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About this class

Goal To give an overview of some of the basic concepts
in Bayesian Nonparametrics. In particular, to
discuss Dirichlet processes and their several
characterizations and properties.
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Parametrics, nonparametrics and priors
A reminder on distributions
Dirichlet processes

Definition
Stick Breaking
Pólya Urn Scheme and Chinese processes
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Parametrics vs Nonparametrics

We can illustrate the difference between the two approaches
considering the following prototype problems.

1 function estimation
2 density estimation
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(Parametric) Function Estimation

Data, S = (X ,Y ) = (xi , yi)
n
i=1

Model, yi = fθ(xi) + εi ,
e.g. fθ(x) = 〈θ, x〉 and ε ∼ N (0, σ2), σ > 0.
prior θ ∼ P(θ)

posterior

P(θ|X ,Y ) =
P(θ)P(Y |X , θ)

P(Y |X )

prediction

P(y∗|x∗,X ,Y ) =

∫
P(y∗|x∗, θ)P(θ|X ,Y )dθ
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(Parametric) Density Estimation

Data, S = (xi)
n
i=1

Model, xi ∼ Fθ

prior θ ∼ P(θ)

posterior

P(θ|X ) =
P(θ)P(X |θ)

P(X )

prediction

P(x∗|X ) =

∫
P(x∗|θ)P(θ|X )dθ
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Nonparametrics: a Working Definition

In the above models the number of parameters available
for learning is fixed a priori.
Ideally the more data we have, the more parameters we
would like to explore.

This is in essence the idea underlying nonparametric models.
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The Right to a Prior

A finite sequence is exchangeable if its distribution does
not change under permutation of the indeces.
A sequence is infinitely exchangeable if any finite
subsequence is exchangeable.

De Finetti’s Theorem
If the random variables (xi)

∞
i=1 are infinitely exchangeable, then

there exists some space Θ and a corresponding distribution
p(θ), such that the joint distribution of n observations is given
by:

P(x1, . . . , xn) =

∫
Θ

P(θ)
n∏

i=1

P(xi |θ)dθ.
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Question

The previous classical result is often advocated as a
justification for considering (possibly infinite dimensional) priors.

Can we find computationally efficient nonparametric models?

We already met one when we considered the Bayesian
interpretation of regularization...
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Reminder: Stochastic Processes

Stochastic Process
A family (Xt ) : (Ω,P)→ R, t ∈ T , of random variables over
some index set T .

Note that:
Xt (ω), ω ∈ Ω, is a number,
Xt (·) is a random variable,
X(·)(ω) : T → R is a function and is called sample path.
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Gaussian Processes

GP(f0,K ), Gaussian Process (GP) with mean f0 and
covariance function K
A family (Gx )x∈X of random variables over X such that:
for any x1, . . . , xn in X , Gx1 , . . . ,Gxn is a multivariate Gaussian.

We can define the mean f0 : X → R of the GP from the mean
f0(x1), . . . , f0(xn) and the covariance function K : X × X → R
settting K (xi , xj) equal to the corresponding entries of
covariance matrix. Then K is symm., pos. def. function.

A sample path of the GP can be thought of as a random
function

f ∼ GP(f0,K ).
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(Nonparametric) Function Estimation

Data, S = (X ,Y ) = (xi , yi)
n
i=1

Model, yi = f (xi) + εi

prior f ∼ GP(f0,K )

posterior

P(f |X ,Y ) =
P(f )P(Y |X , f )

P(Y |X )

prediction

P(y∗|x∗,X ,Y ) =

∫
P(y∗|x∗, f )P(f |X ,Y )df

We have seen that the last equation can be computed in closed
form.
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(Nonparametric) Density Estimation

Dirichlet Processes (DP) will give us a way to build
nonparametric priors for density estimation.

Data, S = (xi)
n
i=1

Model, xi ∼ F
prior F ∼ DP(α,H)

posterior

P(F |X ) =
P(F )P(X |F )

P(X )

prediction

P(x∗|X ) =

∫
P(x∗|F )P(F |X )dF
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Dirichlet Distribution

It is a distribution over the K-dimensional simplex SK , i.e.
x ∈ RK such that

∑K
i=1 x i = 1 and x i ≥ 0 for all i .

The Dirichlet distribution is given by

P(x) = P(x1, . . . , xK ) =
Γ(
∑K

i=1 α
i)∑K

i=1 Γ(αi)

K∏
i=1

(x i)αi−1

where α = (α1, . . . , αK ) is a parameter vector and Γ is the
Gamma function.
We write x ∼ Dir(α), i.e. x1, . . . , xK ∼ Dir(α1, . . . , αK ).
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Dirichlet Distribution

university-logo

Dirichlet Processes
Examples of Dirichlet distributions.

