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A reminder: convergence in probability

Let {Xn} be a sequence of bounded random variables. We say

that

lim
n→∞

Xn = X in probability

if

∀ε > 0 lim
n→∞

P{|Xn − X | ≥ ε} = 0.

or

if for each n there exists a εn and a δn such that

P {|Xn − X | ≥ εn} ≤ δn,

with εn and δn going to zero for n →∞.

Tomaso Poggio Loose Ends: stability, various definitions



Generalization

A natural requirement for fS is distribution independent

generalization

∀µ, lim
n→∞

|IS[fS]− I[fS]| = 0 in probability

This is equivalent to saying that for each n there exists a εn and

a δn such that ∀µ

P {|ISn [fSn ]− I[fSn ]| ≥ εn} ≤ δn,

with εn and δn going to zero for n →∞.

In other words, the training error for the solution must converge

to the expected error and thus be a “proxy” for it. Otherwise the

solution would not be “predictive”.

A desirable additional requirement is universal consistency

∀ε > 0 lim
n→∞

sup
µ

PS

�
I[fS] > inf

f∈H
I[f ] + ε

�
= 0.
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Uniform Stability

Let us recall notation: S training set, Si,z training set obtained

replacing the i-th example in S with a new point z = (x , y).

Definition

We say that an algorithm A has uniform stability β (is

β-stable) if

∀(S, z) ∈ Zn+1, ∀i , ∀z � sup
z�∈Z

|V (fS, z �)− V (fSi,z , z �)| ≤ β.
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Remarks: Uniform Stability

Uniform stability is a strong requirement: a solution has to

change very little even when a very unlikely training set is

drawn.

the coefficient β is a function of n, and should perhaps be

written βn.
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CVloo Stability

We first introduce the definition of Cross-Validation
leave-one-out stability. Definition: The learning map L is
distribution-independent, CVloo stable if uniformly for all
probability distributions µ

lim
n→∞

sup
i∈{1,...,n}

|V (fSi , zi)− V (fS, zi)| = 0 in probability,

where Si denotes the training set S with the ith point removed.
CVloo stability measures the difference in errors at a point zi
between a function obtained given the entire training set and

one obtained given the same training set but with the point zi
left out

Theorem A: For good loss functions the following statements
are equivalent for ERM:

L is distribution-independent CVloo stable

ERM generalizes and is universally consistent

H is uniform Glivenko-Cantelli.
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Remarks: CVloo Stability

CVloo stability is weaker than uniform stability because a) it

is in probability and b) it is true for zi not for an arbitrary z.

the definition of stability is about difference of the error on a

training point and the error on the same test point going to

zero: it seems plausible that this may imply generalization.

it turns out that with some additional technical conditions

CVloo stability implies generalization independently of

ERM.
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Batch learning algorithms

We consider sequentially independent and identically

drawn samples from the distribution on Z . The training set

S consists of n samples:

S = {z1 = (x1, y1), ..., zn = (xn, yn)}.

The expected error of of a function f is defined as

I[f ] =

�

Z
V (f , z)dµ(z) = EzV (f , z),

which is also the expected error of a new sample z drawn

from the distribution.

The following quantity, called empirical error, can be

computed by a “batch” learning algorithm, given all the

training data S

IS[f ] =
1

n

n�

i=1

V (f , zi).
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Online learning

Algorithms here take as inputs a hypothesis f ∈ H and a new

example z = x , y and return a new hypothesis f � ∈ H. Given an

input sequence S ∈ Z n with S = z1, · · · , zn, the online

algorithm will use z1 and the zero hypothesis f0 to generate the

first hypothesis f1. After seeing the whole Z n sequence the

algorithm has generated a sequence of hypothesis f0, · · · , fn
and has “memory” only of the last example zn.
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Online learning algorithms

We define as training error of an online algorithm at

iteration n
V (fn, zn)

where the algorithm generates fn from fn−1 after “seeing”

zn.

We define as average training error of an online algorithm

at iteration n

In
emp =

1

n

n�

i

V (fi , zi)

where the algorithm generates fi from fi−1 after “seeing” zi .
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The notion of generalization is not appropriate for

online algorithms

An algorithm is said to generalize if the function fS selected by it

satisfies for all S (|S| = n) and for any probability distribution µ

lim
n→∞

|I[fS]− IS[fS]| = 0 in probability.

For an online algorithm that “forgets” past data, it is not natural

to define the empirical error. Generalization is not a natural

concept for online algorithms. Consistency is meaningful for

online algorithms. We recall that an algorithm is (universally)

consistent if for any distribution µ and any ε > 0

lim
n→∞

P
�

I[fS] > inf
f∈H

I[f ] + ε

�
= 0.
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A class project: can stability be at the core of online

learning?

