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Motivation

How do we learn about the World?

Sense/Sample Observe / Infer

select next
sensing action

The learning process is in essence sequential and
adaptive/active...



More Motivation — Visual Perception

llya Repin. Unexpected Return (1884)

- c—

Use previously collected data to guide the sampling
process (Eye tracking from Yarbus, 1967)



Seven records of eye
movements by the same
subject. Each record lasted 3
minutes. 1) Free examination.
Before subsequent recordings,
the subject was asked to: 2)
estimate the material
circumstances of the family; 3)
give the ages of the people; 4)
surmise what the family had
been doing before the arrival
of the "unexpected visitor;" 5)
remember the clothes worn by
the people; 6) remember the
position of the people and
objects in the room; 7)
estimate how long the
"unexpected visitor" had been

away from the family (from
Yarbus 1967).




How do we learn? - “Twenty Questions”

— NGRS R IR

“DOZS The per‘son - o THE MYSTERY FACE GAME
have blue eyes ?" a2 S

"Ts the person
wearing a hat ?“

“"Active Learning” works very well in simple conditions

How about if the answers
are not entirely reliable?



Learning to Learn

Sequential Sensing and Learning: learning using data
collection procedures that use information gleaned from
previous observations to guide the sensing process.

Sensing/ Observations
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==) How can we take advantage of the feedback?
== How much can be gained?
==) Devise practical ways of using this feedback?




Laplace’s Active Learning

Decided to make new astronomical
measurements when "the discrepancy between
prediction and observation [was] large enough
to give a high probability that there is
something new to be found." Jaynes ‘86

Observations

Sampling
strategy Discovery

Bayesian approach: select new samples/experiments that are predicted to
be maximally informative in discriminating models; “sample where the
uncertainty is greatest”, Fedorov '72, Mackay 92



Challenges

With feedback comes great responsibilityl!l

(W —_, |
Sampling/ Observations  21rong dependepcnes
querying . among observationsl!!

If an active learning algorithm is "too aggressive” it might
start focusing on the wrong questions...

Curiosity can kill the catlll



Challenges - Classification

Examples come in pairs, a feature and a label,
denoted (z,v).

Select unlabeled examples (xz,?) for labeling if the

predicted label v is highly uncertain. These examples
may be especially informative.

Heart disease?
A
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Does Active Learning Always Help?

Two problems:

1. active learning is greedy and usually myopic, and
therefore can converge to a suboptimal hypothesis

2. uncertainty sampling is ‘noise-seeking’, and thus
may dwell unnecessarily long on highly noisy cases

o © Maybe the chance of heart
e @ disease is 50/50 in this region.
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Why Do Active Learning?

remote sensing wireless sensor networks

Laser Scanner

Internet Monitoring
-]

Sensor
Header
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Why Do Active Learning?

remote sensing wireless sensor networks

Laser Scanner

Where, When
to collect information??

Internet Monitoring Social Networks
= g
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Why do AL? - Human Learning

The Theory of the Organism-Environment
System: III. Role of Efferent Influences on
Receptors in the Formation of Knowledge*

TiMO JARVILEHTO
Department of Behavioral Sciences, University of Oulu, Finland

Abstract—The present article is an attempt to give—in the frame of the theory of the
organism-environment system (Jarvilehto, 1998a)—a new interpretation to the role of ef-
ferent influences on receptor activity and to the functions of senses in the formation of
knowledge. It is argued, on the basis of experimental evidence and theoretical consider-
ations, that the senses are not transmitters of environmental information, but create a direct
connection between the organism and the environment, which makes the development of a
dynamic living system, the organism-environment system, possible. In this connection
process, the efferent influences on receptor activity are of particular significance because,
with their help, the receptors may be adjusted in relation to the parts of the environment
that are most important in achieving behavioral results. Perception is the process of joining
of new parts of the environment to the organism-environment system; thus, the formation
of knowledge by perception is based on reorganization (widening and differentiation) of
the organism-environment system, and not on transmission of information from the envi-
ronment. With the help of the efferent influences on receptors, each organism creates its
own peculiar world that is simultaneously subjective and objective. The present consider-
ations have far-reaching influences as well on experimental work in neurophysiology and
psychology of perception as on philosophical considerations of knowledge formation.



