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About this class

Goal To introduce a particularly useful family of
hypothesis spaces called Reproducing Kernel
Hilbert Spaces (RKHS) and to derive the general
solution of Tikhonov regularization in RKHS.
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Regularization

The basic idea of regularization (originally introduced
independently of the learning problem) is to restore
well-posedness of ERM by constraining the hypothesis space
H.

Penalized Minimization
A possible way to do this is considering penalized empirical risk
minimization, that is we look for solutions minimizing a two term
functional

ERR(f )︸ ︷︷ ︸
empirical error

+λ pen(f )︸ ︷︷ ︸
penalization term

the regularization parameter λ trade-offs the two terms.
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Tikhonov Regularization

Tikhonov regularization amounts to minimize

1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H, λ > 0 (1)

V (f (x), y) is the loss function, that is the price we pay
when we predict f (x) in place of y
‖ · ‖H is the norm in the function space H

Such a penalization term should encode some notion of
smoothness of f .
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The "Ingredients" of Tikhonov Regularization

The scheme we just described is very general and by
choosing different loss functions V (f (x), y) we can recover
different algorithms
The main point we want to discuss is how to choose a
norm encoding some notion of smoothness/complexity of
the solution
Reproducing Kernel Hilbert Spaces allow us to do this in a
very powerful way
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Some Functional Analysis

A function space F is a space whose elements are functions
f , for example f : Rd → R.
A norm is a nonnegative function ‖ · ‖ such that ∀f ,g ∈ F and
α ∈ R

1 ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;
2 ‖f + g‖ ≤ ‖f‖+ ‖g‖;
3 ‖αf‖ = |α| ‖f‖.

A norm can be defined via a dot product ‖f‖ =
√
〈f , f 〉.

A Hilbert space (besides other technical conditions) is a
(possibly) infinite dimensional linear space endowed with a dot
product.
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Examples

Continuous functions C[a,b] :
a norm can be established by defining

‖f‖ = max
a≤x≤b

|f (x)|

(not a Hilbert space!)
Square integrable functions L2[a,b]:
it is a Hilbert space where the norm is induced by the dot
product

〈f ,g〉 =

∫ b

a
f (x)g(x)dx
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RKHS

A linear evaluation functional over the Hilbert space of functions
H is a linear functional Ft : H → R that evaluates each function
in the space at the point t , or

Ft [f ] = f (t).

Definition
A Hilbert space H is a reproducing kernel Hilbert space
(RKHS) if the evaluation functionals are bounded, i.e. if there
exists a M s.t.

|Ft [f ]| = |f (t)| ≤ M‖f‖H ∀f ∈ H
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Evaluation functionals

Evaluation functionals are not always bounded.
Consider L2[a,b]:

Each element of the space is an equivalence class of
functions with the same integral

∫
|f (x)|2dx .

An integral remains the same if we change the function in
a countable set of points.
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Reproducing kernel (rk)

If H is a RKHS, then for each t ∈ X there exists, by the
Riesz representation theorem a function Kt of H (called
representer) with the reproducing property

Ft [f ] = 〈Kt , f 〉H = f (t).

Since Kt is a function in H, by the reproducing property, for
each x ∈ X

Kt (x) = 〈Kt ,Kx〉H

The reproducing kernel (rk) of H is

K (t , x) := Kt (x)
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Positive definite kernels

Let X be some set, for example a subset of Rd or Rd itself. A
kernel is a symmetric function K : X × X → R.

Definition
A kernel K (t , s) is positive definite (pd) if

n∑
i,j=1

cicjK (ti , tj) ≥ 0

for any n ∈ N and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ R.
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RKHS and kernels

The following theorem relates pd kernels and RKHS

Theorem
a) For every RKHS the reproducing kernel is a positive definite
kernel

b) Conversely for every positive definite kernel K on
X × X there is a unique RKHS on X with K as its reproducing
kernel
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Sketch of proof

a) We must prove that the rk K (t , x) = 〈Kt ,Kx〉H is symmetric
and pd.
• Symmetry follows from the symmetry property of dot products

〈Kt ,Kx〉H = 〈Kx ,Kt〉H

• K is pd because

n∑
i,j=1

cicjK (ti , tj) =
n∑

i,j=1

cicj〈Kti ,Ktj 〉H = ||
∑

cjKtj ||
2
H ≥ 0.
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Sketch of proof (cont.)

