
1 Tikhonov Regularization

Developing a generalizable learning algorithm �rst entails minimizing empirical error on the training
data set. We de�ne the empirical risk Is[f ] with a loss function V on training data (xi, yi)

n
i=1 as

Is[f ] =
1

n

n∑
i=1

V (f(xi), yi). (1)

Then empirical risk minimization (ERM) comprises the optimization problem of minimizing
Is[f ]:

min
f∈H

Is[f ] = min
f∈H

1

n

n∑
i=1

V (f(xi), yi). (2)

Is this problem well-posed? Recall that a well-posed problem's solutions are:

• Existant,

• Unique, and

• Stable.

If the positive loss function V is strictly convex (no �at regions) and coercive (growing rapidly
at extrema), there will exist a unique minimizer. The familiar squared loss and hinge loss functions
are convex, but the 0-1 loss function is not.

In order to ensure stability, Tikhonov regularization alters the optimization problem with a
positive real number, the regularized functional λ, and instead attempts to �nd the minimizer of
Is[f ] + λ‖f‖2H:

min
f∈H

{
1

n

n∑
i=1

V (f(xi), yi) + λ‖f‖2H

}
(3)

Tikhonov regularization constitutes one way to use prior information about training data to
impose stability on ill-posed problems.

2 Representer Theorem

Any minimizer over the RKHS H of the regularized empirical functional

Is[f ] + λ‖f‖2H (4)

can be represented by

f(x) =

n∑
i=1

αiK(x, xi) (5)

for some n-tuple (α1, . . . , αn) ∈ Rn provided that λ > 0. Minimizing over the Hilbert space
now equates to minimizing over Rn. This is a very nice result: we've shown that an optimization
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problem over a potentially in�nite-dimensional space has a solution that can be expressed as a kernel
expansion in terms of training set data.

One proof of the representer theorem is outlined below.
Proof: De�ne the linear subspace of H,

H =

{
f ∈ H | f =

n∑
i=1

αiKxi
; (α1, . . . , αn) ∈ Rn

}
. (6)

This subspace H is the space spanned by representers of the training set. Now let H⊥
be a linear

subspace of H and be orthogonal to H. Thus,

H = H⊕H⊥
(7)

since H is �nite-dimensional, and

H⊥
=

{
f ∈ H | 〈f,

n∑
i=1

αiKxi〉H = 0 for all xi ∈ H

}
. (8)

Each f ∈ H may be decomposed into a component, f , along H and a component, f
⊥
, along H⊥

:

f = f + f
⊥
. (9)

Then the empirical risk appears as

Is[f ] =
1

n

n∑
i=1

V (f(xi) + f
⊥
(xi), yi). (10)

By the reproducing property, the f
⊥
term will be nulli�ed in computing the inner product with

the representer Kxi
. We then see that

Is[f ] = Is[f ] + Is[f
⊥
] = Is[f ]. (11)

Also, because of orthogonality,

‖f + f
⊥‖ = ‖f‖+ ‖f⊥‖. (12)

Now minimizing the regularized empirical risk over H,

min
f∈H

{
Is[f ] + λ‖f‖2H

}
= min

f∈H

{
Is[f ] + λ(‖f‖2H + ‖f⊥‖2H)

}
(13)

Since

λ(‖f‖2H + ‖f⊥‖2H) ≥ λ‖f‖2H, (14)

the resulting minimizer must have ‖f⊥‖2H = 0 and belong to subspace H.
�
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