Why do AL? - Human Learning

Sensing Computing

Abstract—The present article is an attempt to give—in the frame of the theory of the
organism-environment system (Jarvilehto, 1998a)—a new interpretation to the role of ef-
ferent influences on receptor activity and to the functions of senses in the formation of
knowledge. It is argued, on the basis of experimental evidence and theoretical consider-
ations, that the senses are not transmitters of environmental information, but create a direct
connection between the organism and the environment, which makes the development of a
dynamic living system, the organism-environment system, possible. In this connection
process, the efferent influences on receptor activity are of particular significance because,
with their help, the receptors may be adjusted in relation to the parts of the environment
that are most important in achieving behavioral results. Perception is the process of joining
of new parts of the environment to the organism-environment system; thus, the formation
of knowledge by perception is based on reorganization (widening and differentiation) of
the organism-environment system, and not on transmission of information from the envi-
ronment. With the help of the efferent influences on receptors, each organism creates its
own peculiar world that is simultaneously subjective and objective. The present consider-
ations have far-reaching influences as well on experimental work in neurophysiology and
psychology of perception as on philosophical considerations of knowledge formation.



Why do AL? - Automating Science

Background |
Knowledge &= = Hypothesis
Scientist
Analysis Experiment

Selection

Experiment __» ‘e
= Outcome "

mm) Huge burden to the human in the loop

mm) Humans are unable to grasp the high-dimensional
complexity of processes of interest

—
=/

There is a need for “autonomous experimentation”

“Towards 2020 Science” — 40 eminent scientists’ visions of the future of science



|| Robot Scientist

www.aber.ac.uk/compsci/Research/bio/robotsci/

! Wired Magazine, April 2009:
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For the first time, a robotic system has made a novel

- scientific discovery with virtually no human intellectual
' input.

Scientists designed "Adam" to carry out the entire
scientific process on its own: formulating hypotheses,
designing and running experiments, analyzing data,
and deciding which experiments to run next. "It's a
major advance," says David Waltz of the Center for
Computational Learning Systems at Columbia
University. "Science is being done here in a way that
incorporates artificial intelligence. It's automating a
part of the scientific process that hasn’t been
automated in the past.”

Adam is the first automated system to complete the
cycle from hypothesis, to experiment, to reformulated
hypothesis without human intervention.



Outline

==) Binary Classification and the fundamental
limits of active learning

Algorithmic considerations, and active learning
In practice



Probabilistic Framework for Classification

X - The feature space (e.g. X = [0, 1]%)
Y - The label space (e.g. Y ={0,1})

(X,Y) e X XY ~ Pxy (generally unknown)

N

features label

Goal: Construct a classification rule f: X — Y mini-
mizing the risk

R(f) =Pr(f(X) #Y)

probability of error

In words: given a feature vectorX we want to predict the
label Y as well as possible...



Bayes Classifier

What is the "best” classification rule?

f* = arg min Pr(f(X)#£Y)

f measurable

Since we are considering binary labels any reasonable
classification rule has the form f(z) =1¢(z), GC &

G* = arg  min Pr(1g(X) #Y)

G measurable

T he Bayes classifier is defined by the level set
G" ={z: n(z) >1/2}

where n(x) ;= P(Y = 1|X = x).



Bayes Classifier
The Bayes classifier says 1 if, given a feature X, it
is more likely that the corresponding label is 1

G*={zr: P(Y =1|X =2) > 1/2}
n(x)

A

G*is the % level set of n(:)

177 NS :
requires knowledge of Pyy

Classification is just a level-set estimation problem



Learning from Examples

In most problems £v|x is unknown. We have to rely on data

{(X;,Y3) bieq Yi|X; ~ Pyx

Goal: Construct a classifier G, = G(X1,Y1,...,Xn, Yn)
minimizing the excess risk

R(Gn) — R(G")
Pr(ls (X) #Y) — Pr(lg«(X) #Y)

E(Gn)

We want to find a classifier "close" to G*|



Excess Risk n(z) ;= P(Y =1|X =1).

