorem about C1(V') is a special case of this

generalization.
Theorem 8.6. Cl(V) = Matan (k) if dimV = 2n, and Cl(V) = Matan (k) & Mat®* (k) if dim V = 2n + 1.
Note this is even stronger than Theorem [8.4]

Proof. (Even case) Let us start with the even case. Pick a basis aj,...,an,b1,...,b, of V as before. Let

m = A (ai1,...,a,). Define a representation

p:ClV)—End M, p(a;)v=a;w and p(b;)w = 5o
Above,
9 0 if i £ J;
3 (ag, -..ax,) = ‘
a; (—1)]—1ak1 ...ka\j..-akr if i =k;

(this is a (graded) derivation: 9/da;(f - g) = (0f/0a;)g + (—1)%&7f f(9g/da;)). In addition to making

this a derivation, having the sign term above makes p a representation, e.g.
p(ai)p(bi) + p(bi)p(a;) =1
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(exercise). Note that this a natural spanning set for C1(V): given I = (i1 < --- < ix) and J = (j1 <
0 < Jim), set
Crj = Qj; «.. aikbjl . bjm S CI(V)

(the defining relations allow us to order the monomials at worse at the cost of some d;; which will introduce

lower degree terms.). It is not immediately clear that these form a basis, but note that there are 22" of [Like in the

them, so the theorem is equivalent to showing they are linearly independent. proof of
: : — . . _0 a_ .
For this, consider p(cry) = a;, - .. a4, Bay, " Ba, M — M. PBW

Ezercise. Show that these operators are linearly independent.
Hint: Take any relation > ayjyery = 0. Pick cp, 5, with ayy # 0 and |J| largest. Then show

g arjery - H @j = Qg Jo Hai

j€Jo el

(the products in decreasing order of the j’s and increasing order of the ¢’s). This forces ay, ., = 0.

This completes the proof in the even case.

(Odd case) In the odd case, we also have some element 2z € C1(V) with 22 = 1. We sill have an action
Cl(V) ~ M = A(aq,...,ay). In addition to p(a;)w = a;w and p(b;)w = %w, we need to say how z
acts. There are two options:

pl2)w = £(~1)*E

these two representations are called M, and M_ (they are not isomorphiﬂ. We can consider the direct
sum

p=p+ ®p—:CHV) - End My ®End M_.

Exzercise. This is an isomorphism.

We want to use this to construct the spinor representations.

Proposition 8.7. Define a linear map
2
E:o(V)=/\'V—ClV)

via
Eland) = %(ab— ba) = ab — %(a,b).

Then, & is a Lie algebra homomorphism.

Proof. For skew-symmetric matrices in this form, one can work out that the commutator is
[anb,end] = (bya)and— (b,d)aAc+ (a,c)d Nb— (a,d)cAb

(exercise, using a Ab= % (a®b—b®a)). Now compute

[pland),plcNd)] = |ab— (a,b),cd—%(c,d)

DN =

18The eigenvalue of z on the space of v € My s.t. b;uv = 0is +1
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= [ab, cd]

= abed — cdab

= (b, c)ad — acbd — cdab

= (b,c)ad — (b, d)ac + acdb — cdab

= (b, c)ad — (b,d)ac + (a, c)db — cadb — cdab
= (b,¢)ad — (b,d)ac + (a,c)db — (a,d)cb
=p([anb,cAnd))

You might worry about error terms in the last equality, but they are
(b7 C) (a7 d) - (ba d) (a7 C) + (CL, C) (da b) - (a? d) (C7 b) = 0;

SO we win. ]

We can now use this map £ : o(V)) — CL(V) to pull back the representations M (in the even case) and
My (in the odd case) from before.

Ezercise. When dimV = 2n,
EM=S,d5_.

More precisely, Sy = A™(a1,...,a,) and S_ = A\°(ay, ..., an).

Ezercise. If dimV = 2n + 1,
EM, 2S=M_.

For these, you’ll want to find highest weight vectors, compute their weights, and then compare di-
mensions.
So we realize the spinor representations as exterior algebras where o(V) acts by some (Oth, 1st, or

2nd order) differential operators.

8.3 Duals of irreps

Let g be a simple Lie algebra over C. Consider some f.d. irrep L) with A € P,. How do we determine
Ly?

Let p be the lowest weight of Ly. Then the highest weight of L} is —u, so Ly = L_,. Hence
we only need compute p. For this, recall the Weyl group. We know (from last semester) that the
Weyl group contains a unique element wg such that wg(dominant weights) = (antidominant weights)
(antidominant means negative of dominant weight). Hence wo(Ry) = R—. This is called the maximal
element (element of maximal length) wgy. Note that if —1 € W (thought of as linear transformations
of Cartan subalgebra), then wy = —1.

Note that —wg always maps positive roots/weights to positive roots/weights, so it permutes w;, «;.
Hence, it gives a graph automorphism of the Dynkin diagram. Thus, if the Dynkian diagram has no
(nontrivial) symmetries, then —wy = 1. This happens for Ay, By, Cy, G, Fy, E7, and FEg.
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Proposition 8.8. The highest weight of the dual representation is —u = woA, so p = —woA. Thus,
X = L o

Corollary 8.9. For Ay, B,,C,,Gs, Fy, E7, Eg, all representations are self-dual.

Example. For type A,, n > 2, there are nontrivial symmetries. In particular, there’s the flip symmetry

Figure 6: The Dynkin Diagram A,

and in fact, —wg(a;) = @u+1—; in this case. How do you see this? Consider the vector representation
V = L,, = C"" of sl,,,1. Its dual is
% n
vi=N\ V=L,
S0 wy, gets exchanged with wy. Thus, —wy must be the flip since it’s the only nontrivial automorphism.

Example. Let’s look at type Fg now. Again, —wy is the flip. We won’t show this rigorously right now,

Figure 7: The Dynkin Diagram FEg

but maybe will later.
For type D,,, the action of —wgy depends on the parity of n.
Proposition 8.10. For Ds,, ST =S54 and S* = S_. For Dapyq, ST = 5_.

How do you remember this? Note that D3 = A3 = sl(4) so in this case it is the flip. Dy = 0(4) =
5[(2) & s51(2), so duality is trivial. How do you prove the proposition in general? For type D,,, the Weyl

e
\o °

Figure 8: The Dynkin Diagrams D3 (left) and D (right)

group is W = S, x (Z/2Z)y (vectors with sum 0). For n even, —1 € W so —wy = 1 (no flip). For n odd,
—1¢ W and wy = (—1,—1,...,—1,1) (exercise) with trivial permutation ¢ = id. Then,

/111y (1 11
Wown = Wo 2725"'72 - 27"'7 2a2 )
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SO —WoWp = wp—1. Hence ST = S_ and S* = S,. Alternatively, you can see that the lowest weight of

Sy is —wp_1.

Remark 8.11. This gives some mod 4 periodic phenomena. To observe mod 8 periodicity, ask yourself,
“When do S, S, 5_ have symmetric invariant forms, and when do they have skew symmetric invariant

forms?”

Definition 8.12. A f.d. representation V' of a group G or Lie algebra g is said to be of complex type
if V2 V*. It is real type if V = V* and there exists a symmetric isomorphism ¢ : V =5 V*, i.e.
¢* = ¢ (<= ¢ has a symmetric, invariant bilinear form). It is quaternionic type if V = V* and 3

skew-symmetric isomorphism ¢ : V = V* ie. p* = —¢

Theorem 8.13. For Da,, Sy = S5%. For Da,, Sy has a symmetric form (real type) while Dyyy2 has a

skew-symmetric form (quaternionic type).

No lecture on Tuesday. Next week Thursday lecture at MIT.

9 Lecture 9 (3/18)

Last time we ended while discussing reps of real, complex, and quaternionic type.

Recall 9.1. A f.d. irrep V of a group G or Lie algebra g is said to be complex type if V22 V*. It is real

*

type if V' = V* and there exists a symmetric isom ¢ : V. — V* (¢* = ¢), and it is quaternionic type if

V 22 V* and there exists a skew-symmetric isom ¢ : V = V* (¢* = —p).

Remark 9.2. Schur says all isos V' — V* are proportional to each other, to ¢* = ¢y for some ¢ € C.

Taking double dual shows ¢ = c2p, so ¢ = %1 (i.e. real and quaternionic type are only possibilities).

Recall 9.3. For Dy, S; = S% (and same for S_). For Dy,, S; has a symmetric form (real type). For

Dyny2, it has a skew-symmetric form (quaternionic type).
There will be a similar statement for odd orthogonal groups. In order to prove these, we need to
understand when self-dual reps are real or quaternionic type.

9.1 Principal sl;-subalgebra, exponents of g

We have seen root sls-subalgebras before, but there are actually more copies of sl inside other Lie

algebras.
Definition 9.4. Let g be a (semisimple?) Lie algebra. Let e =Y ._, e;, and choose h € b s.t.
[h,e] =2e <= [h,e;] = 2e¢; for all i <= «;(h) =2 forall i <= h=2p"

(any above equiv condition true). In any case, h = >._,(2p",w;)h; where h; = . We now take
T

fi= (20", @) fi

i=1
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Then, [h, f] = —2f and
[eaf] = 26172(2/)\/’0)_]),]0_] :Z(va7wl)hz = h.
i j i
Then, (e, h, f) defined as above genera an sls-subalgebra inside g, called the principal slx-subalgebra.

Example. If g = sl,, and V = C”, then Vs, principal = L», (the irred sly rep with highest weight n).
One can check that

e= ' , = ) ] , and h =
0 * 0 -n
On the other hand, if you restrict V to a root subalgebra, then you can see that Vs, root = C2®(n—2)C.

Hence, the principal sly-subalgebra is essentially different (not conjugate) to root subalgebras (at least
for n > 3).

A natural thing to look at is the restriction of the adjoint representation to the principal slo-subalgebra.
Write glsi,-principal = @; Ln,. What are these N;? Recall we can recover the decomposition of an
slp-rep if we know the dimensions of its weight spaces, so what are the eigenvalues of h = 2p" acting

adjointly on g. Write g=n_ @ h @ n,. Given x € go, we have
[h, 2] = a(h)z = (a,2p").

Writing a = >_._, k;a; with k; € Z, we see
i T
(a,2p") = Zki(ai,QpV) = QZI@.
i=1

i=1

Recall that when a € R, its height is defined to be
ht(a) = Zki = |af,
i=1

so the weights are (twice) the heights of the roots. Thus,

olsi, = @ sln] with g[o] = b.
nez

Thus, dim g[0] = r and, for n > 0, dim g[2n] = #roots of height n.

How many roots are there of each height?
e There are exactly r roots of height 1. These are the simple roots.

e What about height 2. Picture a Dynkin diagram. We need to add two distinct roots (twice a root
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is not a root), and they need to be connected (sum of orthogonal roots is not a rooﬂ Thus, the
number of height 2 roots equals the number of edges in the Dynkin diagram. Since the diagram is

a tree, this is 7 — 1.
e There are zero roots of height N for N > 0.
Notation 9.5. Let r,, := #roots of height m.

Definition 9.6. An exponent of g is a positive integer m such that 7,11 < 7. The multiplicity of

mis Ty = Pmt1-

We have r exponents This is
1<m<my<---<m, because
. . « ey v . dimg[o] =r
with multiplicities. We know that m; = 1, ma > 1, and m, = (0,p") = h — 1 where h is called the et
and eac
Coxeter number of g.
exponent

Warning 9.7. We earlier encountered the dual Coxeter number h¥ = (6, p). Do not confuse this with corresponds

h. to an irrep

Proposition 9.8. in glsi,

r
9‘5[2 principal = @ L2mi
=1

where the m; are the exponents.

Proof. This follows from rep theory of sly (exercise). [ |

Example. g = sl,,. The roots are a;; = a; +- - - +a; where 7 < j. This has height i4-j —1. If you look at
the Dynkin diagram, roots will be connected pieces and the height will be the number of vertices in that

piece. Hence, the # of root of height k is ry, = n — k. Thus the exponents are {m;} = {1,2,...,n—1}, so
Sl sty principal = L2 @ Ly @ -+ @ Layp_2.
Sanity Check 9.9. Consider gl,, =V ® V* =L, ® L,,_1. Clebsch-Gordan tells us that this is
g, =Ln®Ln=Lo® Lo ® Ly ® - ® Loy _o.
Since gl,, = sl,, & C, things are agreeing which is a good sign.

What does all of this have to do with Spinor representations being real and quaternionic type?

9.2 Back to Real, Complex, Quaternionic Type
Let’s first discuss what happens for sly. Recall L,, has dimension n — 1, and L; = C2. SLy(C) = Sp,(C)

0 1
preserves skew-symmetric form 0 on C2, so L, is quaternionic type.

More generally, L, = Sym™ Ly and L,, & L with the form on L,, being the symmetric power of the
form on L' (or tensor power if you want to view L,, C L?"). Now, w: L1 x Ly — C is skew-symmetric,

so w®™ is skew-symmetric for odd n, and symmetric for even n. Thus,

198erre relations says (ade;)'~%de; = 0. If a;; = 0, then this says (a;,a;) =0 = [e;,e;] = 050 a; + a; is not a root
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Proposition 9.10. L., is real for even n, and quaternionic for odd n.

Now let g be any simple Lie algebra. Choose A € P, so L} = L_yx.
Assumption. Let’s assume A\ = —wgA

(this is e.g. always the case if Dynkin diagram has no nontrivial automorphisms so —wg = 1).
Question 9.11. Is Ly real or quaternionic?

Restrict it to principal slp-subalgebra. The weights will be (u,2p") where u is a weight of Ly. This
will be largest when p = A, and this eigenvalue (), 2p") occurs just once. This is because any other
weight of Ly is of the form A\ — 8 with 5 =" k;a;, k; > 0 and § # 0. Hence,

<M7 2p\/) = ()‘72pv) - QZki < ()‘72/)\/)'

Thus,
Lilsty = Lin @ @) enLn with m = (X, 2p").
nm
If we have an invariant nondegenerate form on Ly, B, then Ly = L,, ® L}, so B|z,, is a nondegenerate

invariant form. Clearly, B is symmetric <= B|y,, is symmetric. Thus, we obtain.

Proposition 9.12. Assume Ly is not complex type. Then, Ly is real type if (\,2p") is even, and is

quaternionic type if it is odd.

Application to Spinor representations Let g = 0(2n). Recall the fundamental weights are w; =

(1,0,...,0),...,wp—2 = (1,1,...,1,0,0),wp—1 = (3,....4,3) swn = (3,..., 5, —1). Hence,

nin —1)

:V: P = —1 —210 d2v n) —
p=p'= wi=m-1n-2,...,1,0) and (2p",w,) 5

= <2p\/7 wnfl)-

Fact. "(”271) isodd if n =2,3 (mod 4) and is even if n = 0,1 (mod 4).

Corollary 9.13. If n = 0 (mod 4) then Sy have symmetric forms. If n = 2 (mod 4), then Si have

skew forms.

(they are not self-dual when n odd).

We can do the same analysis for g = 0(2n+1). Here, w; = (1,0,...,0),...,wp—1 = (1,...,1,0),w, =
(1/2,...,1/2). And v = w1,...,w) | = wp_1,w, = (1,1,...,1). Then p¥ = wy + - +w, =
(n,n—1,...,1), 50 (2p¥,wy) = n(n + 1)/2. Hence we obtain

Proposition 9.14. The Spinor rep S is real <= n =0,3 (mod 4), and is quaternionic <= n=1,2
(mod 4).

Theorem 9.15 (“Bott Periodicity”). The behavior of spinor representations of o(m) depend on the

remainder r of m mod 8.
o r=1,7: 5 is of real type

e r=23,5: 5 is of quat type
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e r=0:5,,5_ are of real type

o r=26:S5Y=5_ are of complex type

e r=4: 5, 5 are of quat type

“Now, let’s move on. We’ve done enough representation theory, so let’s switch to another subject:

integration of Lie groups. This will help us do representation even better.” (paraphrase)

9.3 Review of differential forms and integration on manifolds

Let M be a smooth, real n-dimensional manifold. Recall
e TM is the tangent bundle (vectors)
e T*M is the cotangent bundle (covectors)

o A differential k-form on M is a smooth section of /\k T*M (a skew-symmetric n-covariant and

0O-contravariant tensor field on M)

In local coords x1,...,x, a k-form w looks like

w = Z fih...,ik(xla-"7xn)dxi1 /\-~-/\dxik.

1< <ip < <ip<n
If you change coordinates x; = x;(y1,...,Yyn), then
Oz,
w = Z Z filmik(xl,...,xn)det 87 dyjl /\/\dy]k
J1<fo< <gr i1< < Yie /s

Example. If f € C®(M), get differential df € Q'(M) (section of T*M) so that, for v € T,M (a
derivation), df(v) = 9, f. In coordinates,

n af
df = ; 5 0
Note Q°(M) = C*°(M), and QF(M) = 0 for k > n. We have a graded-commutative algebra
Q°(M) = POt (M)
k=0

of differential forms with multiplication given by wedge product A. The operation d in the previous
example extends to a degree 1 derivation of Q*(M), i.e. we have d : Q¥(M) — QF+1(M). It is defined by

d(f(z1,...,xp)dzy Ao Adwy,) =df Adag, A+ Aday,.
It is a graded derivation in the sense that given homogeneous a € Q*(M) and b € Qf(M), one has

d(anb) =daAb+ (=1)%a A db.
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A closed form w is one for which dw = 0. It is an exact form if w = dn. Also, d? = 0 (exact implies

closed), but the coverse is not always true.

Example. Consider S = R/Z with coordinate x (mod 1). Then, dz € Q(S?) is a closed form, but is
not exact: Af € C°(S!) s.t. dv = f (would need f = x + ¢ but 2 not well-defined on circle, only up to
adding integers).

Definition 9.16. De Rham Cohomology of M is

Qjosea (M)
Hk(M) _ ““closed .
Q]gxact (M)

If f: M — N isa C®map, and w € QF(N) is a k-form, then you get a pullback f*w € QF(M).

Given vy, ...,v; € T,M, one has

f*w(’vla"'vvk) = w(f*vla"'vf*vk)

where f, : T,M — T N. Note that pullback commutes with A and d. Also, (fog)* =g* o f*.

9.3.1 Top degree forms

Every element of Q"(M) looks like w = f(z1,...,2,)dz1 A--+ Adz, (in local coordinates). Say M = R™

and w has compact support (i.e. f has compact support). Then we define

/ W= flz, .. xp)dey .. da,.
M R

We want this to be independent of coordinates. If we change x; = 2;(y1,...,yn), then

8931‘

w= f(z1,...,z,)det (8

J

but

flxy, . xy)dey .. dey, = fze, ... xn)
R‘VL R‘IL

det (8@) ’ dy - .. dyn,

ayj
so there is a slight discrepancy (in one case have absolute values; in the other case we don’t). Hence,
integration of top forms only invariant under changes of variable that preserve orientation (det(jacobian) >
0). As a result, we will only be able to integrate differential forms on oriented manifolds.

On a general manifold, you cannot integration differential forms. You can, however, integrate densities.

These multiply by absolute value of determinant instead of by the determinant itself.

10 Lecture 10 (3/25)

Note 6. Haven’t seen last Thursday’s lecture yet...
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10.1 Last time

Last time we talked about integration of (top degree) differential forms on manifolds. Say we have a
(real/smooth) manifold M of dimension dim M = n and we have w € Q™(M). To define the integral

/ w,
M

we need an orientation on M, i.e. a consistent way to say which bases of T, M are ‘right-handed’ in the

tangent space. Say we have some charts U, V' of the manifold with coordinates x;,y;. Then the manifold

9y
f) >0,

Say M is an oriented n-dim manifold, and suppose w € Q"(M) is a top degree form with compact

is orientable if always det (

support. We won’t actually need to compact support condition, but good to know the integral will
converge. How do we define | uw?

Let K = suppw. Cover K by finitely many balls B;, and choose a B} C B; for each 4, so these Bj’s
already cover K. For a containment of balls B’ C B, we can define a hat function f € C°°(B) satisfying
f>0o0n B, f >0on B, and f has compact support in B.

Example. In the one-dimensional case, just want some bump function. Can start with

0 ifz<0
g(x) = e
e /" ifxr>0

Can then do something like multiply this by a parabola (?) to get a hat function in the 1-d case. Then
use this to get hat functions in any dimension.

Let f; be a hat function on B;, and consider

o
o ijj

which is well-defined in a neighborhood of K, and has support instead B;. Note that Y g; = 1, so these

give a partition of unity. We can now use these to define

/Mw - ;/BZ 9

with the RHS a sum of integrals in R™.
Claim 10.1. This is well-defined and independent of choices.

For independence, given two partitions of unity, consider their refines obtained by taken pairwise
products (i.e. consisting of functions g;h;).

Remark 10.2. Integration like this also makes sense for manifolds with boundary. The only difference is
that at boundary points, the local model is R"™! x R instead of R™. Integration also makes sense for

non-compactly supported forms; the integral just might diverge in these cases.

Remark 10.3. If you have an oriented manifold with boundary, then it induces a canonical orientation

on the boundary (a basis of tangent space at boundary is right-handed iff basis of whole thing obtained
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by extending the given basis by a single vector pointing inwards is right-handed, or something like this).

10.2 Volume Forms

Definition 10.4. A differential form w € Q"(M) is called nonvanishing if w, € A" T M is not zero
for all z € M.

A nonvanishing top form gives rise to an orientation on M: say vi,...,v, € T, M is a right-handed

basis if w(vy,...,v,) > 0. Note that w also defines a (Borel) measure, given on open sets U via

po(U) = /Uw

(or 400 if integral diverges). Now say f is any measurable function on M. Then,

[ it = [ 1san..

We call f integrable, denoted f € L'(M, i), if this integral is < oo. In such cases, can define fM fdu

just as in measure theory.

Remark 10.5. Above discussion shows that there are no non-vanishing forms on non-orientable manifolds.

open . 1. . .
Example. w =dz; A---Adz, on M C R” is nonvanishing. The corresponding measure is the usual
open

Lebesgue measure p, so u(U) = vol(U) is the usual volume of U C M.

Inspired by above example, nonvanishing forms are often called volume forms. Given a volume form
w, vol(M) = [,,w € Ry U{oo}.

Proposition 10.6. If M is compact, then it has finite volume, and any continuous function on M belongs

to LY(M, ), i.e. is integrable.

Proof. Cover M = |J, ¢, Ux with U, a neighborhood of x so small that u(U,) < oo. Since M is compact,
this has a finite subcover Uy, ..., Un. Thus, u(M) < 3. u(U;) < oo, so M has finite measure. If f is

continuous, then max |f| < oo, so

/|f|duémax|f| (M) < .

10.3 Stoke’s Theorem

Theorem 10.7 (Stoke’s Theorem). Let M be a compact orientable manifold with boundary, and let
w € Q" Y(M) (so restricts to a top form of M ). Then,

/ dw:/ w.
M oM

In particular, if M is closed (no boundary), then fM dw = 0. Also, if dw =0, then faMw =0.

Notation 10.8. We let M denote M with the opposite orientation. Note that [r7w = — [, w.
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Remark 10.9. When n = 1, we can consider an interval M = [a,b] with boundary consisting of two

points. Then Stoke’s theorem says
b
[ s = 10 @
a
which is exactly the fundamental theorem of calculus.

Remark 10.10. Applying this inside R? should recover Green’s formula. Applying it to a surface in R?

recovers Stoke’s classical formula. Applying it to a region in R?® gives Gauss’s theorem.

10.4 Integration on (Real) Lie groups

For complex Lie groups the story is the same. To integrate on them, just forget the complex structure.
Let G be a real Lie group of dimension n with Lie algebra g = LieG = T1G. Note that A" g* is
one-dimensional. Fix some nonzero £ € A" g*. We can use left-translations to spread ¢ over G in order

to get a left-invariant (nonvanishing) top differential form we.
Remark 10.11. Translating should show that TG = g x G is a trivial bundle.