b) Conversely, given K one can construct the RKHS H as the
completion of the space of functions spanned by the set
{Kx |x ∈ X} with a inner product defined as follows.
The dot product of two functions f and g in span{Kx |x ∈ X}

f (x) =
s∑

i=1

αiKxi (x)

g(x) =
s′∑

i=1

βiKx ′i
(x)

is by definition

〈f ,g〉H =
s∑

i=1

s′∑
j=1

αiβjK (xi , x ′j ).
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Examples of pd kernels

Very common examples of symmetric pd kernels are
• Linear kernel

K (x , x ′) = x · x ′

• Gaussian kernel

K (x , x ′) = e−
‖x−x′‖2

σ2 , σ > 0

• Polynomial kernel

K (x , x ′) = (x · x ′ + 1)d , d ∈ N

For specific applications, designing an effective kernel is a
challenging problem.
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Historical Remarks

RKHS were explicitly introduced in learning theory by Girosi
(1997). Poggio and Girosi (1989) introduced Tikhonov
regularization in learning theory and worked with RKHS only
implicitly, because they dealt mainly with hypothesis spaces on
unbounded domains, which we will not discuss here. Of course,
RKHS were used much earlier in approximation theory (eg
Wahba, 1990...) and computer vision (eg Bertero, Torre,
Poggio, 1988...).
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Norms in RKHS and Smoothness

Choosing different kernels one can show that the norm in the
corresponding RKHS encodes different notions of smoothness.

Sobolev kernel: consider f : [0,1]→ R with
f (0) = f (1) = 0. The norm

‖f‖2H =

∫
(f ′(x))2dx =

∫
ω2|F (ω)|2dω

is induced by the kernel
K (x , y) = Θ(y − x)(1− y)x + Θ(x − y)(1− x)y .
Gaussian kernel: the norm can be written as

‖f‖2H =
1

2πd

∫
|F (ω)|2exp

σ2ω2
2 dω

where F (ω) = F{f}(ω) =
∫∞
−∞ f (t)e−iωt dt is the Fourier

tranform of f .
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Linear Case

Our function space is 1-dimensional lines

f (x) = w x and K (x , xi) ≡ x xi

where the RKHS norm is simply

‖f‖2H = 〈f , f 〉H = 〈Kw ,Kw 〉H = K (w ,w) = w2

so that our measure of complexity is the slope of the line.
We want to separate two classes using lines and see how the
magnitude of the slope corresponds to a measure of complexity.
We will look at three examples and see that each example
requires more "complicated functions, functions with greater
slopes, to separate the positive examples from negative
examples.
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Linear case (cont.)

here are three datasets: a linear function should be used to
separate the classes. Notice that as the class distinction
becomes finer, a larger slope is required to separate the
classes.
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Again Tikhonov Regularization

The algorithms (Regularization Networks) that we want to study
are defined by an optimization problem over RKHS,

f λS = arg min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

where the regularization parameter λ is a positive number, H is
the RKHS as defined by the pd kernel K (·, ·), and V (·, ·) is a
loss function.
Note that H is possibly infinite dimensional!
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Existence and uniqueness of minimum

If the positive loss function V (·, ·) is convex with respect to its
first entry, the functional

Φ[f ] =
1
n

n∑
i=1

V (f (xi), yi) + λ‖f‖2H

is strictly convex and coercive, hence it has exactly one local
(global) minimum.
Both the squared loss and the hinge loss are convex.
On the contrary the 0-1 loss

V = Θ(−f (x)y),

where Θ(·) is the Heaviside step function, is not convex.
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The Representer Theorem

An important result
The minimizer over the RKHS H, fS, of the regularized
empirical functional

IS[f ] + λ‖f‖2H,

can be represented by the expression

f λS (x) =
n∑

i=1

ciK (xi , x),

for some n-tuple (c1, . . . , cn) ∈ Rn.
Hence, minimizing over the (possibly infinite dimensional)
Hilbert space, boils down to minimizing over Rn.
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Sketch of proof

Define the linear subspace of H,

H0 = span({Kxi}i=1,...,n)

Let H⊥0 be the linear subspace of H,

H⊥0 = {f ∈ H|f (xi) = 0, i = 1, . . . ,n}.

