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• When A has less rows than columns, there are an 
infinite number of solutions.

• Which one should be selected?

OR:

Undertermined Linear Systems



Mining for Biomarkers

• npatients << npeaks

• If very few are needed for 
diagnosis, search for a 
sparse set of markers

• l1 , LASSO, etc.



Recommender Systems



Netflix Prize

• One million big ones!

• Given 100 million ratings on a scale of 1 to 5, predict 3 
million ratings to highest accuracy

• 17770 total movies x 480189 total users
• Over 8 billion total ratings

• How to fill in the blanks?



Abstract Setup: Matrix Completion

• How do you fill in the missing data?

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =

X L
R*

k x r r x nk x n

kn entries r(k+n) entries

=



Matrix Rank

• The rank of  X is…
the dimension of the span of the rows
the dimension of the span of the columns
the smallest number r such that there exists an k x r 
matrix L and an n x r matrix R with X=LR*

X L
R*

k x r r x nk x n

=



Complex
Systems

Structure

Rank

Dynamics

Sparsity

Predictions

Smoothness



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

• Suppose we want to solve

• M = {all rank r models}
• What happens when dimension(M) is smaller than the 

number of rows of A?

Parsimonious Models

atomsmodel weights

rank



Plan of Attack

• Encoding parsimony 
– embeddings, projections, and the atomic norm

• Example 1: Sparse vectors
– Atomic norm = l1
– Decoding via Restricted Isometry
– Decoding via most encodings

• Example 2: Low rank matrices
– Atomic norm = trace norm
– Decoding via Restricted Isometry
– Decoding via most encodings

• Other models and further directions



Whitney’s Theorem

• Any random projection of a d-dimensional manifold into 
2d+1 dimensions is en embedding!

a
• Let X = { t(x-y) : x,y∈

 

M, t ∈

 

R} ⊂

 

RD

• If D>2d+1, any random a is not in X.

• Project orthogonal a.

• If there are x,y in M with πa (x) = πa (y), 
then there is a t with a = t(x-y) ∈ X 

(contradiction).X



Whitney’s Theorem

• Any random projection of a d-dimensional manifold into 
2d+1 dimensions is an embedding!

• If any random projection is an 
embedding, when can we reconstruct 
points in X from their projected values?

• Given a random encoder, when can we 
find a low-complexity decoder?

• Answer: need slightly more geometry 

X



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

• “natural” heuristic:

Parsimonious Models

atomsmodel weights

rank



Cardinality

• Vector x has cardinality s if it has at most s nonzeros.

• Atoms are a discrete set of orthogonal points 
• Typical Atoms: 

– standard basis
– Fourier basis
– Wavelet basis



Cardinality Minimization

• PROBLEM: Find the vector of lowest cardinality that 
satisfies/approximates the underdetermined linear 
system

• NP-HARD:
– Reduce to EXACT-COVER [Natarajan 1995]
– Hard to approximate
– Known exact algorithms require enumeration



Proposed Heuristic

• Long history (back to geophysics in the 70s) 
• Flurry of recent work characterizing success of this 

heuristic: Candès, Donoho, Romberg, Tao, Tropp, etc., 
etc…

• “Compressed Sensing”

Convex Relaxation:Cardinality Minimization:



Why l1 norm?

card(x)

||x||1



• 2d vectors

1 nonzero
x2 + y2 = 1

Convex hull:



w1

w2

A(X)=b

When is this intuition precise?



Restricted Isometry Property (RIP)

• Let A:Rn →

 

Rm be a linear map.  For every positive 
integer s≤m, define the s-restricted isometry constant 
to be the smallest number s (A) such that

holds for all vectors x of cardinality at most s.

• Candès and Tao (2005).



RIP ⇒
 

Unique Sparse Solution

• Theorem Suppose that 2s (A)<1 for some integer s≥1.  
Then there can be at most one vector x with cardinality 
less than or equal to s satisfying Ax= b. 

• Proof: Assume, on the contrary, that there exist two 
different vectors, x1 and x2 , satisfying the matrix 
equation (Ax1 =Ax2 =b). 

• Then z:=x1 -x2 is a nonzero matrix of card at most 2s, 
and Az=0. 

• But then we would have 

which is a contradiction.



RIP ⇒
 

Heuristic Succeeds 

• Theorem: Let x0 be a vector of cardinality at most s.  
Let x* be the solution of Ax=Ax0 of smallest l1 norm.  
Suppose that 4s (A) < 1/4. Then x* =x0 .

• Deterministic condition on A
• Current best bound: 2s (A) < 0.2 suffices.