This w = we gives us an orientation and a measure f,. Note that p., so defined is left-invariant, so

gives a (left-invariant) Haar measure.

Remark 10.12. ¢ is well-defined up to scaling. Changing £ ~» A\ (A € R*) changes the top form w ~ Aw

and so changes the meausre p,, ~ |A| p,,. Hence, this Haar measure is well-defined up to positive scalar.

Notation 10.13. We use pr to denote a choice of left-invariant Haar measure. We similarly define ppr

as a choice of right-invariant Haar measure.

A natural question is does p;, = g, up to scaling at least? They will for abelian groups since left /right
translations are the same. What about for non-abelian groups?

Suppose V is a 1-dimensional real representation of a group G, so have py : G — Aut(V) = R*. We
can then define a rep [V| on the same underlying space with map pjy| = [py|. This is still a representation

since | - | is a character (i.e. homomorphism) on R*.
Proposition 10.14. uy = pr <= |\" ¢*| is a trivial representation of G.

Proof. nr, = pr <= pr is also right invariant <= pup is invariant under conjugation <= w is
invariant under conjugation, up to sign <= w; € A" g* is invariant under G, up to sign <= |A\" g*|

is a trivial representation. |
Above, keep in mind that conjugation is what induces the adjoint action on g.
Definition 10.15. G is unimodular if p; = pg.

Example. When G is discrete and countable <= g =0 = G unimodular. Up to scaling, pu; = pgr
is simply the counting measure pu(U) = #U.

Definition 10.16. Say g is a f.d. real Lie algebra. We say g is unimodular if A" g* is a trivial g-module.
Proposition 10.17 (Homework).

(1) A connected Lie group G is unimodular <= G is unimodular.
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(2) If g is perfect, i.e. g =lg,g], then g is unimodular.

Corollary 10.18. Semisimple Lie algebras are unimodular.

(8) A nilpotent (e.g. abelian) Lie algebra is unimodular.
(4) If g1, 92 are unimodular, then so its g1 @ ga.

Corollary 10.19. A reductive Lie algebra (which is a direct sum of an abelian and a semisimple

Lie algebra) is unimodular.

(5) The Lie algebra t,, of upper triangular matrices is not unimodular when n > 2.

Corollary 10.20. Being unimodular is not closed under extensions.

Remark 10.21. If G has no nontrivial 1-dim reps, then G is unimodular.

If G is unimodular, then it has a bi-invariant Haar measure y = pr, = pr. Integration with respect

/Gfdu =:/Gf(g)dg-

Proposition 10.22. Compact Lie groups are always unimodular.

to this measure is denoted

Proof. Consider the representation |/\" g*| which is given by a continuous map p : G — R~q. The image

p(G) C R must be a compact subgroup, but there’s only one of these. [ |

Note that if G is compact, it has finite volume fG dg < oo, so we may normalize dg so that this
integral is 1, i.e. require our Haar measure to be a probability measure. This gives us an actually unique

choice of measure for compact G.
Example. When G is finite, the unique Haar probabality measure is the averaging measure u(U) =

#U/#G.

10.5 Representations of compact Lie groups

Proposition 10.23. FEvery f.d. representation V' of a compact Lie group G is unitary.

Proof. Pick a positive Hermitian form B on V. We would like an invariant form, so consider the average
By (v,w) = / B(gv, gw)dg
G

which is invariant by construction (using right-invariant of dg) and well-defined since |, ¢ dg = 1 is finite!
Note that B, (v,v) > 0 (for v # 0) since B(w,w) > 0 for w # 0. This gives a unitary structure on our

representation, completing the proof. |
Corollary 10.24. Any finite dimensional representation of a compact Lie group is completely reducible.

Proof. Unitary reps are always completely irreducible. If W C V is a subrep, then so is W+ C V and
W @ W+ =V (then induct). [ ]
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Example. G = SU(n) is a simply-connected, compact Lie group (U(n) compact since rows are vectors
of unit length). It is simply-connected (and even doubly-connected) since SU(n)/SU(n — 1) = S27~1.
Thus, Rep SU(n) = Repsu(n) = Rep(n) (when sl(n) is the complexification of su(n)). Thus, we relearn
that f.d. reps of sl(n) are completely reducible. This proof strategy is called the Weyl unitary trick.

In fact we will show that every semisimple Lie algebra has a Lie group whose real form is a compact

Lie group.

10.6 Matrix coeflicients

Let G be a compact Lie group, and let V be a f.d. irreducible representation of G. Let (—,—) be a
unitary form on V, which is unique up to scaling by a positive number (ultimately a consequence of

Schur). Choose an orthonormal basis vy, ...,v, of V. We can consider the expression

pv(9)i; = (pv(9)vi, v) = Yvij

computing the ij entry of the matrix for g in the given basis. This is a smooth function ¢y ;; : G — C

called a matrix coefficient. Note that this is independent of the normalization of the form (since scaling

the form by A divides the orthonormal basis by v/)), so it only depends on a choice of orthonormal basis.
Let W be another irrep of G. Say {w;,} form an orthonormal basis for W.

Theorem 10.25 (Orthogonality of matrix coefficients).

/Gwvw(g)i/)w,ke(g)dg— ATt

Remark 10.26. dyw =0if VZW. If dyw = 1, take V =W and require v; = w; (i.e. use same basis).

Proof. We're after the expression

((/G pv(9) ®pW(g)> (v; @ W), v ®W> .

Note that
( / pv(g) @ rHW(g)) = / pvew-(9)dg € End(V @ W) = End(V @ W*).
G G

P

We want to compute this operator. For € V @ W*, we claim Px € (V ® W*)€. This is because
pvew=-(h) Pz = /Gpv(gw*(h)pmw(g)dg = /GpV®W*(hg)dg = Pz.

Thus, im P C (V @ W*)¥ but this whole space is 0 if V 2 W.
We will handle the case V' = W next time... |

11 Lecture 11 (3/30)

Last time we talked about matrix coefficients.
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11.1 Matrix coefficients + Peter-Weyl

Recall 11.1. Let V be an irrep of a compact Lie group G. Let (—, —) be an invariant, positive Hermitian
form on V. Let vq,...,v, be an orthonormal basis w.r.t this form. The matriz coefficients are the smooth
functions ¢y ;; : G — C given by

Yv,ii(9) = (pv (9)vis v)).

Hence, ¥v,;;(g) is the ijth coefficient of the matrix of py (g) written in the basis v1,...,v,.
Recall 11.2. 5 s
iy dg = JYWOikG5¢e
| vty ucnaldg = a0

We were in the middle of proving this last time. We showed this integral is 0 when V' 22 W by making

use of the operator

P= / pv(9) ® pyr(g)dg
G

on VW =V ®W*. We showed that P: V @ W* — (V ® W*)¢ maps into the space (V @ W*)C =
Homg (W, V) which is 0 if V' 22 W. The integral we are interested in is simply (P(v; ® wg),v; ® we), so
it must vanish when V 22 W. Let’s now wrap up the rest of the proof.

Proof of Theorem when V = W. In this case,
P = / pvev-(g)dg.
G
Note that V @ V* = C @ U with U® =0, so
P= [ pelo)dg® [ polo)ds.
G G
The right summand takes values in U%, so must be 0. At the same time, pc(g) = 1, so the left factor is

1. Hence, P = 1¢ @ Oy is the projection to the trivial representation (the span of the identity operator
idy € V@ V*). From this we see that

(17 02y Y, Zr‘l—l (% ® vi) " ({L‘7 y)
P.’E@ = n = n V; @ U; = — V; Q ;.
( y) (Zizl v; Q U5, Ei:l v; Q U,‘) ; dim V Z
In particular, P(v; ® vg) = di‘s’ﬁ "0 ® v, SO
0ik0je
P i s Ug = J )
( (U ®'Uk;) 'U] ®UE) dlmV
which completes the proof. |

Corollary 11.3. {¢oy;; : V € Irrep(G) and i,j =1,...,dimV} given an orthogonal set in L*(G).
We can actually say something stronger.
Theorem 11.4 (Peter-Weyl). This system is complete, i.e. the ¥v;’s form an orthogonal basis of

L2(G).
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Notation 11.5. Let Lglg

Peter-Weyl says that Lzlg(G) is dense in L?(G).

(G) := usual linear span of the ¥y;;’s.

Recall 11.6. L%(G) = {f : G — C measurable | fG |f\2 dg < oo} is the Hilbert space of square-integrable

measurable functions with inner product

(1. f2) = /G £1(9) Fo(g)dg.

Example. Say G = S' = R/277Z is the circle. Then the irreps of G are the usual characters v, (0) = e’
for n € Z. PW says that these give an orthonormal basis for L?(S') with inner product (fi, f2) =

4 02 " £1(0) f2(6)d6. This recover the main theorem of Fourier analysis.
Peter-Weyl is the first step of non-abelian harmonic analysis.

Corollary 11.7 (of Theorem [10.25] character orthogonality). For the characters

xv(g) =Trpv(g) = Zwv,u- (9),

one has
/G xv(9)xw(g)dg = dvw.

Proof.

— Sywlindik  Svw o
/GXV(Q)XW(g)dg - Z,; Zk dmV_ dimV Zi Oii = Ovw-
n

Corollary 11.8 (of Peter-Weyl). The characters xv(g) (V € Irrep(G)) give an orthonormal basis of

L?*(G)C, the conjugation-invariant L?-functions.
Before proving this, we reformulate the Peter-Weyl theorem.
Theorem 11.9 (Peter-Weyl, reformulated). The G x G-invariant map
¢: @ V@ V*— L*(G) where £(v; @ v;) = v
Velrrep(G)
has dense image in L*(G).

Proof of Corollary[11.8 Note that (¢ @ Dy ermep(c)(V @ V)G — L%(G)Y satisfies (and is determined
by) >, vi ®v; — xv(g). Thus, its image is the linear span of the xy(g)’s. Hence, it suffices to show that
Lglg(G)G is dense in L?(G)“. For this, take some ¢ € LI(G)Y, so there’s a sequence 1, € L2,,(G) with
Y, — ¥ as n — oo (by Peter-Weyl). Let ¢/, := fg ¥ (grg~)dg € L2, (G). Furthermore,

alg

w;—w:H / <gwn—w>dgH= / gwn—w)dgHg [ Vot =g = [ 1= vilds =l - ) =20,

so ¥, — 1 which completes the proof. |

Let’s now prove Peter-Weyl.
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11.2 Proving Peter-Weyl
11.2.1 Analytic Background

Before we can prove PW, we need some more background in analysis. In particular, we need the know

about compact operators on Hilbert spaces.

Definition 11.10. Let H be a Hilbert space. A bounded operator A : H — H is a linear map s.t.
there exists some C > 0 s.t. for all v € H, ||Av|| < C||v||. The set of such C is closed, so the minimal
such C' is called the norm ||A]| of A. The space of bounded operators is denoted B(H) and is a Banach

space (Banach algebra even) with this norm.
Remark 11.11. ||A+ B|| < ||Al| + ||B|| and ||AB]| < ||A]|||B||-
Definition 11.12. A bounded operator A on a Hilbert space H is called self-adjoint if (Av, w) = (v, Aw)

for all v,w € H. We say A is compact if it is the limit of a sequence of finite rank operators (i.e.

n—oo

dimim(A,) < o) A, : H — H, ie. ||[A, — A —— 0. We let K(H) denote the space of compact

operators, the closure of the space K¢(H) of finite rank operators.
Remark 11.13. K;(H) C B(H) is a 2-sided ideal, so K (H) is also a 2-sided ideal in B(H).

Lemma 11.14. If A is compact, then it maps bounded sets to pre-compact sets, i.e. sets with compact

closure.

Remark 11.15. A bounded operator will map bounded sets to bounded sets. A compact operator will
map bounded sets into compact sets.
If {v,} is a bounded sequence in H and A is a compact operator, then Av,, will have a convergence

subsequence (with limit possible outside im A).
Not every bounded set in a Hilbert space has a convergent subsequence.

Example. Let e1,e2,... be orthonormal vectors in H. Then this is a bounded sequence with no con-

vergent subsequence (distance between any two vectors is v/2).

As a consequence, we see that id : H — H is compact <= dim H < oco. Let’s prove the lemma now.

Proof of Lemma[I1.1]} Let v, € H with |lv,|| <1, and say A: H — H is compact. Choose A, of finite
rank with ||A,, — A|| < 1/n for all n. We do a usual diagonal trick. Note that, since A,, has finite rank,
{A,vg}r>1 lies in a compact set (a ball in a finite dim space).

Let v} be a subsequence of v,, s.t. Ajv} converges. Let v2 be a subseq of v} s.t. Ayv2 converges, and

so on and so forth. Define w,, := v™ which (away from the first k elements) is a subseq of v*. Note that

[Avf = AvF|| < [[Awvf — Awvf || + [[(A = Aw)(vf = )|
< || Agvf — Agof|| + ([ A — Al Jof — o]
< [JArvf — Apvf|| + 2|4 — Ax||

< || Aol — gt + 2.

Hence, for i, j > 0, we have HAvivf = Av§c H < % since the first summand above vanishes in the limit. Since
(a tail of) w,, is a subseq of v, we see that ||Aw; — Aw;|| < 3/k when i,j > 0. Hence, Aw; is Cauchy,

so it converges. |
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Proposition 11.16. Let K be a continuous function on [0,1]>". Define the operator Bx on L?([0,1]")
by

(BrY)(y) = o K(z,y)v(x)da.

This operator is compact.

Proof. Cover [0,1]*" by pixels of size % Approximate K in every pixel by its maximal value on that

pixel, and call the resulting function K,,(x,y). Then, the corresponding By, is a finite rank operator of

rank < m” (functions constant on each pixel). Finally, | Bx — Bk, || < max |K — K,,,| — 0 as m — oo by

m

uniform continuity of K, i.e. Ve > 036 > 0 s.t. if |(z,y) — (2/,y')| < 4, then |K(z,y) — K(2/,¢y")| <e.

Hence, By is compact. |

Corollary 11.17. If M is a compact manifold with positive smooth measure dz, then for any continuous
K on M x M, the operator

(Brw) () = /M K(z,y)d(@)dz

18 compact.

Proof. 1f fi,..., fm is a partition of unity on M, then K(z,y) = >, fi(z)f;(y)K(z,y). Defining
Kij(z,y) == fi(2)fj(y)K(2,y), we have Bk = >, ; Br,; so it suffices to show By, is compact, but

K;; has support in (a space homeomorphic to) [0, 1]™ so we win. [ ]
Fact. A bounded operator B : H — H is compact <= it maps bounded sets to precompact sets.

We won’t actually need this fact (the direction we haven’t proved). On the other hand, we will need

to below fact.

Theorem 11.18 (Hilbert-Schmidt Theorem). Let A : H — H be a self-adjoint compact operator.

Then, there exists an orthogonal decomposition
H=kerA® ED/\H,\

where X runs over nonzero eigenvalues of A, and
e Aly, =X-1d
e H) are finite dimensional
e )\ are real and either form a finite set or a sequence converging to 0.
(Generalizes uses spectral theorem for Hermitian operators in f.dim linear algebra).

Example. When A is finite rank, this is just the spectral theorem for Hermitian operators in a f.d.

space. It says there exists an orthonormal basis in which A is diagonal with real eigenvalues.

Remark 11.19. Bounded operators in a Hilbert space do not have to have eigenvalues at all. For example,
consider multiplication by z on L?([0, 1]) (recall objects here are functions up to equality away from null

sets).
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Proof of Hilbert-Schmidt. We first prove the theorem for the positive operator A2. The idea is to find
the largest eigenvalue, take its orthocomplement, and then keep going...

Let 8 = ||A|* = supj,—1(A%v,v) = sup, -1 (Av, Av). WLOG we may assume 3 # 0 (otherwise
A = 0). Fix a sequence A,, of self-adjoint finite rank operators converging to Am Let 3, = ||A,||* which
is in fact the maximal eigenvalue of A?LE Choose vy, s.t. A2v,, = B,v, and ||v,| = 1. Note that A%v,
has a convergent subsequence, so we may assume wlog A%v,, — w € H. At the same time, A2v, — w
since ||A%v,, — A2v,|| < ||A? — A2]| — 0 as n — oo. Since A2v,, = S,v, and 3, — 3, we conclude that
v — B~ 1w so A%w = Bw. Also, we know ||w| = 1. Now replace H with (w)" and continue.

In this way, we get a sequence of numbers 1 > 3 > 3 > -+ > 0 which either terminates (3, = 0
for n > 0) or it’s infinite but tends to 0 (using compactness of A%). We have eigenvectors w; of norm 1
so that A%w; = Bjw;. This has a convergent subseq so §; — 0 as ||Bjw; — Brwi| = \/BF + B Take a
vector v orthogonal to all wy. Then ||Av|| < Bi||v]|, so ||Av|| =0 = v € ker A. This implies

— Pan) 2
H =P, Cur & ker A

This completes the proof for A2.
Finally, A acts on ker A% by 0 and on Hg, with eigenvalues £+/f. ]

We’ll deduce Peter-Weyl next time.

12 Lecture 12 (4/1)

12.1 Peter-Weyl, Proved

Let G be a compact Lie group. Recall we want to show that

Theorem 12.1 (Peter-Weyl).

2 _ Py *
L (G) o ®VEIrrep(G)V DV

Proof. We want to make use of the Hilbert-Schmidt theorem from last time. We start by constructing
a ‘0-like sequence’ of continuous function hy(z) on G, supported on small neighborhoods of 1 which
shrink to 1 as N — co. We require hy > 0, hy is conjugation invariant, and fG hy(z)dx = 1. Note that,

if  is a continuous function on G, then

/ h (@)p()dz X222 (1),
G

How do we actually construct such a sequence?

Note that g = Lie G has a positive, invariant inner product. Start with a function h(z) supported
on [—¢,¢]. Then define hy(Z) = h(|z|?) where & € g. Then define hy(g) = hg(Nlogg) (supported in a
neighborhood of the identity on which log is defined). Then let cy = [ TLN(g)dg, and set hy = iﬁ]\/‘

Note this is invariant under conjugation since it only depends on |log g|, so we have our sequence.

20Replace with 1 (A, + AY)
21This is a statement about matrices. Diagonalize to see this
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Next, we define the convolution operator
Bai)(a) = [ hv@ia s = [ (ool

Note that this is compact by Corollary (applied to K(g,h) = hy(gy~')). Furthermore, By is
self-adjoint since K(g,y) = K(y, g) (since hy invariant under inversion). Further, it commutes with both
left and right multiplication by G, so

L*(G) = ker By ® @MOH,\

with Hy the (f.dim) A-eigenspace of By. Each H) is G-invariant (say under left action) so Hy C
Lﬁlg(G) =@,V ®V*. Hence, for all N and any b € Im By and € > 0, there exists f € LZZQ(G) s.t.
|[b — f|l < e. Note that for ¢ € C(G) continuous, By — ¢ as N — oo (|[(Byy — ¢)|| — 0). We can
pick fy € L2, (G) so that || Byy — fn| < + and so see that |Byy — fy|| — 0 as N — oco. Hence, Lz,
is dense in L?, so we win. |

Lemma 12.2. Let G be a compact Lie group, and let G = Gog D G1 D G2 D ... be a descending sequence
of closed subgroups. Then it must stabilize, i.e. Gy, = Gp41 for n > 0.

Proof. We may assume the sequence has no repetitions, and then show it is finite. Assume not. The
dimensions have to stabilize, so we may assume dim G} is the same for all i. Then, K = GY is the same for
all n (since Lie algebras must be the same), and is normal in each of them. Then, G;/K D G3/K D ...

is a sequence of finite groups, so it must stabilize. ]
Non-example. Z D27 D42 D82 D 16Z D ...
Corollary 12.3. Any compact Lie group has a faithful, finite dimensional representation.

Proof. Pick a f.d. rep V5 of G, and let G; = ker py,. Then pick a rep V5 of G s.t. Va|g, is nontrivial,
and take G = ker (py, @ pVa) = ker py,|g,. Continue in this way... By the lemma, this process can only
produce a finite sequence of non-isomorphic groups, so there’s a k s.t. every f.dim rep of G is trivial on
G. By Peter-Weyl, Gy, acts trivially on L?(G) which forces G = 1. Hence, Vi @ --- @ V4 is a faithful
(unitary) representation of G, so G — U(V; & --- & Vy). [ ]

Conversely, if a compact topological group has a faithful f.dim rep, then it’s a closed subgroup of U(n)

which implies that it is itself a (compact) Lie group.

Notation 12.4. We let C(G, C) denote the Banach space of continuous C-valued functions on G. This

is complete w.r.t the norm || f|| = max|f].

Theorem 12.5 (Stone-Weierstrass Theorem). Let X be a compact metric space. Let A C C(X,C)

be a unital subalgebra s.t.
(1) A is closed.
(2) A=A (invariant under complex conjugation)

(8) A separates points, i.e. for distinct x,y € X, f € A s.t. f(z) # f(y).
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then A= C(X,C).

Theorem 12.6. Lilg

uniformly approximated by matriz coefficients of f.dim reps.

(@) is dense in C(G,C) with this norm, so every continuous function on G can be

Proof. Let A= Lilg(X ). It is obviously unital, closed, and closed under complex conjugation. Hence, it
suffices to check that it separates points. Fix any z,y € G s.t. f(z) = f(y) for all f € Lilg(G). Then,

for any f € Lilg(G), one has f(1) = f(z~'y), so g := 2~y acts trivially on L?(G) which forces g = 1,

ie. z=uy. ]

12.2 Compact (2nd countable) topological groups

Recall 12.7. A topological space is called 2nd countable iff it has a countable base. A compact space
is 2nd countable <= it is separable <= it is metrizable.

Lots of what we said for Lie groups didn’t really need the smooth structure; it mainly just needed
integration. So we’ll make sense of integration on compact, 2nd countable topolgoical groups, and then

reprove things in this more general setting.

Example. Let

be a chain of surjective homomorphisms of finite groups. Then, the inverse limit

G:= lim G, = (9:);> € HGi 2 0i(giy1) = g; for all 4

n—00 i>1

is a profinite group. It is visibly an abstract group. To topologize it, we give it the weakest topology
in which all the projections p,, : G — G,, are continuous (with G,, discrete). Hence, a base of nbhds of 1
is given by ker p,,.

Here, a sequence @" = (af, a3, ...) converges to & <= Vk : a} eventually stabilizes to aj. Further,

this topology is metrizable with metric

-,

d(@,b) = C'nfr(ar7bk)

for some fixed 0 < C' < 1. Note that the natural map G — Hk€Z+ G}, is a closed embedding (using the

product topology on the target), so we see that G is compact.

Example. The p-adic integers
Zp = lim Z/p"Z

n—oo

form a profinite group. In fact, Z, is a profinite ring. It’s unit group Z; = lin (Z/p"Z)™ is also
n—oo

profinite, as are GL,,(Z,), On(Z,), Spay, (Zy), etc.
Example. Absolute Galois groups (e.g. Gal(Q/Q)) are also profinite.

Note can also take inverse limits of compact Lie groups.
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12.3 Integration theory on compact top. groups

Let C(X,R) denote the space of R-valued continuous functions on X (X some compact 2nd countable

topological group). Note that this is a Banach space, complete w.r.t || f|| = max|f]|.

Fact (Riesz representation theorem). Finite volume Borel measures on X are the same thing as non-

negativﬂ continuous linear functionals C'(X,R) — R. Given a measure pu, the corresponding functional
is I(f) =1.(f) = fX fdu.

(A measure is just a thing that let’s you integrate functions). In the above correspondence, pu is a
probability measure iff 7(1) = 1. Any nonzero p has positive, finite value and can be normalized to be a

probability measure.