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 28 / 80
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Reminder: Gamma Function and Beta Distribution

The Gamma function

γ(z) =

∫ ∞
0

tz−1e−tdt .

It is possible to prove that Γ(z + 1) = zΓ(z).

Beta Distribution
Special case of the Dirichlet distribution given by K = 2.

P(x |α, β) =
Γ(α + β)

Γ(α) + Γ(β)
x (α−1)(1− x)(β−1)

Note that here x ∈ [0,1] whereas for the Dirichlet distribution
we would have x = (x1, x2) with x1, x2 > 0 and x1 + x2 = 1.
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Beta Distribution
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Figure 2.1. Examples of beta and Dirichlet distributions. Top: Beta densities with large hyperpa-
rameters are unimodal (left), while small values favor biased binomial distributions (right). Bottom:
Dirichlet densities on K = 3 categories, visualized on the simplex Π2 = (π1, π2, 1−π1 −π2). We show a
uniform prior, an unbiased unimodal prior, a biased prior with larger precision α0, and a prior favoring
sparse multinomial distributions. Darker intensities indicate regions with higher probability.

For large parameters the distribution is unimodal. For small
parameters it favors biased binomial distributions.
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Properties of the Dirichlet Distribution

Note that the K-simplex SK can be seen as the space of
probabilities of a discrete (categorical) random variable with K
possible values.
Let α0 =

∑K
i=1 α

i .

Expectation

E[x i ] =
αi

α0
.

Variance

V[x i ] =
αi(α0 − αi)

α2
0(α0 + 1)

.

Covariance

Cov(x i , x j) =
αiαj

α2
0(α0 + 1)

.
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Properties of the Dirichlet Distribution

Aggregation: let (x1, . . . , xK ) ∼ Dir(α1, . . . , αK ) then

(x1 + x2, . . . , xK ) ∼ Dir(α1 + α2, . . . , αK ).

More generally, aggregation of any subset of the
categories produces a Dirichlet distribution with
parameters summed as above.
The marginal distribution of any single component of a
Dirichlet distribution follows a beta distribution.
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Conjugate Priors

Let X ∼ F and F ∼ P(·|α) = Pα.

P(F |X , α) =
P(F |α)P(X |F , α)

P(X , α)

We say that P(F |α) is a conjugate prior for the likelihood
P(X |F ) if, for any X and α, the posterior distribution P(F |X , α)
is in the same family of the prior. Moreover in this case the prior
and the posterior distributions are then called conjugate
distributions.

The Dirichlet distribution is conjugate to the multinomial
distribution
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Multinomial Distribution

Let X have values in {1, . . . ,K}. Let π1, . . . , πK define the
probability mass function,

P(X |π1, . . . , πK ) =
K∏

i=1

π
δi (X)
i ,

with X ∈ {1, . . . ,K}.

multinomial distribution
Given n observations the total probability of all possible
sequences of length n taking those values is

P(x1, . . . , xn|π1, . . . , πK ) =
n!∏K

i=1 Ci !

K∏
i=1

πCi
i ,

where Ci =
∑n

i=1 δi(X i).

For K = 2 this is just the binomial distribution.
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Conjugate Posteriors and Predictions

Given n observations S = x1, . . . , xn from a multinomial
distribution P(·|θ) with a Dirichlet prior P(θ|α) we have

P(θ|S, α) ∝ P(θ|α)P(S|θ) ∝

K∏
i=1

(θi)(αi +Ci−1) ∝ Dir(α1 + C1, . . . , αK + CK )

where Ci is the number of observations with value i .
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Dirichlet Processes

Given a space X we denote with F a distribution on X and with
F(X ) the set of all possible distributions on X .

Informal Description

A Dirichlet process (DP) will be a distribution over F(X ).
A sample from a DP can be seen as a (random) probability
distribution on X .
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Dirichlet Processes (cont.)

A partition of X is a collection of subsets B1, . . . ,BN is such
that, if Bi ∩ Bj = ∅, ∀i 6= j and ∪N

i=1Bi = X .

Definition (Existence Theorem)
Let α > 0 and H a probability distribution on X .
One can prove that there exists a unique distribution DP(α,H)
on F(X ) such that, if F ∼ DP(α,H) and B1, . . . ,BN is a
partition of X then

(F (B1), . . . ,F (BN)) ∼ Dir(αH(B1), . . . , αH(BN)).

