9.520: Class 11

Bayesian Interpretations of Regularization

Tomaso Poggio

Plan

- Bayesian interpretation of Regularization
- Bayesian interpretation of the regularizer
- Bayesian interpretation of quadratic loss
- Bayesian interpretation of SVM loss

Bayesian Interpretation of RN, SVM, and BPD in Regression

Consider

$$\min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2 + \lambda \|f\|_K^2$$

We will show that there is a Bayesian interpretation of RN in which the data term – that is the term with the loss function – is a model of the noise and the stabilizer is a prior on the hypothesis space of functions f.

Definitions

- 1. $D_{\ell} = \{(\mathbf{x}_i, y_i)\}$ for $i = 1, \dots, \ell$ is the set of training examples
- 2. $\mathcal{P}[f|D_{\ell}]$ is the conditional probability of the function f given the examples g.

3. $\mathcal{P}[D_{\ell}|f]$ is the conditional probability of g given f, i.e. a model of the noise.

4. $\mathcal{P}[f]$ is the *a priori* probability of the random field f.

Posterior Probability

The posterior distribution $\mathcal{P}[f|g]$ can be computed by applying Bayes rule:

$$\mathcal{P}[f|D_{\ell}] = \frac{\mathcal{P}[D_{\ell}|f] \ \mathcal{P}[f]}{P(D_{\ell})}.$$

If the noise is normally distributed with variance σ , then the probability $\mathcal{P}[D_{\ell}|f]$ is

$$\mathcal{P}[D_{\ell}|f] = \frac{1}{Z_L} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2}$$

where Z_L is a normalization constant.

Posterior Probability

Informally (we will make it precise later), if

$$\mathcal{P}[f] = \frac{1}{Z_r} e^{-\|f\|_K^2}$$

where Z_r is another normalization constant, then

$$\mathcal{P}[f|D_{\ell}] = \frac{1}{Z_D Z_L Z_r} e^{-\left(\frac{1}{2\sigma^2} \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2 + \|f\|_K^2\right)}$$

MAP Estimate

One of the several possible estimates of f from $\mathcal{P}[f|D_{\ell}]$ is the so called MAP estimate, that is

$$\max \mathcal{P}[f|D_{\ell}] = \min \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2 + 2\sigma^2 ||f||_K^2 .$$

which is the same as the regularization functional if

$$\lambda = 2\sigma^2/\ell.$$

Bayesian Interpretation of the Data Term (quadratic loss)

As we just showed, the quadratic loss (the standard RN case) corresponds in the Bayesian interpretation to assuming that the data y_i are affected by additive independent Gaussian noise processes, i.e. $y_i = f(x_i) + \epsilon_i$ with $E[\epsilon_j \epsilon_j] = 2\delta_{i,j}$

$$P(\mathbf{y}|f) \propto \exp(-\sum(y_i - f(x_i))^2)$$

Bayesian Interpretation of the Stabilizer

The stabilizer $||f||_{K}^{2}$ is the same for RN and SVM. Let us consider the corresponding prior in a Bayesian interpretation within the framework of RKHS:

$$P(f) = \frac{1}{Z_r} \exp(-\|f\|_K^2) \propto \exp(-\mathbf{c}^T \mathbf{K} \mathbf{c}).$$

The most likely hypotheses are the ones with small RKHS norm.

Bayesian Interpretation of RN and SVM.

- For SVM the prior is the same Gaussian prior, but the noise model is different and is NOT Gaussian additive as in RN.
- Thus also for SVM (regression) the prior P(f) gives a probability measure to f in terms of the the norm in the RKHS defined by K.

Why a Bayesian Interpretation can be Misleading

Minimization of functionals such as $H_{RN}(f)$ and $H_{SVM}(f)$ can be interpreted as corresponding to the MAP estimate of the posterior probability of f given the data, for certain models of the noise and for a specific Gaussian prior on the space of functions f.

Notice that a Bayesian interpretation of this type is *inconsistent* with Structural Risk Minimization and more generally with Vapnik's analysis of the learning problem. Let us see why (Vapnik).