Theorem 12.8 (Haar, von Neumann). Let G be a second countable compact group. Then G admits a

unique left-invariant probability measure which is also right-invariant.

Don’t need to second countable assumption above. In fact, for any locally compact topological group,
there’s some Haar measure (unique up to scaling) which is left-invariant or right-invariant, but usually

not both. We won’t prove that, but will prove the weaker version stated above.

Proof. Let {g;}i>1 C G be a dense sequence in G (exists since G 2nd countable). Fix ¢; > 0 s.t.

Yoo =1 (eg. ¢; =27"). We use these to build an averaging operator
A: CGR) — C(G,R)

T Z cif(xgi)]

(absolutely convergent since f bounded on compact G). Note that ||A|| =1 and that A is left-invariant.
Let L 2 R C C(G,R) be the constant functions, so A|;, = Idy. The distance from f € C(G,R) to L (the
“spread of f7) is v(f) = 3 (max f — min f).

We claim that v(Af) < v(f) with equality iff f € L. Indeed, choose some f ¢ L. For any = € G, we
can pick j s.t. f(zg;) < max f. Then, (Af)(z) = > ¢ f(zg;) < (1—c¢j)max f+c¢;(frg;) < max f. Thus,
max(Af) < max f (since G compact). One similarly checks that min f < min(Af), so v(Af) < v(f).

We now iterate. For f € C(G,R), let f,, = A™f. This sequence is uniformly bounded by max |f| and
is equicontinuous, i.e. for all £ > 0 there is a neighborhood 1 5 U = U, C s.t. for all z € G and u € U,

f —

|fn(z) = fo(uz)| <e.

To show this, it suffices to show that f is uniformly continuous, i.e. to find U s.t. for all x € G and
ue U, |f(z) — f(ux)| < e. This would then imply

‘Z cif(xg:) — Z cif(uzxg;)

Hence, assume to the contrary that Ju; — 1 and z; € G s.t. |f(x;) — f(u;x;)| > €. Since G is compact,

<Y cilf(wgi) — fuzgs)| <e.

the x; have a convergent subsequence, so we may assume x; — z. Taking limits then shows that
0=|f(x) = f(1-z)| > ¢, a contradiction.

e I(f) >0 < f>0
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Now we appeal to Ascoli-Arzela: A sequence f,, in C(X) (X compact) which is uniformly bounded
and equicontinuous has a convergent subsequenceF_?l

Hence we get fp,(m) = A™™) f converging to some h € C(G,R). Consider the spread

V(fn(m)) 2 Z/(fn(m)+1) = V(Afn(m)) > V(fn(erl))'

Taking the limit as m — oo, we have v(h) > v(Ah) > v(h), so v(Ah) = v(h). Hence h is a constant, so
the assingment f +— h € L = R is a continuous linear function. It is clearly left-invariant, nonnegative,
and satisfies 1 — 1. Thus, it gives our desired Haar probability measure/integral I : C'(G,R) — R.

This just leaves uniqueness. We can similarly construct a right invariant integral I, : C(G,R) — R.
For any left-invariant integral J, we have J(f) = J(I.(f)). If J(1) = 1, then this says J(f) = L(f), so
we get uniqueness. We also see that I(f) = I.(f), so I if bi-invariant. |

Next time we’ll generalize facts about compact Lie groups to these more general compact 2nd countable

groups, and then we’ll talk about hydrogen atoms I guess. Tuesday lecture at MIT.

13 Lecture 13 (4/6)

Today we learn some physics.

13.1 Hydrogen Atom

This is really a quantization of Kepler’s work on planetary motion.
Let’s start with the classical take on things. Imaginae planetary motion. There’s a sun with planets

orbiting it.

Notation 13.1. The configuration space is R? (with sun at the origin) and let’s call the coordinates
x,y, 2z € R. We put these together to form 7 = (x,y, z) whose length is r = |F] = /22 + y2 + 22. There’s
also momentum p = (py, py, p-) and kinetic energy %ﬁg as well as potential energy U(r) = —%. The

total energy is given by the Hamiltonian

Remark 13.2. We normalize all units so that constants (e.g. mass) is 1.

Define the Poisson bracket
of 0g Of dg
{figt = 25— 5552
op or  Or Op
Motion is described by Hamilton’s equations f = {H, f}. One (e.g. Kepler) can plug this in and solve
this differential equation; we’re lucky that this potential energy function U(r) is simple; this cannot be

solved by hand in general.

23Find nested subsequences converging at each point in a countable sequence (using uniform boundedness), and then take
the diagonal.
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13.1.1 Quantum version

In quantum theory, classical observables become operators on some Hilbert space. In the present case,

this space is L?(R3). We view z,y, z as operators given by multiplication by x, v, 2.

Warning 13.3. These aren’t literally operators on L?(IR?), e.g. multiplication by z can move a function
outside L?. In reality, these are only operators on some dense subspace of L?(R?). We won’t worry about

this too much.

What about momentum? p, ~+ —i0,. The minus is a convention, but the ¢ is important; smth
smth real classical observables should give rise to self-adjoint operators (i.e. [Af-g= [ f-Ag which
we sometimes write by saying AT = A). Also, the classical Hamiltonian gets replaced by the quantum
Hamiltonian

1 1

1 1
H4+ ——(0?+0?+09*) ——=—-A—-—.
+ 2(81+8y+az) r 2 r

Hamilton’s equation now becomes f = [H, f] (usual commutator) and called Schréodinger’s equation.

Classical states were pairs (7, p) (6 coordinates), but quantum states are elements of a Hilbert space
¥ € L?(R3) (oo coordinates) normalized so ||| = 1. We consider this 1) modulo ‘phase factorsﬁ (so
we're looking at lines in L?(IR?)). Classical states transform non-linearly, but these quantum states will

translate linearly. Then we have Schréodinger’s equation (for states)
10 = Hap.

More explicitly,
1 1
i) = =5 (2+02407) v — 0.

How do you solve this? If H was just a matrix, the solution would be ¥ (t) = e 4)(0) with exponential
given by the usual power series. If H is some infinite-dimensional operator, we can still take inspiration
from this. If we have an eigenvalue H1(0) = A(0), then ¢ () = e~*"4)(0) is a solution; more generally,
we can take superpositions of these. Hence, we’d like an eigenbasis for H (note H is symmetric and even
self-adj oin@ .

We want an orthonormal basis ¢y of L?(R3) so that Hyy = Enty. We call ¢y the state of
energy Ey (note Ex € R since ¢ self-adjoint). Consider ¢(z,y,2,0) = > enton(z,y, z). Here one has
env = (¥(0),9¥n). Given this initial condition, we get the solution

1/)(5573/7 Z7t) = Z CNeitEquN(Ivya Z)'

Thus, we only need to fine the eigenvectors oy satisfying the stationary Schrédinger equation
Hiyn = Extn.

This is similar to the story of compact operators, but more complicated. H is not compact, and also
not bounded. It’s spectrum won’t be discrete. It’ll have a discrete part (called ‘bound states’ if I heard
correctly) as well as a continuous part (giving integrals instead of sums). At least, we can try to find the

discrete spectrum.

24yectors of norm 1

25pavel is distinguishing these two and seemingly claiming self-adjoint is something complicated
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Goal. Solve this equation (Hy = Ev where E an eigenvalue), and figure out why we’re talking about

this in a Lie groups class.

Note everything is rotationally invariant, so we should utilize this symmetry. This amounts to passing
to spherical coordinates. 1/r is already in spherical coordinates. The Laplacian splits into two pieces,
A=A, + T%Asph, the radial part and the spherical part. These are

, 2 1, 1 .
A, =074+ -0, and Ay = 05 + ——0, - sind,.
r 2

. 0 :
sin? sin

Above, our spherical coordinates are (r,0,1) where r the radius, 6 the angle in the horizontal plane,
and v the angle in the vertical plane. Write ¥ = ri where || = 1. We look for solutions of the form
Y(r, @) = f(r)é(@) (‘separation of variables@.

First note that if Agppé + A =0, then f satisfies an ODE depending on A. Second, we claim that A

will be positive. This is because

[amee=- [vg2<0 = az0

What will be the equation for f? It’s a “calculus exercise” to compute that f satisfies the ODE

f”+2f’+ (2/\2+2E)f0.
T T
Here is where Lie groups start to come in. Agp, acts on L?(S?) (really on some dense subspace) and
is rotationally invariant (since A, A,, and 1/r% are; this is not obvious from its formula). Now, as
SO(3)-reps, we have
L*(S?) =Ly ® Lo® Ly @ ... with dimL, =k +1

(apparently this was on some homework). Now, A, preserves each Lg, and acts on it by a scalar. Once
we compute these scalars, we’ll know all the eigenvectors and eigenvalues on this operator. What are
these scalars? There are a few ways to compute them. Here’s one...

Let wy be the 0-weight vector in Loy (recall it has weights 2¢, (2¢ — 2),...,0,...,(2 — 2(),—-2¢). Tt
turns out that h € sly acts by —2i0y. Since wy is weight 0, Jpwy = 0, so it depends only on ¢. In fact, it
is a degree ¢ polynomial in cos g, so write wy = Pp(cos ¢). Recall that the Jacobian in passing between

sphereical and Euclidean coordinates is J = 72 sin ¢. Hence (matrix coefficients?),

1 ™
/ P (2)Pp(z)dz = / sin ¢ - Pp(cos @) - Py(cosp)de =0 if m # n.
—1 0

So P, is a degree n polynomial and they are orthogonal under uniform measure; this makes them Leg-
endre polynomials.

We can also calulate the action of Agp, on Py Recall that Ay, = ﬁ@g +
note that (sin¢)~'9, = d,. Using this (and independence from 6), one can show that

0, - sin pd, and

1
sin ¢

Asphpg = 62(1 - Z2)8ZPg = —)\Pg.

26 Apparently we earlier separated time from space. Now we separate radius from angle operators
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We want to compute \. Write P = Cz’ 4+ .... We compute the leading term of the LHS:
—0.2%0.2" = — (L + 1)C2* + ...

Thus, A =£(£ +1).
Proposition 13.4. Agy;, acts on each Loy by the scalar —0(¢+ 1).
Here, we do we get a discrete spectrum even though the operator is unbounded.

Notation 13.5. Let y}* denote the vector in Lo, of weight 2m, e.g. y? = w,. This will be of the form
A

These functions are called spherical harmonics. These were known by quantum mechanics, but Laplace

studied the Laplace operator on the sphere.

Note these spherical harmonics actually have some dependency on 6 now. We ignored that (sin ¢) =297

before, but now this will acts on y;* and generate a —%. We get

m2

0.(1 —2%)0.P"(2) — e

P (z) +L(£+1)P"(2) = 0.
This is called the Legendre differential equation. Note that —¢ < m < ¢ (in fact, it turns out these
are the only values of the parameters for which this equation has a solution which is smooth near z = 0).

This solution will be (almost?) a polynomial, unique up to scaling. One ends up with
Pr=(1-22)% oltm(1 — )

which is a polynomial when m is even. These are called associated Legendre polynomials.

Remark 13.6. This P;" is a matrix coefficient, so it’s a trigonometric polynomial. You can write this as a
polynomial of cos with some sin factor when the degree is odd (or something? I didn’t quite catch what

he was saying).

Let’s go back to the radial equation. Recall it is

2 2 Le+1
fr =+ (—(2)+2E>f:0.
T T T
How do we deal with this? We start with the magic change of variables: write f(r) = rfe™nh (%T)

Letting p = 2r/n, h must satisfy

1
ph"—l—(2€+2—p)h'—|—<n—€—1—|—4(1—|—2En2)p>h:0.

We should choose n so that the last term goes away, i.e. we take n = \/%ﬁ7 ie. B = —ﬁm Thus, we

have
ph’ + (20 +2 — p)h' + (n — £ — 1)h =0, (13.1)

27Since our potential is negative, one can show that FE < 0 if you want a solution lying in L?
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called the Laguerre equation. Look at solutions near p = 0. They will have the form h = p*(1 + o(1))

(for two values of s). The characteristic equation for s is (only first two terms relevant for this)

s(s=1)4+s(204+2)=0 < s(s+2(+1)=0

with two solutions s = 0 and s = —2¢ — 1. We have a basis of two solutions, the first smooth and the
second having a singularity. We claim the solution corresponding to s = —2¢ — 1 is not possible. Observe
[ 10 dsdydz = [ 1121 2 sinpardsdg = [ 1170 [ e
2
&,_/
<oo

so our f should have the property that [ |f |2 r2dr < oo (since we want a solution in L?). This is the case
iff
- 2
[ e o) dp < .

If h ~ p~2t=1 as p — 0, then p?*+2 |h(p)|2 ~ p~2 as p — 0, so if £ > 0, this is not integrable. Thus,
s = —2( — 1 not possible when ¢ > 0. Even when ¢ = 0, this is not possible: ¥ (z,y,2) ~ ¢ ~ r~!
near r = 0 and h ~ p~! = f ~ r~! near r = 0. Then, H¢y = f%Aw - %w = Fvy + J since
A(1/r) ~ do(x,y, z). Thus, ¥ won’t satisfy Schrodinger at the origin (as a distribution), so s = —2¢ — 1
is impossible even when ¢ = 0. Now allowing this behavior singles out a one dimensional span, the span
of the solution corresponding to s = 0.
We see that h must be regular at p = 0. Use power series method: h =) _,a,p™. We then must
have B
Z [k(k — Darp™ ' + (20 + 2 — p)karp™ ™ + (n — £ — 1)ayp"]

We can shift
> (k+ Dkarsrp® + (20 +2)(k + Dagg1p” — karp® + (n — € — Darp®

to get a recursion
(k+1)(k+20+2)agy1 + (n—L—1—k)ap = 0.

Starting with ag = 1, one can calculate

I+L—n)...(k+£€—n)
(20+2)...(20+1+k)- kI

ap —

Thus,

—n)... —n k
h(p):Z(l_FE ) (k+Ll—mn)p®

S 2U+2). 21 R) K

We see that this converges for all p (ratio behaves like a power of k and then it’s divided by a factorial).

Exercise. % — 1 when p — 400 except when the series terminates.

When does this series terminate? Well, when one of the factors in the numerator becomes 0, i.e. if

n—{—1¢& Z>o. In which case you get a polynomial of this degree n — ¢ — 1; it is denoted Lff_‘?_l(p)

67



and called the generalized Laguerre polynomial. Recall, we need

/Pr“‘”e”’ |h(p)|* dp < oo

We looked at convergence near 0 before, but there’s also convergence near oo. This will fail unless h(p)
behaves like a polynomial (the alternative is it looks like e” at infinity, so get something like e~Pe??

above).
Recall 13.7. The states with ¥ < 0 are called bound states.

Theorem 13.8. The bound states of the hydrogen atom are, up to normalization,
—0 —T r2041 2r\ m
wn,é,m(rv 2 0) =r e Ln_e_l ; Yy (9070)

wheren =1,2,3,...,£=0,1,...,n—1, and —¢ <m < /.

Definition 13.9. We call n above the principal quantum number, ¢ the azimuthal quantum

number, and m the magnetic quantum number.

_1_
2n2 "

levels, it emits a photon with energy /wavelength proportional to the difference

When an electron jumps between energy

1 1
2n2 2n’2 "

Remark 13.10. The energy can only take values £ = —

We still have not achieved what we wanted yet. These eigenfunctions do not form a base in the Hilbert
space. This functions ¥, ¢, span a space L3(R?) C L?(R3). For example, note that (H,v) < 0 for
¢ € LE(R?). This is not the case for all ¢ € L*(R®). Recall H = —3A — 1, s0 in general

(o) =5 19017 = [ F 1P

Can cook up a v so this is positive. In addition to the discrete spectrum/bound states we found, there’s
also a continuous spectrum consisting of the whole positive real linear {r > 0}, but we will not discuss
this. Pavel said more about this, but I didn’t follow.

Remark 13.11. For each n, there are n choices of ¢ values, and each (n,£) has 2¢ choices of m values.
Hence dim W,, = n? is the dimension of the space of energy levels of n. In chemistry though, one observes

a 2n?, so we're missing something. That something is spin. The real Hilbert space is L?(R?) x Cs.

There’s more to the story that we will talk about next time.

14 Lecture 14 (4/8): Quantum stuff continued

Last time we studied the equation Hy = Ey where H = —fA — =. We saw that we hand ‘bound states,’
L?-eigenfunctions with corresponding energy E = 7# for n = 1, 2,3,.... These eigenfunctions looked
like

2r
Bt =t 2L (2 v (e.0)
forn>1,0</<n-—1,and ¢ <m < /.

Recall 14.1. ¢ above is the azimuthal quantum number and m is the magnetic quantum number.
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There’s a geometric SO(3)-symmetry so so(3) = Lie SO(3) acts by vector fields Ly, Ly, L.. Set L=
(Lg, Ly, L,) = 7 x pwhere 7 = (z,y,2) and p = (ps, py, p-) with p, = —i0,, etc. This L =7 x pis called

the angular momentum operator. Note that
L, =—i(y0, — 2z0,).

These act on H-eigenspaces. Let W, = {w s Hy = —#w} = span {¢y, ¢,m : any ¢, m}. From our earlier

restrictions on £, m, we see that
n—1

dim W, =) (20 +1) =n’.
£=0
We know
Wy=Lo® Lo @+ Lop_»

as 50(3)-reps.

Apparently, we studied the case where there’s one electron ‘orbiting’ a nucleus of charge +1, but this
also applies when there’s a larger nucleus. If the nucleus is to big, things aren’t too precise since there are
many electrons interacting with each (and that’s not taken into account here), but early in the periodic

table this is good enough.
Note 7. I'm finding it pretty hard to pay attention.

Because of chemistry stuff, our n? seems like it should really be a 2n?. We lost a factor of 2 in the
physics. There’s a thing called spin (‘internal angular momentum’) that we did not take into account in
our model. This spin can be :l:%.

On the side of mathematics, this means that the Hilbert space for the theorem should not be L?(R3),
but should be 5# = L?(R?) ® C? where this C? is the 2-dimensional rep of s0(3). On C?, we have the

operator
1 0
S = 7]7/ =
2 ( —é)

whose eigenvalues are +1. The total spin is m + s € {m + 1/2,m — 1/2}. So the action of s0(3) is

O o=

diagonal; the eigenvalues of h are 2m + 1 (or 2m — 1), odd numbers (‘odd highest weight’ or ‘half-integer
spin’); get a direct sum of representations Loj11. But Hamiltonian is the same, so instead of ¢, ¢, We

have

/(/)n,f,m,Jr = wnl}m Q vy and wn,f,m,f = wn,ﬁ,m R v_

o= (1) i ()

Now, V,, := {1/) : HyY = Ey with E = —ﬁ} =W, ®C?, so

where

Vo=(Lo® - ® Lop_9)® C2 =
( 0® © L2 2)®\L/ Clebsch-Gordan
1

and dimV,, = 2n2.
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-1 0
This does not lift to a representation of SO(3), only to one of SU(2). The matrix 0 . € SU(2)

acts by —1. This is called an ‘anomaly’. The point is that quantum states are elements up to phase
factors, and this —1 is a phase factor, so we do have an SO(3)-action on the states; we just don’t have
one on vectors.

Say we have k electrons of the same energy £ = —#. In quantum mechanics, if you have a particle
with state space V' and another one with state space W, then the two together have state space V@ W. If
particulars are indistinguishable from each, then you should mod out by permutation action. If elections
where labelled, we’d have state space V,*¥. This they are in fact indistinguishable, we need to mod out
by permutations. Hence, we would expect the state space to be V = S¥V,,; however, this is wrong.
The correct answer is V = V%) = /\l’C V,, since electrons are ferminons, not bosons (for bosons, do get

symmetric power)ﬁ
Remark 14.2 (Pauli exclusion principle). When k > 2n?, we see V(%) = 0.

Remark 14.3. A generic operator will have eigenspaces of dimension < 1, but here we have large di-
mensions dimV,, = 2n?. This comes from symmetries grouping these eigenvalues into representations

(apparently, we’ve seen two s0(3)-symmetries and there’s a third hidden one we’ll see now).

14.1 Explanation for degeneracy of energy levels

There is another so0(3) related to the Laplace-Runge-Lenz vector (homework).
Note 8. Got distracted and missed some of what we said.

Total symmetry is s0(3) @ s0(3) ®s0(3) and V,, = L,,_1 ¥ L,,_1 X L. The first 50(3) comes from the
Laplace-Runger-Lenz stuff, the second is the ‘geometric’ s0(3) (SO(3) ~ R3 so on L?*(R3)), and the third
is the ‘spin’ s0(3). Forgetting about spin, we have W,, = L,,_1 X L,,_1. Restricting to the diagonal gives

Wnldiag =Ly DLy ® - D Lop—_2.

Remark 14.4. s0(3) @ s0(3) @ s0(3) = s0(4) @ s0(3) = s0(4) ® su(2).

There’s apparently also another symmetric which doesn’t commute with Hamiltonian, but which is

sometimes useful to consider.

14.2 Back to math: automorphisms of semisimple Lie algebras
14.2.1 Summary of last semester

Let g be a semisimple complex Lie algebra. We saw that Aut(g) is a complex Lie group with Lie Aut(g) = g
(I think in general Lie Aut(g) = Der(g)). In particular, this means there is a connected Lie group Aut(g)°
with Lie algebra g. Furthermore, we showed last semester that Aut® (g) acts transitively on the Cartan

subalgebras of g.

Definition 14.5. The adjoint group of g is G.q := Auto(g).

28Particles with half-integer spin are ferminions, while those with integer spin are bosons.
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14.2.2 Maximal Tori

Let h C g be a Cartan subalgebra. Let H C G,q be the corresponding connected Lie subgroup. Elements
h € H act on g = b @© P, cp o as follows: hly = 1 and h|gaj = )\, -id = €% -id. Note that h\g_a]_ =

)\j_l = e~Y%. Furthermore, if @ = > m;q;, then (by compatibility with conjugation)

hlg, = H AT

Soif z € b s.t. () = b; (so Aj = €% @), then h|y, = e*®) so we see we have

b

o )
2miPV’

1%

~

ie. x — 2™ defines an isomorphism h/PY = H (recall: PV is the coweight lattice). Note that
H= (Cx)ra“k(g) is a complex torus; we call it the maximal torus corresponding to h C g.

We want to study its normalizer
N(H) = {g € Gaq : gHg™ ! :H}.

Proposition 14.6. N(H) = stabilizer of h C g, and contains H as a normal subgroup with quotient
N(H)/H =W isomorphic to the Weyl group.

Proof. Recall (sly); C g attached to simple roots. These give maps 7; : SL3(C) — adG by fundamental

Si=mn; ((_01 (1)>> =ni(e — f) € Gaa-

This has the property that Ad(S;)|, = s; (with s; the simple reflection). Note that S? = n;(—1) # 1 in

general, so we do not have a homomorphism W — adG, just some set-theoretic lift of W. For w € W,

theorems of Lie theory. Set

write w = s;, ...s;,, and define w = 5;, ... S;,, € Gad, S0 w acts on h by w. Furthermore, if w = wywo,

then w = wywah for some h € H s.t. h acts trivially on . This implies that (H,w : w € W) generates a
subgroup N of G.q such that N D H (with H normal) and N/H = W.
By definition, N C N(H), so we only need to show equality. Consider some 2 € N(H). Write

/

z(a;) = of. Note that these a}’s give another system of simple roots. Since the Weyl group acts

transitively on systems of simple roots, there must be some w € W such that w(a}) = a,(;) where p is some
1%‘((%‘) = Oép(i).

Note that G.q preserves all irreducible representations g (since it acts by inner automorphisms), so p = id.

permutation of simple roots. Now consider W'z € G.q. By construction, we have w~

Hence, w'z|, =1, so w 'z € H, so € WH C N, and we win. |

Warning 14.7. In general, the exact sequence
0—H—N—W-—70

is not split, i.e. N is not a semi-direct product.

