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1 Hannah Larson: Introduction to the tautological ring of M g,n

1.1 Lecture 1 (7/11/23): Chow Rings

Let X be a variety.

Definition 1.1.1. The cycles on X, Z(X), is the free abelian group on irreducible subvarieties of X,

Z(X) = Z{irred. subvars of X}. ⋄

This group is too big, so we quotient out by rational equivalence. Given a family of subvaratieis

Z ⊂ X × P1 ! P1, we say any two fibers are rationally equivalent. That is, we define

Rat(X) :=
{
Φ0 − Φ∞ : Φ ⊂ X × P1 flat over P1

}
.

The Chow group is CH∗(X) = Z(X)/Rat(X), graded by dimension. Given Y ⊂ X irreducible, we write

[Y ] ∈ CH∗(X) for its class in Chow. Extend this to reducible varieties in the natural way.

Assumption. Now assume that X is a smooth variety.

Write CH∗(X) = CHdimX−∗(X). This is a graded ring w/ intersection product satisfying

A[B] = [A ∩B]

if A,B are generically transverse.

Definition 1.1.2. Say A,B are transverse at a point p if p is a smooth point of both, and TpA +

TpB = TpX. Equivalently, codimTpA + codimTpB = codimTp(A ∩ B). We say A,B are generically

transverse if they are transverse at a general point in each component of A ∩B. ⋄

Let’s mention some basic properties of this Chow ring

(1) (pushforward) If f : X ! Y is proper, get f∗ : CH∗(X)! CH∗(Y ) via

f∗[A] = (deg f |A) · [f(A)] if dim f(A) = dimA

(otherwise, the pushforward is 0).

Example 1.1.3. When Y is a point, get the degree map deg : CH∗(X)! Z on 0-cycles. △

(2) (pullback) If f : X ! Y is a map of smooth varieties, can define f∗ : CH∗(Y ) ! CH∗(X) via

f∗[A] = [f−1(A)] when A is generically transverse to f .1

(3) (push-pull formula)

(f∗[A])[B] = f∗([A] · f∗[B]) .

Slogan. f∗ is a CH(Y )-module map (though not a ring map)

Example 1.1.4. Say ι : D ⊂ X is a divisor, so [D] = c1(O(D)). Then,

[D]2 = ι∗[1] · [D] = ι∗([1] · ι∗[D]) = ι∗ι
∗c1(O(D)) = ι∗(c1(O(D))|D) .

Note that O(D)|D is the normal bundle ND/X . △
1Sounds like this is always satisfied if f is flat
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(4) (excision) Say Z ⊂ X is closed and U = X \ Z. Then, we get a right exact sequence

CH∗(Z) −! CH∗(X) −! CH∗(U) −! 0.

If Z is smooth, we’ll sometimes write this as

CH∗−c(Z) −! CH∗(X) −! CH∗(U) −! 0,

where c = codimX(Z). The first map is a group homomorphism, but the second is a ring homo-

morphism.

(5) (homotopy) If V ! X is an affine bundle, then CH∗(X)! CH∗(V ) is an isomorphism.

Example 1.1.5. CH∗(An) ≃ CH∗(∗) = Z. △

Theorem 1.1.6. If X =
⊔
Xi with Xi

∼= Ani (X stratified by affine spaces), then CH∗(X) =
⊕

Z · [Xi].

(use excision + homotopy)

Example 1.1.7. Pn = An ⊔ An−1 ⊔ · · · ⊔ A1 ⊔ ∗. Hence, CH∗(Pn) is freely (additively) generated by

the fundamental classes of the closures [An−k] = [Pn−k]. What’s the ring structure? Write ζ = [Pn−1].

Intersect k transverse hyperplanes, to see that [Pn−k] = ζk, [∗] = ζn and 0 = ζn+1. Thus,

CH∗(Pn) =
Z[ζ]

(ζn+1)
. △

Example 1.1.8. Consider Grassmannian Gr(k, n). This admits a stratification into Schubert cells Σλ, Hannah

wrote G. I

don’t know

why I wrote

Gr

where λ = (λ1, . . . , λk) is a tuple of integers λi ≤ n− k. Furthermore, codimΣλ = λ1 + · · ·+ λk.

Recall Gr(k, n) parameterizes k-dimensional subspaces of an n-dimensional vector space. This admits

the following quotient presentation

Gr(k, n) = {full rank k × n matrix} /GLk .

Each GLk-orbit has a unique representative in row reduced echelon form, and the Schubert cells corre-

spond to different row reduced echelon forms. Σλ corresponds to matrices w/ rref having pivots prescribed

by λ.

Example 1.1.9. Gr(2, 4).

Σ(0,0) ↔

(
1 0 ∗ ∗
0 1 ∗ ∗

)
∼= A4

Σ(2,1) ↔

(
0 1 ∗ 0

0 0 0 1

)
∼= A1

I missed how to go from λ to the description in terms of matrices... △

Each Schubert cell is an affine space, to the classes of their closures give a basis for the Chow groups

of Grassmannians. What about ring structure? Something something Schubert calculus something

something.

In general, can at least give a set of multiplicative generators. The special Schubert classes are

those where the partition λ has just one part, Σp = Σ(p,0,...,0). Can think of these as {Λ : Λ∩Fn−k−p+1 ̸=
0} (Fblah fixed subspace of dimension blah). There’s a ‘Giambelli formula’ saying how to write [Σλ] in

terms of [Σp].
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Let

0 −! S −! O⊕n −! Q −! 0

be the universal sub/quotient bundles on Gr(k, n). Say Fn−k−p+1 = ⟨v1, . . . , vn−k−p+1⟩. Each vi cor-

responds to a section of O⊕n, so give sections vi ∈ H0(Gr(k, n), Q). These v1, . . . , vn−k−p+1 become

dependent precisely when ⟨v1, . . . , vn−k−p+1⟩ meets the kernel Λ of this map, i.e. when Fn−k−p+1∩Λ ̸= 0.

Thus,

[Σp] = locus where v1, . . . , vn−k−p+1 become dependent = cp(Q)

(note rankQ = n− k, so n− k − p+ 1 = rankQ− p+ 1). By the Whitney product formula, we have

1

1 + c1(Q) + · · ·+ cn−k(Q)
= 1 + c1(S) + · · ·+ ck(S).

Formally expanding the LHS, all terms in degree > k must vanish. These turn out to give all relations

among the Chern classes of the tautological quotient bundle, so lead to a presentation for the Chow ring

of Grassmannians. △

1.2 Lecture 2 (7/13): Boundary Strata & Excess Intersection

Recall the discussion on the Grassmannian and its stratification into Shubert cells. We’ll talk about

something similar for the moduli space of curves. We’ll stratify it based on the topological type of the

curve. These are encoded using dual graphs which have (labelled) vertices for each component of the

curve (labelled w/ the genus of that component), and there is an edge for each node (connecting the

components this node meets). Finally, we have “half-edges” for each marked point (labelled by which

marked point it is).

Fact. The stratum with dual graph Γ has codimenion equal to the number of nodes.

Question 1.2.1. How can we describe the closure of these strata?
TODO:

Draw an

example

Write

MΓ :=
∏
v∈Γ

Mg(v),n(v)
ξΓ−−!Mg,n

(the map is given by gluing curves together as prescribed by the dual graph).

Fact. The image of ξΓ is the closure of the stratum of curves of topological type Γ. Furthermore,

Im ξΓ′ ⊂ Im ξΓ ⇐⇒ there exists an edge contraction Γ′ ! Γ.

Remark 1.2.2. If you contract a self-loop, the corresponding vertex has its genus go up by one. If you

contract an edge between different vertices, you sum their genera. ◦

Question 1.2.3. What is ξA∗[1] · ξB∗[1] ∈ CH∗(Mg,n), for two dual graphs A,B?

Example 1.2.4. Say A is the graph (1)−(4) and B is (2)−(3). In the intersection of these strata, it turns

out there are two components corresponding to the dual graphs (1)− (1)− (3) and (2)− (2)− (1); both

of these edge contract to both A,B (furthermore, any dual graph with this property is a specialization

of at least one of these). △

Definition 1.2.5. An (A,B)-structure on a graph Γ is the data of

• An edge contraction Γ
α
−! A (color contracted edges red)

3



• An edge contraction Γ
β
−! B (color contracted edges blue)

We say (α, β) ∼ (α′, β′) is there’s an automorphism γ ∈ Aut(Γ) s.t. α′ = α ◦ γ and β′ = β ◦ γ.2 We call

such a structure generic if no edge is colored both red and blue. ⋄

Fact. Generic (A,B)-graphs are in bijection with the components of the fiber product

FAB MB

MA Mg,n.

ξB

ξA

For FAB , irreducible comp. = connected comp.

Example 1.2.6 (Continuing earlier example...). Note that both A,B are codimension 1 (each has 1

edge) while both of the generic (A,B)-graphs are codimension 2. Thus, this intersection is generically

transverse, and so the product in the Chow ring is simply the sum of these two cycles (maybe modulo

coefficient caveats). △

Example 1.2.7. Let A be C(2)−(1) and let B be (1)−(3). Note that there is an edge contraction taking

A to B (contract the self-edge), so their intersection won’t be transverse. The generic (A,B)-graphs in

this case are

C(2)− (1) C(0)− (2)− (1) (1)− (1)︸︷︷︸−(1)

(the middle vertex in the third graph above has a self-loop, indicated by the underbrace). Multiple

remarks:

• The middle graph above hst multiple (A,B)-structures, not all of which are generic

• It is possible for one graph to have multiple (A,B)-structures

If you have two different generic (A,B)-structures on a graph, these will correspond to two different

components in the fiber product.

