Regularized Least Squares

Ryan M. Rifkin

Honda Research Institute USA, Inc. Human Intention Understanding Group

2007

・ロト ・ ア・ ・ ヨト ・ ヨト

- Data points $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}.$
- We let X simultaneously refer to the set {X₁,..., X_n} and to the *n* by *d* matrix whose *i*th *row* is X^t_i.

ヘロト ヘアト ヘビト ヘビト

3

• RKHS \mathcal{H} with a positive semidefinite *kernel function k*:

linear: $k(X_i, X_j) = X_i^t X_j$ polynomial: $k(X_i, X_j) = (X_i^t X_j + 1)^d$ gaussian: $k(X_i, X_j) = \exp\left(-\frac{||X_i - X_j||^2}{\sigma^2}\right)$

- Define the kernel matrix *K* to satisfy $K_{ij} = k(X_i, X_j)$.
- Abusing notation, allow *k* to take and produce sets:
 - k(X,X) = K
 - Given an arbitrary point X_{*}, k(X, X_{*}) is a column vector whose *i*th entry is k(X_i, X_{*}).
- The linear kernel has special properties, which we discuss in detail later.

ヘロン 人間 とくほ とくほ とう

The RLS Setup

 Goal: Find the function *f* ∈ *H* that minimizes the weighted sum of the *total* square loss and the RKHS norm

$$\min_{f \in \mathcal{H}} \frac{1}{2} \sum_{i=1}^{n} (f(X_i) - Y_i)^2 + \frac{\lambda}{2} ||f||_{\mathcal{K}}^2.$$
(1)

- Note that in this formulation, we are minimizing the total instead of the average loss. We avoid mucking around with the factor of 1/n, which can be folded into λ .
- This loss function "makes sense" for regression. We can also use it for binary classification, where it "makes no sense" but works great.

伺き くほき くほう

Applying the Representer

 The representer theorem guarantees that the solution to (1) can be written as

$$f(\cdot)=\sum_{i=1}^n c_i k(X_i,\cdot),$$

for some $c \in \mathbb{R}^n$.

• We can therefore rewrite (1) as

$$\min_{c \in \mathbb{R}^n} \frac{1}{2} ||Y - Kc||_2^2 + \frac{\lambda}{2} ||f||_K^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

Applying the Representer Theorem, II

Consider a function of the form:

$$f(\cdot)=\sum_{i=1}^n c_i k(X_i,\cdot),$$

For such a function,

$$\begin{aligned} |f||_{K}^{2} &= \langle f, f \rangle_{K} \\ &= \left\langle \sum_{i=1}^{n} c_{i}k(X_{i}, \cdot), \sum_{j=1}^{n} c_{j}k(X_{j}, \cdot) \right\rangle_{K} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}\left\langle k(X_{i}, \cdot), k(X_{j}, \cdot) \right\rangle_{K} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}k(X_{i}, X_{j}) \\ &= c^{t}Kc \end{aligned}$$

NDA

The RLS Solution

۲

$$\frac{1}{2}||Y - \mathit{Kc}||_2^2 + \frac{\lambda}{2}c^t\mathit{Kc}$$

is clearly convex in c (why?), so we can find its minimum by setting the gradient w.r.t c to 0:

$$-K(Y - Kc) + \lambda Kc = 0$$

(K + \lambda I)c = Y
c = (K + \lambda I)^{-1}Y

• We find *c* by solving a system of linear equations.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

æ

The RLS Solution, Comments

- The solution exists and is unique (for $\lambda > 0$).
- Define G(λ) = K + λI. (Often λ is clear from context and we write G.)
- The prediction at a new test point *X*_{*} is:

$$f(X_*) = \sum c_i k(X_i, X_*)$$

= $k(X, X_*)^t c$
= $Y^t G^{-1} k(X, X_*)$

• The use of *G*⁻¹ (or other inverses) is formal only. We do *not* recommend taking matrix inverses.

ヘロト ヘ戸ト ヘヨト ヘヨト

- Situation: All hyperparameters fixed
- We just need to solve a single linear system

$$(K+\lambda I)c=y.$$

- The matrix $K + \lambda I$ is symmetric positive definite, so the appropriate algorithm is Cholesky factorization.
- In Matlab, the "slash" operator seems to be using Cholesky, so you can just write c = (K+l*I) \Y, but to be safe, (or in octave), I suggest R = chol(K+l*I); c = (R\(R'\Y));.

