
9.520: Statistical Learning Theory and Applications February 17th, 2010

Several Views of Support Vector Machines
Lecturer: Charlie Frogner Scribe: Nicholas Edelman, Matt Miller

1 Introduction
Support vector machines (SVMs) are a popular learning tool for designing classifier functions. For
the purposes of this class, we are only concerned with binary classification. Like regularized
least squares (RLS) from the previous lecture, SVMs determine the classification function by solving
Tikhonov regularization learning problem.

2 Setting up the SVM problem
We are given n examples (x1, y1), . . . , (xn, yn), with xi ∈ Rd and yi ∈ {−1, 1} for all i. We solve the
Tikhonov regularization learning problem to find the classifier function:

min
f∈H

1
n

n∑

i=1

V (yi, f(xi)) + λ||f ||2H.

For our classification function f(x), negative values of f(x) correspond to one class, and nonneg-
ative values of f(x) correspond to the other class. The final classification is thus:

sign(f(x)).

2.1 Designing an appropriate loss function V (yi, f(xi))

In the case where the classification function, f(x), and the training point, yi, have the same sign,
we have classified correctly, yif(xi) ≥ 0, and want the loss function V to be small or zero. When
there is an incorrect classification, yif(xi) < 0, we want the loss function V to be larger. When first
considering this problem, a natural initial choice is the step function.

V (yi, f(xi)) =

{
1 for yif(xi) < 0
0 for yif(xi) ≥ 0

.

However, the step function has a few problems making it not the ideal loss function for binary
classification. For one, the derivative is undefined at x = 0, so thus the step function is not differen-
tiable. The primary problem is the step function is not convex. Non-convex functions are difficult
to use in minimization problems. On the other hand, for convex functions, we can leverage the field
of convex optimization to help solve the minimization problem. To address the deficiencies of the
step function, the classical SVM loss function is the hinge loss (Although the hinge loss is convex,
it is not also not differentiable. We later introduce slack variables to deal with this shortcoming.):

V (f(x), y) ≡ (1− yf(x))+, where (k)+ ≡ max(k, 0).

5-1

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

y * f(x)

H
in

ge
 L

os
s

Using the hinge loss, the loss is linear for yf(x) < 1 and zero elsewhere. The loss is designed
to be asymmetric: incorrect classifications, yif(xi) < 0, are assigned linearly increasing losses as
yif(xi) decreases, and any correct classification with yif(xi) ≥ 1 is always zero loss. In addition,
the loss function assigns a positive loss to correct classification for 0 < yif(xi) < 1. The goal of this
asymmetry is to hopefully create a classifier that not only classifies correctly, but also classifies most
xi inputs with at least a value of yif(xi) ≥ 1. Assigning a linearly loss to anything below 1 instead
of just below 0 reduces the likelihood that new data will perturb parts of the solution into incorrect
classification.

Given the hinge loss function, the Tikhonov regularization expression becomes:

min
f∈H

1
n

n∑

i=1

(1− yif(xi))+ + λ||f ||2H.

3 Solving SVM
To solve the SVM regularization problem, we need to make our constraint problem more tractable.
We introduce the use of slack variables to make the problem differentiable. We then formulate the
SVM regularization as the classic primal problem and discover it is easier to optimize when we
convert the primal into the dual form.

3.1 Slack Variables
The hinge loss is not differentiable due to the kink in V at yif(xi) = 1. We introduce slack variables
ξi to make the objective function differentiable and thus easier to optimize. For each point in the
training set, we introduce one ξi to replace (1−yif(xi)). For each ξi, we require ξi ≥ (1−yif(xi))+.
The new problem statement becomes:

min
f∈H

1
n

∑n
i=1 ξi + λ||f ||2H

subject to : yif(xi) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n.

5-2

3.2 Arriving at the Primal SVM
By the representer theorem, we know our optimal classifier function, the minimizer of the Tikhonov
functional, can be written as follows:

f∗(x) =
n∑

i=1

ciK(x, xi).