• There’s an uncolored edge in the generic (A,B)-structure on the first graph

In general, uncolored edges will be called ‘excess’ and correspond to non-transverse intersections. △

Excess Intersection Let X be smooth. Say A,B ⊂ X are subvarieties of codimension a, b. Then, the

excess intersection formula says that

[A][B] =
∑

γ⊂A∩B
conn. comp.

ιγ,∗(EY ) for some EY ∈ CHd(Y ),

where d = dimX − a− b.

Example 1.2.8. Say A,B are generically transverse, so dimY = d = dimX − a − b. In this case,

EY = [1] is the fundamental class of Y . △

Example 1.2.9. Say A = B, the other extreme. In this situation, one uses push-pull to get

[A][A] = ιA,∗[1][A] = ιA,∗(ι
∗
A[A]) = ιA,∗ctop(NA/X) so EA = ca(NA/X).

2Sounds like there’s some subtelty in what’s meant by an automorphism of the graph
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For thinking about self-intersections, imagine moving A slightly off itself and then taking intersections.

If the normal bundle has global sections, then you could use one to perturb A. This is why the normal

bundle appears above. △

Example 1.2.10. Say Y is l.c.i.

Slogan. Expected normal bundle over actual normal bundle

In this case,

EY =

[
c(NA/X |Y )c(NB/X |Y )

c(NY/X)

]
d

,

i.e. its the degree d piece of the above expression (written in terms of total Chern classes). △

In our situation, we had a picture like

FA,B B

A X

ξB

ξA

In this case, the formula looks like

ξA,∗[1] · ξB,∗[1] =
∑

Y⊂FA,B
conn. comp.

ξY,∗(EY ),

where

EY =

[
ξ∗Y,Ac(NξA) · ξ∗Y,Bc(NξB )

c(NξY )

]
d

.

Above, ξY : Y ! X, ξY,A : Y ! A, ξY,B : Y ! B, and our “normal bundles” are NξA = ξ∗ATX/TA, etc.

Remark 1.2.11. The above version holds when A,B are smooth and the component Y is also smooth.

Probably you can write down a correct statement when they’re not too badly singular (e.g. lci), but in

our application, everything will be smooth. ◦

Back to moduli of curves To apply this general formula, we need to understand the components of

the fiber product (which we said something about before), and we need to understand the normal bundles

of these gluing maps ξA :MA !Mg,n. Somehow, NξA corresponds to “smoothing the nodes,” whatever

that means.

Example 1.2.12. Given a node like X, the “smoothing parameter” for that node is the tensor product

of the tangent bundles of the two branches (in the normalization). △

Sounds like the final answer is

NξA =
⊕

edges e=X−X′

TX ⊗ TX′

(or something like this? I don’t really follow). Above, have tangent spaces at marked points. Then,

c(NξA) =
∏

e∈E(A)

(1− ψx − ψx′) ,

5



where these are the ψ-classes from Eric’s (second) lecture. What about the pullback to some component

Y ? One will get

ξ∗Γ,Ac(NξA) =
∏

e∈E(Γ)
not red

(1− ψx − ψx′)

(product over edges not being contracted). One gets a similar expression with B in place of A (and blue

in place of red). Finally,

c(NξΓ) =
∏

e∈E(Γ)

(1− ψx − ψx′) .

Putting this all together,

EΓ =

 ∏
e∈E(Γ)

not colored

(1− ψx − ψx′)


d

=
∏

(−ψx − ψx′)

(recall that a generic graph has no purple edges)

Example 1.2.13 (Continuing from Example 1.2.7). The final answer is a sum of 4 things:

• C(2)− (1) where the (1) is decorated by a −ψx
This notation means the pull then push the ψ-class along the maps

M1,1
pr
 −M1,1 ×M2,3

ξΓ−!M4.

This is an example of a “decorated boundary stratum”

• C(2)− (1) where the (1) is decorated by a −ψx′

• C(0)− (2)− (1) with no decoration (pushforward of fundamental class)

• (1)− (1)︸︷︷︸−(1) w/ no decoration (pushforward of fundamental class) △

One can compute intersections of decorated boundary strata (push-pull’s of polynomials in κ, ψ).

Proposition 1.2.14. The span of decorated boundary strata in CH∗(Mg,n)Q is closed under multiplica-

tion. This subring is called the tautological subring R∗(Mg,n) ⊂ CH∗(Mg,n)Q.

1.3 Lecture 3 (7/13): Tautological & Non-tautological classes

Recall 1.3.1. The tautological subring R∗(Mg,n) is the subring generated by the decorated boundary

strata. ⊙

Question 1.3.2. What is CH∗(Mg,n)Q?

(Can even ask this with integral coefficients). This is really hard, so can break it apart into two

related questions.

Question 1.3.3. What is the structure of R∗(Mg,n)? When is R∗(Mg,n) = CH∗(Mg,n)Q?

We’ll spend most of our time on the second question, but first a few words on the first one...

There are known relations (“Pixton’s 3-spin relations”) among tautological classes. These are imple-

mented in a program called adm cycles. For some small values of g, n, it is possible to computationally

verify that these relations are complete.
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Open Question 1.3.4. Are Pixton’s relations all the relations?

Example 1.3.5. On M0,4, one has the stable graph > (0)− (0) < apparently corresponding to the class

of a point

1 3

(0) (0)

2 4

This has the same class as the graph

3 1

(0) (0)

2 4

△

1.3.1 Question 2

It is known that R∗(Mg,n) = CH∗(Mg,n)Q when

• g = 0 and n ≥ 3 (Keel)

• g = 1 and n ≤ 10 (Belorowwski)

• [g = 2 and n ≤ 9] or [g ≥ 3 and 2g + n ≤ 14] (Canning-L.)

• g = 2, n = 0 (Mumford)

• (g, n) = (2, 1) and (g, n) = (3, 0) due to Faber

However, equality does not holds when

• 2g + n ≥ 24 and g ≥ 2 (van Zelm)

• (g, n) = (2, 10)

• g = 1 and n ≥ 11

In all of these cases, the issue arises from the presence of odd cohomology on the moduli space.

Fact. When X is smooth, there is a cycle class map

CH∗(X) −! H∗(X).

In general, this map is neither injective nor surjective.

Example 1.3.6. Say E is an elliptic curve. Note the Cycle class map always lands in even degree.

However, H1(E) = Z⊕ Z, so it can’t be surjective. At the same time,

CH1(E) = Pic(E) −! H2(E) = Z

(via taking the degree of line bundles), so this map is not injective either (the kernel is Pic0(E)) △
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Theorem 1.3.7 (Kimor (can’t read the actual spelling),Totar). If X is smooth and proper/C and

CH∗(X) is finitely generated, then

CH∗(X)Q
∼
−! H∗(X).

So suppose CH∗(Mg,n) = R∗(Mg,n). The tautological subring is finitely generated (only finitely many

boundary strata and finitely many ways to decorate each). Thus, in this case, the cycle class map would

be an isomorphism, so Hodd(Mg,n) = 0. Conversely, if Mg,n has odd cohomology, then there must be

non-tautological classes.

Question 1.3.8 (Audience). What goes into the proof of this theorem?

Answer. The Chow ring being finitely generated implies that X has the “Chow-Künneth degeneration

property” which in turn implies that you can get a decomposition of the diagonal. ⋆

Example 1.3.9 (Deligne). It is known that H11(M1,11) ̸= 0. This comes from the fact that there’s some

holomorphic 11-form related to the weight 12 cusp form for SL2(Z). For similar reasons, it is also known

that CH0(M1,11) is huge, “there’s not a f.dim variety which dominates it.”

Open Question 1.3.10. Are these all the non-tautological classes in this case? △

Example 1.3.11 (Graber-Panonaipande (spelling), van Zelm). Let

Bg,2m =
{
(C, p1, . . . , pm, q1, . . . , qm) ∈Mg,2m : ∃π : C

2
−! E such that π(pi) = π(qi)

}
be the bielliptic locus. Then, [Bg,2m] ̸∈ R∗(Mg,2m) provided that g+m ≥ 12 ( ⇐⇒ 2g+n ≥ 24). △

(Sounds like G-P proved this when g = 2 and n = 2m = 20).

Remark 1.3.12. Via Andelo’s second lecture, the λ classes land in the tautological ring. ◦

Sounds like before the above example(s), people were under the impression that any “naturally oc-

curing classes” would live in the tautological ring.

Sketch of Proof of van Zelm when (g,m) = (12, 0). Consider the gluing map ξ : M1,11 ×M1,11 ! M12.

Also recall the (closure of the) bielliptic locus B12 ⊂ M12. The key claim is that the pullback of this

locus to the product is

∆ ∪ (stuff supported on boundary) ⊂M1,11 ×M1,11

(∆ is the diagonal). Suppose that B12 was tautological. Then,

ξ∗[B12] ∈ R∗(M1,11 ×M1,11) := Im
(
R∗(M1,11)×R∗(M1,11)

)
.

Applying the cycle class map to this expression, cl(ξ∗[B12]) would have tautological Künneth components.

However, since H11(M1,11) ̸= 0, the diagonal has odd Künneth components, giving a contradiction. ■

Cases when all of the Chow ring is tautological Excision tells us that if we have an equality

R∗(Mg,n) = Ch∗(Mg,n)Q, then also R∗(Mg,n) = CH∗(Mg,n)Q on the interior.

Question 1.3.13. Can we go the other way?