ヘロト ヘ戸ト ヘヨト ヘヨト

۲

- Situation: We don't know what λ to use, all other hyperparameters fixed.
- Form the eigendecomposition K = QΛQ^t, where Λ is diagonal with Λ_{jj} ≥ 0 and QQ^t = I.

$$G = K + \lambda I$$

= $Q \wedge Q^t + \lambda I$
= $Q(\Lambda + \lambda I)Q^t$,

which implies $G^{-1} = Q(\Lambda + \lambda I)^{-1}Q^{t}$.

ヘロト 人間 ト ヘヨト ヘヨト

3

O(n³) time to solve one (dense) linear system, or to compute the eigendecomposition (constant is maybe 4x worse). Given Q and Λ, we can find c(λ) in O(n²) time:

$$c(\lambda) = Q(\Lambda + \lambda I)^{-1} Q^{t} Y,$$

noting that $(\Lambda + \lambda I)$ is diagonal.

• Finding $c(\lambda)$ for many λ 's is (essentially) free!

R. Rifkin

< 回 > < 回 > < 回 > .

- We showed how to find $c(\lambda)$ quickly as we vary λ .
- But how do we decide if a given λ is "good"?
- Simplest idea: Use the training set error.
- Problem: This frequently overfits.
- Other methods are possible, but today we consider *validation*.
- Validation means checking our function's behavior on points other than the training set.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Types of Validation

- If we have a huge amount of data, we could hold back some percentage of our data (30% is typical), and use this *development* set to choose hyperparameters.
- More common is *k-fold cross-validation*, which means a couple of different things:
 - Divide your data into k equal sets S_1, \ldots, S_k . For each i, train on the other k 1 sets and test on the *i*th set.
 - A total of *k* times, randomly split your data into a training and test set.
- The limit of (the first kind of) k-fold validation is *leave-one-out cross-validation.*

ヘロト ヘ戸ト ヘヨト ヘヨト

- For each data point *x_i*, build a classifier using the remaining *n* − 1 data points, and measure the error at *x_i*.
- Empirically, this seems to be the method of choice when *n* is small.
- Problem: We have to build *n* different predictors, on data sets of size *n* 1.
- We will now proceed to show that for RLS, obtaining the LOO error is (essentially) free!

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Leave-One-Out CV: Notation

- Define S^i to be the data set with the *i*th point removed: $S^i = \{(X_1, Y_1), \dots, (X_{i-1}, Y_{i-1}), (X_{i+1}, Y_{i+1}), \dots, (X_n, Y_n)\}.$
- The *i*th leave-one-out *value* is $f_{S^i}(X_i)$.
- The *i*th leave-one-out *error* is $Y_i f_{S^i}(X_i)$.
- Define LOOV and LOOE to be the vectors of leave-one-out values and errors over the training set.
- $||LOOE||_2^2$ is considered a good empirical proxy for the error on future points, and we often want to choose parameters by minimizing this quantity.

イロト イポト イヨト イヨト 三日

- Imagine (hallucinate) that we already know $f_{S^i}(X_i)$.
- Define the vector Yⁱ via

$$Y_j^i = \begin{cases} Y_j & j \neq i \\ f_{S^i}(X_i) & j = i \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト ・

LOOE derivation, II

 Suppose we solve a Tikhonov problem with Yⁱ instead of Y as the labels. Then f_{Sⁱ} is the optimizer:

$$\begin{split} &\frac{1}{2}\sum_{j=1}^n(Y_j^i-f(X_i))^2+\frac{\lambda}{2}||f||_K^2\\ \geq &\frac{1}{2}\sum_{j\neq i}(Y_j^i-f(X_i))^2+\frac{\lambda}{2}||f||_K^2\\ \geq &\frac{1}{2}\sum_{j\neq i}(Y_j^i-f_{S^i}(X_i))^2+\frac{\lambda}{2}||f_{S^i}||_K^2\\ = &\frac{1}{2}\sum_{j=1}^n(Y_j^i-f_{S^j}(X_j))^2+\frac{\lambda}{2}||f_{S^j}||_K^2. \end{split}$$

ヘロト 人間 ト ヘヨト ヘヨト

3

LOOE derivation, III

• Therefore,

$$c^{i} = G^{-1} Y^{i}$$

 $f_{S^{i}}(X_{i}) = (KG^{-1} Y^{i})_{i}$

- This is circular reasoning so far, because we need to know $f_{S^i}(X_i)$ to form Y^i in the first place.
- However, assuming we have already solved RLS for the whole training set, and we have computed
 f_S(X) = KG⁻¹Y, we can do something nice ...