We've seen Aut(g) DO Gaa. Another obvious subgroup is Aut(D) C Aut(g) where D is the Dynkin

71

This was a

homework

problem

once upon

a time



diagram. Moreover, Aut(D) ~ G,q, so we get a homomorphism
€ Aut(D) X Gag — Aut(g).

This is in fact injective; £|¢,, = id and a nontrivial Dynkin diagram automorphism can’t act trivially on

g (something like this).
Theorem 14.8. £ is an isomorphism.

Proof. We need to show that £ is surjective. Fix some a € Aut(g). There exists a g € Gaq such that
ga(h) = h. We may replace a by ga, so assume WLOG that a(h) = h. By modifying a by an element of
N(H) - Aut(D)E can assume a = 1 (acts trivially on h and each g,, ), so we win. |

14.2.3 Forms of semisimple Lie algebras

We have classified semisimple Lie algebras over C. What about their classification over other fields, in

particular over R?

Recall 14.9. A presentation of g by generators and relations e;, f;, h; contains only integers, so makes

sense over any ring.

For any field K (say, char K = 0), we have a Lie algebra gx defined by the same generators and
relations; we call this split semisimple Lie algebra. Over an algebraically closed field, every semisimple
Lie algebra is split, but this is not the case in general.

Let g be a s.s. LA over K which splits over some finite Galois extension L/K (e.g. K = R and
L=C),ie g®k L =gy is asplit s.s. Lie alg. Can we classify such g? Let I' = Gal(L/K), so g = g'.

Therefore, g is determined by the action of I on gr. This action is twisted-linear:
y(Az) = v(A)y(x) for A€ L and z € g.

Example. py(g € T'): preserves all generators and acts as I' on scalars. This action gives rise to the split

s.s. Lie algebra over K, gi = gg.

Other actions will be of the form p(g) = n(g9)po(g) with n : I' — Aut(gz) not a homomorphism.
Instead,

n(gh)po(g)po(h) = p(gh) = p(g)p(h) = n(g)po(g)n(h)po(h),

from which we see
n(gh) = n(g)po(g)n(h)po(h) =" = n(g) - g(n(h)),

s0 it’s almost a homomorphism but twisted by the I'-action on Aut(gyz,). This is what’s called a 1-cocycle
(or twisted homomorphism). Thus, any form of gx split over L is given by a 1-cocycle n; we call the

corresponding form g,,.

Question 14.10. When is g,, = gy, ?

29

a sends simple roots to a different system of simple roots. Can use a (lift of an) element of the Weyl group to make
it preserve the system of simple roots. Then use an automorphism of D to ensure a(a;) = ;. Then, a|90i acts by some
scalar. Can use an element of H to make all these scalars 1.
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Need some a € Aut(gr) such that p1(g)a = ap2(g) which translates to

m(g) = ana(g)g(a)™

(twisted conjugation).

Definition 14.11. Equivalence classes of 1-cocycles, up to twisted conjugation, form the (pointed) set
HY(I', Aut(gy)) called the 1st Galois cohomology.

Proposition 14.12. Forms of g1, over K are labelled by elements of H*(T, Aut(gz)).

15 Lecture 15 (4/13)

15.1 Forms of a semisimple Lie algebra, continued

Let g be a s.s. Lie algebra over a field K of characteristic 0. Say there is a finite Galois extension
L D K such that g ®x L splits, i.e. is isomorphic to the standard semisimple Lie algebra g;, given by the
Serre relations. We showed last time that such forms of gy over K are classified by the cohomology set
HY(I', Aut(gz)).

Today we specialize to the case of main interest to us, i.e. K = R and L — C. That is, we wish to

classify real forms of complex semisimple Lie algebras.
Remark 15.1. There’s a parallel theory of forms for reductive Lie algebras.

In this case I' = Gal(C/R) = Z/27Z. We computed last time that
Aut(gr) = Aut(D) X Gaq where Goq = Aut(gr)°.
Consider a 1-cocycle n: Z/27 — Aut(gr). This must satisfy
n(zy) = n(x) - z(n(y)).
Hence, (1) = n(1)n(1) = n(1) =1, so n is determined by the element
s:=mn(-1) € Aut(gr) = Aut(D) x Gaq.

Not just any s will work. We require

Above, - denotes complex conjugation, g is the complexification of its split real form. s defined earlier
is well-defined up to twisted conjugation: s + asa ! (for a € Aut(gz)). Putting this all together, we

have...

Theorem 15.2. Real semisimple Lie algebras with complexification isomorphic to g (i.e. real forms
of g) are classified by s € Aut(D) x Gaq s.t. s5 = 1 modulo the equivalence relations s ~ asa ' (for
a € Aut(D) x Gaq; note = acts trivially on Aut(D)).

73



The bijection in the theorem is given by
s—gsi={z€g:T=s(x)}.

Example. g1 =gp ={x €g: 7T =z}.

Note that we can compute s and - to get the antilinear involution o, (x) = s(z) (note o2(z) = s(s(x)) =

5(s(z)) = 5(z) = z). Hence, we can encode the real form g, using o, instead of s. In particular, note
that s gives rise to an element sy € Aut(D) = Out(g) = Aut(g)/Inn(g) (Inn(g) = Gaq). Note that this
satisfies s2 € 1, and that its conjugacy class is invariant under equivalences. This sp permutes connected
components of the Dynkin diagram D (preserves some and matches others in pairﬂ. Hence, it’s enough

to consider to kinds of pictures.
(1) D connected with sg : D = D.
(2) D' =DUD and sy exchanges them.

Proposition 15.3. If gr is semisimple, then it is a direct sum of simple Lie algebras, and the simple
Lie algebras are classified by such pictures.
(1) In the first case, gr is simple, and gg ®g C is also simple.
To be analyzed later...
(2) In the second, gg is simple, but g = gr ®g C has two summands (so is only semisimple).

Say g = a® a with a a simple complex Lie algebra. Write s = (g, h)so with g, h € Aut(a). We know

s switches the summands and that ss = 1. This gives

(gﬁa hg) = (gv h)So(ﬁ, E)SO =1

so h =g !. Thus,

o 1
5= (9,9 "s0o = (g, 1)s0(g,1)  ~ 50,

so there is only one real form with such sg. It is

5o = {(@y) €aga: @y = (4.2)} = {(@.7) ;7 € a} =a
with the last iso an iso of real Lie algebras.

This just leaves the case when D is connected. We start with some new definitions.

Definition 15.4. We say g is inner to gy if s’ = go s for some g € Goq (i.e. for some inner
automorphism) <= s{, ~ sg. The inner class of s is the set of s’ which are inner to s. An inner real

form is a member of the inner class of the split form (i.e. s € Gaq).

Definition 15.5. We say g, is quasi-split if s = 5o € Aut(D).

30since 5(2] =1
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Note that any form is inner to a unique quasi-split form. The only quasi-split inner form is the split
form.

There is one (non-split) distinguished form.

Definition 15.6. The compact real form is the one corresponding to the automorphism determined
by
S(hz) = —hi, 3(61') = —fi, and S(fz) = —€;.

The corresponding Lie group is denoted by g°.
Proposition 15.7. The Killing form of g° is negative definite.

Proof. (g = sl) In this case, we have s(h) = —h, s(e) = —f, and s(f) = —e. We have
g°={zeg:T=s(x)} = (th,e— f,ile+ f)).

We see the basis is given by the Pauli matrices

. , .
x4 %), v (0 Cand z= [0 F)
0 —i 1 0 i 0

These span su(2) = g¢ (recall su(2) = {z € gly,(C) : z' = —z and trz = 0}).

The Killing form on su(2) is (a scalar multiple of?) the trace form. We compute
trX?=-2 and trY?= -2 and trZ%= -2,

so the Killing form on su(2) = sl3 is negative definite.
(Same is true for any f.d irrep. The trace-form associated to any f.dim irrep will be negative-definite)

(g general) Consider the matrix

0 1
This preserves su(2) C sl(2,C) so S; = Lo € SU(2); (for ith simple root) preserves g. D su(2);.

Hence, for every w € W (i.e. w = s;, ...8;.), the corresponding w (= S;, ... S;,) also preserves g.. For
any root «, pick w € W s.t. w(a) = o is a simple root. Then, w((2)q) = (8l,)i. Thus, (sl2)aNge = su(2)
so the Killing form is negative definite on g, @ g—o; also it is negative definite on h, = h N g, since this is
spanned by {ih; : j =1,...,r} since positive on R-span R (h;) (multiplying by ¢ makes it negative). We
have

e = hc D @ (ga @g—a)c-

a€ERy

Remark 15.8. Above we used that the compact real form restricted to any simple root (slz); is the

corresponding compact real form.
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Consider Aut(g°) Killing is negative definite, so Aut(g®) C O(g°) is a closed subgroup in an orthogonal
group, and hence compactﬂ Furthermore, Lie Aut(g®) = g¢ (not hard to show). Thus,

Corollary 15.9. Let G¢y = Aut(g®)°. Then, GS, is a connected, compact Lie group with Lie algebra g°.

Remark 15.10. This gives a new proof that reps of complex semisimple Lie algebras are completely
reducible.

Ezercise (Homework). For g = sl,,, show G54 = PSU(n) = SU(n)/p, (where u, the nth roots of unity).
For g = so,,, show

i SO(n) if n odd
Gaa =
SO(n)/{£1} if n even.

For g = sp,,,, show
ca=U(n,H)/{£1} where U(n,H) = Sp,,,(C) NU(2n).
Ezercise. sq for the compact form is the involution corresponding to —wg (dualiziation of representations).
Ezercise. The compact form is never quasisplit.
Question 15.11. What kind of real forms do we know about?
(1) A1 so g=sl,(C).

o split: sl,(R)
e compact: su(n)
e When n > 2, the diagram A,_; has the flip automorphism exchanging e; < e,11-; (¢; =

E; it1). This corresponds to the involution s(A) = —JA!J~1 where

-1

Thus, g, is the Lie algebra of traceless matrices A s.t. A = _JA ! (ie. AJ+ JA = 0).
Thus, A preserves the (skew)hermitian form defined by J E What is the signature of J7 For

even n, we have
J== E (ZiZng1—i £ Znt1-iZi)

while for odd J we have

J==+ Z (ziEnH_i + zn+1_ﬁi) + Z%HZ%

losed

31Why is O(n) compact? A*A = 1 means > a?j =1s0 O(n) e (sm)m

32If you take a Hermitian form and multiply by 4, you get a skew-hermitian form (and vice versa), so the two types are
not so different
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When n = 2p, J has signature (p,p). When n = 2p+ 1, it has signature (p,p+1) or (p+1,p).
The upshot of all of this is that the quasi-split form is su(p,p) if n = 2p and su(p + 1,p) if
n=2p+ 1.

e There are other forms: su(p,n — p). These are neither compact nor quasi-split.

(2) Type By (g = 502041(C))
o split: so(n+1,n)
e compact: so(2n + 1)

e 10 quasi-split forms since the corresponding Dynkin diagram has no symmetrices

(8) Type Cy (g = 5p5,(C)):
o split: sp,,(R)

e compact: u(n,H)

(4) Dn (g = 5020(C))
e split: so(n,n)
e compact: s0(2n)

e When n > 4, Aut(D,) = Z/2Z. When n = 4, Aut(D,) = S5 (claw graph). However, we only
care about conjugacy classes of involutions, and in either case, there’s only one nontrivial such
class: the one exchanging o, = e,_1 + e, and a,,_1 =€,,_1 — €n.

Note that the split form consists of matrices A satisfying A = —JA*J~! where

To get the quasi-split form, we should use a matrix of the same structure, except it’s the

2 x 2 identity I in the center block (diagonal instead of antidiagonal at that point). Call this
matrix J. Then the quasi-split forms consists of matrices satisfying A = —JA'JL fe. its
the Lie algebra of skew-symmetric matrices under J. This has signature (n+ 1,n — 1), so the

quasi-split form is so(n +1,n —1). (n > 2)
(5) G2 has a split form G5 and compact form G§. No Dynkin diagram automorphisms.
(6) Fjy has a split form F} and compact form F§. No Dynkin diagram automorphisms.

(7) Eg has a split form Ef and compact form E§. There is a Dynkin diagram automorphisms, so also

a quasi-split E{°
(8) Er has a split form Ef and compact form ES. No Dynkin diagram automorphisms.

(9) Es has a split form E§ and compact form E§. No Dynkin diagram automorphisms.
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Remark 15.12. There are some coincidences. For example,
e By = A gives s0(2,1) = su(1,1) and s0(3) = su(2)
e Cy = B, gives s0(5) = u(2,H) and s0(3,2) = sp,(R)

e Dy = A; x A; is two unconnected points. Comparing points of view shows
su(1,1) x su(l,1) = sl (R) x sl3(R) = s0(2,2) and su(2) x su(2) = s0(4) and sly(C)gr = s0(3,1).

Above, s0(3,1) is called the Lorentz Lie algebra.
o D3 = Aj gives sl4(R) = s0(3,3), sus = 50(6), and su(3,2) = so(4,2).

Note we still have not classifies all real forms. We’ve just looked at the compact, and quasi-split forms.

There are still more.

16 Lecture 16 (4/15)

Last time we considered real forms of semisimple Lie algebras, and singled out a few particular forms of
note.

In particular, we defined the compact form of a semisimple Lie algebra. This had corresponding
involution w : g — g determined by w(h;) = —h;, w(e;) = —fi, and w(f;) = —e;. The corresponding

(real) Lie algebra was g° = {z € g : w(x) = z}.

16.1 Twists of the compact form

In trying to classify forms of g (a complex (semi)simple Lie algebra), we started with the split form, and
then looked at the other versions of it. It turns out that it is actually more convenient to start with the
compact form instead.

Write g = g° ®g C = g° + ig°. Hence we can write z = x + iy and this has the natural involution
w(z) = Z = x —iy. What are the other real structures on g?

Consider ¢ : g — g another antilinear involution. Then, o = w o g for some C-linear g € Aut(g). We

need

2 1

l=0 :wogowog:wgw_1w29:wgw_ - g,

i.e. w(g)g = 1 where w(g) := wgw™!. This is our old friend the cocycle condition. What’s different? g° has
a negative definite Killing form, so g = g° ®g C naturally has a positive Hermitian form (complexification
of —Killing)ﬁ Fix some x € g. Then,

adw(z) = —(adz)T

is the Hermitian adjoint (negated). Hence, g¢ acts by skew-Hermitian operators, i.e. if x € g¢ then
adr = —(adz). Therefore, when acting on group elements, we sill have w(g) = (g7)~L.
Now we see that the cocycle condition w(g)g = 1 is equivalent to saying that g' = g, so the condition

on ¢ is that it is a Hermitian operator on g.

33 Any orthonormal basis for g¢ is also an orthogonal basis for g
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Fact. Any Hermitian operator on a space with positive Hermitian form is diagonalizable with real

eigenvalues.

For g = g, we can write g = @D, cr 8(7) as a sum of eigenspaces; moreover, this is a grading, i.e.
[8(7),8(B)] C g(By). Since g is Hermitian, we can take its absolute value |g| : g — g. This acts on g(v)
by |y|. Define 6 := f |g|71 g — g 50 0|g(y) = sign(y). This is an automorphism satisfying

6?> =1 and 6w = wh

(second one since w(f) = (9*)71 =0).

Claim 16.1. 0 and g define the same real structure.

1

Proof. Note that 6, g define the same real structure <= 6 = aga ' = agw(a)~" for some a € G,q. We

have take a = [g|™"/? (acts by |y|~*/? of g+). Then,

9]~ gw (Iglm) =gl 2 glg P =gl " =4,

SO we win. |

Corollary 16.2. WLOG we may assume g =0, i.e. 0 = w o6 where wh = 0w and 6% = 1.

This replaces the mysterious equation w(g)g = 1 with the simpler equation 6% = 1.
Any real form is determined by a conjugacy class (conjugate by g¢) of such . Conversely, if two such

0’s define the same real structure, then they will be conjugate under g°.

Claim 16.3. 0, as above define the same real form <= they are conjugate by Aut(g®).
Proof. (—) We have € = 26w (z)”" for some z € Aut(g). Since w(€) = &, we see that zfw (z)”' =

1

w(z)fz~L. Set z := w(z) 'z, so we have fz = 2710 and w(z) = 2~ 1. Note that z = z'z is a positive

operator, so we can extract a square root and set y := xz~ /2. Then, w(y) = w(x)zl/2 =zz71/2 (since

w(z) = 2271, so y € Aut(g). At the same time (use 0z = 2710),
€ =z0w(z) ™t =xhz27! = 2 20207 = yoy T,

SO we win. ]

At this point, we have obtained the following theorem.

Theorem 16.4. Real forms of g are in bijection with conjugacy classes of involutions 8 € Aut(g®) (a

compact Lie group), via 0 — o9 : wo 6.

Corollary 16.5. Have a canonical (up to Aut of g¢) decomposition g = €@ p where € is the 1-eigenspace
of 0, and p is the —1-eigenspace. In particular, € is a Lie subalgebra, and [¢,p] C p (so p is a €-module).
Furthermore, [p,p] C € and g° =t @ p° (8° =€Ng° and p° =g Nyp). Finally,

9, = +ip°.

Example. Say g = sl5(C), and let g, = sl2(R) be the split form. In this case, t = C(e — f). Compute p

as an exercise. Then, g¢ = £° @ p° and g, = € + ip°.

79



Figure 9: An example Vogan diagram. White vertices have sign 4+ and black vertices have sign —.

Exercise. Show that £ is a reductive Lie algebra.

We would like to simplify our task even further. Classifying involutions in a Lie group is not so easy.
Proposition 16.6. There exists a Cartan subalgebra by of g invariant under 6.

Proof. Consider a generic x € . Note that all elements of g° are semisimple (act as skew-Hermitian
operators so are diagonalizable). Hence, x is regular semisimplel?l Let hg C ¥° be the centralizer. Its
complexification b = h§ @rC C tis a Cartan subalgebra of £ (and still the centralizer of z). Let h¢ C p°
be the maximal subspace s.t. b = h$ @ h¢ is a commutative subalgebra of g°.

We claim that h := h° g C C g is a Cartan subalgebra. It consists of semisimple elements by
construction (acts by normal operators on g). Suppose z € g, [z,h] = 0. Write z = z; + z_ where z; € ¢
and z_ € p. Note that

[2,6] =0 < [z,b4] =0 and [z,h_] =0 < [24,h] =0 and [z_,H] = 0.
Since by Cartan in ¢, we conclude that z, € hy. Write 2 = z_ + iy_ with x_,y_ € p°. Then,
[2-,8] =0 = [2_,5°] =0, so z_,y_ € h¢ (by maximality). Thus, z € b, so h C g is Cartian. It is
g-stable since 0|y, = *1. [ |

Lemma 16.7. h_ does not contain any coroots of g.

Proof. Suppose otherwise, so a¥ € h_. Then, §(a") = —aV, 50 0(ga) = g—a. Then, o(g,) = w o 0(ga)...
(do this next time) [ ]

Corollary 16.8. For generic t € gy (regular semisimple) s.t. Re(t,a") # 0 for any coroot o (possible

since no coroots in h~ ), consider the polarization
Ry ={a € R:Re(t,a") > 0}.

Then, 0(R4) = Ry (since 6(t) =t).

With a polarization as above, the simple roots get permuted, so 6(a;) = ag(;) where 0(i) gives the
action of 6 on the Dynkin diagram of g. If 6(i) = 4, then 0(e;) = *e;, 0(h;) = hy, and 6(f;) = £f;. I
0(i) # i, we can normalize the generators so that 6(e;) = eg;y, 0(fi) = fo(i), and 0(h;) = hg().

We can encode this info in the Dynkin diagram, to produce a Vogan diagram. Any Vogan diagram

gives rise to a real form, and any real form comes from some Vogan diagram. However, different diagrams

can give rise to the same form (diagram depends on the choice of Ry with (Ry) = R4).

FEzercise (Homework). Compute the signature of the Killing form for g,. It should be (dimp, dim ¢).
Deduce that for split form, dim¢ = |R,|.

If g, is in compact inner class, then rank(¢) = rank(g), so they will share a Cartan subalgebra.

34its centralizer is a Cartan algebra
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16.2 Real forms of classical groups
16.2.1 Type A,

The Dynkin diagram has two automorphisms (identity and flip), so there are two inner classes.

e We start with the compact inner class (i.e.  an inner automorphism, conjugation by some element
of order < 2 in PSU(n)).

Such an element can be lifted to g € U(n) s.t. g2 = 1. Then, 0(z) = grg~!

look like:

. We know what g can

g=diag | 1,...,1,—-1,...,—1| where p+q=n,
—_—— ——
P q
and we may assume p > ¢q. The corresponding real form will be su(p, q).
The compact form was su(n) : A = Sy (and Tr A = 0). For the form attached to g, we need
A= —gztg_1 (and Tr A = 0). This is just the requirement that A be skew-Hermitian for the form

defined by g.
When n = 2, A; has no automorphisms, so all forms are inner to the compact form. In this case,
there are only two forms: su(2) and su(1,1) = sl(2,R).

e There’s also the split inner class (assume n > 2)

The Vogan has at most one fixed vertex (only exists when n even, so there are an odd number of
vertices). Hence, there’s no choice when n odd so only get the split form sl,,(R). Here, £¢ = so0,,(R)

is skew-symmetric matrices while p¢ consists of symmetric matrices.

When n = 2k is even, there are two options. The single fixed vertex can be colored black or white.
Exercise: if the vertex is white (positive sign), then € = sp,, while if it is black, then € = s05;, (this
is the split form slo;(R)). What is the Lie algebra corresponding to the white case? It is s((k, H),

the Lie algebra of traceless quaternionic k£ x k matrices. There’s a trace map
Tr: gl(k,H) — R
A — Re (Z aii> '
This is the same as %TrA as an operator on C?*. And

sl(k,H) = ker Tr = {A € gl(k,H) : Tr A = 0}

which has dimension 4k2 — 1.

16.3 Type B

There are no Dynkin diagram automorphisms, so all forms are inner. Furthermore SO(2n + 1) has trivial
center, so 6 € SO(2n+ 1) of order 2. We know what all these elements look like (up to conjugation); we’ll
have 6§ = (—1Id)g, @ Id2g+1 with p + ¢ = n. The corresponding real form is s0(2p,2¢ +1), p =0,...,n
(all distinct).

Holiday on Tuesday. Lecture on Thursday at MIT.
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17 Lecture 17 (4/22)

Today we finish the classification of real forms.

17.1 Last time

Let g be a simple Lie algebra over C, and let ¢ : g — g be an anti-involution giving rise to the real form

g?. We single out the compact form g¢ obtained when o = w is the Cartan involution
w(e;) = —f; and w(h;) = —h; and w(f;) = —e;.

Characterizing o in terms of how much it differs from the compact form led us to characterizing real
forms in terms of an involution 6 : g — g. Given, 0, we write g = € @ p with € the (+1)-eigenspace and p
the (—1)-eigenspace of 6. We intersect with g¢ to write g¢ = £¢ @ p¢, and then g% = ¢° 4 ip°. Elements
are £ are skew-Hermitian so expoentiate to unitary operators so we call € the compact directions,
while ip¢ has hermitian elements expoentiating to hermitian operators so we call these the noncompact
directions (maybe typos in this sentence).

We also found a #-stable Cartan subalgebra. While doing this, we had a lemma which we did not

prove.

Recall 17.1. We chose h§ C ¢ and h° C p¢. Then formed h¢ = hS b and extended C-linearly to get
hb=by®db_.

Lemma 17.2. h_ does not contain any coroots of g (w.r.t. §)

Proof. If oV is a coroot in h_, then 6(a¥) = —a", so f(ea) = e_q and vice versaf”| Therefore, e, +e_o €
. Furthermore, [h,eq +e_q] = 0 since aly, = 0 (since a € h* ). We also know (eq,b4) =0 = (e_qa,b4)

SO €4 + €e_q € by, a contradiction (since by maximal commutative subalgebra of €). |
17.2 Classification of real forms

° An—l

— Compact inner class

These are all su(p,q) with p+¢g=n and p > gq.