Consider the excision sequence

CH∗(∂Mg,n)
ι∗−−! Ch∗(Mg.n) −! CH∗(Mg,n) −! 0.
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If we know Ch(Mg,n) is tautological, then you ask: is im(ι∗) ≤ R∗(Mg,n)? I missed something, but we

have

CH∗(Mg−1,n+2)⊕
⊕

g1+g2=g
n1+n2=n+2

CH∗
(
Mg1,n1

×Mg2,n2

)
↠ CH∗(∂Mg,n)

ι∗−! CH∗(Mg,n)

(implicitly using rational coefficients everywhere above, especially to get surjectivity). This looks like

one might have some hope of setting up and inductive argument using this. Note that the tautological

classes in the LHS above will map to tautological classes in CH∗(Mg,n)Q. Thus, we want to know if these

tauological classes on the small Mg,n’s generate the LHS above. This involves knowing whether the maps

CH∗(Mg1,n1)⊗ CH∗(Mg2,n2) −! CH∗(Mg1,n1 ×Mg2,n2)

are surjective. In general, Künneth does not holds in Chow rings.

Definition 1.3.14. We say X has the Chow Künneth generation Property (something like this) if for

all Y , the map CH∗(Y )⊗ CH∗(X)! CH∗(Y ×X) is surjective. ⋄

Lemma 1.3.15. If R∗(Mg′,n′) = CH∗(Mg′,n′) holds for all g′ ≤ g and 2g′ + n′ ≤ 2g+ n, and Mg′,n′ has

the CKgP, then R∗(Mg,n) = CH∗(Mg,n).

Fact. CKgP implies that the cycle class map is an isomorphism.

Question 1.3.16 (Audience). Can you say a bit about how you veried CKgP in cases where it holds?

Answer. Here are some properties which were used:

• If U ⊂ X open and X has CKgP, then U has CKgP

• If X =
⊔
Xi and Xi has CKgP, then X has CKgP

• An has CKgP

• (working w/ rational coeffs) if X ↠ Y is proper + surjective and X has CKgP, then Y has CKgP

This is all they used to show all the moduli spaces they needed have CKgP. Also, every time they’ve

shown as space has CKgP (by describing it explicitly as a union of strata related to opens in affine),

they’ve also proven along the way that it is unirational. ⋆

Non-example. Elliptic curves don’t have CKgP ▽

Question 1.3.17 (Audience). Do you know examples of spaces w/ CKgP but non-finitely generated Chow

or vice versa?

Answer. If the Chow group is finitely generated, then it must have CKgP. As a partial converse, if the

variety is proper, its cohomology if finitely generated, so cycle class being isomorphism implies that Chow

is finitely generated. ⋆

Question 1.3.18 (Audience). Does CKP fail (Kunneth map being an isomoprhism) in the cases you

know CKgP holds?

Answer. Unknown. CKP is much harder to get at. Most of the facts about CKP one uses follow easily

from the excision sequence. ⋆
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2 Andrea di Lorenzo: Introduction to equivariant intersection

theory

2.1 Lecture 1 (7/11): Chern classes

Let’s start w/ some intuition. Say X is a smooth variety/k and L! X is a line bundle. Then, L ∼= O(D)

for some divisor D ⊂ X. This divisor is well defined up to linear equivalence, so we get assignment

L 7! [D] ∈ CHn−1(X) = CH1(X). If L is trivial, it maps to 0 ∈ CH1(X). Thus, there is some

cycle which measures how trivial/non-trivial L is. We would like to call c1(O(D)) = D. What about

for higher rank vector bundles? For E = O⊕2 (really really trivial), we would like to have two cycles

C1(E) = c2(E) = 0. For E = O ⊕ L (mildly trivial), maybe we want c2(E) = 0 and c1(E) = c1(L).

We’d even like the same thing for 0! O ! E ! L! 0.

Let X be an irreducible, separated scheme of finite type over a field k. Let E ! X be a vector bundle. I think we

secretly

want inte-

gral?

We look for a polynomial c(E) = 1 + c1(E)x+ c2(E)x2 + . . . such that

(1) Given flat f : X ′ ! X, then c(f∗E) = f∗c(E)

(2) If we have 0! E′ ! E ! E′′ ! 0, then c(E′)c(E′′) = c(E).

(3) c1(O(D)) = D ∈ CH1(X)

“[Chern classes were first defined in cohomology.] As we are algebraic geometers and we don’t know

any topology, we must work with algebraic stuff.” (paraphrase)

2.1.1 Step 1: first Chern class

Let L! X be a line bundle.

Assumption. Assume X is normal.

Consider an open subset U ⊂ X such that L|U ∼= U ×A1. In particular, there exists a nonzero section

s : U ! L|U . This defined a rational section of L/X, s : X 99K L. Let’s look for zeros/poles along

subvarieties of codim 1. We define

c1(L) =
∑
V⊂X

subvar, codim 1

ordV (s)︸ ︷︷ ︸
∈Z

·[V ]

Example 2.1.1. Say L ideal sheaf of [0 : 1] in P1. Let U1 = {[x : y] | y ̸= 0}, so L|U1 is trivial, i.e.

has nonvanishing section s. In the other chart U0, we have s|U0 = w−1 where w is the coordinate

w : U0
∼
−! A1. Thus, ord[1:0](s) = −1, so c1(L) = −[∞], where ∞ = [1 : 0].

Exercise. Pick different rational section for the ideal sheaf and see what happens. △

We can define c1(L) ∩ [W ] =: i∗(c1(L|W )) for any codim k subvar ι :W ! X.

Remark 2.1.2. For non-normal spaces, pass to normalization and the pushforward. ◦

2.1.2 Step 2: Segre classes

Let E ! X be a vector bundle of rank r > 1. Then, over P(E), we have OP(E)(1). Set h := c1
(
OP(E)(1)

)
.

Note the projection map π : P(E)! X is both proper and flat. Given ξ ∈ CH(X), we can define

π∗(h ∩ π∗ξ) ∈ CH(X).
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Example 2.1.3. If ξ − [X], this is π∗h = 0 unless r = 2 (look at dimensions) △

We can do better.

Definition 2.1.4. The Segre classes (capped with ξ) are

si(E) ∩ ξ := π∗
(
hr−1+i ∩ π∗ξ

)
.

In particular, si(E) := si(E) ∩ [X] = π∗
(
hr−1+i

)
. ⋄

(This makes sense by projection formula)

2.1.3 Step 3: Chern classes

Assemble Segre classes together. The total Segre class is

s(E) = s0(E) + s1(E)x+ . . . , where s0(E) = 1.

Definition 2.1.5. The total Chern class is c(E) = s(E)−1 (formal inverse). ⋄

“Now I have been talking for half an hour, but I just wrote down a definition, so I think I will stop

here.” (paraphrase)

This isn’t the nicest definition to work with. It’s not immediately clear it satisfies the properties we

wanted. It’s also not so clear how to compute something like c(E ⊗ L) for L a line bundle.

2.1.4 Step 4: splitting principle

As before, E is a rank r vector bundle over some variety X.

Proposition 2.1.6 (Splitting principle). There exists a flat morphism f : X ′ ! X such that

(1) f∗ : CH(X)! CH(X ′) is injective

(2) there exists a filtration

f∗E = Er ⊃ Er−1 ⊃ · · · ⊃ E0 = 0

by vector bundles so that Ei/Ei−1 =: Li is a line bundle.

Suppose we have such a filtration on X, and assume that the Chern classes satisfy the Grothendieck

axioms. Then,

c(E) = 1 + σ1(ℓ1, . . . , ℓr)x+ σ2(ℓ1, . . . , ℓr)x
2 + . . . ,

where ℓi := c1(Li) and σi is the ith elementary symmetric polynomial. In other words,

c(E) =

r∏
i=1

(1 + ℓix) .

These ℓi’s are called the Chern roots.

Slogan. For computations, you can pretend that E = L1 ⊕ · · · ⊕ Lr.

Example 2.1.7.

c(E ⊗M) = c
(⊕

(Li ⊗M)
)
=
∏

(1 + (ℓi +m)x),

where ℓi = c1(Li) and m = c1(M). Expanding this out let’s one expresses c(E ⊗M) in terms of ci(E)

and cj(M). △

11



Proof of Proposition 2.1.6. Consider π : P(E∨)! X. Get bundle 0! O(−1)! π∗E∨ ! Q. Dualize to

get 0! Q∗ ! π∗E ! O(1)! 0.

Fact. The pullback map π∗ : CH(X)! CH(P(E∨)) is injective.

This gives the first step in a filtration (set Er−1 = Q∨). Repeat this process (consider P(E∨
r−1) !

P(E∨)! X)... ■

Lemma 2.1.8. Assume we have E ! X w/ filtration by vector bundles whose graded pieces are line

bundles. Suppose that s : X ! E is a global section s.t. Z = {s = 0} = ∅. Then,
∏r
i=1 c1(Li) = 0.

By splitting principle, up to replacing X w/ X ′, we have such a filtration for E. Upon considering

P(E) ! X, there’s an injection O(−1) ↪! π∗E; equivalently, there is a non vanishing section of O(1) ⊗
π∗E. Hence, ∑

σr−i(ℓ1, . . . , ℓr)h
i =

∏
(h+ ℓi) =

∏
c1(O(1)⊗ Li) = 0.

By the projection formula, this says ∑
σr−i · si(E) = 0.

One deduces that s(E)
(
1 + σ1x+ σ2x

2 + . . .
)
= 1, so ci(f

∗E) = σi(ℓ1, . . . , ℓr).

2.2 Lecture 2 (7/12): equivariant Chow groups & quotient s*****

Definition 2.2.1. Let G be a linear algebraic group acting on a variety X, and let f : X ! Y be a

morphism. Then, X is a G-torsor over Y if

(i) f : X ! Y is G-invariant

(ii) there exists some étale cover {Yi ! Y } such that G× Yi ≃ X ×Y Yi. ⋄

This is our model in algebraic geometry for a space of orbits.

