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About this class

Goal To give an overview of some of the basic concepts
in Bayesian Nonparametrics. In particular, to
discuss Dirichlet processes and their several
characterizations and properties.
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@ Parametrics, nonparametrics and priors
@ A reminder on distributions

@ Dirichlet processes

@ Definition
e Stick Breaking
e Polya Urn Scheme and Chinese processes
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References and Acknowledgments

This lecture heavily draws (sometimes literally) from the list of references
below, which we suggest as further readings.

Figures are taken either from Sudderth PhD thesis or Teh Tutorial.

Main references/sources:

@ Yee Whye Teh, Tutorial in the Machine Learning Summer School, and his notes
Dirichlet Processes.

@ Erik Sudderth, PhD Thesis.
@ Gosh and Ramamoorthi, Bayesian Nonparametrics, (book).
See also:
@ Zoubin Ghahramani, Tutorial ICML.
Michael Jordan, Nips Tutorial.
Rasmussen, Williams, Gaussian Processes for Machine Learning, (book).
Ferguson, paper in Annals of Statistics.
Sethuraman, paper in Statistica Sinica.
Berlinet, Thomas-Agnan, RKHS in Probability and Statistics, (book).
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Parametrics vs Nonparametrics

We can illustrate the difference between the two approaches
considering the following prototype problems.

@ function estimation
© density estimation
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(Parametric) Function Estimation

@ Data, S=(X,Y) = (x, i)
@ Model, y; = fp(x;) + €,
e.g. fo(x) = (9, x) and e ~ N(0,02), o0 > 0.
@ prior 0 ~ P(6)
@ posterior

P(OIX.Y) = IW

@ prediction

P(y*|x*, X, Y) = /P(y*\x*,@)P(mX, Y)do
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(Parametric) Density Estimation

@ Data, S= (X)),
@ Model, x; ~ Fy
@ prior 6 ~ P(6)

@ posterior
P(6)P(X10)

POIX) = =5,

@ prediction

P(X*|X) = / P(x*|0)P(6]X)d0
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Nonparametrics: a Working Definition

@ In the above models the number of parameters available
for learning is fixed a priori.

@ |deally the more data we have, the more parameters we
would like to explore.

This is in essence the idea underlying nonparametric models.
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The Right to a Prior

@ A finite sequence is exchangeable if its distribution does
not change under permutation of the indeces.

@ A sequence is infinitely exchangeable if any finite
subsequence is exchangeable.

De Finetti's Theorem

If the random variables (x;)?2; are infinitely exchangeable, then
there exists some space © and a corresponding distribution
p(0), such that the joint distribution of n observations is given

by:
P(x1,. ... X / P(0) TT P(x|6)do.
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The previous classical result is often advocated as a
justification for considering (possibly infinite dimensional) priors.

Can we find computationally efficient nonparametric models?

We already met one when we considered the Bayesian
interpretation of regularization...
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Reminder: Stochastic Processes

Stochastic Process

A family (X;) : (2, P) — R, t € T, of random variables over
some index set T.

Note that:

Xi(w), w € Q, is a number,

Xi(+) is a random variable,

X(y(w) : T — Ris a function and is called sample path.
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Gaussian Processes

GP(fy, K), Gaussian Process (GP) with mean f, and

covariance function K

A family (Gx)xex of random variables over X such that:
forany xi,...,xpin X, Gy,, ..., Gy, is @ multivariate Gaussian.

We can define the mean f; : X — R of the GP from the mean
fo(x1), ..., fo(xn) and the covariance function K : X x X — R
settting K(x;, x;) equal to the corresponding entries of
covariance matrix. Then K is symm., pos. def. function.

A sample path of the GP can be thought of as a random
function
f ~ GP(fy, K).

L. Rosasco Bayesian Nonparametrics



(Nonparametric) Function Estimation

@ Data, S= (X, Y) = (X, y)",
@ Model, y; = f(X;) + €
@ prior f ~ GP(fy, K)

@ posterior
P(H)P(Y|X, 1)

PIX. V) = =5y

@ prediction
P(y*|x*, X,Y) = / P(y*|x*, )P(f| X, Y)df

We have seen that the last equation can be computed in closed
form.
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(Nonparametric) Density Estimation

Dirichlet Processes (DP) will give us a way to build
nonparametric priors for density estimation.

@ Data, S = (x;),

@ Model, x; ~ F
@ prior F ~ DP(a, H)
@ posterior
P(F)P(X|F
p(FIx) = 2 F),()(()| )
@ prediction

P(x*|X) :/P(X*|F)P(F|X)dF
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@ Parametrics, nonparametrics and priors

e A reminder on distributions
@ Dirichlet processes

@ Definition
e Stick Breaking
e Polya Urn Scheme and Chinese processes
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Dirichlet Distribution

It is a distribution over the K-dimensional simplex sk, i.e.
x € RK such that YK, x' = 1 and x’ > 0 for all i.