ヘロト ヘ戸ト ヘヨト ヘヨト

LOOE derivation, IV

$$f_{S^{i}}(X_{i}) - f_{S}(X_{i}) = \sum_{j} (KG^{-1})_{ij}(Y_{j}^{i} - Y_{j})$$

$$= (KG^{-1})_{ii}(f_{S^{i}}(X_{i}) - Y_{i})$$

$$f_{S^{i}}(X_{i}) = \frac{f_{S}(X_{i}) - (KG^{-1})_{ii}Y_{i}}{1 - (KG^{-1})_{ii}}$$

$$= \frac{(KG^{-1}Y)_{i} - (KG^{-1})_{ii}Y_{i}}{1 - (KG^{-1})_{ii}}.$$

ヘロト 人間 とくほとくほとう

LOOE derivation, V

$$LOOV = \frac{KG^{-1}Y - \text{diag}_m(KG^{-1})Y}{\text{diag}_v(I - KG^{-1})},$$

$$LOOE = Y - LOOV$$

$$= Y + \frac{\text{diag}_m(KG^{-1})Y - KG^{-1}Y}{\text{diag}_v(I - KG^{-1})}$$

$$= \frac{\text{diag}_m(I - KG^{-1})Y}{\text{diag}_v(I - KG^{-1})} + \frac{\text{diag}_m(KG^{-1})Y - KG^{-1}Y}{\text{diag}_v(I - KG^{-1})}$$

$$= \frac{Y - KG^{-1}Y}{\text{diag}_v(I - KG^{-1})}.$$

R. Rifkin Regularized Least Squares

HONDA The Power of Dreams

∃ 990

ヘロト 人間 とくほとくほとう

We can simplify our expressions in a way that leads to better computational and numerical properties by noting

$$KG^{-1} = Q \wedge Q^{t} Q (\Lambda + \lambda I)^{-1} Q^{t}$$

= $Q \wedge (\Lambda + \lambda I)^{-1} Q^{t}$
= $Q (\Lambda + \lambda I - \lambda I) (\Lambda + \lambda I)^{-1} Q^{t}$
= $I - \lambda G^{-1}$.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト ・

LOOE derivation, VII

Substituting into our expression for LOOE yields

$$LOOE = \frac{Y - KG^{-1}Y}{\text{diag}_{v}(I - KG^{-1})}$$
$$= \frac{Y - (I - \lambda G^{-1})Y}{\text{diag}_{v}(I - (I - \lambda G^{-1}))}$$
$$= \frac{\lambda G^{-1}Y}{\text{diag}_{v}(\lambda G^{-1})}$$
$$= \frac{G^{-1}Y}{\text{diag}_{v}(G^{-1})}$$
$$= \frac{C}{\text{diag}_{v}(G^{-1})}.$$

HONDA

3

◆□ > ◆□ > ◆豆 > ◆豆 > →

The cost of computing LOOE

• For RLS, we compute LOOE via

$$LOOE = rac{c}{\operatorname{diag}_v(G^{-1})}$$

- We already showed how to compute c(λ) in O(n²) time (given K = QΛQ^t).
- We can also compute a single entry of G(λ)⁻¹ in O(n) time:

$$egin{array}{rcl} G_{ij}^{-1} &=& (oldsymbol{Q}(\Lambda+\lambda I)^{-1}oldsymbol{Q}^t)_{ij} \ &=& \displaystyle{\sum_{k=1}^n rac{oldsymbol{Q}_{ik}oldsymbol{Q}_{jk}}{\Lambda_{kk}+\lambda}}, \end{array}$$

and therefore we can compute diag(G^{-1}), and compute LOOE, in $O(n^2)$ time.

- If we can (directly) solve one RLS problem on our data, we can find a good value of λ using LOO optimization at essentially the same cost.
- When can we solve one RLS problem?
- We need to form K, which takes $O(n^2d)$ time and $O(n^2)$ memory. We need to perform a solve or an eigendecomposition of K, which takes $O(n^3)$ time.
- Usually, we run out of memory before we run out of time.
- The practical limit on today's workstations is (more-or-less) 10,000 points (using Matlab).
- How can we do more?

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- The linear kernel is $k(X_i, X_j) = X_i^t X_j$.
- The linear kernel offers many advantages for computation, which we now explore.
- Key idea: we get a decomposition of the kernel matrix for free: K = XX^t.
- In the linear case, we will see that we have two different computation options.