Independent of n,m,s



RIP ⇒
 

Heuristic Succeeds 

• Theorem: Let x0 be a matrix of cardinality s.  Let x* be 
the solution of Ax=Ax0 of smallest l1 norm.  Suppose 
that s≥

 

1 is such that 4s (A) < 1/4. Then x* =x0 .
• Proof Sketch: Let R:=x* -x0 be the error.
• The majority of the mass of R is concentrated in the 

support of x0 :

• We can decompose R = R0 + R1 + R2 + …
– R0 is projection on the support of x
– Ri have cardinality at most 3s and disjoint support from x0 

for i>0



RIP ⇒
 

Heuristic Succeeds (cont)

Striclty

 

positive for 4s

 

<1/4 

• Using                             from CRT 06

• Proof of l2 constrained version is similar



Nearly Isometric Random Variables

• Let A be a random variable that takes values in linear 
maps from Rn to Rm.  

• We say that A is nearly isometrically distributed if

1. For all x ∈

 

Rn,

2. For all 0<<1 we have,

Isometric in 
expectation

Large deviations 
unlikely



Nearly Isometric RVs obey RIP

• Theorem: Fix 0<<1.  If A is a nearly isometric random 
variable, then for every 1≤s≤m, there exist constants 
c0 , c1 >0 depending only on 

 

such that s (A)≤

 whenever m≥c0 s log(n/s) with probability at least 1- 
exp(-c1 m).

• Number of measurements c0 s log(n/s)

• Typical scaling for this type of result.

constant intrinsic 
dimension

ambient 
dimension



Examples of Restricted Isometries

• Aij Gaussian with variance
• A a random projection

•

•

• “Most” transformations when properly scaled 



• Probability x is distorted is at most 

• Can cover all x on the unit ball in Rs

with at most α2

 

(²)s points.

• Since nearby x’s are distorted similarly, 
probability any s-sparse x is distorted is 
at most

• So no x is distorted with Prob at least 1-exp(-c1 m) if

Proof of RIP:



The l1 heuristic works!

• The l1 heuristic succeeds (at sparsity level s) for most A 
with m>c0 slog(n/s) 

• Number of measurements c0 s log(n/s)

• Approach: Show that a properly scaled random A is 
nearly an isometry on the set of 4s-sparse vectors.

constant
intrinsic 

dimension

ambient 
dimension



(Matrix) Rank

• Matrix X has rank r if it has at most r nonzero singular 
values.

• Atoms are the set of all rank one matrices
• Not a discrete set



G

K

Controller
Design

Constraints involving the rank of the Hankel Operator, 
Matrix, or Singular Values

Model 
Reduction

System
Identification

Multitask 
Learning

Euclidean
Embedding

Rank of: Matrix of 
Classifiers

Gram
Matrix

Recommender
Systems

Data
Matrix



Affine Rank Minimization

• PROBLEM: Find the matrix of lowest rank that 
satisfies/approximates the underdetermined linear 
system

• NP-HARD:
– Reduce to finding solutions to polynomial systems
– Hard to approximate
– Exact algorithms are awful (doubly exponential)



Singular Value Decomposition (SVD)

• If X is a matrix of size k x n (k≤n) then there matrices 
U (k x k) and V (n x k) such that

• a diagonal matrix, 1 ≥

 

… ≥

 

k≥

 

0

• Fact: If X has rank r, then X has only r non-zero 
singular values.

• Dimension of rank r matrices: r (k+n - r)  ≤

 

2 n r



Proposed Heuristic

• Proposed by Fazel (2002).
• Nuclear norm is the “numerical rank” in numerical 

analysis
• The “trace heuristic” from controls if X is p.s.d.

Convex Relaxation:

Affine Rank Minimization:



Why nuclear norm?

rank(X)

||X||*

• Just as l1 norm ⇒

 

sparsity, nuclear 
norm ⇒

 

low rank
• Nuclear norm of diagonal matrix = l1 

norm of diagonal



Matrix and Vector Norms

• Vector • Matrix

• Singular Values



• 2x2 matrices
• plotted in 3d

rank 1
x2 + z2 + 2y2 = 1

Convex hull:



• 2x2 matrices
• plotted in 3d

• Projection onto x-z
plane is l1 ball



w1

w2

A(X)=b



So how do we compute it? And when does it work?

• 2x2 matrices
• plotted in 3d

• Not polyhedral…



Equivalent Formulations

• Semidefinite embedding:

• Low rank parametrization:



Computationally: Gradient Descent

• “Method of multipliers”
• Schedule for 

 

controls the noise in the data
• Same global minimum as nuclear norm
• Dual certificate for the optimal solution

• When will this fail and when it might succeed?