— Split inner class

These are sl,,(R) and sl,, (%,H) (when n even)
o B,

— Compact inner class (only one since Dynkin diagram has no nontrivial auto)

50(2p + 1,2q) where p+ ¢ = n.

This is where we stopped last time, so let’s continue.

35normalize things so the coefficient is 1
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o C,

Dynkin diagram has no nontrivial auto, so only one inner class. 6 will be inner, so 6 € Sp,,,(C)/+1
and 0% = 1. Thus, 0(x) = grg~! where g € Sp,,, and g* = +1.

_ 92 =1
We may write V = C2" = V(1) @ V(—1). These eigenspaces each carry a symplectic form, so
they are even dimensional. Hence dim V(1) = 2p and dim V(—1) = 2¢ with p + ¢ = n. May

assume p > ¢ (change g ~ —g). In this case, one finds

g7 = u(p,q, H),

the quaternionic unitary Lie algebra, the Lie algebra of symmetries of a quaternionic

Hermitian form of signature (p, ¢). Can calculate that in this case, £ = sp,,  spy,,.
_ g2 =1
In this case, we write V = C?" = V(i) ® V(—i) with each eigenspace isotropic. This forces

V(+£i) to be Lagrangian, both of dimension n. In this case, £ = gl,,, and in obtains the split

no

form g7 = sp,, (R).

— Compact inner class
We have 0 € Gaq = SO(2n)/ + 1 with 62 = 1. Thus, 6(z) = grg~* where g € SO(2n) and
g% = +1.
x g2 =1
Again write V = C* = V(1) ® V(—1). We need det g = 1, so dim V(—1) = even. Hence,
dim V(1) = 2p and dim V(—1) = 2¢g with p + ¢ = n. Again, may assume p > ¢. In this
case, t = s09, P 509, and g7 = s0(2p, 2¢).
¥ g2 =—1
Again C?" = V (i)®V (—i). These are Lagrangian as before, so dim V(i) = n = dim V (—1).
Thus, in this case k = gl,, and one gets g° = s0*(2n), the Lie algebra of symmetries of a

skew-Hermitian quaternionic form

— Other inner class
Same story except §# € O(n)/ &1 so 0(x) = grg~—* with det(g) = —1. Note that we cannot
have g% = —1 since that would imply V = V(i) ® V(—i) both Lagrangian so det g = 1. Thus,
we have g2 = 1s0 V =V (1) ® V(—1) with dim V(1) = 2p + 1 and dim V(—1) = 2¢ — 1 (and
g<p+1). One gets t =s0(2p+ 1) $s0(2¢ — 1) and g7 =s0(2p+1,2¢ — 1).

Remark 17.3. For real numbers, have symmetric and skew-symmetric forms. Symmetric have signature,
but all skew-symmetric are the same.

For complex numbers, have Hermitian and skew-Hermitian. These are the same (multiply by ), and
they have signature.

For quaternions, Hermitian and skew-Hermitian are again different.

83

Split form is
s0(n,n) so
could be in
either class
depending
on parity of

o)



Class Real forms
A, _1 compact inner class su(p,q) withp >gandp+g=n
A, —1 split inner class sl,(R), sl(n/2,H) if n even
B, s0(2p+1,2q) withp+¢g=n
C, u(p, ¢, H) with p+ ¢ =n and p > ¢, sp,,,(R)
D,, compact inner class 50(2p, 2q) with p+ ¢ =n and p > ¢, s0*(2n)
D,, other inner class s0(2p+1,2¢g— 1) withp+g=nand¢g<p+1
Gs compact and split
Fy compact, split (¢ = sp(6) @ s[(2)), and the other (¢ = s0(9))
Eg split inner class split (¢ =sp(8)) and other (¢ = Fy)

Table 1: Real forms of simple complex Lie algebras (except Eg, E7, Eg)

Example (D3 = Aj3). Here, we can match up the real forms

50(6) = su(4)
50(4,2) = su(2,2) quasi-split
50*(6) = s(2, H)
50(3,3) =sly(R)  split
50(5,1) = su(3,1)

We should also talk about exceptional Lie algebras. When dealing with these, one should consider
Vogan diagrams. Recall that these are formed by paring up vertices transposed by the involution, and

coloring the fixed vertices black or white.
e For black vertices, we set 0(e;) = —e¢;
e For white vertices, we set 0(e;) = +e;

Every real form gives rise to such a diagram, but there are some redundancies/equivalence relations.
Note that, of the exceptional diagrams, only FEg has automorphisms, so for the rest of them, we are just
coloring each vertex black or white.

Let’s consider the case when the automorphism of the Dynkin diagram is trivial (i.e. the compact
inner class), so the Vogan diagram is simply the Dynkin diagram + coloring.

What are the equivalences? First note that the compact form = all white vertices (# = id) and so no
other diagram gives the compact form. Hence we consider only diagrams have > 1 black vertex.

Say we have 6 € G.q giving our real form. This fixes all g,’s (trivial aut on Dynkin), so § € H :=
exp(h). We color vertex i white if a;(f#) = 1 and black if «;(0) = —1. Recall the Weyl group sits in an
exact sequence

1—H-—NH) —W —1.

Hence, we may modify 6 by action of W. What do simple reflections do? Note thaﬁ (since ay(6) = £1)

a;(0) if a;; even (£2)

a;(si(0)) = si(a;)(0) = (a; — aijai)(0) = a;(0) - as(0) ™" = .
a;(0)a;(0) if a;; odd.

365,(0) := '§i0§i_1 for some §; € N(H) lifting s; € W
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Thus we get the follow equivalence relation: if we have a black vertex, then we can change the signs of

all its neighbors except e &= o or e £ e (and the color of the vertex itself doesn’t change)ﬂ
Example (G3). The Dynkin diagram G has four configurations
(.? .)7 (.7 o)’ (O, .)7 a’nd (O’O)'
The last one is the compact form. The other three are all equivalent so must correspond to the split

form. One can show that € is the span of the long roots and then that ¢ = sly @ sly (for the split form).

It must have rank 2 (same as G3) and dimension 6 = |R4|.

Figure 10: The Dynkin Diagram G2
Example (Fy). Now let’s consider the F; case. Here we have the configurations (up to equivalence)

— ;\:i;———;

Figure 11: A Dynkin diagram of type F}

(07 07 O’ O)’ (.7 07 07 o)’ (07 07 07 .)’ and (07 .’ .’ .)'

In fact, even two of these are equivalent. The last two are the same (since the right half can’t be affect
by the left half?). The first one is the compact form. What do the other two look like?

The roots of Fy are (£1,0,0,0) and all its permutations, (£1,41,0,0) and all its permutations, and
(£4,£5,+3,+1) (for a total of 8+24+16 = 48 roots). The (£1,0,0,0) and (+1,+1,0,0) roots generate
an s09 while the (£1/2,...,+1/2) roots give the spinor representation S. Thus, Fy = s09 & S.

In the second case (e, 0,0,0), one can check that 6 acts by 1 on s0(9) and by —1 on S, so £ = s50(9).
Hence, this will not give the split form sin |Ry| = 24 # 32 = dim s0(9).

Thus, (o,0,0,e) gives the split form. Note that here you can observe an sp(6) as the subdiagram
using vertices 1,2, 3 (this is a copy of Cj).

This just leaves diagrams FEg, F7, Eg.

17.2.1 Type E

We start with the Eg split inner class. This corresponds to the nontrivial automorphism so only two
37So change the colors of all neighbors of the black vertex except the neighbors with a double arrow coming into the black

one.
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vertices get colored. They can be colored

(0,0), (o,e), (®,0), or (e,e).

The last three colorings are equivalent, so there are only 2 real forms in this class (neither compact). In
the first case (o,0), you can check that ¢ gives a copy of Fy. This is not the split form (we call it E}
instead) since dim Fy = 52 # 36 = # R . Simple root generators of € are e; + e5, e + ey, €3, e (these all
obviously satisfy §(e) = e and one can check that they in fact generate ¢ as a Lie algebra); the Cartan
algebra will be spanned by hi + hs, ho + hy, h3, hg.

18 Lecture 18 (4/27)

We were working on classifying real forms of Lie algebras last time. We filled out much of Table [} but we
still need to handle the exception Lie algebras of E type. We will complete the table this time, forming
Table 21

18.1 FE type

We looked at the split inner class of Fg last time. This is corresponding to the nontrivial automorphism,
so there are only two colored vertices. In fact, there are only two equiv classes of colorings: (+,+)
and {(+, ), (=, 4), (=, =)} (+ is colored white). These correspond to E} with ¢ = Fy and ES*' with
t=sp(8) = Cy.

This brings us to the compact inner class. Hence, the Vogan diagram is the Dynkin diagram with
white and black vertices. We will be able to treat Eg, E7, Eg more-or-less simultaneously. If all vertices
are white, we get the compact forms E§, B¢, E§. Hence, we may restrict ourselves to the case when we
have at least 1 black vertex.

By applying equivalence transformations (i.e. change colors of neighbors of a black/- vertex), we can

Class Real forms
A,_1 compact inner class su(p,q) withp >gandp+g=n
A, —1 split inner class sl,(R), sl(n/2,H) if n even
B, s50(2p+1,2q) withp+g=n
C,, u(p, ¢, H) with p+ ¢ =n and p > ¢, sp,,,(R)
D,, compact inner class 50(2p, 2q) with p+ ¢ =n and p > ¢, s0*(2n)
D,, other inner class s0(2p+1,2¢g— 1) withp+g=nand¢g<p+1
Go compact and split (& = s[(2) @ s((2))
Fy compact, split (¢ = sp(6) @ s[(2)), and the other (¢ = s0(9))
Eg split inner class split (¢ = sp(8)) and E§ (¢ = Fy)
Eg compact inner class compact, B3 (£ =50(10) x 50(2)), and Ej (¢ = sl(6) x s[(2))
B compact, split (£ = sl(8)), B (¢ = Eg @ s50(2)), B2 (£ = s0(12) @ sl(2))
Eg compact, split (£ =s0(16)), B (£ = E7 x s(2))

Table 2: Real forms of all simple complex Lie algebras
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achieve

i.e. force the vertex above the branch to be a minus. Similarly, we can then achieve

(?) (?) (=) () a ()

(=)

(now can change color of nodal vertex whenever we want).

Now, focus on the ‘right leg’ (strictly to the right of the (—) above).

e For Eg, this is (?) — (?) so has colorings ++ or {+—, —+, ——}. This means we get 2 classes on the
right. Now, the nodal transformation actually turns ++ into —+, so the two classes on the right |The ‘node’ is

are one in the same (7). the valence 3

Sounds like one ends up with the real forms su(3) and su(2,1) for this right leg. S

e For Fy, the right leg is (?) — (?) — (?). You end up with the forms su(4),su(3,1), and su(2,2). To
get su(4) you use + + +. For su(3,1), you use {— ++,— — +,+ — —,+ + —}, and for su(2,2) you
can use {—+ —,— — —,+ — +}.

Example. Consider + 4+ —. These are the values of an involution on simple roots. Something liek

these signs correspond to ratios of adjacent values so + + — gives

which gives su(3,1) while e.g. + — + gives

which gives su(2, 2).

e For Eg, end up with su(5),su(4,1),su(3,2). One has

(su()) ++++
(su(4,1)) —+++, — — ++, etc.
(s5u(3,2)) + —++, etc.
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Note that the nodal transformation take us between these classes, so they are again all equivalent

(?)

Once the above is understood, the upshot is that we can arrange

(?) (?) (=) (=) (=)

(?)

i.e. the right leg (+ the node) are all —’s (though the bottom vertex may become a + when applying the
nodal transformation).

If we really want the bottom vertex to be minus, we may arrange

(?) (?) (=) (=) (=) (=)

or

(i.e. a single +).
One knows that +— ~ —— and + — —— ~ — — —— so these two cases are actually the same for Fjg

and Eg! However, they are inequivalent for E7. This simplifies things a lot from when we began.

(Es) We may arrange

() (?) (=) (=) (=)

(=)
so the only two classes are ++ on the left leg and +— on the left leg. Hence, there are at most 2

non-compact real forms in the compact inner class. To finish the classification, we just produce 2

these two forms.

— Could consider

(+) (+) (+) (+) (=)

(+)

Looking at all the +’s, we see that s0(10) C €. Note that the root ay (the sole —) is miniscule.

Hence, any positive root either does not contain «; or contains it with coefficient 1. It it does

not, we are in the Dy (the s0(10)). We see that ¢ = s0(10) x gl(1) = s0(10) x s0(2). We will
call this form E2.
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— Another possibility is

() () (+) (+) (+)

(=)

We see that € contains As, i.e. € D 5l(6). The remaining weight is not miniscule, so there will
be other toos in the Lie algebra. One can show that ¢ = s[(6) x s[(2) (homework). We will
call this form E3.

(Es) We may arrange

(?) (?) (=) (=) (=) (=) (=)

(=)

so only two classes for left leg, ++ and +—. Hence, again at most 2 remaining real forms, so enough

to product them.

— Consider

We have E; C &, so this is not the split form (dim E7 = 133, dim Eg = 248, and dim &, = 120).
Note that Eg has no miniscule weights. One can show (homework) that in this case ¢ = E7 xsls.
We call this form E}.

— Second option is

(=) (+) () (+) (+) (+) (+)

()

We see D; C €. Can show ¢ = Dg = s0(16), and that this is the split form. Sanity check:
: 16

dim¢t = () = 120.

Remark 18.1. Es = s0(16) @ R where R = p is a 128-dimensional representation of £, the

spinor representation S, (or S_)

Thus, there are 3 real forms of FEg.
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This just leaves F;. There are a priori 4 variants, but two of them will be equivalent. Specifically,

(+) (=) (=) (+) (=) (=)

(=)

is equivalent to (apply transformation to first — from the left and then to leftmost vertex)

(=) (+) (+) (+) (=) (=)

(=)
which is equiv to (apply transformation to bottom vertex)

(=) (+) (=) (+) (=) (=)

(=)

which is equiv to (apply to nodal vertex)

(=) (=) (=) (=) (=) (=)

which is equiv to (second from left)

(+) (=) (+) (=) (=) (=)

which is equiv to (right of node)

(+) (=) (=) (=) (+) (=)

which is equiv to (node)

(+) (+) (=) (+) (+) (=)
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which is equiv to (rightmost vertex)

(+) (+) (=) (+) (+) (=)

(=)
The upshot is that when we have a 4+ on the right leg, all configurations of the left leg are equivalent.

Thus, there are only < 3 possible non-compact real forms of E7. These will all be different:

e First consider

(+) (+) (+) (+) (+) (=)

(+)

We have E¢ C ¢. This is not split since dim Es = 78 but dim#t,,; = #Ry = %(dim E; —7) =63.
The — root above is miniscule. One gets that £ = Eg @ s50(2). We call this EX. It is the “most

compact” of the non-compact real forms (dim ¢ maximal).

e Now consider

(=) (+) (+) (+) (+) (+)

Here we have Dg = s0(12) C € so dim€ > dim Dg = (') = 66 > 63, so this is still not split. The —

root is not miniscule. One can show that £ = s0(12) @ s[(2). We denote this by EZ.

e Finally, there is the split form

(+) (+) (+) (+) (+) ()

(=)
In this case, we have sl(7) C €, but in fact € = s[(8) of dimension 8% — 1 = 63 as it should be.
Thus, there are 4 real forms of E-.

We now know all real semisimple Lie algebras. They're listed in Table 2]

18.2 Classification of connected compact Lie groups

Proposition 18.2 (Homework). If K is a compact Lie group, then ¢ := Lie K is reductive, i.e. € =
tss @ typ is a sum of a semisimple Lie algebra plus an abelian Lie algebra.

18.2.1 Classification of semisimple compact Lie groups

Definition 18.3. We say G is semisimple if Lie G is semisimple.

Lemma 18.4. Let X be a compact manifold. Then, m (X) is finitely generated.
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Proof idea. Cover X by (finitely many) small balls. Connect the centers of all these balls (use straight
lines in local coordinates or choose a Riemannian metric and then use geodesics); this gives a finite graph
T. Then, 71 (T) is finitely generated (with # generates at most number of loops in "), and 7 (T') — 71 (M).

This is because any closed path from a vertex x( to itself can be deformed to a graph walk. |

Theorem 18.5. Let g be a semisimple complex Lie algebra, and let Gy be the compact adjoint group.

Then, m(GSy) = PY/QV is a finite group of order det(Cartan). In particular, the universal cover G< is

also a compact Lie group.

Proof. Let K — G&4 be a finite cover, so K a compact connected Lie group. Let Z = ker(K — G¢,).
K is compact, and its f.d. irreps are a subset of the f.d. irreps of Lie K¢ = g (since K connected by
fundamental theorems), i.e. they are Ly for A € S where Py NQ C S C P,. Note that the representations
of G¢, are in bijection with Py N Q.

Z acts by scalar x» on each Ly. Since Lx;, C Ly ® Ly, we see that xay, = xaxu. Also xa =1
for X € @Q (reps of G¢4). This implies that x) depends only on A mod @, so get x : P/Q — ZY
(with ZV the character group). Now, Peter-Weyl says x is surjective (all characters of Z must occur in
L*(K) = @,c5 Lr® L}). The dual map gives an embedding Z — (P/Q)" = P¥/Q". Thus, you cannot

have covers of big degree.

Answer: See

beginning of

tomorrow’s

lecture
We next show 71 (adG°) is finite. We know it is finitely generated and abelian, so it is of the form

Z" @ F for F some finite group. Let I' < m(GS,) be a subgroup of index N. This gives an N-sheeted
covering K — G¢4 with kernel Z = /T, so |Z| = N and Z — PY/QY, so N < |PY/Q"|. Thus, we
must have r = 0, so m;(adG°) = F.

Hence, K = é\;/d is compact and Repé\gd = Repg = (L : A € P), so we must have Z = PV/QV =
(P/Q)". .

Corollary 18.6.

(1) If g is a simple complex Lie algebra, then the simply connected group G¢ with Lie G° = g© is compact
with center PV /QV.

(2) Let g =D, gi be a semisimple complex Lie algebra. Let G¢ be the corresponding simply connected
compact Lie groups, and let Z; = P /QY. Then, any connected Lie group with Lie algebra g¢ is

compact, and of the form .
% with Z C Zy X ... X Zy.
Hence, any semisimple connected compact Lie group is of this form.
Definition 18.7. A Lie group G is simple if Lie G is simple.
Example. SU(2) is a simple Lie group even though it has the nontrivial normal subgroup Z/27Z.

Remark 18.8. Abelian connected compact Lie groups are simply tori (S')™. Their universal cover is R"
so G = R"/L with L discrete, so G = (S1)™ x R"~™ and compactness forces n = m.

Corollary 18.9. Any connected compact Lie group is the quotient of T x K by a finite central subgroup,

where T is a torus and K is semisimple and simply connected.
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Proof. Let L be a connected, compact Lie group, and set [ = Lie L. We write [ = t ® £ with t abelian
and £ semisimple. Let T = exp(t) C L, a Lie subgroup. Note that LieT C 3(I) = t so T'=T is closed, so
compact, so a torus. Similarly define K = exp(£) which is also closed (K compact by previous theorem).
The natural map 7' x K — L is a surjective submersion, so a finite covering, so Z = ker(T x K — L) is
finite central and L = (T x K)/Z. ]

19 Lecture 19 (4/29)

19.1 Filling in a gap

We start by filling in a gap in the proof at the end of last time. We need to explain why representations
of G¢, are related to dominant weights in the root lattice.

Let g be a semisimple complex Lie algebra, and let G be a connected, simply connected Lie group
with Lie algebra g. Let 7 : G — Gaq be the natural covering map, and let Z = ker 7. Hence, Z = Z(G) =
m1(Gaq) is the center of G (and fundamental group of G,q).

Recall 19.1. f.dim reps of G are in bijection with f.d. representations of g (since G simply connected).

In particular, irreducible ones are the L) with A € P,.

The center Z will act on Ly by scalars, i.e. via a character x» : Z — C*. Since Ly, C Ly ® L, we

see that xa4+, = xaXu. Thus, more generally,
i

Thus, x extends to a group homomorphism x : P — Hom(Z,C*), A — xa.
Let 6 be a maximal root, so Ly = g is the adjoint rep (by definition of §). Here, Z acts trivially, so

X0 = 1.
Recall 19.2 (Exercise 31.10 in the notes). If A(h;) are large enough, then for all roots a € R, Ly C

Ly®g.
(More specifically, this follows from Hom(L,, Ly ®@ V) = {v eVip—A: e;‘(hi)ﬂv = 0})

In our case, V. =gand o — A =, so V[g — A] = go. Thus, XaXa = Xata = X, S0 Xo = 1 for all
roots a € R. Thus, x|g = 1, so x really defines a map

X : P/Q — Hom(Z,C*),

i.e. it gives a pairing x : P/Q x Z — C*. This is what we used in the proof (gives Z — Hom(P/Q,C*) =
PYIQY).
Remark 19.3. In particular, x|g = 1 tells us that Ly lifts to a rep of Gaq when A € Q.

19.2 Polar decomposition

Recall 19.4 (Linear algebra). Let A be a complex invertible matrix. Then, it can be uniquely written
in the form
A =UR where U unitary and R > 0,
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i.e. R positive Hermitian.
Example. For a € GL;(C) = C*, this is a = re'.

Remark 19.5. Also, every matrix is sum of a Hermitian matrix with a skew-Hermitian one. Take real

part + i(imaginary part). Real part Hermitian and i(imaginary part) skew-Hermitian.

Proof of Recall. Take R = (ATA)'/? (note ATA positive Hermitian, so can take square root). Then,
U = A(ATA)~1/2, This gives existence. For uniqueness, say U3 R; = UsRy. Then, U{lUlRl = Ry. Let
U= U{lUl, so UR; = R,. Take adjoint to see R,U~! = Ry and from this conclude that U = Id. |

We want to generalize this to any real semisimple group. Let g C g be a real form of g with
corresponding Lie group G° C G,q. Note this is a closed subgroup (if not, closure has a larger Lie

algebra, but every element of it still fixed by o). Recall the decompositions
g=tdop, g°=t"@p° and g’ =t Dip°
Let K¢ C G¢4 be the (closed) subgroup with Lie K¢ = £°. Define
P? = exp(ip®) C G°.

Warning 19.6. This is not a group in general, e.g. since p¢ is not a Lie algebra but a module over &°.
Alternatively, p© acts by Hermitian matrices, so P° does as well, but products of Hermitian matrices

need not be Hermitian.
Proposition 19.7. The exponential map exp : ip¢ — P is a diffeomorphism.

Proof. We know that

exp : iu(n) = Herms(n)

onto positive Hermitian matrices is a diffeomorphism. Why? Take log of the eigenvalues to get inverse

log : Herms((n) — iu(n). The map in the statement is a restriction of this one. |
Corollary 19.8. P? =R where N = dimp.

Note that K acts on P? by conjugation. Let
w: K% x P — G°
be the multiplication map.

Theorem 19.9. p is a diffeomorphism.

Proof. Consider some g € G° C Aut(g) C GL(g). We also have gt € G, so gfg is a positive definite
automorphism. Hence, we can form R, := (¢7g)'/? € Aut(g) Set U, = g(g"g)~%/%, so g = U,R,. We
see that R, € P? and Uy € K. this gives inverse (bijective since polar decomp unique) to multiplication

map g — (Uy, Ry). This is smooth, so we win. |

384%g is diagonalizable so splits Lie algebra into eigenspaces. Simply take square roots of those eigenvalues. That is,
under gtg, g = Dr~o 94 satisfying [ga;, 9a,] = ga;a,- We set Rglg, = Vv/A which makes sense since VA1 Az = VA1 VA2
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Corollary 19.10. G? = K x RYI™P ~ K7 with = denoting diffeomorphism and ~ denoting homotopy
equivalence here.

losed
Hence topology of semisimple Lie groups largely reduces to topology of compact Lie groups (K° °c

Gsy).