1

ヘロト ヘアト ヘビト ヘビト

With a linear kernel, the function we are learning is linear as well:

$$f(x) = c^t k(X, x)$$

= c^t X x
= w^t x,

where we define the hyperplane w to be X^tc . We can classify new points in O(d) time, using w, rather than having to compute a weighted sum of n kernel products (which will usually cost O(nd) time).

伺 とく ヨ とく ヨ と

- Assume *n*, the number of points, is bigger than *d*, the number of dimensions. (If not, the best bet is to ignore the special properties of the linear kernel.)
- The economy-size SVD of X can be written as $X = USV^t$, with $U \in \mathbb{R}^{n \times d}$, $S \in \mathbb{R}^{d \times d}$, $V \in \mathbb{R}^{d \times d}$, $U^t U = V^t V = VV^t = I_d$, and S diagonal and positive semidefinite. (Note that $UU^t \neq I_n$).
- We will express the LOO formula directly in terms of the SVD, rather than *K*.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

$$K = XX^{t} = (USV^{t})(VSU^{t}) = US^{2}U^{t}$$

$$K + \lambda I = US^{2}U^{t} + \lambda I_{n}$$

$$= \begin{bmatrix} U & U_{\perp} \end{bmatrix} \begin{bmatrix} S^{2} + \lambda I_{d} & \\ & \lambda I_{n-d} \end{bmatrix} \begin{bmatrix} U^{t} & \\ & U_{\perp}^{t} \end{bmatrix}$$

$$= U(S^{2} + \lambda I_{d})U^{t} + \lambda U_{\perp}U_{\perp}^{t}$$

$$= U(S^{2} + \lambda I_{d})U^{t} + \lambda (I_{n} - UU^{t})$$

$$= US^{2}U^{t} + \lambda I_{n}$$

R. Rifkin Regularized Least Squares

HONDA The Power of Dreams

æ

・ロト ・四ト ・ヨト ・ヨト

Linear kernel, SVD approach, III

$$(K + \lambda I)^{-1}$$

$$= (US^{2}U^{t} + \lambda I_{n})^{-1}$$

$$= \left(\begin{bmatrix} U & U_{\perp} \end{bmatrix} \begin{bmatrix} S^{2} + \lambda I_{d} \\ \lambda I_{n-d} \end{bmatrix} \begin{bmatrix} U^{t} \\ U^{t} \end{bmatrix} \right)^{-1}$$

$$= \begin{bmatrix} U & U_{\perp} \end{bmatrix} \begin{bmatrix} S^{2} + \lambda I_{d} \\ \lambda I_{n-d} \end{bmatrix}^{-1} \begin{bmatrix} U^{t} \\ U^{t} \end{bmatrix}$$

$$= U(S^{2} + \lambda I)^{-1}U^{t} + \lambda^{-1}U_{\perp}U^{t}_{\perp}$$

$$= U(S^{2} + \lambda I)^{-1}U^{t} + \lambda^{-1}(I - UU^{t})$$

$$= U[(S^{2} + \lambda I)^{-1} - \lambda^{-1}I]U^{t} + \lambda^{-1}I$$

R. Rifkin Regularized Least Squares

HONDA The Power of Dreams

æ

・ロト ・四ト ・ヨト ・ヨト

Linear kernel, SVD approach, IV

$$c = (K + \lambda I)^{-1} Y$$

= $U [(S^{2} + \lambda I)^{-1} - \lambda^{-1}I] U^{t}Y + \lambda^{-1}Y$
 $G_{ij}^{-1} = \sum_{k=1}^{d} U_{ik}U_{jk}[(S_{kk} + \lambda)^{-1} - \lambda^{-1}] + [i = j]\lambda^{-1}$
 $G_{ii}^{-1} = \sum_{k=1}^{d} U_{ik}^{2}[(S_{kk} + \lambda)^{-1} - \lambda^{-1}] + \lambda^{-1}$
 $LOOE = \frac{c}{\text{diag}_{v}(G^{-1})}$
 $= \frac{U [(S^{2} + \lambda I)^{-1} - \lambda^{-1}I] U^{t}Y + \lambda^{-1}Y}{\text{diag}_{v}(U [(S^{2} + \lambda I)^{-1} - \lambda^{-1}I] U^{t} + \lambda^{-1}I)}$

HONDA The Power of Dreams

æ

◆□ > ◆□ > ◆豆 > ◆豆 > →

- We need O(nd) memory to store the data in the first place.
 The (economy-sized) SVD also requires O(nd) memory, and O(nd²) time.
- Once we have the SVD, we can compute the LOO error (for a given λ) in O(nd) time.
- Compared to the nonlinear case, we have replaced an O(n) with an O(d), in both time and memory. If n >> d, this can represent a huge savings.