The Dirichlet distribution is given by

where o = (o', ..., o) is a parameter vector and I is the

I

Gamma function.
We write x ~ Dir(a), i.e. x',...,xK ~ Dir(a’,...,aX).
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Dirichlet Distribution
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Reminder: Gamma Function and Beta Distribution

The Gamma function
v(z) = / t?~ e~ ldt.
0

It is possible to prove that I'(z + 1) = zI'(2).

Beta Distribution
Special case of the Dirichlet distribution given by K = 2.

P(x|a, 8) = mx(a—ﬂ“ _ X)(,@—1)

Note that here x € [0, 1] whereas for the Dirichlet distribution
we would have x = (x', x?) with x', x? > 0 and x" + x? = 1.
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Beta Distribution
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For large parameters the distribution is unimodal. For small
parameters it favors biased binomial distributions.
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Properties of the Dirichlet Distribution

Note that the K-simplex SX can be seen as the space of
probabilities of a discrete (categorical) random variable with K
possible values.

Let ag = Z,K:1 o

@ Expectation '
1

i «Q
E[x'] = —.
b=
@ Variance ) .
. ad(ag—a)
VX'l = —
ao(ao +1)
@ Covariance P
Cov(x' xly = 2%
ad(ag+1)
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Properties of the Dirichlet Distribution

@ Aggregation: let (x',...,xX) ~ Dir(a', ..., o) then
(x" +x2,..., xK) ~ Dir(a" +a?,...,a").

More generally, aggregation of any subset of the
categories produces a Dirichlet distribution with
parameters summed as above.

@ The marginal distribution of any single component of a
Dirichlet distribution follows a beta distribution.
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Conjugate Priors

Let X ~ Fand F ~ P(|a) = P,.

P(F|a)P(X|F, )
P(X, a)

P(F|X,a) =

We say that P(F|«) is a conjugate prior for the likelihood
P(X|F) if, for any X and «, the posterior distribution P(F|X, «)
is in the same family of the prior. Moreover in this case the prior
and the posterior distributions are then called conjugate
distributions.

The Dirichlet distribution is conjugate to the multinomial
distribution
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Multinomial Distribution

Let X have values in {1,...,K}. Let my,..., 7k define the
probability mass function,

P(X|7T1""77TK) = wai(X)a

with X € {1,...,K}.

multinomial distribution

Given n observations the total probability of all possible
sequences of length n taking those values is

| K
n Ci

P(X1,...,Xn|7T1,...,7I'K):7- T
K Y
[Tiz1 Gt i I

where C; = >, 5i(X)).

For K = 2 this is just the binomial distribution.



Conjugate Posteriors and Predictions

Given n observations S = x', ..., x" from a multinomial
distribution P(-|¢) with a Dirichlet prior P(6|«) we have

P(0]S, a) < P(0|a)P(S|0)

K
H(ei)(aﬂrcﬁn x Dir(ay + Cy,...,ax + Ck)
=1

where C; is the number of observations with value J.
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@ Parametrics, nonparametrics and priors
@ A reminder on distributions
@ Dirichlet processes

o Definition
o Stick Breaking
e Pdlya Urn Scheme and Chinese processes
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Dirichlet Processes

Given a space X we denote with F a distribution on X and with
F(X) the set of all possible distributions on X.

Informal Description

A Dirichlet process (DP) will be a distribution over F(X).
A sample from a DP can be seen as a (random) probability
distribution on X.
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Dirichlet Processes (cont.)

A partition of X is a collection of subsets By, ..., By is such
that, if BN Bj =0, Vi ;éjand Uil\i1 B = X.

Definition (Existence Theorem)

Let « > 0 and H a probability distribution on X.

One can prove that there exists a unique distribution DP(«, H)
on F(X) such that, if F ~ DP(a, H) and By,...,Byis a
partition of X then

(F(B1),...,F(Bn)) ~ Dir(aH(By),...,aH(Bn)).

The above result is proved (Ferguson '73) using Kolmogorov’s
Consistency theorem (Kolmogorov ’'33).
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Dirichlet Processes lllustrated
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Dirichlet Processes (cont.)

The previous definition is the one giving the name to the
process.

It is in fact also possible to show that a Dirichlet process
corresponds to a stochastic process where the sample paths
are probability distributions on X.
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Properties of Dirichlet Processes

Hereafter F ~ DP(a, H) and A is a measurable set in X.
@ Expectation: E[F(A)] = aH(A).
@ Variance: V[F(A)] = w

a+
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Properties of Dirichlet Processes (cont.)

@ Posterior and Conjugacy: let x ~ F and consider a fixed
partition By, ..., By, then

P(F(B1), ceey F(BN)|X S Bk) =
Dir(aH(By),. ..,aH(Bk) +1,...,aH(By)).