(@) R(G) — R(G™)
P(lg(z) #Y) — P(1g«(z) #Y)

= 2 — 1|dP
Jenge P21 — 1Py (@)

Y

\
How smooth is” near OG*

“noise” characterization

A
n(x)

How easy is to approximate G* 1/2

G* G GAG*=GNG*|JGNG*



Passive Learning {(X;Y)}=1 =" Pxy

Given nrandomly selected examples how well can we do?

Heart disease”
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Active Learning

select

o0
\{Xj}izlj m— X == request Y|X ~ Pyx
iy

Large pool of
unlabeled examples

many unlabeled examples
(e.g., people, documents)

labeling examples is expensive

some examples are more
informative than others

BMI

A

Heart disease?

cholesterol

Given n selectively chosen training examples,

how well can we do?



Three Active Learning Paradigms

membership query synthesis

model generates
a query de novo

stream-based selective sampling

Instance sample an model decides to Y
space or input “§----- . -=-=->(O— . »()
distribution instance query or discard i
|
l - -
i pool-based active learning query is labeled
! -— by the oracle
|

| S —

sample a large > model selects
pool of instances u the best query




Passive vs. Active Sampling

Passive Sampling:

Features X; € [0, 1]¢ are independent of 1Y}z
That is, you can select all the features {X;}
prior to collecting the labels {Y;}.

Active Sampling:

Features X; are random and depend only on
past observations {Xj,Yj};_:ll. That is, X; is
completely defined by

Xl (X-1,Y-1), ..., (X1,Y7)




The One Dimensional Threshold Problem

X =1[0,1] and G* = [6*, 1]

. (unknown)‘/ .
n(x) n(x)
r\
1/2 f-mmemmmmnna 1/2
0 b wé* 7 1
n(x) < 1/2 n(x) > 1/2

Assume also X ~ Unif([O, 1])

This%an be made more general
(bounded density)

Goal: Minimizing the excess risk boils down to constructing
a good estimate On of 6°



Various Scenarios

noiseless
19 E20E0 00 000 © © ®
ne) .
1103
:——)
0 ¢ -~ J
g O

unbounded noise
ANO GO0 000G 0000 ©

n(x)

1/2

I
0

7 1

0*  G*

How much does active learning help in each case?

bounded noise
O GO0 00 00 OG0 ®

n(x)

1/2 | e—— : +b

No strong cue about
the location of the
boundary



Passive Learning

Sample locations must be chosen before any
observations are made

1 OO0 0000
0 TP — e —
0" 1

0 — 0% ~

Too many wasted samples. Learning is limited by
sampling resolution



Active Learning

Sample locations are chosen as a function of
previous observations

A

v

|

0%

The error decays much faster than in the
passive scenario. No wasted samples...



Active Learning

Sample locations are chosen as a function of
previous observations

A

1 T %

O-l_.‘:—— >

02K

What if there is uncertainty?




Active Learning — Bounded Noise

Collect an erroneous label with probability <1/2 -0

: : n(-)

pO(e) e ———

0 1 Horstein, '63



Active Learning — Bounded Noise

Collect an erroneous label with probability <1/2 -0

p1(0)

{

\4

0 1 Horstein, '63



Active Learning — Bounded Noise

Collect an erroneous label with probability <1/2 -0

sequentially fake samples
at posterior median

p1(0)

1

Horstein, '63



Active Learning — Bounded Noise

Collect an erroneous label with probability <1/2 -0

sequentially fake samples
at posterior median

=
N
~
Na)
—
- >
Iocoo
000000000

Hi

Horstein, '63



Burnashev-Zigangirov (BZ) Algorithm 73

po(6) search over a
\ l discrete grid

A >

9* H_l
t



Burnashev-Zigangirov (BZ) Algorithm 73

pn(0) search over a
______ discretfe grid
1 1 >
9* H_I
t

1
Pr(0* not in heaviest bin) < ?exp(—an)

E|E(Gn)| <E[|6n — 6] S\_f_’—l—\% exp(—nb?)

