
9.520 Problem Set 1

Due March 14, 2011

Note: there are six problems total in this set.

Problem 1 One common preprocessing in machine learning is to center the data. In this problem we will see
how this can be related to working with an (unpenalized) off-set term in the solution. Consider
the usual Tikhonov regularization with a linear kernel, but assume that there is an unpenalized
offset term b,

min
w∈Rd, b∈R

{
1
n

n∑
i=1

(
〈w, xi〉+ b− yi

)2 + λ‖w‖2

}
and let (w∗, b∗) be the solution of the above problem.

For i = 1, . . . , n, denote by xc
i = xi − x̄, yc

i = yi − ȳ the centered data, where ȳ, x̄ are the output
and input means respectively. Show that w∗ also solves

min
w∈Rd

{
1
n

n∑
i=1

(
〈w, xc

i 〉 − yc
i )

2 + λ‖w‖2

}
. (1)

and determine b∗.

Problem 2 The distance between two elements Φ(x),Φ(s) of a feature space induced by some kernel K can
be seen as a new distance d(x, x′) in the input space. Show that such a distance can always be
calculated without knowing the explicit form of the feature map itself.

Problem 3 You are given a dataset of x, y pairs {(xi, yi)}N
i=1, with xi ∈ X and yi ∈ {−1, 1}. Assume that

n+, n− of the xi have label +1,−1, respectively (so n+ + n− = N), and let’s also assume that we
are given a kernel K and an associated feature map Φ : X → F satisfying

K(x, x′) = 〈Φ(x),Φ(x′)〉F .

Derive a classification rule, involving only kernel products (and the sign function), that assigns to
a new test point the label of the class whose mean is closest in the feature space.

Problem 4 In (binary) classification problems one aims at finding a classification rule (also called the “decision
rule”) which is a binary valued function on the input space c : X → {1,−1}. The quality of a
classification rule can be naturally measured by means of the so called misclassification error
defined by

R(c) = P{c(x) 6= y}.

If we introduce the misclassification loss V (c(x), y) = θ(−yc(x)), where θ(s) = 1 if s > 0 and
θ(s) = 0 otherwise, the misclassification error can be rewritten as

R(c) =
∫

X×Y
θ(−yc(x))p(x)p(y|x)dxdy.

Direct minimization of the misclassification error is not computationally feasible mostly because
the misclassification loss is not convex. In practice, one usually looks for real valued (rather than
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binary valued) functions f : X → R and replaces θ(−yc(x)) with some convex loss V (−yf(x)).
A classification rule is then obtained by taking the sign, that is c(x) = sign(f(x)). Commonly
chosen loss functions are the hinge loss and square loss (see class). Note that in this case the error
is measured by the expected error

I[f ] =
∫

X×Y
V (−yf(x))p(x)p(y|x)dxdy.

However, there is still the problem of relating the convex approximation to the original classifica-
tion problem.

With the above discussion in mind, and assuming that the distribution p(x, y) is known, answer
the following questions:

(a) Check that the square loss can be written as V (−yf(x)). Calculate the explicit form of the
minimizer of I[f ] if V is the square loss.

(b) Calculate the closed-form of the minimizer of I[f ] if V is the exponential loss V (−yf(x)) =
exp{−yf(x)}.

(c) Find the closed-form of the minimizer of I[f ] if V for the logistic loss
V (−yf(x)) = log (1 + exp{−yf(x)}).

(d) The minimizer of R(c) over all possible decision rules is the so called Bayes decision rule
b : X → {1,−1}. For all the losses considered above, what is their relation to Bayes decision
rule?

Problem 5 Consider a bounded loss function V : R × R → (0,M ] and a hypothesis space comprised of N
distinct functions, H = {f1, . . . , fN}.

(a) Prove that for all ε > 0, the following bound holds

Pr
(

sup
f∈H

∣∣IS [f ]− I[f ]
∣∣ ≥ ε

)
≤ CNM2

nε2
(2)

where C > 0 is some constant. What is the best C that you can get?
(Hint: use Chebychev’s inequality and union bound)

(b) Show that, if fS is the minimizer of the empirical risk on H, then the above inequality implies
that with probability 1− η we have

I[fS ] ≤ IS [fS ] + ε(n, η, N)

where ε(n, η, N) =
√

CNM2

ηn and 0 < η ≤ 1. Discuss the behavior of IS [fS ], ε(n, η, N) and
their sum as functions of N .

(c) Denote with fS and f∗ the minimizers on H of the empirical and expected risks, respectively.
Given (2), show that

I[fS ]− I[f∗] ≤ 2ε(n, η, N).

(Hint: add and subtract the empirical risks of fS and f∗ in the left hand side of the above
inequality. Recall that by definition fS minimizes the empirical risk. )
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Problem 6 Matlab exercise.

In this excercise you will implement and use regularized least squares on an artificial classification
problem. You will do the following:

• Implement RLS using the linear and polynomial kernels. You should write two functions:
– rlsTrain(Ytrain,Xtrain,whichKernel) takes three inputs

∗ Ytrain the training labels;
∗ Xtrain the training inputs;
∗ whichKernel the kernel to use, e.g. ’linear’;

and returns three outputs
∗ coeffs the optimal RLS coefficients
∗ lambdas a vector of values tried for the regularization parameter λ

∗ looe a vector of leave-one-out errors on the training set – errors for the LOO RLS
solutions, that is – one for each value of λ in lambdas

– rlsPredict(Xtest,Xtrain,coeffs,whichKernel) takes four inputs
∗ Xtest the test inputs;
∗ Xtrain the training inputs;
∗ coeffs the coefficients to use;
∗ whichKernel the kernel to use, e.g. ’linear’

and returns one output
∗ Ytest the predicted values at the test inputs

• (You might want to write a helper function to construct the kernel matrix, too.)
• (rlsTrain picks values for λ automatically. A reasonable value for λ might range up to the

maximum eigenvalue of the kernel matrix.)
• Download ps1-dataset.mat from the course page. It contains a training set Xtrain, Ytrain

and a test set Xtest, Ytest each one containing 100 samples. The inputs in Xtrain and
Xtest should have two dimensions.

• Use RLS to train a linear classifier on the training set, choosing the regularization parameter
λ to minimize the leave-one-out error.

• Do the same thing with a polynomial kernel, using at least 3 different polynomial degrees.
• Compare the obtained classifiers by testing them on the test set and plotting the obtained

decision boundaries.

Please include the following in your writeup.

• All of the code you wrote.
• Figures showing:

– The training set error and leave-one-out error vs. λ for each of the kernels you tried.
Plot both kinds of error on the same figure (one figure for each kernel).

– The decision boundaries overlaid on the training set points (plotted in two dimensions),
for each of the kernels you tried.

• A table giving the training and test error and best λ for each kernel you tried. Report the
error in terms of the percentage of points correctly classified.

3



References

[1] T. Evgeniou and M. Pontil and T. Poggio. Regularization Networks and Support Vector Machines.
Advances in Computational Mathematics, 2000.

[2] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

4


