Sparsity, Rank, and All That

Ben Recht Center for the Mathematics of Information Caltech

March 30, 2009

Undertermined Linear Systems

Ax = b

- When A has less rows than columns, there are an infinite number of solutions.
- Which one should be selected?

M $\sum (x^*a_j - b_j)^2$ **OR**: i=1 $M \ll \dim(x)$

Mining for Biomarkers

Recommender Systems

More Top Picks for You

Because you enjoyed:

2001: A Space Odyssey Blue Velvet Bottle Rocket

We think you'll enjoy: Stalker

Add

Not Interested

match.com 📫

Netflix Prize

• One million big ones!

• Given 100 million ratings on a scale of 1 to 5, predict 3 million ratings to highest accuracy

- 17770 total movies x 480189 total users
- Over 8 billion total ratings
- How to fill in the blanks?

Abstract Setup: Matrix Completion

X_{ij} known for black cells X_{ij} unknown for white cells *Rows index movies Columns index users*

• How do you fill in the missing data?

kn entries $\Gamma(k+n)$ entries

Matrix Rank

• The rank of X is...

the dimension of the span of the rows the dimension of the span of the columns the smallest number r such that there exists an k x r matrix L and an n x r matrix R with $X=LR^*$

Complex Systems

GOOG-0.23% ONASDAQ:AAPL +1.36% ONASDAQ:MSFT +1.54

Predictions

Structure

Smoothness

Parsimonious Models

- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model
- Suppose we want to solve

 $\begin{array}{ll}\text{minimize} & \operatorname{rank}(x)\\ \text{subject to} & Ax = b \end{array}$

- **M** = {all rank r models}
- What happens when dimension(M) is smaller than the number of rows of A?

Plan of Attack

- Encoding parsimony
 - embeddings, projections, and the atomic norm
- Example 1: Sparse vectors
 - Atomic norm = I_1
 - Decoding via Restricted Isometry
 - Decoding via most encodings
- Example 2: Low rank matrices
 - Atomic norm = trace norm
 - Decoding via Restricted Isometry
 - Decoding via most encodings
- Other models and further directions

Whitney's Theorem

 Any random projection of a d-dimensional manifold into 2d+1 dimensions is en embedding!

- Let $X = \{ t(x-y) : x, y \in M, t \in \mathbb{R} \} \subset \mathbb{R}^{\mathbb{D}}$
- If D>2d+1, any random **a** is not in **X**.
- Project orthogonal a.

• If there are x,y in **M** with $\pi_a(x) = \pi_a(y)$, then there is a t with $a = t(x-y) \in X$ (contradiction).

Whitney's Theorem

 Any random projection of a d-dimensional manifold into 2d+1 dimensions is an embedding!

- If any random projection is an embedding, when can we reconstruct points in X from their projected values?
- Given a random **encoder**, when can we find a low-complexity **decoder**?
- Answer: need slightly more geometry

Parsimonious Models

- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model

• "natural" heuristic:

$$||x||_{\mathcal{A}} \equiv \inf\left\{\sum_{k=1}^{r} |w_k| : x = \sum_{k=1}^{r} w_k \alpha_k\right\}$$

Cardinality

• Vector x has cardinality s if it has at most s nonzeros.

$$x = \sum_{k=1}^{s} w_k e_{i_k}$$

- Atoms are a discrete set of orthogonal points
- Typical Atoms:
 - standard basis
 - Fourier basis
 - Wavelet basis

Cardinality Minimization

• **PROBLEM:** Find the vector of lowest cardinality that satisfies/approximates the underdetermined linear system Ax = b $A: \mathbb{R}^n \to \mathbb{R}^m$

• NP-HARD:

- Reduce to EXACT-COVER [Natarajan 1995]
- Hard to approximate
- Known exact algorithms require enumeration

Proposed Heuristic

Cardinality Minimization:

 $\begin{array}{ll} \text{minimize} & \operatorname{card}(x) \\ \text{subject to} & Ax = b \end{array}$

Convex Relaxation:

minimize $||x||_1 = \sum_{i=1}^n |x_i|$ subject to Ax = b

- Long history (back to geophysics in the 70s)
- Flurry of recent work characterizing success of this heuristic: Candès, Donoho, Romberg, Tao, Tropp, etc., etc...
- "Compressed Sensing"

When is this intuition precise?

Restricted Isometry Property (RIP)

• Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. For every positive integer $s \le m$, define the s-restricted isometry constant to be the smallest number $\delta_s(A)$ such that

 $(1 - \delta_s(A)) \|x\| \le \|Ax\| \le (1 + \delta_s(A)) \|x\|$

holds for all vectors x of cardinality at most s.