-
o N~
approximation error estimation error

balancing the

Two ‘rer'ms — | {g(én)} <2 exp(— n)
t = exp(—Zn)



Burnashev-Zigangirov (BZ) Algorithm 73

pn(6)

T r— T
] ] ] >

o* ——
€

T he previous analysis implies also that

P(g(@n) > e) <94,

If the number of samples n is greater than

St = & o0(3) =& oo



Active vs. Passive — Bounded Noise

Theorem:

Under the active sampling scenario
. b2
sup E {S(Gn)} < 2exp(——n)

Pxy €Bounded_Noise 2

Compare with the lower bounds for passive learning

inf sup E[E(Gr)] = 1/n
Gn  Pyxy€Bounded_Noise

Even with measurement uncertainty the
active learning gains are HUGE!!!




Active vs. Passive — Bounded Noise

In terms of sample complexity:

Active learning:

~ 1 1 1
sup S(€,0,Gn) ~ (Iog — + log —)
Pxy €Bounded_Noise b € )

Passive learning:
, ~ 1 1
inf sup S(e,6,Gn) ~ —log (—)

€

G Pxy€Bounded_Noise 0

Significantly fewer samples are needed to
achieve the same accuracy...




Characterizing the Noise Level

"Noise” characterization near boundary:
Let x > 1 and assume there exist constants ¢,C,9 > O
so that Vz such that |n(z) —1/2| < ¢

clz — %" 1 < In(z) —1/2] < Clz—0*F1

n) n(x) nx)

172 12

kg* G 5* G
k=1 K =2
recall n(z) = P(Y = 1|X = x).




Unbounded Noise (x> 1)

A
77() (assume 6* is not too
close to bin edges)

N =

, since |n(x) — 1/2]
2 c |£13 _9*|/@—1

e
very similar to the bounded noise case replacing b by C g1
E[£@Gn)] = E|[, . [2n(@) - 1/da]

< E {/A |z — 9*|n_1d39] , since |n(x) —1/2]
GnAG* S C|£U— 9*|/@—1

< E[|6n — 6%



Unbounded Noise (x > 1)

E“é\n—@*v{] < th + %exp(_nCQtQm—Q)

—— — - _/
n ] / ] \-
approximation error estimation error

1
[ 2k—2
balancing the > i log(n)
two terms n

K

log n) 2r—2
n

E[£(Gn)] =2

A practical modification of the BZ algorithm can be devised
achieving the above bound without the alignment assumption.



Active vs. Passive — Unbounded noise

Theorem:

Under the active sampling scenario )
sup E {S(G‘n)} < (lOg ’I’L)QR—Q

Pxy E€Thresh(k) n

Compare with the lower bounds for passive learning

inf sup E[E(Gr)] = n_zlﬁ%
Gn  Pyy€cThresh(k)

Active learning has much faster error decay, especially

when k is small .
active = T

Example: K =2 bassive =2 n—2/3




Active vs. Passive — Unbounded noise

Theorem:

Under the active sampling scenario )
sup E {S(G‘n)} < (lOg ’I’L)QR—Q

Pxy E€Thresh(k) n

Compare with the lower bounds for passive learning

inf sup E[E(Gr)] = n_zlﬁ%
Gn  Pyy€cThresh(k)

Active learning has much faster error decay, especially
when « is small

active = n P .,p— oo

: 1 , _
Example: %=1 passive =p — !



Active vs. Passive — Unbounded noise

Theorem:

Under the active sampling scenario )
sup E {S(G‘n)} < (lOg ’I’L>2m—2

Pxy E€Thresh(k) n

Compare with the lower bounds for passive learning

inf sup E[E(Gr)] = n_zﬂ%
Gn  Pyy€cThresh(k)

Active learning has much faster error decay, especially
when x is small

Can we do even better with active sampling ?




Lower Bound — Active Learning

Theorem:

Under the active sampling scenario

in sup E[£(Gn)] = n %2
G Pxy

€Thresh(k)

sampling
strategy

The modified BZ algorithm nearly achieves this bound

sup  E[E(Gn)| = (Ioz n)%%

Pxy €Thresh(k)




Lower Bound Proof Technigque

Reduce the original problem to a multiple hypotheses test

inf sup E[E(GR)]> inf  sup E[E(Gh)]
Gn,Sn Pxy €Thresh(x) Gn,Sn PxyeW
lY

big (infinite)
class

finite subclass

Key fact: A sufficiently challenging subclass ¥ can be
chosen independently of the classification rule and
sampling strategy



Lower Bound Proof Technigque

inf sup &G
Gn,Sn Py eW ( n)