Why a Bayesian Interpretation can be Misleading

Consider regularization (including SVM). The Bayesian interpretation with a MAP estimates leads to

$$\min H[f] = \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2 + \frac{1}{\ell} 2\sigma^2 \|f\|_{K}^2 .$$

Regularization (in general and as implied by VC theory) corresponds to

$$\min H_{RN}[f] = rac{1}{\ell} \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2 + \lambda \|f\|_{K}^2 \; .$$

where λ is found by solving the Ivanov problem

$$\min \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - f(\mathbf{x}_i))^2$$

subject to

 $\|f\|_{\scriptscriptstyle K}^{\scriptscriptstyle 2} \leq A$

Why a Bayesian Interpretation can be Misleading

The parameter λ in regularization and SVM is a function of the data (through the SRM principle) and in particular is $\lambda(\ell)$. In the Bayes interpretation $\tilde{\lambda}$ depends on the data as $\frac{2\sigma^2}{\ell}$: notice that σ has to be part of the prior and therefore has to be independent of the size ℓ of the training data. It seems unlikely that λ could simply depend on $\frac{1}{\ell}$ as the Bayesian interpretation requires for consistency. For instance note that in the statistical interpretation of classical regularization (Ivanov, Tikhonov, Arsenin) the asymptotic dependence of λ on ℓ is different from the one dictated by the Bayesian interpretation. In fact (Vapnik, 1995, 1998)

$$\lim_{\ell \to \infty} \lambda(\ell) = 0$$
$$\lim_{\ell \to \infty} \ell \lambda(\ell) = \infty$$

implying a dependence of the type $\lambda(\ell) = O(\log \ell/\ell)$. A similar dependence is probably implied by results of Cucker and Smale, 2002. Notice that this is a sufficient and not a necessary condition. Here an interesting question (a project?): which λ dependence does stability imply?

Bayesian Interpretation of the Data Term (nonquadratic loss)

To find the Bayesian interpretation of the SVM loss, we now assume a more general form of noise. We assume that the data are affected by additive independent noise sampled form a continuous mixture of Gaussian distributions with variance β and mean μ according to

$$P(\mathbf{y}|f) \propto \exp\left(-\int_0^\infty d\beta \int_{-\infty}^\infty d\mu \sqrt{\beta} e^{-\beta(y-f(x)-\mu)^2} P(\beta,\mu)\right),$$

The previous case of quadratic loss corresponds to

$$P(\beta,\mu) = \delta\left(\beta - \frac{1}{2\sigma^2}\right)\delta(\mu).$$

Bayesian Interpretation of the Data Term (absolute loss)

To find $P(\beta, \mu)$ that yields a given loss function $V(\gamma)$ we have to solve

$$V(\gamma) = -\log \int_0^\infty d\beta \int_{-\infty}^\infty d\mu \sqrt{\beta} e^{-\beta(\gamma-\mu)^2} P(\beta,\mu),$$
 where $\gamma = y - f(x)$.

For the absolute loss function $V(\gamma) = |\gamma|$. Then

$$P(\beta,\mu) = \beta^{-2} e^{-\frac{1}{4\beta}} \,\delta(\mu).$$

For unbiased noise distributions the above derivation can be obtained via the inverse Laplace transform.

Bayesian Interpretation of the Data Term (SVM loss)

Consider now the case of the SVM loss function $V_{\epsilon}(\gamma) = \max\{|\gamma| - \epsilon, 0\}$. To solve for $P_{\epsilon}(\beta, \mu)$ we assume independence

$$P_{\epsilon}(\beta,\mu) = P(\beta)P_{\epsilon}(\mu).$$

Solving

$$V_{\epsilon}(\gamma) = -\log \int_{0}^{\infty} d\beta \int_{-\infty}^{\infty} d\mu \sqrt{\beta} e^{-\beta(\gamma-\mu)^{2}} P(\beta) P_{\epsilon}(\mu)$$

results in

$$P(\beta) = \beta^{-2} e^{-\frac{1}{4\beta}},$$

$$P_{\epsilon}(\mu) = \frac{1}{2(\epsilon+1)} \left(\chi_{[-\epsilon,\epsilon]}(\mu) + \delta(\mu-\epsilon) + \delta(\mu+\epsilon) \right).$$

Bayesian Interpretation of the Data Term (SVM)

Bayesian Interpretation of the Data Term (SVM loss and absolute loss)

Note $\lim_{\epsilon \to 0} V_{\epsilon} = |\gamma|$

So

$$P_0(\mu) = \frac{1}{2} \left(\chi_{[-0,0]}(\mu) + \delta(\mu) + \delta(\mu) \right) = \delta(\mu)$$

and

$$P(\beta,\mu) = \beta^{-2} e^{-\frac{1}{4\beta}} \,\delta(\mu),$$

as is the case for absolute loss.