・ 同 ト ・ ヨ ト ・ ヨ ト

Linear kernel, direct approach, I

For the linear kernel,

$$L = \min_{c \in \mathbb{R}^n} \frac{1}{2} ||Y - Kc||_2^2 + \frac{\lambda}{2} c^t Kc$$

$$= \min_{c \in \mathbb{R}^n} \frac{1}{2} ||Y - XX^t c||_2^2 + \frac{\lambda}{2} c^t XX^t c$$

$$= \min_{w \in \mathbb{R}^d} \frac{1}{2} ||Y - Xw||_2^2 + \frac{\lambda}{2} ||w||_2^2.$$

Taking the derivative with respect to w,

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{X}^t \boldsymbol{X} \boldsymbol{w} - \boldsymbol{X}^t \boldsymbol{Y} + \lambda \boldsymbol{w},$$

and setting to zero implies

$$w = (X^t X + \lambda I)^{-1} X^t Y.$$

伺き くほき くほう

- If we are willing to give up LOO validation, we can skip the computation of *c* and just get *w* directly.
- We can work with the *Gram matrix* $X^t X \in \mathbb{R}^{d \times d}$.
- The algorithm is identical to solving a general RLS problem with kernel matrix *X^tX* and labels *X^ty*.
- Form the eigendecomposition of X^tX, in O(d³) time, form w(λ) in O(d²) time.
- Why would we give up LOO validation? Maybe *n* is very large, so using a development set is good enough.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- Asymptotic complexity is actually the same: it takes O(nd²) time to form the SVD of X, or to form X^tX.
- The constant in forming the SVD is about 25.
- Forming $X^t X$ can be (relatively) easily parallelized.
- Recommendation: Use the SVD when possible, switch to the direct approach when it gets too slow.

→ E > < E >

- Suppose that *n* is too large to apply nonlinear RLS, but we need a nonlinear kernel.
- (In some circumstances, we can *explicitly* construct nonlinear feature features, such as 2nd-order polynomial, and then use the linear approach. See my ICASSP 2007 paper.)
- Another idea is the *subset of regressors* approach.

回とくほとくほど

• The representer theorem guarantees that the Tikhonov solution can be written as

$$f(\cdot) = \sum_{i=1}^{n} c_i k(X_i, \cdot),$$

for some $c \in \mathbb{R}^n$.

 Suppose we divide our data into two pieces, X_R and X_S, and require a priori that only the points in X_R have nonzero coefficients in the expansion:

$$f(\cdot) = \sum_{i=1}^{|R|} c_i k(X_i, \cdot),$$

for some $c \in \mathbb{R}^{|R|}$: this is the subset of regressors methodompa

・ 同 ト ・ ヨ ト ・ ヨ ト

• Defining $T = R \cup S$, we want to find

$$\min_{c\in\mathbb{R}^n}\frac{1}{2}||Y-K_{TR}c||_2^2+\frac{\lambda}{2}c^tK_{RR}c$$

Setting the derivative to zero,

.

$$-K_{RT}Y + K_{TR}^{t}K_{TR}c + \lambda K_{RR}c = 0$$
$$(K_{RT}K_{TR} + \lambda K_{RR})c = K_{RT}Y.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

ъ

Using the Cholesky factorization $K_{RR} = GG^t$,

 $K_{RT}K_{TR} + \lambda K_{RR}$ $= K_{RT}K_{TR} + \lambda GG^{t}$ $= GG^{-1}(K_{RT}K_{TR} + \lambda GG^{t})G^{-t}G^{t}$ $= G(G^{-1}K_{RT}K_{TR}G^{-t} + \lambda I)G^{t}.$

We handle varying λ using an eigendecomposition of $G^{-1}K_{RT}K_{TR}G^{-t}$. Can we do LOO this way? Good question ...

Parting Shot

"You should be asking how the answers will be used and what is *really* needed from the computation. Time and time again someone will ask for the inverse of a matrix when all that is needed is the solution of a linear system; for an interpolating polynomial when all that is needed is its values at some point; for the solution of an ODE at a sequence of points when all that is needed is the limiting, steady-state value. A common complaint is that least squares curve-fitting couldn't possibly work on this data set and some more complicated method is needed; in almost all such cases, least squares curve-fitting will work just fine because it is so very robust."

Leader, Numerical Analysis and Scientific Computation

→ E → < E →</p>