It is possible to prove that if S = (xq,...,xn) ~ F, and
F ~ DP(«, H), then

1 n
P(F|S,a,H) = DP (a+ no— (aH+ gdx,.))
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@ Parametrics, nonparametrics and priors

@ A reminder on distributions
@ Dirichlet processes
@ Definition

o Stick Breaking

e Polya Urn Scheme and Chinese processes
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A Qualitative Reasoning

From the form of the posterior we have that

E(F(A)|S, o, H) = nla (aH(A) + Z&,-(A)) .
i=1

If « < oo and n — oo ona can argue that
E(F(A)|S,a, H) = Zw,ax,

where (7;)7°, is the sequence corresponding to the limit the
empirical frequencies of the observations (x;)%2,.

If the posterior concentrates about its mean the above
reasoning suggests that the obtained distribution is discrete.
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Stick Breaking Construction

Explicit construction of a DP.
Let a > 0, ()72, such that
i—1
/BIH(1 _@) —ﬁl ZW]
j=1 j=1

where j; ~ Beta(1, «), for all i.
Let H be a distribution on X and define

F= i 7T,'59,.
i=1

where 6; ~ H, for all i.
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Stick Breaking Construction (cont.)

it is possible to prove (Sethuraman ’94) that the previous
construction returns a DP and conversely a Dirichlet process is
discrete almost surely.
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Stick Breaking Construction: Interpretation
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The weights 7 partition a unit-length stick in an infinite set: the
i-th weight is a random proportion ; of the stick remaining after
sampling the first i — 1 weights.
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The Role of the Strength Parameter

Note that E[g;]] = 1/(1 + «).

@ for small «, the first few components will have all the mass.

o for large «, F approaches the distribution H assigning
uniform weights to the samples 6;.
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@ Parametrics, nonparametrics and priors
@ A reminder on distributions

@ Dirichlet processes
o Definition
e Stick Breaking
o Polya Urn Scheme and Chinese
processes
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Pélya Urn Scheme

The observation that a sample from a DP is discrete allows to
simplify the form of the prediction distribution,

K
E(F(A)|S, o, H) = nl@ <aH(A) +) N,-5X,(A)> .
i=1

where N; are the number of observations with value i. In fact,

It is possible to prove (Blackwell and MacQueen '94) that if the
base measure admits a density h, then

K
P(x*|S, a, H) = nla (ah(x*) +y N,-(SX,(X*)> .

i=1
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Chinese Restaurant Processes

The previous prediction distribution gives a distribution over
partitions.

Pitman and Dubins called it Chinese Restaurant Processes
(CRP) inspired by the seemingly infinite seating capacity of
restaurants in San Francisco’s Chinatown.
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Chinese Restaurant Processes (cont.)

There is an infinite (countable) set of tables.
@ First customer sits in the first table.
@ Customer n sits at table k with probability
e
a+n+1’
where ny is the number of customers at table k.
@ Customer n sits at table k + 1 with probability

>
a+n+1’
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Number of Clusters and Strength Parameter

It is possible to prove (Antoniak '777??) that the number of
clusters K grows as
alogn

as we increase the number of observations n.
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Dirichlet Process Mixture

The clustering effect in DP arises from assuming that there are
multiple observations having the same values.
This is hardly the case in practice.

Dirichlet Process Mixture (DPM)

The above observation suggests to consider the following
model, F ~ DP(a, H),

0~ F

and
xi ~ G(-10;).

Usually G is a distribution in the exponential family and
H = H(\) a corresponding conjugate prior.
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Dirichlet Process Mixture

CRP give another representation of the DPM.
Let z; denote the unique cluster associated to x;, then

Zi~ T

and

If we marginalize the indicator variables z;’s we obtain an
infinite mixture model

P(X|x,61,02,...) =Y mif(x|6;)
i=1
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Dirichlet Process and Model Selection

Rather than choosing a finite number of components K, the DP
use the stick breaking construction to adapt the number of
clusters to the data. The complexity of the model is controlled

by the strength parameter «.
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Conclusions

@ DP provide a framework for nonparametric inference.

@ Different characterizations shed light on different
properties.

@ DP mixtures allow to adapt the number of components to
the number of samples...

@ ...BUT the complexity of the model is controlled by the
strength parameter «.

@ Neither the posterior distribution nor the prediction
distribution can be found analytically approximate
inference is needed- see next class.
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What about Generalizatoin Bounds?

Note that ideally X ~ F and F ~ DP(a*, H*) for some o*, H*
and we can compute the posterior

P* = P(F|X, ", HY).

In practice we have only samples S = (x1,...,Xs) ~ F and
have to choose «, H to compute

Pn= P(F|S, a, H).

@ [Consistency] Does P, approximate P* (in some suitable
sense)?

@ [Model Selection] How should we choose « (and H)?
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