Substituting the f∗(x) for f , we arrive at a constrained quadratic programming problem:

min
c∈Rn,ξ∈Rn

1
n

∑n
i=1 ξi + λcT Kc

subject to : yi

∑n
j=1 cjK(xi, xj) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n.

To make our problem appear as it does in the SVM literature, we need to make two modifications
to our problem statement:

1. Add a bias term b.

2. Use parameter C instead of λ. To change to C notation, we have C = 1
2λn .

Applying these two modifications, we arrive at the “primal” SVM:

min
c∈Rn,b∈R,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : yi(
∑n

j=1 cjK(xi, xj) + b) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n.

3.3 Optimizing the Primal SVM
Now that we have formulated the SVM problem into a primal problem, the approach to solving this
constrained optimzation problem is as follows:

• Lagrangian - formulate from the primal as in Lagrange multipliers

• Dual - associate one dual variable to each primal constraint in the Lagrangian. Solve the dual
problem. As we will show, it is easier to solve the dual rather than the primal problem.

We associate one slack variable for each constraint. For each constraint, ξi ≥ 0, we associate a
dual variable ζi. For each constraint, yi(

∑n
j=1 cjK(xi, xj)+ b) ≥ 1− ξi, we associate a dual variable

αi. The Lagrangian is thus:

L(c, ξ, b, α, ζ) = C

n∑

i=1

ξi + cT Kc

−
n∑

i=1

αi(yi{
n∑

j=1

cjK(xi, xj) + b} − 1 + ξi)

−
n∑

i=1

ζiξi.

5-3

The dual problem is to find the maximum, with respect to the dual variables, of the infimum value
of the Lagrangian with respect to the primal variables. Formally, we can write the dual problem as:

arg max
α,ζ

inf
c,ξ,b

L(c, ξ, b, α, ζ).

To construct the dual problem, we need to determine the optimal c, ξ, and b in terms of the dual
variables. We achieve this by differentiating the constraints with respect to the primal variables.

∂L

∂b
= 0 =⇒

n∑

i=1

αiyi = 0

∂L

∂ξi
= 0 =⇒ C − αi − ζi = 0

=⇒ 0 ≤ αi ≤ C
∂L

∂c
= 0 =⇒ ci = αiyi

Substituting αiyi for ci and applying the new constraints, the dual problem becomes:

max
α∈Rn

∑n
i=1 αi − 1

2αT Qα

subject to :
∑n

i=1 yiαi = 0
0 ≤ αi ≤ C i = 1, . . . , n.

where Q = yT Ky.
This dual form is much easier to solve than the primal. In the primal, we must minimize over c,

b and ξ, with two inequality constraints per training point. In the dual, we must maximize over α
with one box constraint and one simple inequality per point. In practice, the problem is typically
solved using the dual form for exactly this reason. Once the dual is maximized, the resulting α can
be used to calculate both c and b.

ci = αiyi,

b = yi −
n∑

j=1

cjK(xi, xj).

We showed earlier how the condition for ci arises naturally out of ∂L
∂c = 0. In the next section,

we prove the condition for b.

3.4 Optimality Conditions
We have formulated the SVM as a quadratic programming problem. We can therefore use results
from the field of optimization to derive certain properties of an optimal SVM solution. Specifically,
the Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for an optimal solution to any
non-linear programming problem. They are sufficient conditions when the primal objective and
inequality constraints are convex and continuously differentiable, and each equality constraint is an
affine function. This holds for the SVM problem, so the KKT conditions are both necessary and
sufficient conditions for any optimal SVM solution.

The KKT conditions can be grouped into four categories: stationarity, primal feasibility, dual
feasibility and complementary slackness. Stationarity requires that the gradient of the Lagrangian

5-4

be zero. Primal and dual feasibility say that the solution must satisfy both the primal and dual
constraints (i.e. any optimal solution must be a feasible one). Complementary slackness relates the
value of each Lagrangian multiplier with its corresponding constraint. Recall that the variables αi

and ζi were introduced to incorporate the primal constraints into the dual objective.