1) (2 1
W = {P)((Q,P)((Q, y .,P)(ﬂ)}
Two conflicting goals: elements of W must be such that:

==) Hard to distinguish from data:

= P)(g, and P)%), are ‘‘close”

==) If an estimator infers the wrong distribution then we
incur a significant error

=  R(G*(D) — R(G*()) is large if i # j



special case: consider only lower regularity constraint

PrOOf SketCh C|1' _ 9*|’f—1 < |77(1.) . 1/2| Swm—l

no(x) A n1(z) 1

1/2 4 e e

1/2 — cri i :

best possible sampling location

Pr (choosing wrong hypothesis) > fnc [KL(Pl,nHPO,n)}
“cost" of being wrong: ‘R(G*(O)) - R(G*(l))| = 2c7"

KL(PypllPoy) ~ 8c2nr2h—2 =) 7~n Y2

inf  max_ Pry <8(Gn) > cn_"/(Q"_Q)) > const >0
Sn,Gn 0€{0,1}




Lower Bound Proof — Passive Sampling

no(x) A n1(x) ()

1/2 4 e e

1/2 — e

Only a fraction 7 of the samples are informative

KL(P1 n||Pon) ~ 8c2 nroh—2 @ :> 7~ 1/(26—1)

inf  max Pryp(&E(G >cn_’*/(2’*_1) > const >0
Sn,Gn 0€{0.1} 0 (£(Gn) 2 ) 2



From 1D to Multiple Dimensions

n(z1, ..., %q)

nx)

12

———
0 - v Z 1
G*
One-dimensional threshold Multidimensional “threshold”
n(z1,...,24)
A
nx)

172

kK> 1

X ~ Unif([0, 1]%)



Multidimensional Settings

Consider the class of "boundary fragment” sets

(Korostelev & Tsybakov ‘93, Donoho '97, '99)
Td
Holder smooth function
g = 9" (Z)
97 (2) — Pz(2)| < L||Z — z||”
where L,a > 0, and P;(-) denotes

the degree |«] Taylor polynomial
of g* expanded around

7 e [0,1]9-1

G* € Ggr := {the sets defined above}



Noise Condition — Transition Smoothness

r= (x,z4) € |0, l]d and G* € ggFr

Let x > 1 and assume there exist constants ¢,C,9 > O
so that Vx such that |n(x) —1/2] < ¢

cleg—g* (@) F 1 < In(@)—-1/2| < Clzg—g* (@)1

sharp transition smooth transition
k=1 kK> 1



Active Learning for Boundary Fragments

1. Take M1 uniformly
spaced lines in x coordinates

2. Estimate change-pts
at each location via
BZ with N samples

3. Partition into M9~1/[q]4—1
bins and poly-interpolate
change-pt estimates




Estimating Boundary Fragments

g - Best poly. interpolant ( best model in our class)

fu-or

]E[f;(én)} < E
= E/ (g—9")+ (g

approximation error stimation error

g —gl~ max |g(Z) —g(Z)|

spacing between re@rid
inter[icl)lation points BZ = with very high problability
=M e log N\ 2=
9@ - 3@ = (5)" ) v
log N\ 2k—2 : 2
—_ sk —Y R _ K—
= |g—9g9|=M :>|g—g|j(N>



Estimating Boundary Fragments
E[£Gn)] 2 E|[IG-d)+ G-I

< (Ma n <I09N>1/(2“2))m

N

We have the constraint M4~1N < n = total # samples

1
Take M na(2n—2)—|—d—1J

N = |n/M41

. log n\ Zet o2
=) Ble@n)] = (50)" . p=@-1e

n



Upper and Lower Bounds

Theorem:

1\ 2eFp=2 | o
(—)2 TR inf sup E[E(Gn)] = (ogn)z i
n

n ~ Sn,Gn PxveBF(a,k)

’ p:(d—l)/&

Note: The constructive estimation strategy is near optimal

Compare with passive sampling (similar to Tsybakov ‘04)

1\ 2t
inf  sup  E[R(Gn)]-R(G*) = (—)2 T
Gn PyyveBF(a,k) n




Implication: General Classes

Active learning lower bounds for general classes

[ Zeip—2 active
inf sup E[E(Gr)] = A

Gn,Sn pyyeClass(p,x) n~ 21 passive

\

small p small & large k

large p

p— Complexity of decision boundary k— Smoothness of fransition
(metric entropy of Bayes class)

These results can be generalized for
estimation of level sets and functions



Why are these Results Important?