• Candès and Tao (2005).

$RIP \Rightarrow Unique Sparse Solution$

- **Theorem** Suppose that $\delta_{2s}(A) < 1$ for some integer $s \ge 1$. Then there can be at most one vector x with cardinality less than or equal to s satisfying Ax = b.
- Proof: Assume, on the contrary, that there exist two different vectors, x₁ and x₂, satisfying the matrix equation (Ax₁=Ax₂=b).
- Then z: =x₁-x₂ is a nonzero matrix of card at most 2s, and Az=0.
- But then we would have

$$0 = ||Az|| \ge (1 - \delta_{2s}(A))||z|| > 0$$

which is a contradiction.

$RIP \Rightarrow Heuristic Succeeds$

• **Theorem:** Let x_0 be a vector of cardinality at most s. Let x_* be the solution of $Ax = Ax_0$ of smallest I_1 norm. Suppose that $\delta_{4s}(A) < 1/4$. Then $x_* = x_0$.

- Deterministic condition on A
- Current best bound: $\delta_{2s}(A) < 0.2$ suffices.

$RIP \Rightarrow Heuristic Succeeds$

- **Theorem:** Let x_0 be a matrix of cardinality s. Let x_* be the solution of $Ax = Ax_0$ of smallest I_1 norm. Suppose that $s \ge 1$ is such that $\delta_{4s}(A) < 1/4$. Then $x_* = x_0$.
- **Proof Sketch:** Let $R: = x_* x_0$ be the error.
- The majority of the mass of R is concentrated in the support of x₀:

$$\|x_0\|_1 \ge \|x_0 + R\|_1 = \|x_0 + R_0\|_1 + \left\|\sum_{j>1} R_j\right\|_1 \ge \|x_0\| - \|R_0\|_1 + \left\|\sum_{j>1} R_j\right\|_1$$

- We can decompose $R = R_0 + R_1 + R_2 + \dots$
 - R_0 is projection on the support of x
 - R_i have cardinality at most 3s and disjoint support from x_0 for $i\!>\!0$

$RIP \Rightarrow$ Heuristic Succeeds (cont)

$$0 = \|AR\| \ge \|A(R_0 + R_1)\| - \sum_{j \ge 2} \|AR_j\|$$

$$\ge (1 - \delta_{4s}) \|R_0 + R_1\|_F - (1 + \delta_{3s}) \sum_{j \ge 2} \|R_j\|_F$$

$$\ge \left((1 - \delta_{4s}) - \sqrt{\frac{1}{3}}(1 + \delta_{3s})\right) \|R_0\|_F$$

Strictly positive for $\delta_{4s} < 1/4$
• Using $\sum_{j \ge 2} \|R_j\| \le \sqrt{\frac{1}{3}} \|R_0\|$ from CRT 06

Proof of I₂ constrained version is similar

Nearly Isometric Random Variables

- Let A be a random variable that takes values in linear maps from ℝⁿ to ℝ^m.
- We say that A is *nearly isometrically distributed* if
- 1. For all $x \in \mathbb{R}^{n}$, $\mathbf{E}[||Ax||^{2}] = ||x||^{2}$

Isometric in expectation

2. For all $0 < \varepsilon < 1$ we have,

Nearly Isometric RVs obey RIP

- **Theorem:** Fix $0 < \delta < 1$. If A is a nearly isometric random variable, then for every $1 \le s \le m$, there exist constants $c_0, c_1 > 0$ depending only on δ such that $\delta_s(A) \le \delta$ whenever $m \ge c_0 s \log(n/s)$ with probability at least 1- $exp(-c_1 m)$.
- Number of measurements c₀ s log(n/s)

constant intrinsic dimension

• Typical scaling for this type of result.

Examples of Restricted Isometries

- A_{ij} Gaussian with variance $\frac{1}{m}$
- A a random projection

•
$$A_{ij} = \begin{cases} \sqrt{\frac{1}{m}} & \text{with probability } \frac{1}{2} \\ -\sqrt{\frac{1}{m}} & \text{with probability } \frac{1}{2} \end{cases}$$

•
$$A_{ij} = \begin{cases} \sqrt{\frac{3}{m}} & \text{with probability } \frac{1}{6} \\ 0 & \text{with probability } \frac{2}{3} \\ -\sqrt{\frac{3}{m}} & \text{with probability } \frac{1}{6} \end{cases}$$

• "Most" transformations when properly scaled

Proof of RIP:

- Probability x is distorted is at most $\exp(-\alpha_1(\varepsilon)m)$
- Can cover all x on the unit ball in ℝ^s with at most α₂(ε)^s points.