CV-like:

�n < [−V (fn+1, zn+1) + V (fn, zn+1)] ≤ χn

Notice that V (fn, zn+1) is the out-of-sample-error since fn
does not depend on zn+1 whereas V (fn, zn) is the

in-sample-error since fn depends on zn (and fn−1). Notice

that fn depends on zn: thus in [V (fn+1, zn+1)] the

hypothesis fn+1 is a function of zn+1 (and of fn+1). Thus

this is a condition on the cross-validation error.

The upper-bound above is key. It makes sure that the

update of the hypothesis decreases the error on the new

data point (relative to the error on that point made by the

previous hypothesis that was formulated before “seeing”

that point) – but not too much. Intuitively it guarantees that

overfitting cannot occur.
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A class project: can stability be at the core of online

learning?

Notice that online regularization (which satisfies the condition

above) ensures that Regret = o(T ) and this in turn ensures

consistency of the online learning (Rakhlin, pers. comm.).

Conjecture The CV-like condition is sufficient for consistency
of online learning.
Remark
If the conjecture is true, one could have algorithms which use

directly stability (though they would be similar to the special

case of online regularization). This may be especially

interesting for biological implementations of online RL.
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A note about consistency of online algorithms

For an intuition of why we need
�

γn =∞ consider the

differential equation
dx
dt + γ(t)x = 0 with solution

x(t) = x0e−
R

γ(t)dt . It is possible to show that the condition�
γ(t)dt →∞ corresponds to

�
γn =∞. Conditions of this

type are needed for convergence to the minimum. Consider

now
dx
dt + γ(t)(x + n(t)) = 0: we need γ(t)n(t)→ 0 to eliminate

the effect of the “noise” n(t), implying at least γn → 0. This

condition corresponds to c-stability which has a different

motivation (generalization).
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Plan

Mercer Theorem
Elastic Net
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Some Other Facts on RKH Spaces
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Integral Operator

RKH space can be characterized using the integral operator

LK f (s) =

�

X
K (x , s)f (x)p(x)dx

where p(x) is the probability density on X .

The operator has domain and range in L2(X , p(x)dx) the space
of functions f : X → R such that

�f , f �2 =

�

X
|f (x)|2p(x)dx < ∞
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Mercer Theorem

If X is a compact subset in Rd and K continuous, symmetric
(and PD) then LK is a compact, positive and self-adjoint
operator.

There is a decreasing sequence (σi)i ≥ 0 such that
limi→∞ σi = 0 and

LK φi(x) =

�

X
K (x , s)φi(s)p(s)ds = σiφi(x),

where φi is an orthonormal basis in L2(X , p(x)dx).
The action of LK can be written as

LK f =
�

i≥1

σi�f , φi�2φi .
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Mercer Theorem (cont.)

The kernel function have the following representation

K (x , s) =
�

i≥1

σiφi(x)φi(s).

A symmetric, positive definite and continuous Kernel is called a
Mercer kernel.

The above decomposition allows to look at the kernel as a
dot product in some feature space.

L. Rosasco Loose Ends



Different Definition of RKHS

It is possible to prove that:

H = {f ∈ L2(X , p(x)dx)|
�

i≥1

�f , φi�22
σi

< ∞}.

The scalar product in H is

�f , g�H =
�

i≥1

�f , φi�2�g, φi�2
σi

.

A different proof of the representer theorem can be given using
Mercer theorem.
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Plan

Mercer Theorem
Elastic Net

L. Rosasco Loose Ends



Some Remarks

min
β∈Rp

�Y − βX�2 + λ �β�1 .

About Uniqueness: the solution of �1 regularization is not
unique. Note that the various solution have the same
prediction properties but different selection properties.
Correlated Variables: If we have a group of correlated
variables the algorithm is going to select just one of them.
This can be bad for interpretability but maybe good for
compression.
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Elastic Net Regularization

One possible way to cope with the previous problems is to
consider

min
β∈Rp

�Y − βX�2 + λ(α �β�1 + (1− α) �β�2
2).

λ is the regularization parameter.
α controls the amount of sparsity and correlation.

(Zhu. Hastie ’05; De Mol, De Vito, Rosasco ’07)
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Elastic Net Regularization (cont.)

The �1 term promotes sparsity and the �2 term
smoothness.
The functional is strictly convex: the solution is unique.
A whole group of correlated variables is selected rather
than just one variable in the group.
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Geometry of the Problem

β1

β2

�1

�2

θ

R

−R �1 + �2

1
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�q regularization?

Consider a more general penalty of the form

�β�q = (
p�

i=1

|β i |q)1/q

(called bridge regression in statistics).
It can be proved that:

limq→0 �β�q → �β�0,
for 0 < q < 1 the norm is not a convex map,
for q = 1 the norm is a convex map and is strictly convex
for q > 1.
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Caveat

Learning algorithms based on sparsity usually suffer from an
excessive shrinkage effect of the coefficients.
For this reason in practice a two-step procedure is usually
used:

Use Lasso (or Elastic Net) to select the relevant
components
Use ordinary least squares (in fact usually Tikhonov with λ
small...) on the selected variables.
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