Indicate when active learning can be beneficial, and
quantify the gain.

Active Learning helps when problem complexity is
spatially concentrated (e.g., locating a boundary
or threshold)

The threshold and boundary fragment classes provide
benchmark problems for the design and assessment of
practical general-purpose algorithms

Practical problems:
multiple change-points, arbitrary boundary sets, etfc...



Outline

Binary Classification and the fundamental
limits of active learning

==) Algorithmic considerations and Active
Learning in practice...



Hypothesis and Query/Feature Spaces

H
X

space of hypotheses or models

space of queries or unlabeled features

h* is the true model (might not belong to H).

Noiseless Learning : z€ X — y=h"(z)
Noisy Learning : z€ X — vy = h"(z) + noise

Active Learning: Sequentially select
most informative queries/examples based
on past queries/examples and responses.



A Simple Algorithm for Separable Case

Cohn, Atlas and Ladner ‘92 h : X — {—1,4+1}, h* € 'H

initialize: 1=1, H1 =H

while |H;| > 1

N

Region of Disagreement

/

1. Select z; € {any =z € X where h € 'H; disagree}
2. Query with z; to obtain y; = h*(x;)

3. Set H;41 = {heH;:h(x;)) =y;},i=1i+1

Version Space

CAL algorithm may also be operated in an online fashion




Flavors of Active Learning Analysis

How many queries or labeled examples are required 7

Extended Teaching Dimension a combinatorial param-
eter of H and X (Hegedis '95, Hellerstein et al '96)

Disagreement Coefficient a measure of the growth of
the region of disagreement (Hanneke '07)

Neighborly Condition geometric relationship between
X and H (Nowak '08)

Unfortunately theoretically sound methods that have been
developed are for the most part either computational
intractable, or empirically not so good...



What if there is Noise or Mismatch?

Noise-tolerance:

1. stochastic version space (all hypotheses with errors
that could be explained by noise alone)

2. repeated querying (collect several labels for un-
certain examples until highly confident in probably
correct labeling)

3. hypothesis weighting (weight each hypothesis ac-
cording to its prediction performance)

Agnostic active learning: If A* is not in 'H, then can we
at least guarantee performance equal to that of passive
learning? Yes

Split sample budget into three equal parts:
e active learning with 1/3 of sample budget — h,

e passive learning with 1/3 of sample budget — B
e remaining 1/3 of samples are collected from region of

disagreement between h, and h,, best hypothesis wins!



Active Learning in Practice

The most successful active learning methods are based on
empirical ideas, and are not guaranteed to always work.
Generally their performance is reported only in the settings
where these succeed.

Certainty-based Active Learning Using All 0300 Partition 10 Data

[ — Active Learning

i : : : : : ‘| = - Random

RTINSO SIS e e

Classification Error Rate

1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Training Data Size (x1000 utterances)

Tur, Tur and Shapire, “Combining active and semi-supervised learning for spoken
language understanding” 2005



Active Learning in Practice

test logistic loss
1500

—solid: supervised
o dotted: active

1400

A mostly practical general purpose o0

algorithm for the classification 1200 | | | |
setting with provable O O berof points ool 2900

number of points seen

number of queries
performance. "000 | . |

logistic loss on test set

500¢

number of points queried
— —h
o a
o o
o o

(=)

0 500 1000 1500 2000
number of points seen

Beygelzimer, Dasgupta & Langford, “Importance Weighted Active Learning”, ICML 2009



Active Learning in Regression

Goal: Accurately “learn” a function/set, as fast as
possible, by strategically focusing in regions of interest

Function Estimation

/T F@)




Regression of
Piecewise Constant Functions

constant away from boundary

d — 1 non-fractal
boundaries separating
constant regions

Goal: Construct an estimator f, : [0, 1]¢ — R based
on point samples {X;,Y;}X_; minimizing

E (|| fn— £11?

