9.520 Problem Set 1
Due March 14, 2011

Note: there are sixz problems total in this set.

Problem 1

Problem 2

Problem 3

Problem 4

One common preprocessing in machine learning is to center the data. In this problem we will see
how this can be related to working with an (unpenalized) off-set term in the solution. Consider
the usual Tikhonov regularization with a linear kernel, but assume that there is an unpenalized

offset term b,
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and let (w*,b*) be the solution of the above problem.

For i =1,...,n, denote by z{ = z; — Z, y{ = y; — y the centered data, where ¥, Z are the output
and input means respectively. Show that w* also solves

min {;z ((w,a) —yf)2+lell2}- 1)

and determine b*.

The distance between two elements ®(z), ®(s) of a feature space induced by some kernel K can
be seen as a new distance d(z,2’) in the input space. Show that such a distance can always be
calculated without knowing the explicit form of the feature map itself.

You are given a dataset of z,y pairs {(x;, )}, with #; € X and y; € {—1,1}. Assume that
n4,n_ of the x; have label +1, —1, respectively (so ny +n_ = N), and let’s also assume that we
are given a kernel K and an associated feature map ® : X — F satisfying

K(z,2) = (3(x), 8(2')) 5.

Derive a classification rule, involving only kernel products (and the sign function), that assigns to
a new test point the label of the class whose mean is closest in the feature space.

In (binary) classification problems one aims at finding a classification rule (also called the “decision
rule”) which is a binary valued function on the input space ¢ : X — {1,—1}. The quality of a
classification rule can be naturally measured by means of the so called misclassification error
defined by

R(c) = B{e(x) # y}.
If we introduce the misclassification loss V(c(z),y) = 0(—yc(x)), where 6(s) = 1 if s > 0 and
0(s) = 0 otherwise, the misclassification error can be rewritten as

R(c) = /X Byl p(e)p(ylo)dedy

Direct minimization of the misclassification error is not computationally feasible mostly because
the misclassification loss is not convex. In practice, one usually looks for real valued (rather than



binary valued) functions f : X — R and replaces §(—yc(z)) with some convex loss V(—yf(z)).
A classification rule is then obtained by taking the sign, that is ¢(z) = sign(f(z)). Commonly
chosen loss functions are the hinge loss and square loss (see class). Note that in this case the error
is measured by the expected error

1] = /X  Vuf@)p@pla)dedy,

However, there is still the problem of relating the convex approximation to the original classifica-
tion problem.

With the above discussion in mind, and assuming that the distribution p(z,y) is known, answer
the following questions:

(a) Check that the square loss can be written as V(—yf(x)). Calculate the explicit form of the
minimizer of I[f] if V' is the square loss.

(b) Calculate the closed-form of the minimizer of I[f] if V' is the exponential loss V(—yf(z)) =
exp{—yf(z)}.

(c) Find the closed-form of the minimizer of I[f] if V for the logistic loss
V(—yf(z)) = log (1 + exp{—yf(x)})-

(d) The minimizer of R(c) over all possible decision rules is the so called Bayes decision rule

b: X — {1,—1}. For all the losses considered above, what is their relation to Bayes decision
rule?

Problem 5 Consider a bounded loss function V' : R x R — (0, M] and a hypothesis space comprised of N
distinct functions, H = {f1,..., fn}.

(a) Prove that for all € > 0, the following bound holds
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where C > 0 is some constant. What is the best C' that you can get?
(Hint: use Chebychev’s inequality and union bound)

(b) Show that, if fg is the minimizer of the empirical risk on H, then the above inequality implies
that with probability 1 — n we have

[[fs] < IS[fS] +€(n7naN)

where €(n,n,N) = ‘/017\777]1\/[2 and 0 < n < 1. Discuss the behavior of Ig[fs], €(n,n, N) and

their sum as functions of V.

(c) Denote with fg and f* the minimizers on H of the empirical and expected risks, respectively.
Given (2), show that
I[fS] - I[f*] < 26(’”’777 N)
(Hint: add and subtract the empirical risks of fs and f* in the left hand side of the above
inequality. Recall that by definition fg minimizes the empirical risk. )



Problem 6 Matlab exercise.

In this excercise you will implement and use regularized least squares on an artificial classification
problem. You will do the following:

e Implement RLS using the linear and polynomial kernels. You should write two functions:
— rlsTrain(Ytrain,Xtrain,whichKernel) takes three inputs
*x Ytrain the training labels;
* Xtrain the training inputs;
* whichKernel the kernel to use, e.g. ’linear’;
and returns three outputs
x coeffs the optimal RLS coeflicients
*x lambdas a vector of values tried for the regularization parameter A
* looe a vector of leave-one-out errors on the training set — errors for the LOO RLS
solutions, that is — one for each value of A in lambdas
— rlsPredict (Xtest,Xtrain,coeffs,whichKernel) takes four inputs
* Xtest the test inputs;
x Xtrain the training inputs;
x coeffs the coeflicients to use;
* whichKernel the kernel to use, e.g. ’linear’
and returns one output
*x Ytest the predicted values at the test inputs

(You might want to write a helper function to construct the kernel matrix, too.)

(rlsTrain picks values for A automatically. A reasonable value for A might range up to the
maximum eigenvalue of the kernel matrix.)

e Download psi-dataset.mat from the course page. It contains a training set Xtrain, Ytrain
and a test set Xtest, Ytest each one containing 100 samples. The inputs in Xtrain and
Xtest should have two dimensions.

e Use RLS to train a linear classifier on the training set, choosing the regularization parameter
A to minimize the leave-one-out error.

e Do the same thing with a polynomial kernel, using at least 3 different polynomial degrees.

e Compare the obtained classifiers by testing them on the test set and plotting the obtained
decision boundaries.

Please include the following in your writeup.

e All of the code you wrote.
e Figures showing:
— The training set error and leave-one-out error vs. A for each of the kernels you tried.
Plot both kinds of error on the same figure (one figure for each kernel).
— The decision boundaries overlaid on the training set points (plotted in two dimensions),
for each of the kernels you tried.

e A table giving the training and test error and best A for each kernel you tried. Report the
error in terms of the percentage of points correctly classified.
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