The above result is proved (Ferguson ’73) using Kolmogorov’s
Consistency theorem (Kolmogorov ’33).
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Dirichlet Processes Illustrated

Sec. 2.5. Dirichlet Processes 97
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Figure 2.21. Dirichlet processes induce Dirichlet distributions on every finite, measurable partition.
Left: An example base measure H on a bounded, two–dimensional space Θ (darker regions have higher
probability). Center: A partition with K = 3 cells. The weight that a random measure G ∼ DP(α, H)
assigns to these cells follows a Dirichlet distribution (see eq. (2.166)). We shade each cell Tk according
to its mean E[G(Tk)] = H(Tk). Right: Another partition with K = 5 cells. The consistency of G

implies, for example, that (G(T1) + G(T2)) and G( eT1) follow identical beta distributions.

Proposition 2.5.1. Let G ∼ DP(α, H) be a random measure distributed according to
a Dirichlet process. Given N independent observations θ̄i ∼ G, the posterior measure
also follows a Dirichlet process:

p
(
G | θ̄1, . . . , θ̄N , α, H

)
= DP

(
α + N,

1

α + N

(
αH +

N∑

i=1

δθ̄i

))
(2.169)

Proof. As shown by Ferguson [83], this result follows directly from the conjugate form
of finite Dirichlet posterior distributions (see eq. (2.45)). See Sethuraman [254] for an
alternative proof.

There are interesting similarities between eq. (2.169) and the general form of conjugate
priors for exponential families (see Prop. 2.1.4). The Dirichlet process effectively defines
a conjugate prior for distributions on arbitrary measurable spaces. In some contexts,
the concentration parameter α can then be seen as expressing confidence in the base
measure H via the size of a pseudo–dataset (see [113] for further discussion).

Neutral and Tailfree Processes

The conjugacy of Prop. 2.5.1, which leads to tractable computational methods discussed
later, provides one practical motivation for the Dirichlet process. In this section, we
show that Dirichlet processes are also characterized by certain conditional independen-
cies. These properties reveal both strengths and weaknesses of the Dirichlet process,
and have motivated several other families of stochastic processes.

Let G be a random probability measure on a parameter space Θ. The distribution
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Dirichlet Processes (cont.)

The previous definition is the one giving the name to the
process.
It is in fact also possible to show that a Dirichlet process
corresponds to a stochastic process where the sample paths
are probability distributions on X .
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Properties of Dirichlet Processes

Hereafter F ∼ DP(α,H) and A is a measurable set in X .
Expectation: E[F (A)] = αH(A).

Variance: V[F (A)] = H(A)(1−H(A))
α+1
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Properties of Dirichlet Processes (cont.)

Posterior and Conjugacy: let x ∼ F and consider a fixed
partition B1, . . . ,BN , then

P(F (B1), . . . ,F (BN)|x ∈ Bk ) =

Dir(αH(B1), . . . , αH(Bk ) + 1, . . . , αH(BN)).

It is possible to prove that if S = (x1, . . . , xn) ∼ F , and
F ∼ DP(α,H), then

P(F |S, α,H) = DP

(
α + n,

1
n + α

(
αH +

n∑
i=1

δxi

))
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A Qualitative Reasoning

From the form of the posterior we have that

E(F (A)|S, α,H) =
1

n + α

(
αH(A) +

n∑
i=1

δxi (A)

)
.

If α <∞ and n→∞ ona can argue that

E(F (A)|S, α,H) =
∞∑

i=1

πiδxi (A)

where (πi)
∞
i=1 is the sequence corresponding to the limit the

empirical frequencies of the observations (xi)
∞
i=1.

If the posterior concentrates about its mean the above
reasoning suggests that the obtained distribution is discrete.
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Stick Breaking Construction

Explicit construction of a DP.

Let α > 0, (πi)
∞
i=1 such that

πi = βi

i−1∏
j=1

(1− βj) = βi(1−
i−1∑
j=1

πj)

where βi ∼ Beta(1, α), for all i .
Let H be a distribution on X and define

F =
∞∑

i=1

πiδθi

where θi ∼ H, for all i .
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Stick Breaking Construction (cont.)

it is possible to prove (Sethuraman ’94) that the previous
construction returns a DP and conversely a Dirichlet process is
discrete almost surely.
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Stick Breaking Construction: Interpretation

Sec. 2.5. Dirichlet Processes 101
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Figure 2.22. Sequential stick–breaking construction of the infinite set of mixture weights π ∼ GEM(α)
corresponding to a measure G ∼ DP(α, H). Left: The first weight π1 ∼ Beta(1, α). Each subsequent
weight πk (red) is some random proportion βk (blue) of the remaining, unbroken “stick” of probability
mass. Right: The first K = 20 weights generated by four random stick–breaking constructions (two
with α = 1, two with α = 5). Note that the weights πk do not monotonically decrease.

discrete parameters {θk}∞k=1. For a given α and dataset size N , there are strong bounds
on the accuracy of particular finite truncations of this stick–breaking process [147],
which are often used in approximate computational methods [29, 147, 148, 289].

