


PCA by neurons  

 



Hebb rule  

1949 book: 'The Organization of Behavior'  

Theory about the neural bases of learning 

  

Learning takes place in synapses.  

Synapses get modified, they get stronger when the pre- and post-

synaptic cells fire together.  

  

‘When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells 

such that A’s efficiency, as one of the cells firing B, is increased’ 

  

"Cells that fire together, wire together" 



Hebb Rule (simplified linear neuron) 

rate 

Input  

 xTwThe neuron performs v =  

Hebb rule:    Δw = α x v  

rate 

w, x can have negative  values 



Stability  
 xTwThe neuron performs v =  

Hebb rule:    Δw = α x v  

Use differential equation for Hebb:  

(1/τ)  dw / dt = α x v  

d/dt  |w|2 = 2wT dw / dt  

  wT x = v     therefore:  

= 2αv2  

Therefore:  d/dt  |w|2 = 2αv2    

The derivative is always positive, therefore w will grow in size over time 

(τ is taken as 1)  

What will happen to the weights over a long time?  

= 2wT αx v     



Oja’s rule and normalization  

w(t+1) = w(t) +αvx'    with x' = (x – vw) 
 

Feedback, or forgetting term:   –αv2 w   

Oja   ~  ‘normalized Hebb’  

length normalization:  
  

w  ←  (w + αv x) / ||w||  
  

With Taylor expansion to first term: 

  

w(t+1) = w(t) + α v(x – vw)  (Oja’s rule)   
  

Similarity to Hebb:   



 

Erkki Oja 

 

Oja E. (1982) A simplified neuron model as a principal component 
analyzer. Journal of Mathematical Biology, 15:267-2735 



Oja rule:  effect on stability   

we used above:  

 

d/dt  |w|2 = 2wT dw / dt    

Put the new dw/dt from Oja rule:  α v(x – vw)  
  

= 2αwT  v(x – vw)    =    (as before,  wTx = v)  

  

= 2αv2(1 - |w|2)   

Instead of 2αv2 we had before  

 

Steady state is when |w|2 = 1 



Comment: Neuronal Normalization  

Different systems have somewhat different specific forms.  

For contrast normalization:   

Uses a general form:  

Ci are the input neurons,  ‘local contrast elements’  

Normalization as a canonical neural computation   Carandini & Heeger 2012 



Summary  

Hebb rule:  

w(t+1) = w(t) +αvx 

  

Normalization:  

w  ←  (w + αv x) / ||w|| 

 

Oja rule:  

w  ←  w + αv (x – vw) 



Summary   

For Hebb rule 

  

d/dt  |w|2 ~ 2αv2  (growing) 

 

For Oja rule: 

  

d/dt  |w|2  ~  2αv2(1 - |w|2) (stable for |w| = 1)  



Convergence  

 

 

• The exact dynamics of the Oja rule have been solved by Wyatt and Elfaldel 

1995  

• It shows that the w → u1  which is the first eigen-vector of XTX 

 

• Qualitative argument, not the full solution  

 

  

 



wFinal value of  

rule Oja)          w 2v –v x=  α (  Δw 

  

xTw=   wTxv =  

  

 w) wTx xTw  –  wTx x=  α (  Δw 

  

: xAveraging over inputs  

 

state) -for steady0 (0  ) = w wCTw – wC( =  α  Δw 

  

is a scalar, λ  wCTw 

  

0 =  wλ – wC 

  

is an  wAt convergence (assuming convergence) 

eigenvector of C  

  

  



Weight will be normalized:  

Also at convergence:  

  

We defined wTCw  as a scalar, λ  

  

λ = wTCw     =    wT λw = λ||w||2  

  

→     ||w||2 = 1 

  

Oja rule results in final length normalized to 1  



It will in fact be the largest eigenvector.  
 

Without normalization each dimension grows exponentially with λi  

 

With normalization only the largest λi survives  

For full convergence, the learning rate α has to decrease over time. A typical 

decreasing sequence is α(t) = 1/t  

If there is more than one eignevector with the largest eigenvalue it will 

converge to a combination, that depends on the starting conditions 

  

Following Oja's rule, w will converge to the largest eigenvectors of the 

data matrix XXT      



Full PCA by Neural Net  

First pc 



• Procedure 

 

– Use Oja’s rule to find the principal component 

– Project the data orthogonal to the first principal component 

– Use Oja’s rule on the projected data to find the next major 
component 

– Repeat the above for m ≤ p (m = desired components; p = 
input space dimensionality) 

 

• How to find the projection onto orthogonal direction? 

– Deflation method: subtract the principal component from the 
input 

 



Oja rule:  

  

Δw = αv(x – vw)  

  

Sanger rule:  

  

Δwi = αvi (x – Σk=1
i vk wk) 

  

Oja multi-unit rule:  

  

Δwi = αvi (x – Σ1
N vk wk)  

In Sanger the  sum is for k up to j, all previous units, 

rather than all units. Was shown to converge 

 

Oja network converges in simulations    



Connections in Sanger Network  

)   kw kv jΣ –(x  jv=  α    jwΔ 



PCA by Neural Network Models:  

• The Oja rule extracts ‘on line’ the first principal component of the data  

 

• Extensions of the network can extract the first m principal components of 
the data  