• Since nearby x's are distorted similarly, probability any s-sparse x is distorted is at most $O\left(\binom{n}{s}\alpha_2(\epsilon)^s \exp\left(-\alpha_2(\varepsilon)m\right)\right)$

• So no x is distorted with Prob at least 1-exp(-c₁m) if $m > c_0 s \log\left(\frac{n}{s}\right)$

The I_1 heuristic works!

 $Ax = b \qquad A: \mathbb{R}^n \to \mathbb{R}^m$

The I₁ heuristic succeeds (at sparsity level s) for most A with m>c₀slog(n/s)

- Number of measurements c₀ s log(n/s), ambient dimension
 constant intrinsic dimension
- **Approach:** Show that a properly scaled random A is nearly an isometry on the set of 4s-sparse vectors.

(Matrix) Rank

 Matrix X has rank r if it has at most r nonzero singular values.

$$X = \sum_{j=1}^{r} \sigma_j u_j v_j^* = \sum_{j=1}^{r} \sigma_j A_j$$

- Atoms are the set of all rank one matrices
- Not a discrete set

Constraints involving the rank of the Hankel Operator, Matrix, or Singular Values

Affine Rank Minimization

 PROBLEM: Find the matrix of lowest rank that satisfies/approximates the underdetermined linear system

$$\mathcal{A}(X) = b \qquad \mathcal{A}: \mathbb{R}^{k \times n} \to \mathbb{R}^m$$

• NP-HARD:

- Reduce to finding solutions to polynomial systems
- Hard to approximate
- Exact algorithms are awful (doubly exponential)

Singular Value Decomposition (SVD)

If X is a matrix of size k x n (k≤n) then there matrices
 U (k x k) and V (n x k) such that

$$\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^*$$
$$\mathbf{U}^*\mathbf{U} = I_k \qquad \mathbf{V}^*\mathbf{V} = I_k$$

- \sum a diagonal matrix, $\sigma_1 \ge ... \ge \sigma_k \ge 0$
- Fact: If X has rank r, then X has only r non-zero singular values.
- Dimension of rank r matrices: $r (k+n r) \le 2 n r$

Proposed Heuristic

Affine Rank Minimization:
minimizeminimize $rank(\mathbf{X})$ subject to $\mathcal{A}(\mathbf{X}) = \mathbf{b}$

Convex Relaxation:

minimize $\|\mathbf{X}\|_* = \sum_{i=1}^k \sigma_i(\mathbf{X})$ subject to $\mathcal{A}(\mathbf{X}) = \mathbf{b}$

- Proposed by Fazel (2002).
- Nuclear norm is the "numerical rank" in numerical analysis
- The "trace heuristic" from controls if **X** is p.s.d.

Matrix and Vector Norms

• Vector $x \in \mathbb{R}^n$

- Matrix $X \in \mathbb{R}^{k \times n}$
- Singular Values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$

$$\|X\|_F = \|\sigma\| = \left(\sum_{t=1}^k \sigma_t^2\right)^{1/2}$$

$$||X|| = ||\sigma||_{\infty} = \max_{t} |\sigma_t|$$

$$\|X\|_* = \|\sigma\|_1 = \sum_{t=1}^k \sigma_t$$

$$||x|| = \left(\sum_{t=1}^{n} x_t^2\right)^{1/2}$$

$$\|x\|_{\infty} = \max_{t} |x_t|$$

$$||x||_1 = \sum_{t=1}^n |x_t|$$

- 2x2 matrices
- plotted in 3d

 $\left\| \left[\begin{array}{cc} x & 0 \\ 0 & z \end{array} \right] \right\|_* \le 1$

 Projection onto x-z plane is l₁ ball

- 2x2 matrices
- plotted in 3d

$$\left\| \left[\begin{array}{cc} x & y \\ y & z \end{array} \right] \right\|_{*} \le 1$$

• Not polyhedral...

So how do we compute it? And when does it work?