Example 2.2.2. Consider Gm ↷ A2 via scaling in the usual way. The orbits of this action correspond

to lines in A2 and also the origin. In this case, one has (A2 \ {0})/Gm = P1 and A2 \ {0} ! P1 is a

Gm-torsor. △

In general, if X ! Y is a G-torsor, then we really have Y = X/G.

Slogan. Torsors are the quotients that we like.

However, in general, given a G-action on X, we don’t always have “X/G” in the sense that there’s

some scheme Y s.t. X ! Y is a G-torsor. Nevertheless

Slogan. if equivariant Chow groups exist, they must be the Chow groups of the quotient.

Definition 2.2.3. CHG∗ (X) = Ch∗−g(X/G) ⋄

Proposition 2.2.4. There exists a (f.dim) G-representation V such there’s some open U ⊂ V which is

G-invariant whose induced G-action is free and s.t. codim(V \ U) is as high as you like.

For every f.dim G-representation V , we have that X × V/G ! X/G is a vector bundle, so we’d

expect/want/dream ChGi (X) = Chi−g(X/G) ∼= CHi−g+r(X × V/G) (homotopy invariance). By the

proposition, if we pick the representation cleverly, we can ensure Chi−g+r(X × V/G) ∼= CHi−g+r(X ×
U/G).
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Remark 2.2.5. Note X × U/G
open
⊂ X × V/G, with complement Z of dimension < i − g + r. Thus, the

excision sequence will give us the isomorphism before this remark. ◦

The utility of all of this is that G acts freely on U , and so acts freely on X × U . Thus, X × U/G

exists as a scheme.

Definition 2.2.6 (Edidin-Graham, up to spelling). CHGi (X) := CHi−g+r(X × U/G) ⋄

This involved lots of choices.

Proposition 2.2.7. Say V1 ⊃ U1 and V2 ⊃ U2 are both G-reps as above. Then, there is an isomorphism

CHi−g+r1(X × U1/G) ∼= CHi−g+r2(X × U2/G).

Proof. X × U1 × V2/G is a vector bundle over X × U1/G which has X × U1 × U2/G as an open subset.

Similarly, this is an open subset of X × V1 × U2/G, which is a vector bundle over X × U2/G. The maps

on Chow groups between all these spaces are isomorphisms. ■

Example 2.2.8. CHGm
i (pt). Need Gm-representations which are free on spaces of high codimension.

Well, Gm ↷ An+1 in the usual way, and acts freely away from the origin. Thus,

CHGm
i (pt) = CHi−1+n+1

(
pt× (An+1 \ 0)/Gm

)
= Chi+n(Pn)

(note that the origin has codimension n + 1). This tells us that CHGm
13 (pt) = 0 and CHGm

−2 (pt) =

CHn−2(Pn) = Z, for example. In particular, equivariant Chow of a point is supported in nonpositive

degrees:

ChGm
−i (pt)

∼= Z · hi for all i ≥ 0.

Switching to the upper numbers (and accepting the existence of a ring structure), this shows that

CH∗
Gm

(pt) = Z[h] with deg h = 1. △

Slogan (“Propostiion”). Every statement that you have seen on Chow groups works in the equivariant

setting as well. The only difference is that the maps have to be equivariant.

Example 2.2.9. Get equivariant Chern classes attached to equivariant vector bundles. △

Example 2.2.10. Smooth schemes w/ G-action have intersection product. △

Example 2.2.11. Consider A1 ! pt with A1 given the Gm-action λ · x = λdx. Attached to this is some

first Chern class cGm
1

(
A1
d

)
∈ CHGm(pt). Let’s compute this. Use equivariant approximations, so replace

pt with Pn = pt× (An+1 \ 0)/Gm. Then, A1
d becomes the line bundle OPn(d) = A1 × (An+1 \ {0})/Gm.

Thus, cGm
1

(
A1
d

)
= dh. Thus,

CH∗
Gm

(pt) = Z
[
cGm
1

(
A1

1

)]
. △

Recall 2.2.12. If X is a scheme, can define the functor

hX : Schop −! Set

Y 7−! Hom(Y,X).
⊙

What functor would X/G represent? Well, X ! X/G is a G-torsor, so given any Y ! X/G, we get
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a Cartesian square

P X

Y X/G,

with P ! X a G-torsor. Forgetting the part of this that “is only a dream” when is tempted to define

Hom(Y,X/G) =
{
Y

G
 − P

G-equiv
−−−−−! X

}
.

This is almost the definition of a quotient (something). To make things work out well in general, the

target of the functor should be a groupoid instead of a set. So [X/G](Y ) = h[X/G](Y ) is the groupoid

whose objects are diagrams Y  P ! X as above, and whose (iso)morphisms are isomorphisms of torsors

w/ the expected compatibilities (over the identity on Y ).

Proposition 2.2.13 (Edidim-Graham, up to spelling). Given two quotient s***** [X/G] and [Y/H]

such that [X/G] ≃ [Y/H], then CHG(X) ∼= CHH(Y ).

Definition 2.2.14. CH([X/G]) := CHG(X) ⋄

2.3 Lecture 3 (7/14)

Want to introduce additional tools which can be used in our everyday lives as people computing equiv-

ariant Chow rings, as well as an application to moduli of curves.

2.3.1 Localization formula

For the sake of the lecture, we’ll explain this in a relatively simple setup. For me, look at paper “local-

ization formulas in equivariant Chow groups” (or something like this).

Setup 2.3.1. Let T = Gnm be a split torus. Let V be a T -rep, V = Lχ1
⊕ · · · ⊕ Lχr

, where Lχi
is the

rank 1-representation where T acts via the character χi : T ! Gm. Let W = Lψ1
⊕· · ·⊕Lψr′ be another

T -rep (ψj : T ! Gm other characters). Furthermore, suppose we have a homogenous, T -equivariant map

f : V ! W , i.e. λ · f(x) = f(λ · x). Note this gives rise to an induced map f : P(V ) ! P(W ) which is

T -equivariant and proper.

Assumption. You probably want to assume that all the characters are nontrivial.

Example 2.3.2. f could be PH0(P2,O(1))! PH0(P2,O(2)) via ℓ 7! ℓ2. In this example, T = G3
m ↷ P2

via

(λ1, λ2, λ3) · [x1, x2, x3] =[λ1x1, λ2x2, λ3x3]] .

This induces an action of T on homogeneous polynomials g via

(λ · g)(x1, x2, x3) = g
(
λ−1
1 x1, λ

−1
2 x2, λ

−1
3 x3

)
. △

Fact (exercise). I maybe

copied some-

thing down

incorrectly...

• CH∗
T (P(V )) = Z[t1, . . . , tn,K]/(p(K)). Computing the relation (whose coefficients are polynomials

in the t’s) is part of the exercise.

• CH∗
T (P(W )) = Z[t1, . . . , tn, H]/(q(H))
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Hint: [P(V )/T ]! [pt/T ] is a projective bundle, and so you can apply the projective bundle formula.

Question 2.3.3. How do you compute f∗(K
α), α ≥ 0.

Theorem 2.3.4 (Edidin-Graham, up-to-spelling).

f∗(K
α) =

∑
F⊂P(V )

(ι∗FK)
α
f∗[F ]T

cTtop(NF )
,

where

(1) F is an irreducible component of the fixed locus of the T -action on P(V ) There was

some com-

ment I

couldn’t

hear about

these irre-

ducible com-

ponents ba-

sically being

points or

something?

(2) NF is the normal bundle of F ⊂ P(V )

This is gonna take some unpacking. To start, where do all these terms/factors live, and what do they

mean?

(1) Say F is a point, e.g. F = [0, . . . , 0, 1, 0, . . . , 0] =: pi with the 1 in the ith coordinate. In this case,

NF = Tpi =

〈
x0
xi
, . . . ,

xr
xi

〉
(skip xi/xi = 1). Above, T acts via

λ · xj
xi

=
χj(λ)xj
χi(λ)xi

,

i.e. NF = Lχ0−χi ⊕ · · · ⊕ Lχr−χi (skip Lχi−χi), so

cTtop(NF ) =

r∏
j=1
j ̸=i

(
cT1 (Lχi

)− cT1 (Lχj
)
)
∈ CHT (pt) = CHT (F ).

Remark 2.3.5. Say λ · x = λd11 · · ·λdnn x is the action by the character χj . Then, cT1 (Lχj ) = d1t1 +

· · ·+ dntn. ◦

(2) Apparently K = cT1
(
OP(V )(1)

)
. Thus,

ι∗FK = cT1 (ι
∗
FO(1)) .

Remark 2.3.6. OP(V )(−1)|pi = ⟨xi⟩ ◦

Hence, ι∗FK = −cT1 (⟨xi⟩) = −cTi (Lχi) =: −cT1 (χi) ∈ CHT (pt).

(3) If pi is a fixed point, then so is f(pi) = qf(i) (the point where the f(i)th coordinate is the only one

which is nonvanishing).

Example 2.3.7. For ℓ 7! ℓ2, the point [1, 0, 0] (corresponding to the linear form z1) maps to to

the point [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] (corresponding to the linear form z21). △

Lemma 2.3.8. For V (xj) ⊂ P(W ), [{xj = 0}]T = H + cT1 (ψj).