αi → yi{
n∑

j=1

cjK(xi, xj) + b} − 1 + ξi ≥ 0,

ζi → ξi ≥ 0.

The complementary slackness condition states that either the primal constraint is satisfied with
equality, or its corresponding Lagrangian multiplier is zero. More formally, if c, ξ, b, α and ζ are
optimal solutions to the primal and dual, then

αi(yi{
n∑

j=1

cjK(xi, xj) + b} − 1 + ξi) = 0,

ζiξi = 0.

Therefore, for any training point xi, either αi = 0 or yi{
∑n

j=1 cjK(xi, xj) + b} − 1 + ξi = 0.
Since ξi ≥ 0, the latter case occurs when yi{

∑n
j=1 cjK(xi, xj)+ b} ≤ 1 (so the point is not classified

’as correctly’ as we would like) and αi = 0 when yi{
∑n

j=1 cjK(xi, xj) + b} > 1 (by complementary
slackness). We showed above that, at the optimum, ci = yiαi, so when αi = 0, the coefficient in the
solution that corresponds to the ith training point will be zero – the solution is said to be “sparse.”
The points xi for which αi > 0 are called the “support vectors,” which gives the SVM its name.
The role of the support vectors will be discussed shortly. But first, we can add the stationarity and
feasibility constraints to obtain all of the KKT conditions for the SVM problem.

n∑

j=1

cjK(xi, xj)−
n∑

j=1

yiαjK(xi, xj) = 0 i = 1, . . . , n

n∑

i=1

αiyi = 0

C − αi − ζi = 0 i = 1, . . . , n

yi(
n∑

j=1

yjαjK(xi, xj) + b)− 1 + ξi ≥ 0 i = 1, . . . , n

αi[yi(
n∑

j=1

yjαjK(xi, xj) + b)− 1 + ξi] = 0 i = 1, . . . , n

ζiξi = 0 i = 1, . . . , n

ξi, αi, ζi ≥ 0 i = 1, . . . , n.

5-5

Using these optimality conditions, we can calculate the bias term b. Suppose that there exists
some i satisfying 0 < αi < C (this happens in practice).

αi < C =⇒ ζi > 0
=⇒ ξi = 0

=⇒ yi(
n∑

j=1

yjαjK(xi, xj) + b)− 1 = 0

=⇒ b = yi −
n∑

j=1

yjαjK(xi, xj).

Thus, if we solve the dual problem for an optimal α, we can go back and solve for b.

3.5 Support Vectors
We showed earlier that ci = yiαi. Substituting for ci, the optimal classification function may be
written as:

f(x) =
n∑

i=1

yiαiK(x, xi) + b

.
Notice that, in order to classify a novel point x, we need only calculate the value of K(x, xi)

when αi > 0. Therefore, once an optimal α is learned, all of the training points xi where αi = 0 can
be discarded. New points can be classified using only those training points with positive Lagrangian
multipliers. This is why a sparse solution is desirable. If the classification function is expressed in
terms of very few training points, it reduces the required memory and computation for classification.

But why is this possible? Why can certain points be ignored for purposes of classification?
Suppose that for some training point xi, the loss V (yi, f(xi)) is zero, so

V (yi, f(xi)) = 0
⇒ yif(xi) ≥ 1
⇒ yi{

∑n
j=1 cjK(xi, xj) + b} ≥ 1

⇒ yi{
∑n

j=1 cjK(xi, xj) + b} − 1 + ξi ≥ 0

with the last step following because ξi ≥ 0. If yif(xi) > 1 (so excluding the case that yif(xi) = 1),
then

yi{
∑n

j=1 cjK(xi, xj) + b} − 1 + ξi > 0
⇒ αi = 0

(αi = 0 by complementary slackness.)
This holds in the reverse direction, as well: αi = 0 ⇒ V (yi, f(xi)) = 0. First, assuming αi = 0:

αi = 0 ⇒ζi = C

⇒ξi = 0

5-6

(ζi = C because at the optimum C − αi − ζi = 0, and ξi = 0 by complementary slackness.)
We defined (way back in the primal problem) that yi{

∑n
j=1 cjK(xi, xj)+b}−1+ξi ≥ 0. Plugging

ξi = 0 into this constraint:

ξi = 0

⇒ yi{
n∑

j=1

cjK(xi, xj) + b} − 1 ≥ 0

⇒ yif(xi) ≥ 1
⇒ V (yi, f(xi)) = 0

.
So we see that if the training point xi incurs no loss given the optimal classification function f ,

then the corresponding αi is zero – except in the case that yif(xi) = 1, where αi is constrained only
to be between 0 and C – and vice versa: if αi is zero, then the optimal classification function incurs
no loss at the point xi. Since the classification function can be written

f(x) = sign




n∑

j=1

cjK(x, xj) + b




= sign




n∑

j=1

yjαjK(x, xj) + b




the points for which αj = 0 don’t appear in the solution function – it’s based only on those points
xj for which αj > 0. Intuitively, the classification function defines a decision boundary based on a
weighted sum over the training points. Those for which the weight is 0 are far enough inside the
decision boundary defined by other points to incur no loss (recall that the hinge loss penalizes points
that are near the decision boundary, even if they are classified correctly). Those points for which
αi > 0 define the decision boundary, and are therefore the only points required for classification.
These are the support vectors.

3.6 Reduced Optimality Conditions
It is convenient to rewrite the KKT conditions in a “reduced” form that expresses them more clearly.
Specifically, we would like to define them in terms of our classification function f(x). We can write
the optimality conditions in terms of the values of αi, ξi and ζi given yif(xi) and vice versa. For
example, it is easy to show that

yif(xi) < 1 =⇒ ξi > 0
=⇒ ζi = 0
=⇒ αi = C

and conversely if αi = C

αi = C =⇒ yif(xi)− 1 + ξi = 0
=⇒ yif(xi) ≤ 1.

5-7

Proceeding accordingly, we can rewrite all of the optimality conditions as relations of this sort
(we’ll avoid proving them here.)

αi = 0 =⇒ yif(xi) ≥ 1
0 < αi < C =⇒ yif(xi) = 1

αi = C ⇐= yif(xi) < 1

αi = 0 ⇐= yif(xi) > 1
αi = C =⇒ yif(xi) ≤ 1

Figure 1: A linear decision boundary on the training set. The support vectors are darkened and
filled.

4 The Geometric Approach
So far we have presented the SVM as a special case of Tikhonov Regularization. The solution of
the resulting quadratic programming problem is a set of (possibly sparse) αi’s, which specify the
weighted sum that becomes the classification function f(x). While this formulation is elegant and
rigorously satisfying, it is not how the SVM was originally conceived or derived. Instead, it started
with the concepts of separating hyperplanes, and margin.

Given a training set S ⊆ Rn×{−1, 1} the separating hyperplane is an d-dimensional hyperplane
that separates the positive and negative examples in S. We can denote the hyperplane with a weight
vector w ∈ Rd, and the corresponding classification function f(x) = sign (w · x).

5-8

This is the definition of a linear classifier. In high dimensional input spaces, there are often many
hyperplanes that can separate a given training set. Many of the possible separating hyperplanes
might overfit the training data, and generalize poorly. To compensate, we pick the hyperplane that
maximizes the margin, where the margin is defined as the distance from the separating hyperplane
to the closest point in the training set. In other words, select the boundary that separates the
positive and negative examples by the largest distance. The hope is that this hyperplane will do
well at classifying future examples, because, in some sense, it separates the training data in the best
possible way.