Several other stick–breaking processes have been proposed which sample the pro-
portions βk from different distributions [147, 148, 233]. For example, the two–parameter
Poisson–Dirichlet, or Pitman–Yor, process [234] can produce heavier–tailed weight dis-
tributions which better match power laws arising in natural language processing [117,
287]. As we show next, these stick–breaking processes sometimes lead to predictive
distributions with simple Pólya urn representations.

Prediction via Pólya Urns

Because Dirichlet processes produce discrete random measures G, there is a strictly
positive probability of multiple observations θ̄i ∼ G taking identical values. Given N
observations {θ̄i}N

i=1, suppose that they take K ≤ N distinct values {θk}K
k=1. The

posterior expectation of any set T ⊂ Θ (see eq. (2.172)) can then be written as

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

1

α + N

(

αH(T ) +
K∑

k=1

Nkδθk
(T )

)

(2.178)

Nk !

N∑

i=1

δ(θ̄i, θk) k = 1, . . . , K (2.179)

Note that Nk is defined to be the number of previous observations equaling θk, and
that K is a random variable [10, 28, 233]. Analyzing this expression, the predictive
distribution of the next observation θ̄N+1 ∼ G can be explicitly characterized.

The weights π partition a unit-length stick in an infinite set: the
i-th weight is a random proportion βi of the stick remaining after
sampling the first i − 1 weights.
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The Role of the Strength Parameter

Note that E[βi ] = 1/(1 + α).

for small α, the first few components will have all the mass.
for large α, F approaches the distribution H assigning
uniform weights to the samples θi .
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Pólya Urn Scheme

The observation that a sample from a DP is discrete allows to
simplify the form of the prediction distribution,

E(F (A)|S, α,H) =
1

n + α

(
αH(A) +

K∑
i=1

Niδxi (A)

)
.

where Ni are the number of observations with value i . In fact,

It is possible to prove (Blackwell and MacQueen ’94) that if the
base measure admits a density h, then

P(x∗|S, α,H) =
1

n + α

(
αh(x∗) +

K∑
i=1

Niδxi (x
∗)

)
.
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Chinese Restaurant Processes

The previous prediction distribution gives a distribution over
partitions.
Pitman and Dubins called it Chinese Restaurant Processes
(CRP) inspired by the seemingly infinite seating capacity of
restaurants in San Francisco’s Chinatown.
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Chinese Restaurant Processes (cont.)

There is an infinite (countable) set of tables.
First customer sits in the first table.
Customer n sits at table k with probability

nk

α + n + 1
,

where nk is the number of customers at table k .
Customer n sits at table k + 1 with probability

α

α + n + 1
.
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Number of Clusters and Strength Parameter

It is possible to prove (Antoniak ’77??) that the number of
clusters K grows as

α log n

as we increase the number of observations n.

L. Rosasco Bayesian Nonparametrics



Dirichlet Process Mixture

The clustering effect in DP arises from assuming that there are
multiple observations having the same values.
This is hardly the case in practice.

Dirichlet Process Mixture (DPM)
The above observation suggests to consider the following
model, F ∼ DP(α,H),

θi ∼ F

and
xi ∼ G(·|θi).

Usually G is a distribution in the exponential family and
H = H(λ) a corresponding conjugate prior.
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Dirichlet Process Mixture

CRP give another representation of the DPM.
Let zi denote the unique cluster associated to xi , then

zi ∼ π

and
xi ∼ G(θzi ).

If we marginalize the indicator variables zi ’s we obtain an
infinite mixture model

P(x |π, θ1, θ2, . . . ) =
∞∑

i=1

πi f (x |θi)
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Dirichlet Process and Model Selection

Rather than choosing a finite number of components K , the DP
use the stick breaking construction to adapt the number of
clusters to the data. The complexity of the model is controlled

by the strength parameter α.
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Conclusions

DP provide a framework for nonparametric inference.
Different characterizations shed light on different
properties.

DP mixtures allow to adapt the number of components to
the number of samples...
...BUT the complexity of the model is controlled by the
strength parameter α.
Neither the posterior distribution nor the prediction
distribution can be found analytically approximate
inference is needed- see next class.
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What about Generalizatoin Bounds?

Note that ideally X ∼ F and F ∼ DP(α∗,H∗) for some α∗,H∗

and we can compute the posterior

P∗ = P(F |X , α∗,H∗).

In practice we have only samples S = (x1, . . . , xn) ∼ F and
have to choose α,H to compute

Pn = P(F |S, α,H).

[Consistency] Does Pn approximate P∗ (in some suitable
sense)?
[Model Selection] How should we choose α (and H)?
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