Corollary 19.11. Goq = GS4 X P with P C Gaq acting on g by Hermitian positive operators. Hence

71(Gaa) = m(Goq) = PY/Q

(P here the weight lattice).

Corollary 19.12. Say G is a semisimple complex Lie group with center Z = Z(G). Then, Z C G, so

coincides with the center of G°.

In particular, the restriction of f.dim reps from G to G° is an equivalence.

This generalizes straightforwardly to any complex semisimple Lie group G instead of G,q, i.e. G =
G¢ x P and RepG = RepG*©.

Warning 19.13. G and G° have the same topology, but G and G do not. G’s topology is related to
that of K. In particular, it can happen that G is simply connected but G? is not.

Example. Say G = SLy(C) and G? = SLy(R) is its split form. Note that SLy(R) D SO(2) & S, and in
fact we have a polar decomposition
SLy(R) = SO(2) x P

with P = R? consisting of positive symmetric matrices of determinant 1. Thus, SLy(R) = S* x R?

(interior of a bagel). This has universal cover SE\(TR) =~ R3.

Example. Take G” = SL,,(C) (regarded as a real Lie group). Then, K’ = SU(n) and P’ = positive

Hermitian matrices of determinant 1. Then, we recover the usual polar decomposition.

Example. If G° = SL,(R), then K? = SO,, and P? is positive symmetric matrices of det 1. This gives

the usual real polar decomposition.

19.3 Linear groups
Let G be a connected real or complex Lie group.

Definition 19.14. We say G is linear if it admits a faithful f.dim representation, i.e. it can be realized

as a subgroup of GL,,.

Example. Every semisimple complex Lie group is linear. Let P C G be the weight lattice of G (so
A€ P < L)|m(G)=1). If P5/Q is cyclic, we can take A a generator, and then Ly will be faithful.

P/Q is cyclic for all reduced irreducible root systems except Da,,, where it’s Z/27Z x Z/2Z. For so(4n),
take A1, Ay to generate Pg/Q, and then L = Ly, ® Ly, is faithful.

We can characterize real linear semisimple Lie groups as well. Say g° C g is a real form with
corresponding Lie group G C G. Then, G7 is linear since G is, and all semisimple linear real groups are

of this form.
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Example. Let G° = Sp,,,(R) so K = U(n). Note G° C Sp,,(C) which is simply connected and
m1(U(n)) = Z. For every integer m > 2, Sp,,, (R) has an m-sheeted cover Spg?)(R) with no f.dim faithful
representations (in fact, all its f.dim reps will factor through Sp,,, (R)).

Ezercise (Homework). Classify simply connected real semisimple linear Lie groupsm

19.4 Connected complex reductive groups

Definition 19.15. A connected complex Lie group G is reductive if it is of the form ((C*)" x Gy)/Z
where G semisimple, and Z C (C*)" x Gy a finite central subgroup. More generally, a complex Lie

group G is reductive if GO is reductive, and G/GP is finite.
Fact. Connected G is reductive <= RepG are completely reducible.
Example. GL,(C) is reductive, e.g. because

_ C* x SL,(C)

GL,(C) p

Remark 19.16. Let Z be the center of connected, reductive G. Then,
Z C (Sl)r x G§ C (C*)" x Gy.

Hence, we get a compact subgroup
(51) X Gj

K =
Z

G.

Restriction of f.dim reps gives an equivalence
RepG = RepK,

so RepG is semisimple (i.e. reps of G are completely reducible).

How do we parametrize irreps of G as above? Looking at the construction of K, they parametrized
by tuples (n1,...,n,,\) with n; € Z, A\ € P} subject to the global condition that they give a trivial

character of Z.

19.5 Maximal tori

We talked about Cartan subalgebras last semester.

Recall 19.17. Cartan subalgebras of g are conjugate, even when equipped with system of simple roots

(use Weyl group acts (simply) transitively on systems of simple roots).

Definition 19.18. A Cartan subalgebra of g¢ is a maximal commutative subalgebra h¢ C g¢ (note

this automatically consists of semisimple elements). Equivalently, ¢ Qg C is a Cartan subalgebra of g.

Lemma 19.19. All Cartan subalgebras (with systems of simple roots) of g¢ are conjugate.

39Something something find those where £ is semisimple (not just reductive)
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Proof. Let (h§,I1;) and (g5, IT2) be two such things. Then, there exists some g € G so that g(h$,I1;)g~! =
(hgv HQ) AISO, g(hiv Hl)gil = (hgv HQ) (Where g= w(g)) Thusa

g g(b5, 1) (7 19) " = (b5,10y),

s0g tg=:hec H=exp(h:=h°® C). Now we write the polar decomposition g = kp so g = kp~L.
Hence, g = gh, kp = kp~'h, p = p~'h, and p? = h. Since p € P is positive, we see p = Vh = h'/? as an
operator on g. In particular, p € H. Thus, conjugation by g = kp is the same as conjugation by p, so
k(h§, 1)k~ = g(bs,111)g~ ! = (hS, 1), and we win (since k € K = G°). [ ]

Given a Cartan subalgebra h¢ C g° its exponential H® = exp(h®) C G° is a torus (connected,
compac@ abelian) (S1)". In fact, H¢ is a maximal torus (any larger torus would have a larger Lie
algebra, but h¢ maximal).

Conversely, given a maximal torus H¢, Lie H¢ is a commutative subalgebra, and maximality of H®

forces it to be a maximal commutative subalgebra. Thus, we have a bijection

Cartan subalgebrs Maximal tori
— .
in g¢ in G¢
Remark 19.20. Also Cartan subalgebras in g are in bijection with maximal tori in G.
Corollary 19.21. Any two mazimal tori in G¢ or G are conjugate.

Theorem 19.22 (to be proved next time). Every element of G¢ is contained in a maximal torus.

Warning 19.23. This is false for complex groups (e.g. there exists non-semisimple elements like a matrix

with nontrivial Jordan block).

Lecture at MIT on Tuesday.

20 Lecture 20 (5/4)

Let K be a compact connected Lie group. We proved last time that all maximal tori in K are conjugate
(even with a choice of positive root system). The point was that maximal tori T C K are in bijection
with Cartan subalgebras t C ¢ = Lie K.

Today, we would like to prove the following theorem.

Theorem 20.1. Every element of a connected compact Lie group K is contained in a mazximal torus.

(A generic element will be contained in the unique maximal torus which is its center, but a special

element may be contained in many, e.g. a central element is contained in all)

Proof. The complexification K¢ =: G will be a reductive connected group with ¢ = g¢ (g = LieC). We

may assume WLOG that K is semisimple (reductive groups are products of semisimple groups with torii,

40Since h¢ maximal = H°¢ closed
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up to finite quotient). Let K’ C K be the subset of elements contained in a maximal torus. Also, fix

some maximal torus T' C K. Consider the map

f: KxT — K
(k,t) +— ktk™l

Note that K’ = im(f), so K’ is compact (so closed in K). Hence, K \ K’ is open. Now, say = € K is
regular if the centralizer 3, C £ of z in the Lie algebra has dimension < r := rank K. The set of such
elements K,e; C K is open (rank is lower semicontinuous) and nonempty (many regular elements in g°
and exponentials of small regular elements will also be regular). On the other hand, any regular element
x is contained in exp(3;) which is a maximal torus. Therefore, Kee C K’ so K\ K’ C K\ K,cg. The
set of non-regular elements is defined by polynomial equationﬂ Polynomials cannot vanish on an open -
set unless they vanish identically; these polynomials don’t vanish identically (regular elements exist), so
K\ K’ is empty. |

Corollary 20.2. The exponential map exp : Lie K — K is surjective.

Proof. f T C K is a maximal torus, then exp : LieT — T is surjective (since T' commutative so exp a
homomorphism with image containing an open neighborhood of identity). Applying this for all maximal

tori gives the result. |

1

(—1 1) (m ?)
= exp AR
-1 T

but it’s not the exponential of a traceless matrix.

-1
Non-example. In G = SLy(C), SLy(R), ( ) is not in the image of the exponential map. It is

the exponential of a matrix

20.1 Semisimple and unipotent elements

We talked about semisimple and nilpotent elements in the Lie algebra last term. Now let’s see the
analogous notions for groups.

Let G be a connected complex reductive group.

Definition 20.3. We say that g € G is semisimple (resp. unipotent) if for every f.dim rep p: G —
GL(V), the operator p(g) is semisimplﬂ (resp. unipotentlfl).

Remark 20.4. For Lie algebras, we defined an element to be semisimple iff adz was a semisimple operator,
but this is the same as p(z) being semisimple for any rep p : g — End(V) since x € g semisimple iff it’s
contained in a Cartan subalgebra.

Similarly, g € G will be semisimple iff it’s contained in a maximal torus.

We won’t delve into this theory here, but developing it is done in a series of homework exercises.

4lranker smaller than expected, so certain minors have to vanish

42diagonalizable since V a C-rep. In general, ‘semisimple’ means diagonalizable over algebraic closure
43only eigenvalue is 1
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Ezercise. Let Y be a faithful f.dim rep of G. Then, g € G is semisimple (resp. unipotent) iff py (g) is

semisimple (resp. unipotent).

Exercise. The exponential map exp : N'(g) — U(G) gives a homeomorphism from the nilpotent elements

of g to the unipotent elements of G.

Ezercise. Let Z = Z(G) C G be the center of G, and let 7 : G — G/Z =: G,q be the natural projection.
(1) U(G) = U(G/Z) is a homeomorphism.

Ezample. If G is a torus, then G/Z = 1, so tori have no nontrivial unipotent elements.

(2) SS(G) =7"1(SS(G/Z)) where SS(-) denotes semisimple elements.

Ezercise (Jordan Decomposition). Any g € G can be uniquely written as a product g = gsg,, where
gs semisimple, g, unipotent, and gsg, = gugs-
Remark 20.5 (to be proved later). g € G is semisimple <= g is contained in some (complex) maximal

torus (i.e. copy of (C*)")

20.2 Cartan Decomposition

Let G be a complex connected semisimple group (actually, what we’ll say extends to reductive groups)
with Lie algebra g := LieG. Let g¢ C g be the compact form. Pick some Cartan involution 6 : g — g
defining a real form; let 0 = 6 o w s0  ~» g, (w is the antilinear involution defining the compact form).
Recall
- =@, g, =t @ip°, and G, = K + o - exp(ip°)
Ps)

where O|¢c =1 and 6],c = —1.

As a manifold, we have G, = K, x P, and P, is some Euclidean space. This P, is in general not a
group. Recall we have a Cartan subalgebra compatible with 6, hS @ b° = h° C g° (with hS C €° and
he C p¢). Define A := exp(ih°) C P,. This is an abelian group (since h° abelian).

Theorem 20.6 (Cartan Decomposition).
G, = K, AK,,

i.e. any g € G, can be written as g = kyaks with k1, ke € K, and a € A.
Warning 20.7. This decomposition is not unique. In particular, K, x A x K, — G, is not injective.

Remark 20.8. This extends to reductive groups e.g. by forming the decomposition separately for the

torus and semisimple factors.

Example. Let G, = GL,(C). Then, K, = U(n) and A = {positive diagonal matrices}. This says any
invertible matrix g over C is of the form wujaus where uq,us are unitary and a is diagonal matrix with

positive entries.
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Example. Let G, = GLT(R), invertible real matrices with positive determinant. Any g € G, can be
written as g = O1a02 with O; orthogonal with determinant 1 and a positive diagonal.
Easy to go from this to GL,(R) = O(n)ASO(n) with A consisting of diagonal matrices with pos.

entries.
These decompositions are well-known classically. For example.

Proof of first example. Write ¢ = UR the polar decomposition, so U unitary and R positive hermitian.
We may diagonalize R = U’a (U’)”" with U’ unitary. Then, g = UU’a (U’)"". [ |

How does one prove Theorem |20.6]/

Lemma 20.9 (Homework). h° is a mazimal abelian subalgebra of p°, and all such subalgebras are

conjugate under K.

Proof of Theorem[20.6. We know G, = K,P,. Hence, it is enough to show that every element p €
P, is conjugate to an element of a by action of K,. This follows from the Lemma. Consider hS_ a

maximal abelian subalgebra of p¢ containing ilogp. Then, by the lemma, there exists g € K¢ such that
Ad(g)(b5_) = . Thus, Ad(g)(ilogp) € b, so Ad(g)(logp) € ih°, so gpg~" € exp(ih®) = A. u

20.3 Integral form of character orthogonality

Let K be a connected compact Lie group with maximal torus 7' C K. We know that characters of

irreducible representations of K are orthonormal under the inner product

(f.9) = /K Fk)g(R)dk

Kaa ig determined

on C(K)¥ad | continuous function invariant under adjoint action@ But every f € C(K)
by its values on T' (since every element conjugate to an element of T), so we should be able to write this

inner product just in terms of T'. That is, we should have

(f.9) = /T F®gw(t)dt

for some weight function w(¢). All our functions are Weyl group invariant, this weight should be W-
invariant as well.
What is w(t)? You can compute it directly by doing a computation in differential geometry. However,

we will not have to do this, because we secretly know what it is from the Weyl character formula.

Theorem 20.10. For any f € C(K)&ad,
| swar= [ rowea
K T
where w(t) = 2= |A@)|]* and A(t) is the Weyl denominator

A= TJ (t-a)
aER4

441f you wanted, could have taken L?(K)¥ad instead; it doesn’t matter
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Example. Take K = U(n) with

21
T — 125 € C with |z;] =1 =~ (SH".

Zn

The (positive) roots are a = jm, = €; — €, .. a(t) = z;/2,. We see that

2
do,...de, 0.
W where z; = i

T

1
k:a/Tf(zl,... H‘

j<m

U(n)

This can be simplified. Write

and so see that

)

/2 eﬂ'(erem)/z‘ _

0, —0
94 J m
(5

ei91

27 27 0. —0 2
/ f(k)dk = ——— / / (2 sin (Jm>) f dé; ...do,.
Un) ™)l i<m 2

eign

Proof of theorem [20.10, We know the characters x(k) are dense in C'(K )2, so it’s enough to check
this equality for f = x., the character of L. Characters are orthogonal, so

/K 3 (B)dk = (X2 1) = (xa: x0) = dor.

Compare this with (use Weyl character formula for first equalityﬁ and Weyl denominator formula for | Possibly a
the second) typo below

. L LS siem()w + p)(0)
#W/ )] L= el 4= g T on (= ()

C¥613+

II a—a@) J] @—a@)dt

a€ERy a€ERy

#W/( sign(w)w(X + p)(¢ )(ngn 1(t)> dt

Now, if A # 0, then this is OE If A =0, then the above becomes

# 21_1

wew

This completes the proof. |

You can reverse this. If you do the differential geometry calculation giving the integral formula, then

45 Also use a(t) € St so a(t) = a(t)~!
46Think, [41 €™? - e~ =0 when n #m

101



you can use it to obtain the Weyl character formula instead. This is what Weyl did.

20.4 Topology of Lie Groups

This will be the subject of the next few lectures.
We want to understand the (co)homology /homotopy groups of Lie groups. There are many cohomol-
ogy theories computing the same thing; for Lie groups, it will be convenient to use de Rham cohomology.
Let M be a manifold. Recall the space Q2¢(M) of complex differential i-forms as well as the exterior
derivative d : Q(M) — Q1 (M) which satisfies d2 = 0.

Definition 20.11. The ith de Rham cohomology group of M is

i i ker d|g:
H(M):H(M,(C):irndglil.

Forms in ker d are called closed forms while those in imd are called exact forms.

What input from differential geometry will we need to use?
Let X be a vector field on M. Then one can form Ly : Q" (M) — Q"(M). First note that for

X=3, ai%i, we have X (x;) = a;. This action can be extended to the contraction map
tx 0 - QI
In particular, txw(Xy,..., Xn-1) = w(X, X1,...,Xpn—1). The map Lx is locally given by

n 6
I AL Y — ([ A , des Ao A A . where X — Y
x (fdaziy, Ao Adx;,) = (Lx f)da, A /\dx“—&—Zf dzi, A---Aaj; A---Adw;, where zi:alaxi

j=1
Theorem 20.12 (Cartan’s magic formula). On differential forms, Lx = txd + dix.

Friday is a holiday, so homework due date moved to Monday. There will be one more homework after

the current one, due on Monday of the last week.

21 Lecture 21 (5/6): Cohomology of Lie Groups

At the end of last time we switched topics to ‘cohomology of Lie groups.” Let’s pick up where we left off.

Recall 21.1. Let M be a manifold. Its cohomology HZ'(M7 C) can be computed using the de Rham

complex

0—0n L oton S . L o) —o,

where n = dim M. Here, Q(M) is the space of (smooth, C-valued) differential i-forms, and d is the de
Rham differential determined by

d(fdzy A+ Aday,) =df Adzy A Aday,.
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This satisfies d2, and the cohomology of this complex

_ kerd
" imd

H'(M,C)

is the cohomology of M.

Fact. If M is compact, then dim H'(M) < occ.

Definition 21.2. The Betti numbers of M are b;(M) = dim H*(M).

Example. bo(M) = #connected components, so M connected <= by = 1.
We would like to compute these b; for compact Lie groups.

Recall 21.3. There is a product structure on cohomology. If w € Q% and £ € Q7, can get an (i + j)-form
wA € € QI Moreover,
d(wA€) =dw A€+ (—1)38%w A dE

(Above, you can think of the sign as coming from commuting d past w). The Leibniz rule above tells
us that A descnds to

n
H* (M) = @ H"(M)
i=0
giving it the structure of an associative graded commutative algebra. Graded commutative means

ab = (_1)deg(a) deg(b) ba.

Remark 21.4. Let f : M — N be a differential (i.e. smooth) map. Then, we get a pullback f* : Qi(N) —

(M) which commutes with d and preserves A. Hence, it induces a graded algebra homomorphism
ffH (M) — H*(N).

Ezercise. Say f; : M — N is a smooth family of maps for ¢ € (0,1) (i.e. f:(0,1) x M — N smooth).
Then, f; : H*(N) — H*(M) is independent of ¢. Hint: show that if dw = 0, then 2 ffw is exact.

(f* does not change under deformations of f).

Before turning to Lie groups, we recall Cartan’s magic formulas. Let v be a vector field on M. Then
we get Lie derivative L, : ) — Q' as well as a contraction operator ¢, : Q' — Q¢~!. This latter operator
is defined by

Ly (gdfi A Adf) = Alt (g - e frdfo Ao AdS),

average the application of L, over all permutations (or something like this). One can check
Ly(WAE) = yw AE+ (—1)989w A 1,

and L,(wA &) = LywAE+wA L.
Lemma 21.5 (Cartan’s magic formula). L, = ¢,d + d,.

Note that ¢, od + d o, = [ty,d] is a (graded) commutator.
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Proof. We showed last semester that the commutator of two derivations is a derivation. The same holds
true for graded commutators, so [t,,d] is a derivation of degree 0 (exercise). Hence, we can check this
equality on generators in a local chart.

That is, we may assume w = f or w = df (everything else is a wedge/product of these). We see
L,f =df(v) = tp,df = (tp,d 4+ dey) f
since ¢, f = 0. Similarly,
L,df =dL,f = de,df = (tod + dey)df
since d2f = 0. |
Corollary 21.6. L, maps closed forms to exact forms.
Proof. If dw = 0, then L,w = di,w. ]
Corollary 21.7. L, defines the zero map on H*(M).

Corollary 21.8. If a connected Lie group G acts on M, then it acts trivially on H*(M)

(A path in G gives a homotopy of actions of its elements, so anything in the path component of 1

acts via the identity).

Theorem 21.9. Suppose of compact connected Lie group G acts on M. Then H*(M) is computed by
the complex Q* (M) C Q*(M) of G-invariant forms.

Proof. Let P : Q*(M) — Q*(M) be averaging over G, i.e.

sz/g*wdg.
G

Then P? = P and we have
Q (M) = Q* (M), @ Q*(M)y = Q* (M) @ ker P.

This decomposition is respected by d, so cohomology of M is a sum of the cohomology of these two
subcomplexes. Suppose w € Q*(M)g is a closed form, dw = 0. Then, [w] = [gw] for any g € G (G acts

trivially on cohomology). Thus we can take the average

[w] = [gw] = /G [gw]dg = { /G gwdg] = [Pw] =0.

Thus, w = dn for some n =1, + 19 € Q" Y(M). Thus, w = dn; +dny = dn; = 0 so w = dng which
means that Q*(M)y is exact (it has zero cohomology). [ |

Corollary 21.10. Let G be a compact Lie group. Then H*(G) is computed by Q*(G)€, the complex of

left-invariant differential forms.

Recall that the space of left-invariant vector fields is isomorphic to the Lie algebra Lie G. By the same
reasoning, one shows that ‘
Q(G)° =~ /\lg* where g = (Lie G)c.
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That is, cohomology of a compact Lie group is computed using a complex of the form
2 n
O—>(C—>g*—>/\ g*—>—>/\ g-—0
(this gives a way to see cohomology of a compact Lie group is finite dimensional).

Question 21.11. What is the different d?

Before proving a description entirely in terms of the Lie algebra, we need another lemma from differ-

ential geometry.

Lemma 21.12 (Cartan’s differentiation formula). Let w € Q™(M), and let vy, ...,v, be vector
fields on M. Then,

m
dw(vo, .y vm) = Y _(=1)'Ly, (@ (00, -, Tiy- s vm)) D (1) ([03,05], 00, Ti ey Ty V)
i=0 0<i<j<m

Proof Sketch. (1) RHS(fvg,v1,...,vm) = f - RHS(vg,...,vn) so the RHS is linear over functions (in
each variable vg, v1,...,Upn).
(2) Now it’s enough to check this when v; = a%k_. Say w = fdx;, A---Adzj,,. This it’s a “straight-

forward” calculation to verify this equality. |
Corollary 21.13. Ifw € Q*(G)Y is left-invariant and v, vy, ..., vy, are left-invariant vector fields, then
dw(vg, ..., om) = Z (= 1) w ([04, 051,005+« +y Dy ey Dy e ooy U - (21.1)

0<i<j<m
Proof. w(vg,...,04,...,0m) is locally constant. [ ]

Corollary 21.14. defines the differential in the complex Q*(G)¢ computed the cohomology of a

compact, connected Lie group.

Note that this complex
2 n
makes sense for any Lie algebra g (now that we’ve defined the differential just in terms of the Lie bracket).

Definition 21.15. This complex is called the standard complex (or Chevally-Eilenberg complex)
of g, denoted CE*(g). Its cohomology is called Lie algebra cohomology of g, and is denoted by H*(g).

This makes sense for any Lie algebra over any field. One has d?> = 0 because of the Jacobi identity.
Proposition 21.16. H*(G) = H*(g) when G compact connected.

Remark 21.17. There is an algebra structure on CE*(g) induced by A which descends to H*(g), making
it an associative graded commutative algebra. This isomorphism of the previous prop is one of graded

algebras.

Note we need G compact to compute its cohomology using its Lie algebra.
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Example. Say g is abelian. Then d = 0 since all Lie brackets vanish. Thus H*(g) = A" g* is the exterior
algebra of the dual of g.

Example. If G = (§)", then g = C" and one has

H*(G) =H'(g) = \ (&1,...,6,) where degé; = 1.

In particular, H*(S") = A(€) = (1,€) with 1 generating H and ¢ generating H'.

Non-example. If you replace the circle by its universal cover, you get R and H*(R) # H*(S!) =
H*((LieR)¢).