Equivalent Formulations

minimize subject to \checkmark

$$\begin{array}{l} \|X\|_* \\ \mathcal{A}(X) = b \end{array} \quad \Longleftrightarrow \quad$$

minimize $\sum_{i=1}^{k} \sigma_i(X)$ subject to $\mathcal{A}(X) = b$

 Semidefinite embedding: $X = U\Sigma V^*$

 $\left|\begin{array}{cc} W_1 & X \\ X^* & W_2 \end{array}\right| = \left|\begin{array}{c} U \\ V \end{array}\right| \Sigma \left[\begin{array}{c} U \\ V \end{array}\right]^*$

$$\frac{\frac{1}{2}(\operatorname{Tr}(W_1) + \operatorname{Tr}(W_2))}{\begin{bmatrix} W_1 & X \\ X^* & W_2 \end{bmatrix} \succeq 0$$
$$\mathcal{A}(X) = b$$

Low rank parametrization: ٠

$$L = U\Sigma^{1/2}$$
$$R = V\Sigma^{1/2}$$

minimize

 $\frac{1}{2}(\|L\|_F^2 + \|R\|_F^2)$ subject to $\bar{\mathcal{A}}(LR^*) = b$

Computationally: Gradient Descent

$$\mathcal{F}(\mathbf{L}, \mathbf{R}) = \sum_{i=1}^{k} \sum_{j=1}^{r} L_{ij}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{r} R_{ij}^{2} + \lambda \left\| \mathcal{A}(\mathbf{LR}^{*}) - \mathbf{b} \right\|^{2}$$

- "Method of multipliers"
- Schedule for λ controls the noise in the data
- Same global minimum as nuclear norm
- Dual certificate for the optimal solution

• When will this fail and when it might succeed?

Restricted Isometry Property (RIP)

• Let $\mathcal{A}: \mathbb{R}^{k \times n} \to \mathbb{R}^{m}$ be a linear map. (Without loss of generality, assume k \le n throughout). For every positive integer r \le k, define the r-restricted isometry constant to be the smallest number $\delta_r(\mathcal{A})$ such that

$(1 - \delta_r(\mathcal{A})) \|X\|_F \le \|\mathcal{A}(X)\| \le (1 + \delta_r(\mathcal{A})) \|X\|_F$

holds for all matrices X of rank at most r.

 Directly adapted from RIP condition from Candès and Tao (2004).

$RIP \Rightarrow Unique Low-rank Solution$

- Theorem Suppose that δ_{2r}(A) < 1 for some integer r≥1. Then there can be at most one matrix X with rank less than or equal to r satisfying A(X) = b.
- **Proof:** Assume, on the contrary, that there exist two different matrices, X_1 and X_2 , satisfying the matrix equation $(\mathcal{A}(X_1) = \mathcal{A}(X_2) = b)$.
- Then $Z:=X_1-X_2$ is a nonzero matrix of rank at most 2r, and $\mathcal{A}(Z)=0$.
- But then we would have

$$0 = \|\mathcal{A}(Z)\| \ge (1 - \delta_{2r}(\mathcal{A}))\|Z\|_F > 0$$

which is a contradiction.

$RIP \Rightarrow Heuristic Succeeds$

- Theorem: Let X₀ be a matrix of rank r. Let X_{*} be the solution of A(X) = A(X₀) of smallest nuclear norm. Suppose that r≥ 1 is such that δ_{5r}(A) < 1/10. Then X_{*} = X₀.
- Deterministic condition on ${\cal A}$
- No reason for estimate to be sharp

$RIP \Rightarrow Heuristic Succeeds$

- **Theorem:** Let X_0 be a matrix of rank r. Let X_* be the solution of $\mathcal{A}(X) = \mathcal{A}(X_0)$ of smallest nuclear norm. Suppose that $r \ge 1$ is such that $\delta_{5r}(\mathcal{A}) < 1/10$. Then $X_* = X_0$.
- **Proof Sketch:** Let $R: = X_* X_0$ be the error.
- The majority of the mass of R is concentrated in the row and column spaces of X_0 .
- We can decompose $R = R_0 + R_1 + R_2 + \dots$
 - R_0 is concentrated near the row and column space of X
 - R_i have rank at most 3r and orthogonal row/col spaces to X_0 for i>0
- Then we can show

$$\sum_{j\geq 2} \|R_j\|_F \le \sqrt{\frac{2}{3}} \|R_0\|_F$$

$RIP \Rightarrow$ Heuristic Succeeds (cont)

$$0 = \|\mathcal{A}(R)\| \ge \|\mathcal{A}(R_0 + R_1)\| - \sum_{j \ge 2} \|\mathcal{A}(R_j)\|$$
$$\ge (1 - \delta_{5r}) \|R_0 + R_1\|_F - (1 + \delta_{3r}) \sum_{j \ge 2} \|R_j\|_F$$
$$\ge \left((1 - \delta_{5r}) - \sqrt{\frac{2}{3}}(1 + \delta_{3r})\right) \|R_0\|_F$$

Striclty positive for $\delta_{5r} < 1/10$

Nearly Isometric RVs obey RIP

- Theorem: Fix 0<δ<1. If A is a nearly isometric random variable, then for every 1≤r≤k, there exist constants c₀, c₁>0 depending only on δ such that δ_r(A)≤δ whenever m≥c₀ r(k+n-r) log(kn) with probability at least 1-exp(-c₁ m).
- Number of measurements c₀ r(k+n-r) log(kn)

constant intrinsic dimension ambient

• Typical scaling for this type of result.