Observe that

f∗[pi]T = [qf(i)]T =

 ⋂
j ̸=f(i)

{xj = 0}


T

=
∏

j ̸=f(i)

[{xj = 0}]T =
∏

j ̸=f(i)

(
H + cT1 (ψj)

)
.
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These are all the ingredients. Put together, they give the equation

f∗(K
α) =

r∑
i=1

(
−cT1 (χi)

)α∏
j ̸=f(i)

(
H + cT1 (ψj)

)∏
j ̸=i
(
cT1 (χj)− cT1 (χi)

) .

This i a priori a rational fraction, but in fact it is a polynomial.

Theorem 2.3.9 (Edidin-(can’t read second name)). Compute CH(M≤1
0 ), the Chow ring of the moduli

stack of genus 0 curves w/ at most 1 node.
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3 Eric Larson: User’s guide to explicit calculations with higher

Chow groups

3.1 Lecture 1 (7/11)

Let Mg be the space of smooth curves of genus g, and Mg ⊃Mg be that of stable curves of genus g. We

have two main questions:

Question 3.1.1. What is a stable curve? Why do we care?

Definition 3.1.2. We say a curve C is stable if

(1) C is nodal

(2) #Aut(C) <∞. ⋄

The key feature of this definition is that Mg is proper. Equivalently (via valuative criterion), we have

the “Stable Reduction Theorem”. Given a family of C∗ ! ∆∗ over a punctured disk (or generic point

of ∆ = Spec(dvr)), we can uniquely complete C∗ to a family of stable curves C ! ∆. This is not strictly

true as stated. Instead, this is true possibly after making a base change (replace ∆ by a cover).

Remark 3.1.3. If there were more ‘stable curves’, there might be multiple ways to fill in families. If there

were fewer ‘stable curves’, there might be no ways to fill in families. So, this definition is in the Goldilocks

zone. ◦

Let Mg,n = {smooth curves C of genus g w/ n distinct marked points p1, . . . , pn ∈ C}. Similarly let

Mg,n = {stable n-marked curves (C, p1, . . . , pn) of (arithmetic) genus g}.

Definition 3.1.4. We say that (C, p1, . . . , pn) is stable if

(1) C is nodal

(2) p1, . . . , pn are distinct smooth points

(3) #Aut(C, p1, . . . , pn) <∞ ⋄

Example 3.1.5. A genus 3 curve w/ a node is stable. △

Remark 3.1.6. The automorphism group of a genus 1 curve is a 1-dimensional infinite group. Translate

by points of the curve. The automorphism group of P1 is PGL2, which is 3-dimensional. ◦

Example 3.1.7.

• A genus one curve meeting a genus two curve

For each genus one curve, need 1 special point

• A genus 0 curve meeting a genus 2 curve in three points

For each genus zero curve, need 3 special points △

Non-example.

• A genus 3 curve w/ a cusp is not stable.

• A genus 1 curve

• A genus 0 curve meeting a genus 2 curve in two points ▽
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For this talk, want to work over an algebraically closed field. In fact, one of characteristic 0. In fact,

over C. We want to indicate the idea(s) behind the original proof of the stable reduction theorem. This

proof fails in positive characteristic. Stable reduction holds in positive characteristic, but this came later

(sounds like it was due to Deligne and Mumford, who reduced it to a similar theorem about abelian

varieties).

Question 3.1.8 (Audience, missed part of it). What about semi-stable reduction theorem?

Answer (assuming I heard correctly). That says that if you work w/ families of semi-stable curves, can

complete them to a family whose total space is smooth. ⋆

Example 3.1.9. Say have curve C of genus g ≥ 1 w/ two points p, q. Let C ′ = C/(p ∼ q). This is

a stable curve. What happens as q approaches p? The obvious way of filling this in would lead to a

cuspidal curve “C/(p ∼ p)”. How else may we fill the family in, so that we get a stable central fiber.

Consider C × C w/ diagonal ∆ and constant section Γ = C × {p}. Blowup the point (p, p), so get new

family whose fiber over p is C glued with P1 at p. In the blowup, the sections ∆̃, Γ̃ no longer intersect.

Glue these together to get a family of curves whose central fiber is not C w/ a nodal P1 attached. △

Example 3.1.10. Let’s look at a family of curves acquiring a cusp, but whose general member is smooth.

Further suppose that the total space is smooth, e.g. t = y2 − x3 (w/ t the coordinate on the base ∆).

Blow up the cusp. You’ll get the normalization C of the original central fiber w/ an exceptional divisor

E = P1 tangent to C. Furthermore, this P1 occurs w/ multiplicity 2 in the central fiber (since t = y2−x3

vanishes to order 2 at the cusp), i.e. the new central fiber is the non-reduced C +2E. Blow up again. In

this case, you’ll get C +2E +3F (3 b/c t vanishes w/ multiplicity 1 along C and w/ multiplicity 2 along

E) meeting as pictured in ∗. Note F is a P1. At this point, we have distinct tangent directions at the

singularity, so we can do one last blowup. The picture now looks like an E (with the spine being G ∼= P1

appearing w/ multiplicity 6), i.e. the central fiber is C + 2E + 3F + 6G. The reduced central fiber is

nodal, but the central fiber is not reduced. This is where we have to make a base change, say t = s2.

Near a point x on E, t vanishes to order 2, so t is the square of a local coordinate z, i.e. s2 = t = z2.

This factors as (s+ z)(s− z) = 0, so after normalizing, the point x will have 2 preimages (where s = ±z).
Near a point y on F , we have s2 = t = z3. This is unibranched (it looks like a cusp), so in the

normalization of the base change, the point y has 1 preimage. In the normalization of the basechange,

the component of F is ramified (ultimately because F has odd multiplicity). The upshot is that the

central fiber of the resulting family looks like

C + (E1 + E2) + 3F + 3G′

(note P1 ∼= G′ ! G ∼= P1 is a double cover of P1 branched at 2 points, where G meets C and F ). Next,

one makes an order 3 base change. The resulting central fiber looks like

C + (E1 + E2) + (F1 + F2 + F3) +G′′,

where g(G′′) = 1 by Riemann-Hurwitz (2 − 2g = 3 · 2 − 3 · 2 = 0). Can check that every P1 above is

a (−1)-curve, so contract them, and the final result is a nodal union of C and G′′ (an elliptic curve w/

j-invariant 0 since it has an order 3 automorphism). △
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3.2 Lecture 2 (7/12): The dualizing sheaf

Recall 3.2.1. Let C be a smooth curve. It has a canonical bundle K whose sections are holomor-

phic/regular differential forms. Furthermore, Riemann-Roch tells us that

h0(L)− h0(KL−1) = d+ 1− g,

for any degree d line bundle L on C. Furthermore, by Serre duality, H1(L) = H0(KL−1)∨. ⊙

The dualizing sheaf plans an analogous role in the theory of singular curves to that of the canonical

bundle in the theory of smooth curves.

Before getting into it, let’s recall: why is Riemann-Roch true? Suppose L = OC(p1 + · · · + pd) with

the pi’s distinct, so a section of L is determined by its principal parts at the pi’s (up to addition of a

global holomorphic function, i.e. a constant).

Question 3.2.2 (Audience). Can you say explicitly what principal parts are?

Answer (paraphrase). Say t is a coordinate at pi. Then a section s of L, near pi, looks like a holomorphic

function w/ at worst a simple pole at t = 0, so looks like a power series a
t + blah. THe principal part at

pi is this a. ⋆

Which principal parts can be complete to a section? Well, say α ∈ H0(K) and σ ∈ H0(OC(p1 + · · ·+
pd)), then the residue theorem tells us that∑

i

Respi(ασ) = 0.

This produces a linear condition on the principal parts, which is trivial iff α ∈ H0(K(−p1 − · · · − pd))

(this ensures all the residues vanish). Thus, one gets the bound

dimH0(OC(p1 + · · ·+ pd)) ≤ (d+ 1)−
[
dimH0(K)− dimH0(K(−p1 − · · · − pd))

]
.

In other words, dimH0(OC(p1 + · · ·+ pd))− dimH0(K(−p1 − · · · − pd)) ≤ (d+ 1)− g. R-R says this is

an equality.

Remark 3.2.3. The same logic as above will apply to singular curves provides we replace the canonical

bundle with something different. It should be the case that if you multiply a section by a function with no

poles, then it has no residue. This is what was used above: holomorphic differentials have zero residue. ◦

Say now that C is singular. Define its dualizing sheaf ωC to have sections being meromorphic/ra-

tional differential forms whose product w/ any regular function has residue zero everywhere.

Example 3.2.4. What does this look like near smooth points? Choose a local coordinate x. Let

α =
∑
aix

idx is a meromorphic differential form. We want

0 = Res0
(
αxn−1

)
= a−n for all n ≥ 1.

Thus, we just want α to be a holomorphic 1-form near x = 0. △

Example 3.2.5. What happens near a mode? Say along the two branches have local coordinates x, y.

Thus, we can write α =
∑
aix

idx+ biy
idy. We should have

0 = Res0(α) = a−1 + b−1.
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Furthermore,3 0 = Res0(αx
n−1) = a−n for any n ≥ 2 (and similarly for y, i.e. b−n = 0 for n ≥ 2). Thus,

we allow simple poles along both branches of the curve as long as the sum of their residues is 0. △

Question 3.2.6 (Audience). This is actually a line bundle on a nodal curve?

Answer (paraphrased). Yes. All fibers are 1-dimensional (at the nodes, you only need to keep track of

the value of one of a−1, b−1). In general, the dualizing sheaf may not be a line bundle. ⋆

This definition of ωC behaves well in families. Given a family C! B of nodal curves, can produce a

relative dualizing sheaf ωC/B which will be a line bundle on C whose restriction to any fiber recovers the

dualizing sheaf of that fiber.