Restricted Isometry Property (RIP)

• Let A:Rk x n →

 

Rm be a linear map.  (Without loss of 
generality, assume k≤

 

n throughout).  For every 
positive integer r≤k, define the r-restricted isometry 
constant to be the smallest number r (A) such that

holds for all matrices X of rank at most r.

• Directly adapted from RIP condition from Candès and 
Tao (2004).



RIP ⇒
 

Unique Low-rank Solution

• Theorem Suppose that 2r (A)<1 for some integer r≥1.  
Then there can be at most one matrix X with rank less 
than or equal to r satisfying A(X) = b. 

• Proof: Assume, on the contrary, that there exist two 
different matrices, X1 and X2 , satisfying the matrix 
equation (A(X1 )=A(X2 )=b). 

• Then Z:=X1 -X2 is a nonzero matrix of rank at most 2r, 
and A(Z)=0. 

• But then we would have 

which is a contradiction.



RIP ⇒
 

Heuristic Succeeds 

• Theorem: Let X0 be a matrix of rank r.  Let X* be the 
solution of A(X)=A(X0 ) of smallest nuclear norm.  
Suppose that r≥

 

1 is such that 5r (A) < 1/10. Then 
X* =X0 .

• Deterministic condition on A
• No reason for estimate to be sharp

Independent of k,n,r,m



RIP ⇒
 

Heuristic Succeeds 

• Theorem: Let X0 be a matrix of rank r.  Let X* be the 
solution of A(X)=A(X0 ) of smallest nuclear norm.  
Suppose that r≥

 

1 is such that 5r (A) < 1/10. Then 
X* =X0 .

• Proof Sketch: Let R:=X* -X0 be the error.
• The majority of the mass of R is concentrated in the row 

and column spaces of X0 .
• We can decompose R = R0 + R1 + R2 + …

– R0 is concentrated near the row and column space of X
– Ri have rank at most 3r and orthogonal row/col spaces to 

X0 for i>0

• Then we can show



RIP ⇒
 

Heuristic Succeeds (cont)

Striclty

 

positive for 5r

 

<1/10 



Nearly Isometric RVs obey RIP

• Theorem: Fix 0<<1.  If A

 

is a nearly isometric 
random variable, then for every 1≤r≤k, there exist 
constants c0 , c1 >0 depending only on 

 

such that 
r (A)≤

 

whenever m≥c0 r(k+n-r) log(kn) with 
probability at least 1-exp(-c1 m).

• Number of measurements c0 r(k+n-r) log(kn)

• Typical scaling for this type of result.

constant intrinsic 
dimension

ambient 
dimension



Generic Proof:

• Probability X is distorted is at most 

• I can cover all X with O(Dd) points where d is the 
intrinsic dimension and D is the embedded/ambient 
dimension

• Since nearby X’s are distorted similarly, probability any 
X is distorted is at most

• So no X is distorted with Prob at least 1-exp(-c1 m) if



Proof Sketch

• Show concentration holds for all 
matrices with same row and 
column space. (large deviations 
unlikely)

• Show that the distortion of a 
subspace of matrices by a linear 
map is robust to perturbations of 
the subspace. (maps have 
bounded norm)

• Provide an -net over the set of 
all subspaces of low-rank 
matrices (a Grassmann 
manifold).  Show RIP holds at all 
points in the net with 
overwhelming probability and 
hence holds everywhere.

Apply large 
deviations 

property at an - 
net

Nearby subspaces 
have same 
distortion



The trace-norm heuristic succeeds!

• If m > c0 r(k+n-r)log(kn), the heuristic succeeds for 
most A

• Number of measurements c0 r(k+n-r) log(kn)

• Approach: Show that a random A

 

is nearly an isometry 
on the manifold of rank 5r matrices.

constant intrinsic 
dimension

ambient 
dimension

Recht, Fazel, and Parrilo. 2007.



Numerical Experiments

• Test “image”
• Rank 5 matrix, 46x81 pixels
• Random Gaussian measurements
• Nuclear norm minimization via SDP (sedumi)



Phase transition



Phase transition

measurements vs parameters: 

 

= m/n2

“Normalized” 
dimension of 

the rank r 
matrices 


 

= r/n

Recht, Xu, and 
Hassibi, 2008

model-size vs 
measurements



… … … …Gradient descent 
on low-rank 
nuclear norm

parameterization

Mixture of 
hundreds of 

models, including 
nuclear norm



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

Parsimonious Models

atomsmodel weights

rank



Other Directions

• Random Features for Learning (Rahimi & Recht 07-08)
– Atomic norm on basis functions

• Dynamical Systems
– Atomic norm on filter banks

• Multivariate Tensors
– Applications in genetics and vision

• Jordan Algebras, Polynomial Varieties, nonlinear 
models, completely positive matrices, …

atomsmodel weights

rank
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