From the reproducing property of H, ∀f ∈ H⊥0

〈f ,
∑

i

ciKxi 〉H =
∑

i

ci〈f ,Kxi 〉H =
∑

i

ci f (xi) = 0.

H⊥0 is the orthogonal complement of H0.
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Sketch of proof (cont.)

Every f ∈ H can be uniquely decomposed in components along
and perpendicular to H0: f = f0 + f⊥0 .
Since by orthogonality

‖f0 + f⊥0 ‖2 = ‖f0‖2 + ‖f⊥0 ‖2,

and by the reproducing property

IS[f0 + f⊥0 ] = IS[f0],

then
IS[f0] + λ‖f0‖2H ≤ IS[f0 + f⊥0 ] + λ‖f0 + f⊥0 ‖2H.

Hence the minimum f λS = f0 must belong to the linear space H0.
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Common Loss Functions

The following two important learning techniques are
implemented by different choices for the loss function V (·, ·)
• Regularized least squares (RLS)

V = (y − f (x))2

• Support vector machines for classification (SVMC)

V = |1− yf (x)|+

where
(k)+ ≡ max(k ,0).
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Tikhonov Regularization for RLS and SVMs

In the next two classes we will study Tikhonov regularization
with different loss functions for both regression and
classification. We will start with the square loss and then
consider SVM loss functions.
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Some Other Facts on RKH Spaces
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Integral Operator

RKH space can be characterized via the integral operator

LK f (x) =

∫
X

K (x , s)f (s)p(x)dx

where p(x) is the probability density on X .

The operator has domain and range in L2(X ,p(x)dx) the space
of functions f : X → R such that

< f , f >=

∫
X
|f (x)|2p(x)dx <∞
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Mercer Theorem

If X is a compact subset in Rd and K continuous, symmetric
(and PD) then LK is a compact, positive and self-adjoint
operator.

There is a decreasing sequence (σi)i ≥ 0 such that
limi→∞ σi = 0 and

LKφi(x) =

∫
X

K (x , s)φi(s)p(s)ds = σiφi(x),

where φi is an orthonormal basis in L2(X ,p(x)dx).
The action of LK can be written as

LK f =
∑
i≥1

σi < f , φi > φi .

L. Rosasco RKHS



Mercer Theorem

If X is a compact subset in Rd and K continuous, symmetric
(and PD) then LK is a compact, positive and self-adjoint
operator.

There is a decreasing sequence (σi)i ≥ 0 such that
limi→∞ σi = 0 and

LKφi(x) =

∫
X

K (x , s)φi(s)p(s)ds = σiφi(x),

where φi is an orthonormal basis in L2(X ,p(x)dx).
The action of LK can be written as

LK f =
∑
i≥1

σi < f , φi > φi .

L. Rosasco RKHS



Mercer Theorem

If X is a compact subset in Rd and K continuous, symmetric
(and PD) then LK is a compact, positive and self-adjoint
operator.

There is a decreasing sequence (σi)i ≥ 0 such that
limi→∞ σi = 0 and

LKφi(x) =

∫
X

K (x , s)φi(s)p(s)ds = σiφi(x),

where φi is an orthonormal basis in L2(X ,p(x)dx).
The action of LK can be written as

LK f =
∑
i≥1

σi < f , φi > φi .

L. Rosasco RKHS



Mercer Theorem (cont.)

The kernel function have the following representation

K (x , s) =
∑
i≥1

σiφi(x)φi(s).

A symmetric, positive definite and continuous Kernel is called a
Mercer kernel.

The above decomposition allows to look at the kernel as a
dot product in some feature space. (more in the problem
sets.)
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Different Definition of RKHS

It is possible to prove that:

H = {f ∈ L2(X ,p(x)dx)|
∑
i≥1

< f , φi >
2

σi
<∞}.

The scalar product in H is

< f ,g >H=
∑
i≥1

< f , φi >< g, φi >

σi
.

A different proof of the representer theorem can be given using
Mercer theorem.

L. Rosasco RKHS



Different Definition of RKHS

It is possible to prove that:

H = {f ∈ L2(X ,p(x)dx)|
∑
i≥1

< f , φi >
2

σi
<∞}.

The scalar product in H is

< f ,g >H=
∑
i≥1

< f , φi >< g, φi >

σi
.

A different proof of the representer theorem can be given using
Mercer theorem.

L. Rosasco RKHS