Remark 3.2.7 (Response to audience question). For a nodal curve C w/ normalization C̃, ωC is naturally

a subsheaf of ν∗ωC̃(p+ q), where p, q are the preimages of the node. ◦

3.2.1 Some Intersection Theory

Given a family of curves C
π
−! B, can produce Chow classes on B:

λi = ci
(
π∗ωC/B

)
and κi = π∗

(
c1(ωC/B)

i+1
)
.

Moreover, if there is a section σ : B ! C, then we can produce the class

ψ = σ∗c1
(
ωC/B

)
.

Example 3.2.8. Consider a general pencil of plane quartics, i.e. C = V (t0F + t1G) ⊂ P2×P1
π
↠ P1

[t0,t1]
.

• Compute ωC/B

Let β : C! P2 be the other projection. Let L = β∗[line] and let E be the sum of the 16 exceptional

divisors. Note: C is exactly the blowup of P2 along the 16 points {F = G = 0}. The canonical

bundle of a blowup isKC = β∗KP2+E = −3L+E. Furthermore, π∗KP1 = −2π∗[pt] = −2(4L−E) =

−8L+ 2E. Finally

ωC/P1 = the difference = (−3L+ E)− (−8L+ 2E) = 5L− E.

• κ1. First,

(5L− E)2 = 25L2 − 10LE + E2.

Pushing this to P1, we get κ1 = 25− 16 = 9 (really, 9 times the class of a point).

• λ1. Note ωC/B = (4L− E) + L = π∗OP1(1)⊗ β∗OP2(1). Projection (= push-pull) gives

π∗ωC/B = OP1(1)⊗ π∗β
∗OP2(1).

Furthermore, the right factor is a trivial bundle w/ fiber H0(OP2(1)), so π∗ωC/B = OP1(1)⊕3. Thus,

λ1 = c1(OP1(1)3) = 3. △

3.3 Lecture 3 (7/14): Higher Chow Groups

Note 1 (Announcement before lecture, unrelated to material). Visit https://icerm.brown.edu/collaborate

to apply to be hosted at icerm for meetings between collaborators or something like this?
3Note xy = 0 on this curve
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Recall 3.3.1. Say Y ⊂ X closed of codimension c, and U := X \ Y .4 Get an excision sequence

CH∗−c(Y ) −! CH∗(X) −! CH∗(U) −! 0.

One difficulty in Chow rings is that this sequence is only right exact. ⊙

Higher Chow groups are meant to allow us to continue this sequence to the left.

Definition 3.3.2. Set ∆n := V (x0 + · · ·+ xn − 1) ⊂ An+1. Note ∆n ∼= An, non-canonically. Define

Zc(X,n) :=

{
codim c cycles in X ×∆n transverse

to all coordinate hyperplanes {xi0 = · · · = xik = 0}

}
.

The transversality condition allows us to define a differential

dn : Zc(X,n) −! Zc(X,n− 1)

[Y ] 7−!
n∑
i=0

(−1)i[Y ∩ {xi = 0}].

(note there’s a natural/canonical identification5 of V (xi) ⊂ ∆n with ∆n−1) Finally, the higher Chow

groups are the cohomology of this complex:

CHc(X,n) :=
ker dn
im dn+1

. ⋄

Example 3.3.3. What is CHc(X, 0). Take group of cycles Zc(X, 0) – i.e. codimension c cycles in X –

and quotient it by d(codimension c cycles in X ×∆1 ∼= X × A1) – i.e. quotient by rational equivalence.

Thus, CHc(X, 0) ∼= CHc(X) is the usual Chow group. △

Slogan (“Proposition”). Higher Chow enjoy all the usual properties (think: Hannah’s first lecture) of

ordinary Chow groups, except the excision sequence becomes a long exact sequence.

There’s a long exact sequence

. . . CH∗−c(X \ Y, 2)

Ch∗−c(Y, 1) CH∗−c(X, 1) CH∗−c(X \ Y, 1)

Ch∗−c(Y, 0) CH∗−c(X, 0) CH∗−c(X \ Y, 0) 0

Example 3.3.4. Let’s compute CH∗(Spec k, 1), where k is algebraically closed. Look at codimension c

cycles in Spec k×∆1 = ∆1 mod d(codimension c cycles in ∆2). The only interesting case is c = 1 (there

are no codimension ≥ 2 cycles, and the only codimension 0 cycle is ∆1, which is zero is Higher Chow

since it’s d(∆2)). Thus, CH∗(Spec k, 1) = 0 if ∗ ≠ 1.

Claim 3.3.5. CH1(Spec k, 1) = k×

The map comes from [(x, y)] 7! −x
y ∈ k× (here, (x, y) ∈ ∆1 ⊂ A2).6

4Assume X,Y both smooth
5Relabel variables in increasing order
6Important: there are no coordinate points where either x or y is 0, since those points are not transverse to the

hyperplanes
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Exercise. Show this gives the claimed isomorphism.

In general, we don’t actually know the higher Chow groups of a point. △

As a toy application of this higher stuff, we will compute the Chow ring of P1.

Example 3.3.6. Consider [pt] ∈ P1 and P1 \ {pt} = A1. Look at the excision sequence:

CH∗(A1, 1) CH∗−1(pt) CH∗(P1) CH∗(A1) 0

CH∗(pt, 1) Z[1] CH∗(pt)

k×[1] Z[0]

(The square brackets indicate the degree in which the group lives). The key point now is that Hom(k×,Z) =
0, so the class of a point in CH1(P1) is not torsion. △

Remark 3.3.7. One can use this strategy to prove Theorem 1.1.6. In particular, to show the classes

of the strata are independent. Maybe also keep in mind that if you want to show such a map (e.g.

CH∗−1(pt)! CH∗(P1)) is injective, you can do this after passing to an algebraic closure. ◦

The rest of the lecture is focused on a non-toy application.

Theorem 3.3.8 (L.). In characteristic ̸= 2, 3, the Chow ring of M2 is7

CH∗(M2) =
Z[λ1, λ2, δ1]

(24λ21 − 48λ2, 20λ1λ2 − 4δ1λ2, δ31 + δ21λ1, 2δ
2
1 + 2δ1λ1)

.

(Eric also explicitly thanked Akhil Mathew, up to spelling, for conversations from which he benefited

greatly)

Remark 3.3.9. δ0 = 10λ1 − 2δ1 ◦

Fact (exercise). |ω|C is basepoint free ⇐⇒ [C] ̸∈ ∆1 (this is for [C] ∈M2)

In the complement M2 \ ∆1, |ω|C is branched at 6 points, so your curve looks like z2 = ax6 +

bx5y + · · · + gy6. Thus, M2 \∆1 ≃
(
A7 \ {triple roots

)
/((GL2 ×Gm)/Gm) with the Gm at the bottom

corresponding to (t Id, t3).8 On the other hand, ∆1 ≃ Sym2M1,1. In equations, the two curves looks like

y21 = x31 + a1x1 + b and y22 = x32 + a2x2 + b2. Thus, The equa-

tions here

are the only

place where

the char-

acteristic

assumption

enters

∆1 ≃ A4 \ {0× A2 ∪ A2 × 0}
(Gm ×Gm)⋊ (Z/2Z)

Using these presentations, it’s apparently not hard to compute the Chow rings of ∆1 and its complement.

The difficulty comes in patching them together, and this is where we turn to higher Chow groups:

CH∗(M2 \∆1, 1) −! CH∗−1(∆1)
⋆−−! CH∗(M2) −! CH∗(M2 \∆1) −! 0

(we want ⋆ to be injective).

7Note: this is the stack, not the coarse space. I guess integral Chow of the coarse space isn’t a ring?
8Also, GL2 acts on x, y and Gm acts on z. The hyperelliptic involution is (id,−1)
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Warning 3.3.10. One might hope that CH∗(M2 \∆1, 1) is divisible so the boundary map is zero (no

maps from divisible to f.g. group). Unfortunately, it is not. •

However, it is not that bad. Up to a divisible part, it is generated by two 2-torsion classes in degrees

4 and 5. There are only finitely many 2-torsion classes in degrees 3, 4 in CH∗(M2 \∆1, 1). Thus, you can

write down a finite list of possibilities for the kernel of ⋆. One then uses various additional tricks to rule

out these possibilities.
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4 Angelo Vistoli: Patching techniques for moduli problems and

the integral Chow ring of M 1,2

4.1 Lecture 1 (7/12)

“I’m not supposed to say the word stack.”

Let M be a moduli space (secretly, a smooth, separated DM stack).

Example 4.1.1. Mg,Mg,Mg,n,Mg,n △

Remark 4.1.2. In this talk, we work classically. In particular, everything is over C. ◦

All these examples have some universal deformation spaces (which give étale charts on the stack).

These are local replacements for the fact that (the coarse space of) M is not a fine moduli space. If X0

is an object over C. We require Aut(X0) to be finite. By a universal deformation space we mean

a family X ! U along with a point u0 ∈ U and an isomorphism X0 ≃ XU0
satisfying the following

universal family: étale locally, if Y ! S is a family and s0 ∈ S s.t. Ys0 ≃ X0 ≃ Xu0
, then there’s a

(unique) morphism S ! U (sending s0 7! u0) such that Y ≃ S ×U X.

Remark 4.1.3. The universal deformation spaces depends on a choice of isomorphism X0 ≃ Xu0
. ◦

Remark 4.1.4. Aut(X0) acts (locally) on U . Say have Y : S ! U . If g ∈ Aut(x0), the isomorphism

X0
g
−! X0 gives (étale locally) a map U ! U . This gives an action of Aut(X0) on U . ◦

If you look at the map U ! M induces by X ! U , it will be Aut(x0)-invariant, so induces a map

U/Aut(X0) ! M . This resulting map will be étale. This let’s you describe the moduli space locally as

a quotient of a finite group.