Corollary 21.18. Finite covers of compact Lie groups induce an isomorphism in H*(—; C).
This is not true with Z-coefficients.

Non-example. S* — S! 2 — 22 induces multiplication by 2 in cohomology. This is an iso on H*(—;C),
but not on H*(—;Z) and certainly not on H*(—; Fy).

Non-example. SU(2) 2 S is a double cover of SO(3) = RP®. The have different integral cohomology.

21.1 Kiinneth formula

Say M, N are manifolds. Then Q'(M)®Q7(N) — QiT7(M, N) gives a map HZ(M) ®Hj(N) — H"™ (M x
N). These induce a graded iso.

Theorem 21.19. This induces an isomorphism
H*(M) @ H*(N) = H*(M x N)

as graded algebras.

Remark 21.20. This is a graded tensor product above, so e.g. we have
(a ® b)(a/ ® b/) — (_1)deg(b) deg(a’)<aa/ ® bbl)
Remark 21.21. The map

P (M) @ (N) — Q(M x N)
i+j=k

is an injection, but is not an isomorphism in general. What is true is that the image is dense w.r.t an

appropriate topology. This makes proving Kiinnth a bit subtle.

However, for Lie groups, Kiinnth formula comes for free:
Q (G x K)K =0 (@) @ Q*(K)X.

21.2 Main Theorem

Theorem 21.22. If G is a connected compact Lie group, then the cohomology of G is
* ~ * g
e = (A o)
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as a graded algebra, where we’re taking g-invariants under the adjoint action.

Proof. G has an action of G x G, so cohomology of G is computed by
0 (Q)G%C = (/\* g*)g.
Hence, we only need to show that d = 0 on this space. This is easy to see from invariance, e.g.
w ([vo, v1],v2, .« «, Um) + w(v1, [Vo, V2], ooy Um) + -+ - + w(v1, V2, ..., [Vo, Vm]) = 0.

Similarly with v; replacing vy above. Equation (21.1) tells us that the alternating sum of these (which
are all 0) is 2dw(vg,v1,...), so d = 0. ]

Example. Say w € /\2 g*. Then,
dw(z,y,2) = w([z, 9], 2) + w(ly, 21, 2) + w([z, 2], 9).
If w is ad-invariant, then
w(lz,y],2) +w(y, [r,2]) = 0 = w(ly, 2], 2) + w(@, [y, 2]) = 0 = w([z, w],y) + w(z, [z, y]).
Adding these up with alternating signs shows that
20([, yl, 2) + 2w([2, 21, y) + 2([y, 2], 2) = 0.

This says 2dw(z,y, z) = 0.

To understand this answer a bit better, first note
‘ i \?
dimH*(G) = > dimH(G) = > dim (/\ g*)
Use the Weyl character formula. We have g = h & @, cp 0a, 50 A" g* = A" b* & B, cr A9, Hence,

letting r = rank(g),
(e A's") =27 [T (1 +a()

a€ER

(C® g*,, contributes 1+ e®) where t € T C G. Thus,

dim (/\* g*)g = (ch/\* g*,ch(C)
- 2 /T 2 T (1 +a@) [T - a)dt

aER a€ER
2’!‘
= (1 — a(t?))dt
), 1T
= #2;[/ w(t?)dt.
T
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We change variables t — t2 to see that this is equal to

r
#W

1
w(t)dt = 2" since —/wtdt: chC,chC) = 1.
[ v a7 | o= )

Why did we get a power of 27 This is related to the fact that the cohomology of a Lie group is a
graded Hopf algebra. Let m : G x G — G be the multiplication map. This induces a coproduct

A HY(G) — H*(G x G) 2 H*(G) @ H*(G)

map. This is coassociative in the sense that (A ®id)o A = (id ®A) o A and is an algebra homomorphism.
This makes H*(G) a graded bialgebra.

Ezercise. Deduce from this that H*(G) is a free (graded commutative) algebra. Hence, all generators are

odd 1

Corollary 21.23.
* * * g
H (G):(/\ g) %/\(fl,...,fk) where deg§; = 2m,; + 1.

Thus, dim H'(G) = 2*.

Corollary 21.24.
H'(G)= N\ (€1,....&) and deg& =2m; +1

where m; < mg < --- < m, are integers.

We will discuss what these numbers are next time. They turn out to be the exponents of G (See

section [9.1)).

22 Lecture 22 (5/11)

Last time we discussed the (complex) cohomology of Lie groups. In the end, we saw that the cohomology
of a compact Lie group is a free graded algebra with generators in odd degrees, computed as the invariants

of the exterior algebra on the dual of the Lie algebra.

Recall 22.1. For G a compact Lie group of rank r,

H'(G) = A\ (€, &) and deg& =2m;+1

where my < my < --- < m, are integers.
What do we know about these numbers my, ..., m,?

e We know 7+ 23 m; =31 (2m; + 1) = dimg so > m; = 908" — 4R,

g
Exercise. (/\3 g*) = C spanned by the triple product ([x,%], z) (a linear functional on g®3.

From this it follows that m; = 1.

47 An even generator would give nontrivial cohomology in arbitrarily high degree
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Example (g simple of rank 2). We get mqo = 2 for Ay, my = 3 for By = Cs, ma =5 for Ga, etc. This is
because mg = # R, — my = #Ry — 1 for these cases.

In fact, we have the following general theorem, not to be proven here

Theorem 22.2. The numbers m; are the exponents of g defined in Section [9.1 In other words, the
degrees 2m; + 1 of generators of the cohomology ring are the dimensions of simple modules occurring in

the decomposition of g over its principal sly-subalgebra.

Definition 22.3. For a space X, it’s Poincaré series (sometimes polynomial) is

Px(2) =Y (dimc H"(X;C))2".

n>0
Remark 22.4. The Poincaré polynomial P(z) of (/" g*)g is given by the formula

P(z) = %/T [1 (1 +zat)( - a@)).

a€ER

Hence, the above theorem is equivalent to the statement that this integral equals [, (17" *1).

We will prove this for the case of type A.

Corollary 22.5. For g = sl,,, we have m; = i. Equivalently, the same is true for g = gl,, if we add

mo = 0.
How do we prove this (w/o using the theorem)?

Proof. Let g = gl,,, V = C". We need to compute the Poincaré polynomial of A* (V @ V*)?. To this

end, we employ the skew-Howe duality.

Ezercise (skew-Howe duality). Show that A*(V @ V*) = @ SV ® S* V* where A is the conjugate
partition to A (i.e. transpose the Young diagram).

Remark 22.6. Taking exterior power is (something) like taking tensor power and then taking antiinvariants
of the symmetric group (homomorphisms from the sign representation, I think).

We need to take ad-invariants of @ S*V ® S*' V*. These invariants will only exist if A = A’ (need
the irreps to be the same). Thus,
P(z) = Z 2

A=A
with sum taken over A with < n parts. There are exactly 2" such symmetric partitions \; they consist
of a sequence of hooks (k, 1¥~1) with decreasing values of k. The degree of such a hook is 2k — 1, and so

we see that
Pz)=(142)1+2%...(1+ 221,

Corollary 22.7.
H*(U(n)) = /\ (517 537 s 752%—1)
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with subscripts denoting the degrees, and

H*(SU®M) = \ (& -+ 1)

Remark 22.8. For gl
algebras.

n, One gets the same cohomology even integrally. This is not true for other Lie

22.1 Cohomology of homogeneous spaces

Let G be a compact connected Lie group with complex Lie algebra g = Lie(G)¢, and let K C G be a
closed subgroup with ¢ = Lie(K)c. Consider the homogeneous space G/K.

Question 22.9. How can we compute the cohomology H*(G/K)?

(recall we implicitly use C-coeflicients)

Since the group G acts on G/ K, this cohomology is computed by the complex Q*(G/K)% = (A" (g/¢)*) K
(for equality, use translation by G to see that an invariant differential form is determined by its value
at the identity). We denote this complex by CE*(g, K) and call it the relative Chevalley-Eilenberg
complex.

For example, if K = T is finite, this is just the [-invariant part of the Chevalley-Eilenberg complex.
We now I acts trivially on the cohomology (since G connected), so we get H*(G/I') = H*(G) (as noted
before).

What happens if dim K > 0?7 Can we reduce to a purely algebraic problem as we did for K = 17

Notation 22.10. For £ C g a pair of Lie algebras (over any field, of any dimension), let

. * N
evey = (A (2))
Ezercise. CE®*(g,¢) is a subcomplex of CE*(g).

Definition 22.11. The complex CE®(g, £) is called the relative Chevalley-Eilenberg complex, and
its cohomology is called the relative Lie algebra cohomology, denoted H*(g, €).

K/K°
)

Going back to compact Lie groups, we have CE®(g, K) = CE®(g, ¥) SO

Corollary 22.12.
H*(G/K) = H"(g,&)"/*"

as algebras.

Thus computation of the cohomology of G/K reduced to the computation of relative Lie algebra

cohomology, which is again purely algebraic.
Warning 22.13. The differentials won’t always be trivial in this case.

Corollary 22.14. Suppose z € K is an element acting by —1 on g/t. Then,

(/\i(g/ﬁ)*)K —0 for oddi.
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Hence, the differential CE®*(g, K) is 0 and thus

K

' (@/K) = (N @/p7)

with cohomology present only in even degrees.

Example (Grassmannians). Let G = U(n +m) and K = U(n) x U(m), so that G/K is the Grass-
mannian G, 4m 5 (C) = Gt m(C) (the manifold of m— (or n—)dimensional subspaces of C™*"). The
element z = I, & (—1I,,) acts by —1 on g/¢ =V @ W* @ W ® V*, where V, W are the tautological rep-
resentations of U(n) and U(m). So we get that the Grassmannian has cohomology only in even degrees,
and that _

B (G (©) = N (V0 W 0 @ V) <V,

We can therefore use skew Howe duality to see that dim Hom* (G pin.m(C)) = N;(n, m), where N;(n, m)
is the number of partitions A whose Young diagram has ¢ boxes and fits into the m x n rectangle.
To compute N;(m,n), consider the generating function f,.,(q) = Y., Ni(n,m)q". Denote by p; the

jumps of our partition, so

m

Do faml@)et = 3T amtrtmegrimbetnn [

n>0 P0sP15--sPm >0 Jj=0

1
1—qiz’

Hence the Betti numbers of Grassmannians are the coefficients of this series, e.g. if m = 1, we see that

"= 1 — ny ,n
7%:0,]07L,1(Q)Z —m_;(l+q+...+q )Z

which recovers the Poincaré polynomial 1+ ¢+ --- + ¢™ of the complex projective space CP" = Gj41,1.
The polynomials f,, ,,,(g) are called the Gaussian binomial coefficients, and they can be computed

explitictly:

h =
n where [m],

Frn(@) = ("*m) mtaly!

B [mq]![ng]!
In other words, we have the g-binomial theorem

n+m n_m 1
Z( n >qz _Hl—qu.

n>0 =0

Note that setting ¢ = 1 recovers the familar identity

(") =

n>0

Ezercise. Compute the Betti number of G 2(C).
Ezercise. Prove the g-binomial theorem.

There is a more geometric way to compute the Betti numbers of Grassmannians by working with

Schubert cells. Let F; C C**™ be spanned by the last i basis vectors €, yn_it1,---»€min. Thus, we
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have a complete flag
0=FCF C-CFypm=0C""".

Given an m-dimensional subspace V' C C™*" let ¢; be the smallest integer for which dim(Fy; NV) = j.
Then,
1<l <be< - < by, <m+n,

which defines a partition with parts Ay = £, —m, Ao =¥l1 — (m — 1), ..., Ay, = £1 — 1 fitting in the
m x n box. We let Sy C Gpqm,m(C) be the set of V' giving such numbers A,.

Ezercise. Show that S is an embedded (non-closed) complex submanifold of the Grassmannian isomor-
phic to the affine space C" of dimension r := [A| =), A;.

Definition 22.15. The subset S of the Grassmannian is called the Schubert cell corresponding to A.

We see that Gyqn,m(C) has a cell decomposition into a disjoint union of Schubert cells. This allows
one to rederive the same formula for the Poincaré polynomial of the Grassmannian from the following

fact from algebraic topology:

Proposition 22.16. If X is a connected cell complex which only has even-dimensional cells, then the
cohomology of X wanishes in odd degrees, and the groups H2i(X;Z) are free abelian groups of ranks
bai(X), where the Betti number by;(X) is just the number of cells in X of dimension i. Moreover, X is

stmply connected.
(use cellular chain complex)

Corollary 22.17. H2i(Gn+m,n((C),Z) is a free abelian group of rank (”+m)q, and the odd cohomology

m
groups are zero. Moreover, Grassmannians are simply connected.

In particular, this gives Betti numbers of any field.

22.1.1 Flag manifolds

Definition 22.18. The flag manifold F,,(C) is the space of all flags
0=VycWvc.---cV,=C" with dimV; = 1.

It is a homogeneous space since F,, = G/T, where G = U(n) and T = U(1)™ is a maximal torus in G.

We have fibrations 7 : F,,(C) — CP"~! sending (Vi,...,V,_1) to V,_1, whose fiber is the space of
flags in V,,_1, i.e. is F,,—1(C). By induction@ one argues that the flag manifolds can be decomposed
into even-dimensional cells isomorphic to C" (also called Schubert cells). Thus, the Betti numbers of

F,, vanish in odd degrees, and in even degrees they are given by the generating function

S boi(F)a" = [lgl = (L4 @)L+ g+ ... (Lt q+---+q" )

Remark 22.19. There is also a map 7, @ Fintn(C) — Grgn,m(C) sending (Vi,...,Vogm—1) — Vi
This is a fibration with fiber F,,(C) x F,,(C). From this one gets another proof of the formula for Betti

numbers of the Grassmannian.

48 The fiber bundle will become trivial over the cells?
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We can also define the partial flag manifold Fs(C) for S C [1,n — 1], i.e. it is the space of partial
flags (Vi : s € S) with V, € C", dimV; = s, and Vi C V; if s < ¢. These include both (complete) flag

manifolds and Grassmannians.

Ezercise. Let S = {n1,n1 +n2,...,n1 +---+ng_1} and let n, =n —ny —--- — ng_;. Show that the

even Betti numbers of the partial flag manifold are the coefficients of the polynomials

Ps(q) = e
nalg!. .. [nk)g!

while the odd Betti numbers vanish. Also, show the partial flag manifold is simply connected.

23 Lecture 23 (5/13): Lie algebra cohomology

We've talked recently about cohomology of Lie algebras. We can generalize our definitions to talk about
cohomology with non-trivial coefficients, i.e. with coefficients in a representation of the Lie algebra.

Let g be a Lie algebra (over any field, of any dimension), and let V' be a g-module. We can define the
Chevalley-Eilenberg complex

CE*(g,V) := Homi(/\" 0, V),

so it looks like
2
0 — V — Hom(g, V) —>H0m(/\ g,V)— -

The differential is given by the Cartan differentiation formula
m .

dw(ag,...,am) = Z(—l)laiw(ao, ey Oy Ogy) F Z (1) w([ai, aj], a0, -, @iyeeey@jyeeey Q)
i=0 0<i<j<m

for w € CE™.

Example. If G is a Lie group, g = Lie G, and V f.dim, then
CE*(g,V) = (2"(G)®V)*

with g acting diagonally, and the differential is the de Rham differential.

The cohomology of this complex CE®(g, V) is called the cohomology of g with coefficients in V
and is denoted H*(g, V). The cohomology we studied before is simply H'(g) = H'(g, C).

Proposition 23.1. If G is compact and V is a f.dim nontrivial irrep, then Hi(g7 V) =0 for alli> 0.

(I missed the explanation, but this follows from what we did before. Something about cohomology

being computed using invariant forms so all nontrivial irreps drop out or something, who knows).

Remark 23.2. In general, H(g, V) = V8 is g-invariants.

Proposition 23.3 (Whitehead’s lemma). If g is semisimple, then H' (g, V) = H*(g, V) = 0 for any
fdim V.
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Proof. Can assume V irreducible. If V' # C, this follows from previous prop, so say V' = C. The standard
complex starts ,
O—>(C£>g*i>/\ g-— .

g
Above, d(f) = f([z,]). Hence, H'(g,C) = Homy (g, C) = 0. Similarly, H?(g,C) = (/\2 g*) . Why is
this 07 Can assume g simple. This is the space of g-invariant skew-symmetric homomorphisms A : g — g*
(A* = —A). Note that Homy(g, g*) = CK is 1-dimensional, spanned by the killing form. The Killing

form is symmetric, not skew-symmetric, so there are no skew-symmetric invariant forms. |

Remark 23.4. If you look at cohomology of non-semisimple Lie algebras or with coefficients in an infinite-

dimensional rep, then things are more complicated.

23.1 Interpretations of H'(g,V) for small i
23.1.1 =0

We start with H(g, V) = V9.

23.1.2 =1
Onto H'(g,V) = Z'(g,V)/B"(g,V). Here, we have 1-cocycles
ZHg, V) ={wig =V |w(z,y) = [z,wy)] — [y, w(@)]}

and 1-coboundaries B!(g,V) = {w=dv:v €V} (ie. w(z) = zv which satisfies [z,y]v = z(yv) —
y(zv)).

Proposition 23.5. Say V. W are representations of g. Then,

H' (g, Homy (V, W)) = Ext*(V, W)

classifies extensions 0 = W —-Y -V — 0 of V by W.

Proof. Given an extension 0 — W — Y — V — 0, we choose a complement of W in Y to write

Y =W @V as vector spaces. Under this decomposition, g acts by block upper triangular matrices

(@) = (PW(Z‘) w(z) ) .
0 pv(z)

For this to be a representation, we need py ([x,y]) = [py (x), py (v)]. Note that

oy (@)oy (4) = ("’W”)W(y) pw (@)(v) *“Wv(w) |
0 pv(w)pv(y)

The condition we get is that (p’s omitted for brevity)

w([z,y]) = 2w(y) — yw(z).
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Hence, py is a representation <= w € Z'(g, Homy(V, W)).
Exercise. If Y1, Y are two such representations, then Y; 2 Y5 as extensions iff wy —wy € Bl(g, Homy(V, W)).

Note 9. T have been pretty distracted most of this lecture, so I keep missing small things.

We're talking about semidirect products now.

Definition 23.6. g x V is V & g with Lie bracket
[(v1, 1), (v2, 22)] := (@102 — Tavy, [21, 22]) -

This comes with a natural surjection g x V' — g. What are the splittings = — (w(z),x) of this
map? The condition for w is precisely the 1-cocycle condition: w([z,y]) = 2w(y) — yw(x), so we need
w € Z'(g,V). Note that V acts on g x V by automorphisms: w - (v,z) = (v + zw,z). We call this

‘conjugation by v.’

Exercise. Sections sy, sy are conjugate <= w; — wy € B! differ by a coboundary.
Corollary 23.7. Splittings of g x V — g, up to conjugation, are classified by H (g, V).
Remark 23.8. By previous interpretation, we also know

H'(g,V) = Ext'(C, V).

Let’s see yet another interpretation. Consider V' = g the adjoint representation. Consider w: g — g
with w € Z1(g,g). Then,

w([z,y]) = [r,w¥)] - [y, w(=)] = [z, w(y)] + [w(z), Y],

so w € Der(g), i.e. w is a cocycle if it’s a derivation. The coboundaries w € Bl(g,g) are the inner

derivations, w(z) = [d, z] for some d € g. Thus,

= Out(g)
is the space of outer derivations.

23.1.3 i=2
For H?, we'll need to talk about abelian extensions.

Definition 23.9. An abelian extension is a Lie algebra g sitting in a short exact sequence
0—V-—g—g—0

with V an abelian ideal.

Example. g = g x V is a split abelian extension (of g by V)
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Example. The Heisenberg algebra H has basis x,y, ¢ with ¢ central ([z,¢] = [y,c] = 0) and [z,y] = ¢
Let V = {c), a 1-dimensional abelian ideal. We have H = k% = (z,y) (abelian quotient). This gives an
exact sequence

0—k—H—k*—=0

which is not split.

How can we classify abelian extensions of g by V7
Note that exact sequences of Lie algebras always split as vector spaces, so we can write g =V @ g as

vector spaces. We then get a commutator

[(0,2), (w,9)] = (2w — yo +w(z,y), [.3]) with w: \“g = V.

What is the condition of w for this to be a Lie algebra structure? The condition is given by the Jacobi
identity (this is already skew-symmetric by definition). One checks that this satisfies Jacobi <— w €
Z2(g,V) (exercise). Furthermore, g1 = g2 (as extensions) iff w; — ws = dn € B%(g, V).

Proposition 23.10. Up to equivalence, abelian extensions of g by V are classified by H*(g, V).

Example. Say g = k% = (x,9) and let V = k be the trivial rep. Then,

k ifx=0,2
H*(g,k) =H"(g) = H'(S' x S1) = (k% ifx=1
0 if*>3.

In particular, H*(g) = k with nonzero element corresponding to the Hiesenberg algebra (up to some

scaling)
Corollary 23.11. If g is semisimple and g is an abelian extension of g by a f.dim rep V, theng=gx V.

Whitehead says H?(g, V) = 0.
There’s another interpretation in terms of deformations of the Lie algebra. Say g over k with Lie

bracket [, ] : /\2 g — g. Can we deform it with parameter t? Something like
[Iay}t = [x,y] + tcl(x,y) + t262(l’,y) +.o

a formal power series. These coefficients will be maps ¢; : /\2 g — g. We want the above to be a Lie
bracket (i.e. satisfy Jacobi) for all ¢; that is, it should give a Lie algebra structure on g [¢] so that, mod
t, you recover the original one.

We'd like to understand/analyze things term-by-term. We start with first order analysis, work mod

t2. That is, we work with the ring g[t]/t?t[t] = g @ tg. Note we have an exact sequence
0—tg—gdtg—g—0

with tg abelian, so we have an abelian extension of g by itself with zero commutator. Hence, the condition

on ¢ is that it should be a 2-cocycle: ¢; € Z%(g,g). Up to isomorphisms: a = 1 + ta; + t%ay + ... with
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a; € Endyg. Possible first order deformations ¢; are classified up to isomorphism by H?(g,g). In

particular if H?(g, g) = 0, then all deformations of g are in fact trivial (isom to ¢; = ¢z = ¢3 = --- = 0).

(1) kill ¢; by applying a™) = 1+ tay +.... This gives
thZPEM+¢%ﬂay%h“.

(2) Now one discovers that we have [co] € Z%(g,g) = B?(g,9) so we can kill it as well by a(? =
1+t2ay + .... This gives [z,y]s = [2,y] + t3c3(x,y) + .. ..

(3) Now one continues. Use the composition --- o a(® o a(® o a(!) =: @ (this makes sense since only
finitely many degrees involved in each step). This transforms the original deformation to the trivial

one with [z,y]: = [z, ],

Corollary 23.12. If g is a semisimple Lie algebra over R or C, then it is deformationally rigid in

the sense that all its deformations are trivial.

Example. Say g = k> = (x,y) ([z,y] = 0). Then, H?*(g,g) = k? so have 2-parameter deformation.
Can take [x,y] = tz + sy with ¢,s € C. If (¢,s) # 0, all are isomorphic as Lie algebras (though not as
deformations) by action of GL(C). Can always bring it to the form [z,y] = y, i.e. to the Lie algebra

aff; := Lie a b
0 0

Suppose g a Lie algebra with ¢; € Z2%(g,g) and [¢1] # 0 € H?(g, g). Can we lift our deformation mod
t3?7 Can we find ¢, so that

mbeC}ng

[IE, y]t = [‘Ta y] + t01($, y) = t262($, y)
satisfies Jacobi? If ¢; = 0, the condition would be dca = 0 (that it is a cocycle). In general, the condition
is

1 3
dey = 5[01301} € Homk(/\ 9,9)

where [—, —] is the Schouten bracket (this is some explicit quadratic expression we won’t write down).