Generic Proof:

• Probability X is distorted is at most $\exp(-\alpha_1(\varepsilon)m)$

- I can cover all X with O(D^d) points where d is the intrinsic dimension and D is the embedded/ambient dimension
- Since nearby X's are distorted similarly, probability any X is distorted is at most $O\left(D^d \exp\left(-\alpha_2(\varepsilon)m\right)\right)$

• So no X is distorted with Prob at least 1-exp(-c₁m) if $m > c_0 d \log D$

Proof Sketch

- Show concentration holds for all matrices with same row and column space. (large deviations unlikely)
- Show that the distortion of a subspace of matrices by a linear map is robust to perturbations of the subspace. (maps have bounded norm)
- Provide an ε-net over the set of all subspaces of low-rank matrices (a Grassmann manifold). Show RIP holds at all points in the net with overwhelming probability and hence holds everywhere.

The trace-norm heuristic succeeds!

 $\mathcal{A}(\mathbf{X}) = \mathbf{b} \qquad \mathcal{A}: \mathbb{R}^{k \times n} \to \mathbb{R}^m$

 If m > c₀r(k+n-r)log(kn), the heuristic succeeds for most A

Recht, Fazel, and Parrilo. 2007.

• **Approach:** Show that a random A is nearly an isometry on the manifold of rank 5r matrices.

Numerical Experiments

- Test "image"
- Rank 5 matrix, 46x81 pixels
- Random Gaussian measurements
- Nuclear norm minimization via SDP (sedumi)

Phase transition

Phase transition

measurements vs parameters: $\mu = m/n^2$

Netflix Prize

Leaderboard

Mixture of hundreds of models, including nuclear norm	Rank	Team Name No Grand Prize candidates yet	Best Score	<u>%</u> Improvement 	Last Submit Time
		No Progress Prize candidates yet			
	1 2 3	When Gravity and Dinosaurs Unite BellKor	0.8675 0.8682 0.8708	8.82 8.75 8.47	2008-03-01 07:03:35 2008-02-28 23:40:45 2008-02-06 14:12:44
	e 2007 - RMSE = 0.8712 - Winning Team: KorBell				
	4	KorBell		8.43	
					2008-03-02 08:42:29
					2007-11-24 14:27:00
			0.8740	8.14	
			0.8748		
Gradient descent	10		0.8753	8.00	2007-10-04 04:56:45
				6.49	2007-12-23 18:44:03
nuclear norm				6.46	2007-04-04 06:16:56
poromotorization				6.45	2007-12-23 18:54:46
parameterization	53	JustWithSVD	0.8900	6.45	2008-02-14 16:17:54
	54	(f) d		6.45	
	55			6.44	
		Bozo_The_Clown		6.43	2007-09-06 17:24:48

Parsimonious Models

- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model

Other Directions

- Random Features for Learning (Rahimi & Recht 07-08)
 - Atomic norm on basis functions
- Dynamical Systems
 - Atomic norm on filter banks
- Multivariate Tensors
 - Applications in genetics and vision
- Jordan Algebras, Polynomial Varieties, nonlinear models, completely positive matrices, ...

References

- "Some remarks on greedy algorithms." Ron DeVore and Vladimir Temlyakov. Advances in Computational Mathematics. 5, pp. 173-187, 1996.
- "Decoding by Linear Programming." Emmanuel Candes and Terence Tao. *IEEE Transactions on Information Theory.* **51** (12), pp. 4203-4215, 2005.
- "Stable Signal Recovery from Incomplete and Inaccurate Measurements." Emmanuel Candes, Justin Romberg, and Terence Tao. 59 (8), pp. 1207 – 1223, 2006.
- "A Simple Proof of the Restricted Isometry Property for Random Matrices." R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. *Constructive Approximation*, **28**(3), pp. 253-263, 2008.
- "Guaranteed Minimum Rank Solutions to Linear Matrix Equations via Nuclear Norm Minimization." Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Submitted to SIAM Review. 2007.
- "Necessary and Sufficient Conditions for Success of the Nuclear Norm Heuristic for Rank Minimization." Benjamin Recht, Weiyu Xu, and Babak Hassibi. Submitted to *IEEE Transactions on Information Theory*. 2008.
- More extensions on my website: <u>http://www.ist.caltech.edu/~brecht/publications.html</u>