Observation Model: Yi = f(X:) + Wi,  W; "% A(0,02)



Passive Learning in the PC Class

A multiscale approach (the "wavelet” idea):

» Distribute sample points uniformly

over [0,1]d

- Recursively divide the domain into
hypercubes

* Prune the partition, adapting to the

data
* Fit a model in each partition set

Idea: Use Recursive Dyadic
Partitions to find the boundary



Active Learning in the PC Class

Stage 1: "Oversample” at coarse
resolution

* n/2 samples uniformly distributed

-_Limit the resolution: many more
samples than cells

- biased, but very low variance result
(high approximation error, but low
estimation error)

:> "boundary zone" is
reliably detected

Some delicate issues relating alignment
of partition and boundaries




Active Learning in the PC Class

Stage 2: Critically sample in
boundary zone

* n/2 samples uniformly distributed
within boundary zone

- construct fine partition
around boundary

* prune partition according to
standard multiscale methods

high resolution
estimate of boundary

How to choose the right balance
between detection of the boundary
and refinement ???




Performance Bounds

Theorem (Castro, Willett & Nowak ‘05):

Let f be a piecewise constant function whose boundaries
separating constant regions are locally Lipschitz. Then

) g n\ /E@-1+1/d)
Bl - 171 = (°22)

Moreover, for every € > O there is a multi-stage estima-
tor f, satisfying

E[||fn — fI|?] =< n-t/d1Te)

Best possible error rates:
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Function Estimation

16 84 non—adap‘rive samples
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Function Estimation
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Function Estimation

16384 non-adaptive samples

8192 non-adaptive samples
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Function Estimation

16384 non-adaptive samples

8192 non-adaptive samples
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Function Estimation

les

8192 non-adaptive samples
+ 8192 adaptive samples
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Fu nCtlon EStI matlon 8192 non-adaptive samples

les + 8192 adaptive samples
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Real-World Application - Ballistic Laser Imaging

o o

65536 Passive Samples 4096 Passive samples

o

Active Sample Locations 4096 active samples

Data kindly provided by Sina Farsiu (Duke)



HAL: Are you a good active learner?
Castro, Kalish, Nowak, Qian, Rogers & Zhu (NIPS 2008)

Investigate human active learning in task
analogous to 1-d threshold problem

alien eggs
\ ,
Bxx%#e0000
?. 0 0125 025 | 0375 05 0625 075 0875 1
< 0 >
more probably more probably
birds snakes

Subjects observe random egg hatchings (passive learning)
or they can select eggs to hatch (active learning).

They are asked to determine the egg shape where snakes
become more probable than birds.

Results: Human learning rates agree with theory,
1/n in passive mode and exp(-cn) in active mode.



HAL: The Data

33 subjects split up among various conditions

noise € = () nowse ¢ = 0.05 noise ¢ = 0.1 nowse ¢ = 0.2 nowse ¢ = 0.4
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HAL: Man vs. Man, Man vs. Machine

estimation ermror

noise £€=0.00
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Conclusions:

1. Human learning benefits significantly
from selective sampling/querying.

2. Machines may assist human learning by
providing informative samples or
suggesting experiments



Active Learning is an Active Area of Research

Channel Coding with Feedback

* Horstein, “Sequential decoding using noiseless feedback,” IEEE Trans. Info. Theory,
vol. 9, no. 3, 1963

» Burnashev & Zigangirov, “An interval estimation problem for controlled observations,”
Problems in Information Transmission, vol. 10, 1974

Active Learning and Sequential Experimental Design

» Cohn, Atlas, and Ladner, “Improving generalization with active learning,” Machine
Learning, 15(2), 1994

» Fedorov, “Theory of Optimal Experiments,”. New York: Academic Press” 1972

* Freund, Seung, Shamir, and Tishby, “Selective sampling using the query by committee
algorithm,” Machine Learning, vol. 28, no. 2-3, 1997

» Mackay, “Information-based objective functions for active data selection,” Neural
Computation, vol. 4,, 1991

» Cohn, Ghahramani, & Jordan, “Active learning with statistical models,” Journal of
Artificial Intelligence Research, 1996

» Cesa-Bianchi, Conconi, & Gentile, “Learning probabilistic linear threshold classifiers
via selective sampling,” COLT 2003
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Active Learning is an Active Area of Research
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