Ezercise. [c1,c1] is a cocycle.

Hence we get a cohomology class [[cl,cl]} € H3(g,g). To get a lifting (i.e. to solve dey = [e1,c1]),
this needs to be a coboundary, i.e. the obstruction class [[c1, ¢1]] needs to vanish.

Remark 23.13. Solving these extension problems depends on the choices you make along the way (i.e.

whether or not you can find ¢y depends on what you choose for ¢;), so things can get hairy fast.

One can also consider deformations of modules. So you have g and a module V', and you want to

deform to a module V [t]. Say p = pv : ¢ — End V. We now want
pr=p+tpr +t2ps+ ... with p; : g — End V.

We start again with first order analysis (i.e. with working mod ¢2): p; = p+tp1+O(t?). Note V[t]/t2V[t] =
V &tV so we get an extension
00—tV -VaotV/ —V —20
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of modules. We see that first order deformations of V, up to isomorphism, are classified by H! (g,End, V) =
Extl(V, V). Deformations are a non-linear problem, so we are not done yet.

Can we lift p; = p+tp1 + O(t?) modulo #3? Again, one gets that they need dps = [p1, p1]. Thus, you
have an obstruction class [[p1, p1]] € H*(g, Endg V) and you can lift iff it vanishes.

23.2 Levi decomposition theorem

Recall 23.14. The radical of g is its maximal solvable ideal, denoted rad(g). The quotient g5 :=
g/ rad(g) is the largest semisimple quotient of g.

Theorem 23.15 (Levi decomposition). Let g be a f.dim Lie algebra over R or C. The exact sequence
0—rad(g) > g—gss — 0

splits. In particular, gss acts on the radical rad(g).
Warning 23.16. rad(g) is not abelian in general.

Once we establish this, we’ll use it to prove the 3rd fundamental theorem (that every f.dim Lie algebra
is the Lie algebra of some simply connected Lie group).
Tuesday’s lecture will be prerecorded and posted online at the usual time. No zoom meeting/real-time

class meeting on Tuesday.

24 Lecture 24 (5/18)

Last time we introduced the Levi decomposition theorem.

Recall 24.1 (Levi decomposition). Let g be a f.dim Lie algebra over R or C. The exact sequence
0—rad(g) =9 — gss — 0

splits. In particular, g = gss x rad(g), and gss acts on the radical rad(g).

Above, recall (10qg) is the sum of all solvable ideals in g.

We stated this last semester and said the proof will be given later. It’s later.

Proof of Levi decomposition. Choose a splitting of vector spaces g = rad(g) @ gss. It’s commutator will
be of the form

2
(@, ), (b, 9)] = ([,0] = [y, a] + [a,b] + w(,y), [x,y]) for some w: [\ gss — rad(g),
where a,b € rad(g) and z,y € gss. Since rad(g) is solvable, it has the filtration
rad(g) =D’ > D' > ... > D" > D" =0 with D! = [D?, D]

(we suppose D™ # 0). We can replace g by g/D™ and then use induction in dim g to assume that w =0

mod D", i.e. w: A"gss — D™ Now, D" is an abelian ideal in g. Hence, since D" is abelian, our
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commutator satisfies Jacobi iff w is a 2-cocycle. Now, Whitehead’s lemma says that H> (gss, D™) =0, so

w = dn is a coboundary. Now, we can use n to modify the splitting, so that w becomes 0. ]

We would like to prove the 3rd Lie theorem (any f.dim Lie algebra is the Lie algebra of a Lie group)
and also Ado’s theorem (any f.dim Lie algebra has a faithful rep). Doint so will require some more

technology, which brings us to....

24.1 The nilradical

We will consider nilradicals of solvable Lie algebras.
Say a is a solvable Lie algebra. By Lie’s theorem, in some basis of the adjoint representation (or any

rep), the matrices of ad(x) (x € a) are upper triangular:

/\1 (CL) *
ad(z) =
An(a)

Definition 24.2. The nilradical of a is the subset n of nilpotent elements (i.e. a € a s.t. ad(a) is
nilpotent).

Using this upper triangular basis, one can write this as
n = {a € a:ad(a) is strictly upper triangular} .

This is an ideal containing [a, a] (commutator of two triangular matrices is strictly upper triangular), so
a/n is abelian.
The characters Aq,...,\ € (a/n)" are a spanning set. If not, there is an element of a, not in n, but

whose adjoint matrix is nilpotent. Note that some \; may be zero (e.g. if a is nilpotent, they are all 0).
Lemma 24.3. Ifd:a — a is a derivation, then d(a) C n.

Proof. Look at 1-parameter group of automorphisms e‘? : a — a. If b € a with [a,b] = A(a)b (X € (a/n)"),
then
[e"(a), e"(b)] = A(a)e' (D),

ie. [a,e'd(b)] = Meta)etd(b). Hence, if A(a) occurs in a, then so does A\¢(a) = A(e~*¥(a)). By ‘occurs’
we mean shows up as a Jordan-Holder factor. Only finitely many characters can occur, so this 1-parameter
family must be constant. Thus, e!\; = \; for all i. Therefore, e*? acts trivially on (a/n)* so it acts

trivially on a/n, i.e. d|q/n = 0 which exactly says d(a) C n. [ |

Corollary 24.4. If a =rad(g), then g acts trivially on a/n.

24.2 Exponentiating nilpotent and solvable Lie algebras, and 3rd Lie theorem

Say g is a f.dim solvable Lie algebra over K =R or C.
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Theorem 24.5. There exists a simply connected Lie group G with Lie algebra g with the exponential
map exp : g — G being a diffeomorphism. Moreover, if g is nilpotent and we identify exp : g — G, then
multiplication is given by a polynomial

p:rgxg—g

Example. Say g is the Heisenberg Lie algebra $ = (z,y,c) with [z,y] = ¢ and [z,¢] = 0 = [y, ]

Equivalently,
0 % =
H= 0 0 =
0 0 0

is the Lie algebra of 3 x 3 upper triangular matrices. Can check that

0 a 7« 1 « 7—!—0‘75
exp|0O O pBl=1]0 1 I}
0 0 O 0 0 1

In these coordinates, multiplication looks like
1
(@8 5 (@ 87) = (a4 a5+ 5y 49"+ 50 = ).

Proof of Theorem[24.5 Induct on dimg. Suppose known for all Lie algebras of dimension < dimg. Fix
X : 8 — K a nontrivial character (exists since g solvable). Let go := ker x, an ideal of codimension 1 in
g. Hence, g = Kd @ g is a semidirect products (d acts as a derivative of gg). We know by inductive

assumption that go = Lie(Gp) for some Gy with
exp : go — Go

a diffeomorphism, and P : gg X gg — go a regular multiplication map, polynomial if go nilpotent.

d

Consider the 1-parameter group of automorphisms e® : go — go. Can now introduce group law on

0 =Kd® gof]
(,) % (y,5) = (P(a,e"(y)), t + )

where z,y € go and ¢, s € K. One can check (exercise)

(1) this is a group law, defining a Lie group G with Lie(G) = g and exp : g — G a diffeomorphism.

More precisely,

tnfldnfl u_ 1
exp(td + x) = (t,x¢) where z; = Z (z) e

n! U
n>1

a8\ _ (e g
1o 0o/ " o 1

(2) If g is nilpotent, the multiplication law is polynomial

Example.

49We want a semidirect product
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Definition 24.6. If g is nilpotent, the corresponding simply connected group G is called unipotent (it

acts by unipotent operators in the adjoint representation).

Theorem 24.7 (Third Lie Theorem). Every f.dim Lie algebra over R or C is the Lie algebra of some
Lie group.

Proof. By Levi decomposition, we have g = gss X a where a = rad(g) is solvable. By previous theorem,
a = Lie A with A simply connected. Furthermore, since g, is semisimple, we can write g,; = Lie G5 with
G s simply connected. Furthermore, G4, acts on a by automorphisms, so it acts on A by automorphisms.

We can now form G = G4, X A and by construction Lie G = g. |

Corollary 24.8. A simply connected complex Lie group G has homotopy type of its semisimple part G,
and hence of G<,. Specifically,
G=G, xR™

as a manifold.

Remark 24.9. Almost the same thing holds for real group. If G is a simply connected real Lie group,
we also have G ~ G, (homotopy equivalent) and G5 ~ K, the simply connected compact group

corresponding to €5 C ¥, the semisimple part of ¢ = g7,.

The upshot is that any Lie group has the homotopy type of some compact Lie group (its maximal

compact subgroup).

24.3 Algebraic Lie algebras

We want to show every Lie algebra has a faithful representation. We will show this over R, C, but it is

in fact true over any characteristic.

Definition 24.10. A f.dim Lie algebra g over C is algebraic if it is the Lie algebra of an algebraic
group, i.e. g = Lie(G) where G = K x N with K reductive and Lie N nilpotent (i.e. N unipotent).

Non-example. Consider g, = (d, z,y) with [z,y] =0, [d,z] = = and [d, y] = V2.

Ezercise. This is not an algebraic Lie algebra, ultimately because /2 is irrational.

Non-example. Consider go = (d, z,y) with [x,y] =0, [d,2] =, and [d,y] = y + =.

Ezercise. This is not algebraic, ultimately because d is a nontrivial Jordan block.
On the other hand
Proposition 24.11. FEvery f.dim Lie algebra over C is a Lie subalgebra of an algebraic Lie algebra.

Proof. We first make a definition. Say g is n-algebraic if g = Lie G and G = K x A, where K is reductive
and a = Lie A is solvable with dim(a/n) < n. Note 0-algebraic = algebraic.

Example. g1, go are l-algebraic.
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Now on to the proof. Any g is of the form g = g5 X a with a = rad(g) solvable. Thus, any f.dim
Lie algebra is n-algebraic for some n. Hence, it suffices to show that an n-algebraic Lie algebra can be
embedded into an (n — 1)-algebraic Lie algebra (when n > 1).

Suppose g is n-algebraic, so g = Lie G and G = K X A with K reductive and A simply connected with
a = Lie(A) solvable satisfying dim(a/n) = n. Pick d € a but not in n s.t d is K-invariant (exists since K
acts trivially on a/n and since reps of K are completely reducible). Thus, ad(d) is a derivation of a, so

we can write
-

a= @ a(B:)

i=1
as a sum of generalized eigenspaces for ad(d). This decomposition is K-stable (K commutes with d).
Pick character x : @ — C so that x(d) = 1.

Consider subgroup I' C C generated by §;, I' = Z™. Let ay,...,a,, be a basis and write

m
Bi = Zbijaj, bij e 7.
j=1
Let T'= (C*)™, and m-dimensional torus. We make T act on a via z = (21, ...,2y) € T satisfies

bi]’
Zla[ﬁi] = sz :
j=1
This T' commutes with K, so T acts on G = K x A. Form

G=TxG=(KxT)x A.

Define o’ C Lie(T) x a C Lie(G) by
o' = (kerx,d — a) where a = (ai,...,a,) € LieT =C™.

Note that a|a[gi] = > bjja; = fB;. Thus, d, @ have the same eigenvalues (a semisimple, d possibly not),
so d — « is nilpotent. Thus, n’ C o/, the nilradical, is bigger: ' = (n,d — «) and dim(a’/n’) =n — 1. We
now let A’ be the simply connected Lie group corresponding to a’, so A’ C (K x T) x A. Note that

G=(KxT)x A=(KxT)x A

s0 § = Lie G is (n — 1)-algebraic and contains g = Lie(K x A). [ |

Example. Recall g; = (d, r,y) with [d,z] = z, [d,y] = v/2y. Add new generator § so that [§,y] = y and
[0,2] =0 = [6,d]. Call the result algebra g;. Note that it is algebraic as g1 = (§,y) ® (d — V26, z). We
see that g1 = b ® b with b a 2 dimensional noncommutative Lie algebras, = Lie Aff(1), the Lie algebra of

the group of affine transformations of a line.

Example. Recall go = (d, z,y) with [d,z] = z, [d,y] = z + y. Adjoint § satisfying [0, z] = 0 = [J, d] and
[0,y] = z. Let ga = (3,d, z,y). This is C(d — d) x § with H = (J, z,y) the Heisenberg Lie algebra.
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24.4 Faithful representations of nilpotent Lie algebras

Let n be a f.d nilpotent Lie algebra. We now n = Lie N with N unipotent, and exp : n = N an

isomorphism. Furthermore, the induced group law on n is polynomial P : n x n — n.

Proposition 24.12. Let O(N) be the space of polynomial functions on N = n, O(N) = C[n] = Sn*.
Then, O(N) is invariant under the action of n by left-invariant vector fields. Moreover, we have a

canonical filtration

oN)=JWa

n>1

where V,, C O(N) are f.dim subspaces, Vi C Vo C ..., and nV; C V;_1.

Prove this next time.

25 Lecture 25 (5/20): Last Class

25.1 Ado’s Theorem
We're working towards proving Ado’s theorem. We will first prove it in the case of nilpotent Lie algebras.

Recall 25.1. Say n is a nilpotent Lie algebra, then we can write n = Lie N with N a unipotent group and
exp : n = N an isomorphism. The induced group law on n, a deformation of addition, is a polynomial

P:axn—n,
We ended last time with the statement of the following proposition.

Proposition 25.2. Let O(N) be the space of polynomial functions on N =2 n, O(N) = C[n] = Sn*. Then,
O(N) is invariant under the action of n by left-invariant vector fields. Moreover, we have a canonical
filtration

oN)=JWa

n>1

where V,, C O(N) are f.dim subspaces, Vi C Vo C ..., and nV; C V;_1.

Proof. Say x € n, so it has an associated left-invariant vector field L,. For f € O(N) = Sn*, we have,
by definition,

flyxte) = o f(P(y,tx)).

t=0 ot t=0

(L2 f)(y)

T ot
Since f, P are both polynomials, we see that L, f is a polynomial in y, so L, f € &(N). Thus, O(N) is

invariant under the action of n by left-invariant vector fields.

Now we given the filtration. Recall that n has a lower central series filtration
n=Dy(n) D Di(n) D+ D Dp(n) =0 where D;(n) = [n, D;_1(n)].
We can take orthogonal complements of these spaces to get

0= Do(n)* ¢ Dy(n)* Cc--- C D)t =n.
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Now pick a suff. large positive integer d, and give D;(n)* degree d’. This gives an increasing filtration
F* on the symmetric algebra Sn* = ¢(N). Write

Pla,y)=a+y+ > Qia,y) where Qi :nxn— [n,u]

i>1

and @; is degree 7 in y@ Now note tha@

Note that f(y) — 0. f(y) lowers the degree in F'*.
Exercise. If d > 0 big enough, then also the second term f + 0g, (2,y)s lowers the degree.
Hence, we may take V;, = F™(Sn*) and will have L, : V,, — V,,_1. [ |

Example. Consider the Heisenberg Lie algebra $ = (z,y, ¢) with [z,y] = ¢ while [x,¢] =0 = [y, ] (i.e.

c central). Then,

1
eta:esy — et$+sy+2tsc

(all higher commutators vanish). If u = pz + qy + rc¢ with p,q,r € C then multiplication in these

coordinates is given by

1
(P1,q1,71) * (P2, G2,72) = (P1 + P2, @1 + q2,71 + 72+ 5(171% —p2q1)).

You can alternative describe things using upper triangular nilpotent matrices.

1 ppon 1 p2 m 1 pr+p2 m1+72+Dp1g2
1 ¢ 1 q@|= 1 @1+ g2
1 1 1

which is a slightly different, but isomorphic, group law. One can check that
1 1
L.=0,, Ly=0,— 5(18,«, and L, =0, + ip&n.

Setting degp = deg ¢ = d and degr = d2, these operators lower degree if d > 1.

Corollary 25.3. Every f.dim nilpotent Lie algebra over C has a faithful f.dim representation, and there-

fore is isomorphic to a Lie subalgebra of the Lie algebra of strictly upper triangular matrices.
Proof. By definition, &(N) is a faithful n-module. Hence, for some n, the space V;, is also faithful. W
We now prove Ado’s theorem.

Theorem 25.4 (Ado’s Theorem). Every f.dim Lie algebra over C has a faithful f.dim representation,
i.e. is a Lie subalgebra of gl,(C).

50 Apply Campbell-Hausdorff expansion to P(z,y) = log(e®e¥)
51Keep in mind P(y,tx) =y +tz + 3 Qi(y, tx)
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Proof. We know from last time that g can be embedded into an algebraic Lie algebra, so we may assume
g is itself algebraic, i.e. that g = LieG where G = K x N with K reductive and N unipotent (i.e.
Lie N = n) with action of K. Thus g = ¢ x n with £ = Lie K and n = Lie N. Let 3 C ¢ be the centralizer

of n. Since £ is reductive and 3 is an ideal, there is a complementary ideal ¢ s.t. ¢ = & & 3. Hence,
g=txn=¥¢xnags;.

Now, note that if g = g1 @ g2 where g; has a faithful rep V;, then g has faithful rep Vi @& V5. Therefore,
we may assume g is indecomposable, so assume that 3 = 0.

Now, ¢ acts faithfully on n. g = € x n acts on O(N) where = € n acts by L,, and y € ¢ acts by L, — R,
(adjoint action). Thus, it also acts on the spaces V,,. Fix n so that the action of n on V,, is faithful. We
claim all of g acts faithfully on V,,. Suppose that nonzero y € g acts by 0 on V,,. Write y = (y1,y2)
(y1 € t and y2 € n), and pick z € n so that a = [y, z] # 0 (possible since 3 = 0). Then, a € n acts by 0 on

V.., a contradiction. [ ]

25.2 Last topic: Borel subalgebras and flag manifold
Note 10. Got distracted for a few minutes and missed some stuff that looks important... whoops

Definition 25.5. A Borel subalgebra is a Lie subalgebra conjugate to b,. A Borel subgroup of
G is a Lie subgroup conjugate to By. A parabolic subalgebra is a Lie subalgebra containing a Borel

subalgebra. A parabolic subgroup is a Lie subgroup containing a Borel subgroup.
Since all pairs (h,II) are conjugate, this definition does not depend on the choice of (h,II).
Lemma 25.6. B, is its own normalizer in G.

Proof. Take v € G such that yByy ! = B,. Let H' = yB,y ! C By (H C By a maximal torus). It
is easy to see that we can conjugate H' back to H inside B, . Therefore, we may assume that H' = H.

Thus, v € N(H) which we recall fits in an exact sequence

11— H-—NH) —W —1.
We also remark that v preserves positive roots, so preserves the set IT of simple roots. The only element
of the Weyl group which preserves the set II is the identity, so actually v € H C B, and we win. ]

Corollary 25.7. The set of Borel subgroups (subalgebras) is G/B4, a homogeneous space and complex
manifold. We call this the flag manifold of G.

Note that this manifold is canonically attached to G, and depends only on g5 C g = Lie G.

Remark 25.8. .
dimG/By = |Ry| = 3 (dimg — dimb) .

Example. If G = GL,, (or SL,,), then we can take B to be the upper triangular matrices, and G/By =
F, is the set of complete flags in C". For example, if G = SLo, then G/By = CP' is the Riemann sphere.

Note that G/By is compact in the above example. This is in fact true in general.
Let G° C G be the compact form.
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Remark 25.9. g°+ by = g. Note g° contains things like e, + e_,, and i(e, F e_,) while b} 3 ieq, eq

(a > 0 throughout this sentence). Hence, their sum contains all the e,’s and the Cartan subalgebra.

As a consequence, the orbit G¢-1 C G/B. contains a neighborhood of 1 € G/B (since g¢ — g/b.).
By translation, we see G - 1 contains a neighborhood of all its elements, so it is open. It is also closed
since it is compact. Since G/By is connected, we conclude that G¢ -1 — G/By is surjective, so G/By
is compact.

The above shows that G¢ acts transitively on G/B. It’s stabilizer is Stab(1) = G° N By.

Note 11. Distracted and missed more stuff
Sounds like the stabilizer is H¢ = (S')", a maximal torus in G°.
Corollary 25.10. G/B; =~ G°/H°.

Corollary 25.11 (Iwasawa Decomposition). The usual notation is K = G°, N = N4, and A =
exp(ih®) C H, the non-compact part H. The multiplication map

KxAxN-—G

is a diffeomorphism, so G = KAN.

(Compare e.g. with Polar decomposition)

Proof. As shown above, the map ¢ : G° X By — G is surjective. Further,
©(g1,b1) = p(ga,b2) < g1 = gos,by = s~ 'by for some s € HE.

Let B} = AN, so By = H°BY. Hence, G° x B = G is a diffeomorphism. Also, A x N; = B{ is a
diffeomorphism, so
G°XAx N, -G

is a diffeomorphism. [ ]

Another realization of flag manifold One can construct the flag manifold alternatively as the orbit
of a highest weight line in an irreducible representation with regular highest weight. Say A € P, dominant
integral regular, where regular means A(h;) > 1 for all i (e.g. A = p so p(h;) = 1). Let Ly be the irrep
with highest weight A\, and let vy be a highest weight vector, so Cvy € PLy. Let & := G - Cvy C PL) be
the orbit of this line.

Claim 25.12.

0 = G/B;.
Proof. What is the stabilizer S of Cvy? Clearly, S O By since vy a highest weight vector. Also, for
a € Ry, e_quy # 0 as A\(h;) > 1@ We see from this that the stabilizer of Cvy in g is by. Hence, S

normalizes by, so S C By, so S = By. This shows that & is a closed orbit in PL), so G/B is a complex

(smooth) projective variety. [ ]

Remark 25.13. Partial flag manifolds are also complex projective varieties. Can prove similarly using

non-regular weights.

52also wrote hovy = muy with m > 0, but I don’t see why this is relevant
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Borel fixed point theorem Only 8 minutes left, so let’s end with a bang.

Theorem 25.14. Let a be a solvable Lie algebra over C, and let V' be a f.dim a-module. Let X C PV be
a closed subset preserved by A. Then, there exists x € X such that Ax = x.

Non-example. SLy(C) ~ P! without fixed points.

Proof. Induct in n = dim a. The base n = 0 is trivial. Since a is solvable, it has an ideal a’ of codimension
1. By induction, ¥ = X of # (). Furthermore, a/a’ acts on Y, so we only need to prove the theorem when
dima=1.

Say a = {(a) with a acting by a linear operator a : V. — V. We can scale a by complex numbers.
In particular, by rotating, we may assume that the real parts of all its eigenvalues are different. Pick
xo € X, and consider e*® - 2y. If we send t — oo, the eigenvalue with largest real part will ‘dominate’

resulting in the existence of a limit © € X (no particular vector has a limit, but the whole line does).

This limit is fixed by a, so we win. |

Corollary 25.15. Any solvable subalgebra of g is contained in a Borel. Thus, Borels are simply mazximal

solvable subalgebras.

Proof. Say a C g solvable. Then, it has a fixed when acting on G/B; C PLy. This fixed point is a Borel

subalgebra b, so exp(a) normalizes b, so a C b. u
Corollary 25.16. Any element of g is contained in some Borel subalgebra.
Example. When g = gl,,, this says any matrix can be upper triangularized in some basis.

We don’t have time to give the proof (it’s in the notes), but similarly...

Proposition 25.17. Any nilpotent subalgebra of g (consisting of nilpotent elements) is contained in a

conjugate to ny.. Hence, conjugates of ny are the same thing as mazimal nilpotent subalgebras.

One can show that the normalizer of ny is By, so any maximal nilpotent subalgebra n is contained
in a unique Borel n, and n = [b, b]. Therefore, maximal nilpotent subalgebras are also parameterized by
the flag manifold G/By.
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| | This is another instance of the double centralizer property|. . . . . .. ... .... ... .... 35
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| | This was a homework problem once upon a time{ . . . . .. ... ... ... ... ..., ..., 71
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s 112
l Question: What isa?| . . .. ... ... ... .. .. 117
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