1 Tikhonov Regularization

Developing a generalizable learning algorithm first entails minimizing empirical error on the training
data set. We define the empirical risk I,[f] with a loss function V on training data (z;,y;)"; as
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Then empirical risk minimization (ERM) comprises the optimization problem of minimizing

Is[f]:

n

min I5[f] = mianV(f(aci),yi). (2)

i=1
Is this problem well-posed? Recall that a well-posed problem’s solutions are:
e Existant,
e Unique, and

e Stable.

If the positive loss function V is strictly convex (no flat regions) and coercive (growing rapidly
at extrema), there will exist a unique minimizer. The familiar squared loss and hinge loss functions
are convex, but the 0-1 loss function is not.

In order to ensure stability, Tikhonov regularization alters the optimization problem with a
positive real number, the regularized functional ), and instead attempts to find the minimizer of
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Tikhonov regularization constitutes one way to use prior information about training data to
impose stability on ill-posed problems.

2 Representer Theorem

Any minimizer over the RKHS H of the regularized empirical functional
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for some n-tuple (a1,...,a,) € R™ provided that A > 0. Minimizing over the Hilbert space
now equates to minimizing over R™. This is a very nice result: we’ve shown that an optimization



problem over a potentially infinite-dimensional space has a solution that can be expressed as a kernel
expansion in terms of training set data.

One proof of the representer theorem is outlined below.
Proof: Define the linear subspace of #,
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This subspace H is the space spanned by representers of the training set. Now let QL be a linear
subspace of H and be orthogonal to ‘H. Thus,
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since H is finite-dimensional, and
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Each f € H may be decomposed into a component, f, along H and a component, f , along H :
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Then the empirical risk appears as
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By the reproducing property, the f~ term will be nullified in computing the inner product with
the representer K,,. We then see that
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Also, because of orthogonality,
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Now minimizing the regularized empirical risk over H,
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Since
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the resulting minimizer must have | ||3, = 0 and belong to subspace H.