Question 4.1.5 (Audience). How do you construct the universal deformation space?

Answer. You start w/ a versal deformation space and then you slice it. For something like Mg, start

with the family over some Hilbert scheme. This will give a map to M with very large fibers. Then you

start slicing it down, and if you do so generically, eventually you’ll get something with finite fibers. The

details of the construction are non-obvious. ⋆

Remark 4.1.6. Sounds like you can remove lots of the explicit/implicit “étale locally” by passing to the

henselization (and then spread things back out to U ’s via the phrase “by standard limit arguments.”). ◦

Warning 4.1.7. The moduli problem is smooth if U is smooth for all x0. However, this does not imply

that M is smooth. •

“I’m not supposed to work with the stack. Working with the stack would be much easier for me”

(after a question clarifying whether M was the stack or the coarse space).

Theorem 4.1.8 (Mumford, V.). CH∗(M)Q has a natural ring structure. Given S ! M , there are

pullbacks CH∗(M)! CH∗(S). So, in this (and other) respects, it behaves like the rational Chow ring of

a smooth variety.

The proof idea is to work w/ (rational) cycles on M , but to view them locally on U . This requires

some work when M is not smooth. Locally fix a point m0 ∈ M , corresponding to some curve X0. Take

a deformation space X ! U , inducing φ : U !M . We want to figure out Z∗(M)Q
φ∗

−−! Z∗(U). We have

factorization

U U/G Mπ

φ

ét
, where G = Aut(X0).
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To obtain φ∗, we want to know what multiplicites to assign to pull backs. This is easy to do for

ψ : U/G!M since it’s étale.

Remark 4.1.9. If M is smooth, then U ! U/G is flat. ◦
Say V ⊂M irreducible, and W ⊂ ψ−1(V ) is an irreducible component.

Exercise. Assume M is smooth. Say Z is a component of π−1(W ), and let r be the multiplicity of [Z] in

π∗(W ). Show that

r =
#GZ0

#G0
∈ Z,

where GZ0 is the stabilizer of a generic point of Z, and G0 is the kernel of the action.

If M is not necessarily smooth, define r to be this quotient #GZ0/#G0. This gives a pullback

φ∗ : Z∗(M) ! Z∗(U). Note that r only depends on V ⊂ M (and not on the choice of component of

φ−1(V )).

Each V ⊂M has a fundamental class [V ] ∈ CH∗(M)Q. The Q-fundamental class of [V ] is [V ]Q =
#G0

#GZ0
[V ]. Thus, φ∗[V ]Q is a combination of varieties in U , each w/ multiplicity 1. Note that

U ! [U/G]

is étale
Example 4.1.10. Take M = M1,1 = P1, the j-line. Take a point m0 ∈ M1,1 ≃ A1 ⊂ P1. This

corresponds to some (elliptic) curve C0 w/ j-invariant m0. Then,

[m0]Q =
2

#Aut(C0)
[pt] =


1

2
[pt] if j = 1728

1

3
[pt] if j = 0

[pt] otherwise.

. △

Theorem 4.1.11. There exists a ring structure on Z∗(M)Q. If V,W ⊂ M with codim(V ∩ W ) =

codimV + codimW and Z is a component of V ∩W , then the multiplicity of [Z]Q in [V ]Q[W ]Q is

multiplicity of [Z ′] in [V ′][W ′]

if z0 ∈ Z is a generic point, U ! M is a universal deformation space around z0, and blah’ is a (domi-

nating) component of the inverse image (under U !M) of blah.

If X ! S is a family, get square

S′ U

S M

h

ét φ

f

Say V ⊂M with codimV = codim f−1(V ). Write g : S′ ! S for above map. Then, Something

like this. I

didn’t really

follow this

part in real

time...

g∗f∗[V ]Q = h∗
([
φ−1(V )red

])
Example 4.1.12. Say we have a 2-dimensional moduli problem which locally looks like U = A2 along

with µ2 acting by multiplication. The quotient U/µ2 is a cone. Given two lines L1, L2 on A2, get two

lines V1, V2 of the ruling in U/µ2. Convince yourself the Q-fundamental classes of these are the usual

fundamental classes. One computes

[V1][V2] =
1

2
[L1][L2] =

1

2
[pt]

(note this is the Q-fundamental class of the singular point). △
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4.1.1 M2 in 5 minutes

Note CH∗(M2)Q = Q because M2 is the quotient of an open in A3 by S6 (a genus 2 hyperelliptic curve

has 6 Weierstrass points by R-H).

Note 2. Vistoli drew some picture of X ! U that I didn’t follow. Something about following how to

nodes move in the family and their image in the base being a divisor w/ normal crossings?

Fact. The locus of curves in Mg w/ r nodes has codimension r.

Furthermore, Mg has a combinatorial structure we don’t have time to describe.

Example 4.1.13. How to describe a curve of genus 2 with 1 node. It either looks like a nodal genus 1

curve α (giving a component ∆0 in the moduli space) or a nodal union of two smooth genus 1 curves X

(giving a component ∆1 in the moduli space). In general, get divisors ∆0,∆1, . . . ,∆⌊g/2⌋ ⊂Mg. △

Vistoli finished by drawing pictures of all (six) types of curves corresponding to components in the

boundary of Mg along with which degenerate to which. There are two types each with 1, 2, or 3 nodes.

Exercise: reproduce this picture. If it helps, the strata are called ∆0,∆1,∆00,∆01,∆000,∆001.

“Just to point out, you are over time.” - Audience (probably an organizer) “Yes, I am over time...

Let me point out very briefly *continues to lecture*”

Note 3. Missed the last thing (hopefully get reexplained next time), but Vistoli said something about

getting generators for Chow using these strata.

4.2 Lecture 2 (7/13)

We want to talk about Grothendieck Riemann-Roch and relations among the canonical classes (λi’s,

κi’s).

Recall 4.2.1. Say C
π
−! S is a family on Mg. Get relative dualizing sheaf ω = ωC/S , and set K =

c1(ω) ∈ CH1(C). We also define the classes

λi = ci(π∗ω) and κi = π∗
(
Ki+1

)
on the base S. Note

(1) We can view these classes as living in CH∗(Mg)Q

(2) To prove relations, can assume C ! S is versal (like ‘universal’ but w/o uniqueness). If s0 ∈ S,

the curve Cs0 has a universal deformation space U , so étalle locally get a map S ! U (really S′ ! U

w/ S′ ! S étale). C ! S is versal (at s0) if S
′ ! U is smooth. ⊙

To justify these extra points, note that Mg = [X/G] is a quotient stack of some smooth variety X. Question:

Why is it a

global quo-

tient with X

smooth?

Hence,

CH∗(Mg)Q = CH∗(Mg)Q = CH∗(X × U/G).

Something something C ! X gives rise to (C × U)/G! (X × U)/G, a versal family. I guess C ! X is

the pullback of the universal family on Mg.

Say X is a smooth (q.proj) variety and E ! X is a vector bundle (of rank r). Then, there are Chern

classes ci(E) ∈ CHi(X) as well as the total Chern class c(E) = 1 + c1(E) + c2(E) + . . . . Given an exact

sequence 0! E′ ! E ! E′′ ! 0, the total Chern classes multiple

c(E) = c(E′)c(E′′).
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Since X is smooth, the above also works for coherent sheaves. The idea is that a coherent sheaf on a

smooth variety has a resolution by locally free sheaves.

Recall 4.2.2. ci(E) = σi(ℓ1, . . . , ℓr) is the ith symmetric function in the Chern roots. This let’s us define

functions on Chern classes via symmetric functions on their roots. ⊙

Definition 4.2.3. The Chern character of E is the power series

ch(E) := eℓ1 + · · ·+ eℓr = rankE + c1(E) +
c1(E)2 − 2c2(E)

2
+
c31 − 3c1c2 + c3

3!
+ . . . . ⋄

There is also the Todd class coming from the power series

x

ex − 1
= 1− x

2
+
x2

12
− x4

720
+ · · · = 1 +

x

2
+

∞∑
k=1

(−1)k
Bk
(2k)!

x2k.

Definition 4.2.4. The dual Todd class is

Td∨(E) =
ℓ1

eℓ1 − 1
· · · · · ℓr

eℓr − 1
= 1− c1

2
+

1

12

(
c21 + c2

)
− 1

24
c1c2 +

1

720

(
c31 + . . .

)
+ . . . . ⋄

(the dual comes from exchanging x↔ −x, so only changes the single odd term)

Given 0! E′ ! E ! E′′ ! 0, get

ch(E) = ch(E′) + ch(E′′) and Td∨(E) = Td∨(E′) Td∨(E′′).

Theorem 4.2.5 (Grothendieck-Riemann-Roch). Let f : X ! Y is a projective, surjective morphism,

and F is a coherent sheaf on X. Then,

ch(Rf∗F ) = ch(f∗F )− ch
(
R1f∗F

)
+ ch

(
R2f∗F

)
− · · · = f∗

(
ch(F ) · Td∨

(
ΩX/Y

))
(note ΩX/Y is a coherent sheaf, but not a vector bundle, in general)

Example 4.2.6. Say Y is a point, X is a smooth projective curve, and F is a line bundle. Then, one

gets that

χ(F ) = deg

(
(1 + c1(F ))

(
1− K

2

))
= degF − degK

2
.