(a) (b)

Figure 2: An illustration of the max-margin principle. The boundary is chosen that separates the
data by the largest distance on both sides.

Let x be the training datapoint closest to w, and xw be the point on the hyperplane closest to
x. Then, maximizing the margin becomes equivalent to maximizing ‖x − xw‖. We can do a little
bit of math to construct an optimization problem to do just this.

For some k (assume k > 0)

w · x = k

w · xw = 0
=⇒ w · (x− xw) = k

5-9

Since x− xw is parallel to normal vector w we can proceed:

w · (x− xw) = w ·
(||x− xw||

||w|| w

)

= ||w||2 ||x− xw||
||w||

= ||w|| ||x− xw||
=⇒ ||w|| ||(x− xw)|| = k

=⇒ ||x− xw|| = k

||w|| .

So here we have derived that the margin ‖x− xw‖ is actually equal to some constant k divided
by the norm of w. Therefore, we can maximize the margin by simply minimizing ‖w‖ or, more
conveniently, ‖w‖2. Essentially, the numerical value of the margin is unimportant. If we assume that
the points in our training set are linearly separable, then we can define the max-margin hyperplane
as the one that solves

min
w∈Rn

||w||2

subject to : yi(w · x) ≥ 1 i = 1, . . . , n.

Of course, this is still a little bit too simple. We would like to be able to learn hyperplanes that
don’t pass through the origin. We can do this by adding a bias term b to the classification function

f(x) = sign (w · x + b).

Also, note that we’ve assumed that the classes are perfectly separated by a linear decision bound-
ary. Most datasets are not linearly separable. So we must add slack variables ξi for each training
point. These allow a point to be misclassified, but they incur a penalty in the objective function.
With these two additions, the primal form of the SVM becomes the familiar

min
w∈Rn,ξ∈Rn,b∈R

C
∑n

i=1 ξi + 1
2 ||w||2

subject to : yi(w · x + b) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n.

The only thing this formulation is missing is the kernel function. It is easily added, using the
kernel ”trick”. Remember that, when we write down the dual form, the points {xi} appear only in the
quadratic penalty term αT Qα: in the linear case we have Q = yT (XT X)y, i.e. [Q]ij = yT 〈xi, xj〉y,
so we can replace these inner products between the input points with the kernel function evaluated
at the same points. The penalty term becomes αTdiagY KdiagY α, just as we derived before.

It is interesting to note that, historically, the kernel “trick” was added at the end of the derivation.
Conceptually, the SVM was derived as an optimal linear classifier. However, it was only linear
because the dot product was used to define the similarity metric between training points. The
kernel was substituted in order to take the dot product in a (possibly infinite-dimensional) feature
space, with a linear decision boundary in this feature space corresponding to a nonlinear decision
boundary in the original input space.

This formulation also makes explicit the idea of a “support vector.” Recall that the support
vectors were those training points for which the corresponding coefficients in the solution function
were non-zero. Under the geometric interpretation the support vectors are simply the training points
that are on the ’wrong side’ of the margin line – either they are misclassified or they are correctly
classified, but lie within the margin.

5-10

5 Practical Issues
There are several practical tidbits that might help with the implementation of an SVM, or the choice
of model. For instance, it was noted that Regularized Least Squares regression typically works about
as well as an SVM in most cases. However, RLS requires the calculation of the entire kernel matrix.
When there are too many training points, this becomes intractable. An SVM, on the other hand,
only requires calculating the value of the kernel function between an input point and each support
vector. This makes it possible to “chunk” the training set when learning an SVM. That is, to start
with a small subset of the training points, learn an SVM, then discard all training points that are far
from the decision boundary, add more of the training points and repeat. This effectively reduces the
memory required to learn the classifier, allowing SVMs to scale potentially to much larger datasets
than can RLS.

Finally, several good large scale SVM solvers were suggested:

• SVM Light: http://svmlight.joachims.org

• SVM Torch: http://www.torch.ch

• libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

5-11