Doing this for F = O (to get degK = 2g − 2) and F = O(D) gives Riemann-Roch. △

Say C
π
−! S is a family of stable curves. Then, R1π∗ωC = OS and π∗ωC =: E (the Hodge bundle).

Example 4.2.7. If C
π
−! S is smooth (so ω = ΩC/S), then (note 1 = ch(OS))

ch(E)− 1 = ch
(
Rπ∗ωC/S

)
= π∗

(
ch(ω) Td∨(ω)

)
= π∗

(
eK · K

eK − 1

)
= π∗

(
K

1− e−K

)
.

This expands to (π∗(1) = 0)

ch(E)− 1 = π∗

(
1 +

K

2
+
K2

12
− K4

720
+ . . .

)
=
π∗(K)

2
+
π∗(K

2)

12
− π∗(K

4)

720
=

degK

2
+
κ1
12

− κ3
720

+ . . .
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(note degK/2 = g − 1). Thus,

ch(E) = g +
∑
k≥1

(−1)k−1 Bk
(2k)!

κ2k−1. △

Example 4.2.8. What if C
π
−! S is not necessarily smooth. Then, ω ̸∼= ΩC/S , so things become trickier.

Let Z ⊂ C be the singular locus. A “local calculation” (i.e. deformation theory) shows that (ΩC/S is

torsion-free b/c the family is versal)

0 −! ΩC/S −! ωC/S −! ωC/S ⊗ OZ −! 0

(if I heard correctly, ωC/S =
(
Ω∨
C/S

)∨
?). Somehow the point is that near a node, the situation looks like

xy = t. Accepting this,

Td∨(ΩC/S) =
K

eK − 1
· Td∨

(
ωC/S ⊗ OZ

)
=

K

eK − 1
+
(
Td∨(ωC/S ⊗ OZ)− 1

) K

eK − 1
.

The first factor gives the same thing as what we got in the smooth case. The second factor lives on the

singular locus. To compute this, one forms a double cover Z ′ ! Z so that a point of Z ′ is a node along

w/ a choice of branch. In particular, ωC/S |Z pulled back to Z ′ becomes trivial. As a consequence of this

(b/c we’re working in rational Chow?), one gets

K

eK − 1
+
(
Td∨(ωC/S ⊗ OZ)− 1

) K

eK − 1
=

K

eK − 1
+
(
Td∨(OZ)− 1

)
.

Since Z has codimension 2 in C, one gets that c1(OZ) = 0. Thus,

Td∨(OZ)− 1 =
1

12
c2(OZ) + . . . .

Exercise. c2(OZ) = [Z] is the fundamental class of Z.

The final result is

ch(E) = g + π∗

(
K2

12
+

1

12
[Z] +

k4

720
+? + . . .

)
= g +

κ1 + [∆]

12
+ . . . ,

where ∆ ⊂ S is the discriminant locus; this is the image of Z (which is birational to Z, apparently,

and sounds like this is why π∗[Z] = [∆]). One usually writes δ = [∆] = δ0 + · · ·+ δ⌊g/2⌋. In codimension

one, one gets Mumford’s formula

λ1 =
1

12
(κ1 + δ) . △

Recall that Eric did a calculation (Example 3.2.8) when C ! P1 is a general pencil of quartics in P2.

We showed that, in this case,

λ1 = 3, κ1 = 9, and δ = 27.

This satisfies Mumford’s formula, as it must. Another corollary of the above computation is

Corollary 4.2.9. ch(E)k = 0 if k is even.

Example 4.2.10. ch2(E) = 1
2λ

2
1 − 2λ2, so λ2 = λ21/2 always. △
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4.3 Lecture 3 (7/14)

Let M be a moduli stack (e.g. Mg,Mg, . . . ). These are typically quotient stacks M = [X/G]. In such

cases, we can describe the Chow ring using equivariant Chow rings: CH(M) = CHG(X). Understanding

these integral Chow rings is hard in general, but has been done in some cases.

• Say X is an open in a representation V of G. Let Z := V \X. Then, you get a localization sequence

CHG∗ (Z) −! CH∗
G(V ) −! CH∗

G(X) −! 0

(note CH∗
G(V ) = CH∗

G(pt) and CH∗
G(X) = CH∗(M)). Computing the image of the first map is still

hard, but this at least gives an approach that has been successfully carried out in some cases.

• In many cases, have a closed substack Y ⊂ M and are able to understand CH∗(Y) and CH∗(M \ Y).
However, it can still be hard to get a handle on the excision sequence

CH∗(Y)
i∗−! CH∗(M)

j∗

−! CH∗(M \ Y)! 0

Let N = NY/M be the normal bundle. Note/recall that i∗i∗ is multiplication by the top Chern

class ctop(N). Hence, if you have some class whose product w/ the top Chern class of the normal

bundle is nonzero, then i∗ of this class is nonzero.

Remark 4.3.1. If ctop(N) is not a zero divisor, then i∗ is injective. ◦

Warning 4.3.2. This basically never happens for these moduli space. Why? Rationally, CHi(Y)Q =

CHi(cms)Q = 0 if i > dimY . Since the top Chern class will live in positive degree, some power of

it will vanish. •

I missed something, but there’s some idea to extend M to a stack M̃ w/ infinite stabilizers. Appar-

ently, if you also extend Y to some Ỹ ↪! M̃, you can sometimes get ctop

(
N

Ỹ/Mét

)
to not be a zero

divisor. I think I missed something else, but somehow it can useful to consider

CH∗(M̃)
(j∗,i∗)
−−−−! CH∗(M̃ \ Ỹ)× CH∗(Ỹ)

(which is injective?). Finally, one wants to compute the quotient

CH∗(M̃) ↠ CH∗(M)

For moduli of curves, one usually gets M̃ by adding some (non-stable) singular curves, e.g. cuspidal

curves. In fact, there’s a notion of “stable cuspidal curves.”

Definition 4.3.3. Let (C, p1, . . . , pn) be an n-pointed cuspidal curve (pi’s distinct and smooth). This is

stable if ωC(p1 + · · ·+ pn) is ample. ⋄

Example 4.3.4. Consider M1,1. This is [{y2 = x3 + ax+ b : (a, b) ̸= 0}/Gm]. Note that Gm acts on A4

parameterizing (x, y, a, b) with weights (2, 3, 4, 6). Write this space as V2,3,4,6 Inside here is a universal

curve C ⊂ V2,3,4,6.

Remark 4.3.5. The presentation M1,1 = [(V4,6 \ {0})/Gm] gives a way of computing the Chow ring of

M1,1. One gets

CH∗(M1,1) =
CHGm

(V4,6)

([0])
=

Z[t]
24t2

(note M1,1 = P(4, 6) is a weighted projective stack). ◦
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To enlarge to stable cuspidal curves, consider M̃1,1 = [V4,6/Gm] which has Chow group CH(M̃1,1) =

Z[t]. △

Note 4. Had technicality difficulties for a few minutes, so missed stuff.

Summary of what was said while overleaf was not working

• Strategy developed to compute Chow ring of M2. Method did not work. Ran into some issues,

which were later resolved, but not before being scooped by Eric.

• It worked successfully to compute Chow ring of M2,1 by Andrea Di Lorenzo, Michele P., and V.

• Sounds like they also computed Chow ring of M1,2.

We’ll say more about this.

Steps, sorta kinda

(1) View M1,2 as the universal curve C1,1 !M1,1 (non-trivial, due to Knutsen)

There are a couple natural classes in CH(C1,1), called λ and µ1. I missed what λ1 is (I’d guess first

Chern of dualizing sheaf?) is, but µ1 is [M1,1] ∈ CH1(C1,1).
9

Theorem 4.3.6.

CH∗(M1,2) = CH∗(C1,1

)
=

Z[λ1, µ1]

(24λ21, µ1(λ1 + µ1))
.

(2) Extend to M̃1,1 w/ corresponding universal family C̃1,1 ! M̃1,1. Apply strategy to M̃1,1 ⊂ C̃1,1.

One knows Ch(M̃1,1) = Z[λ1]. Furthermore,

C̃1,1 \ M̃1,1 =
{
(x, y, a, b) ∈ V2,3,4,6 : y2 = x3 + ax+ b

}︸ ︷︷ ︸
C

/Gm.

To understand C, consider the projection C ! V2,3, (x, y, a, b) 7! (x, y). This is a Gm-equivariant

affine bundle, and so induces an isomorphism on Chow rings. Thus,

CH(C̃1,1 \ M̃1,1) ≃ CH([V2,3/Gm]) ≃ CH(BGm) ≃ CH(M̃1,1) ≃ Z[λ1].

The upshot is that CH(C̃1,1) is generated by λ1, µ1. Apparently, one can directly show the relation

µ1(µ1 + λ1) = 0. To show this is the only relation, one uses that ctop(normal bundle) = ±λ1 is not

a zero divisor, and so concludes CH(C̃1,1) = Z[λ1, µ1]/(µ1(λ1 + µ1)). Finally, one needs to throw

away the cuspidal locus. Doing this let’s them arrive at the expression in the theorem statement.

9This is a substack via the tautological section
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5 List of Marginal Comments

o Hannah wrote G. I don’t know why I wrote Gr . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

o TODO: Draw an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

o I think we secretly want integral? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

o I maybe copied something down incorrectly... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

o There was some comment I couldn’t hear about these irreducible components basically being

points or something? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

o The equations here are the only place where the characteristic assumption enters . . . . . . . . 22

o Note that U ! [U/G] is étale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

o Something like this. I didn’t really follow this part in real time... . . . . . . . . . . . . . . . . . 25

o Question: Why is it a global quotient with X smooth? . . . . . . . . . . . . . . . . . . . . . . . 26
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