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We like RP because we can

> add elements v + w

» multiply by numbers 3v

> take scalar products v w = ZD L viwd

> ...and norms [lv[| = VvTv=4/3 D)2

» ...and distances d(v, w —Hv—w||—ZJ (V= wi)2,

We want to do the same thing with D = co. ..



Vector Space

» A vector space is a set V with binary operations
+:VxV-=>V and - :Rx V>V

such that for all a, b€ R and v, w, x € V:

V+w=w-+v

(v+w)+x=v+(w+x)

There exists 0 € V such that v+ 0=v forallve V

For every v € V there exists —v € V such that v+ (—v) =0
a(bv) = (ab)v

lv=v

(a4 b)v = av + bv

alv+w) =av+aw

N RAEWN =

» Example: R”, space of polynomials, space of functions.



Inner Product

v

An inner product is a function (-,-): V x V — R such that
foralla,beRand v,w,x € V:

1. {v,w) ={(w,v)
2. (av+ bw, x) = a(v, x) + b{w, x)
3. {(v,v) =2 0and (v,v) =0if and only if v = 0.

v

v, w € V are orthogonal if (v, w) =0.

Given W C V, we have V = W @& WL, where
WL ={veV|{v,w)=0 forall we W}

v

v

Cauchy-Schwarz inequality: (v, w) < (v, v)1/2(w, w)/2.



Norm

» A norm is a function || - ||: V — R such that for all a € R and
v,w e V:

1. |lv] >0, and |v||=0if and only if v =10
2. [lav][ =lal]v]
3. v+ wl < vl +Iwll

» Can define norm from inner product: ||v|| = (v, v)/2.



Metric

» A metric is a function d: V x V — R such that for all
v,w,x € V:

1. d(v,w) >0, and d(v,w)=0ifand only if v = w
2. d(v,w) =d(w,v)
3. d(v,w) <d(v,x) +d(x, w)

» Can define metric from norm: d(v, w) = ||v — w]].



Basis

» B={vq,...,Vvp}is a basis of V if every v € V can be
uniquely decomposed as

Vv=aivi+- -+ anVvp

for some a1, ..., a, € R.

> An orthonormal basis is a basis that is orthogonal ({v;, v;) =0
for i # j) and normalized (||v;|| = 1).



Hilbert Spaces



Hilbert Space, overview

» Goal: to understand Hilbert spaces (complete inner product
spaces) and to make sense of the expression

f=Y (F.oi)bi, FeXH

i=1
» Need to talk about:

1. Cauchy sequence
2. Completeness

3. Density

4. Separability



Cauchy Sequence

» Recall: lim,_ o0 x, = x if for every € > 0 there exists N € N
such that ||x — xp|| < € whenever n > N.

> (xn)nen is a Cauchy sequence if for every € > 0 there exists
N € N such that ||x,» — x»|| < € whenever m,n > N.

» Every convergent sequence is a Cauchy sequence (why?)



Completeness

» A normed vector space V is complete if every Cauchy
sequence converges.

» Examples:

1. Q is not complete.

2. R is complete (axiom).
3. R" is complete.
4

. Every finite dimensional normed vector space (over R) is
complete.



Hilbert Space

» A Hilbert space is a complete inner product space.
» Examples:
1. R”
2. Every finite dimensional inner product space.
3. by ={(an)2y lan € R, 3 2, a5 < o0}
4. Ly([0,1]) = {f: [0,1] — R | [ f(x)? dx < o0}



Density

» Yisdensein X if Y = X.
» Examples:

1. Qis dense in R.

2. Q" is dense in R".

3. Weierstrass approximation theorem: polynomials are dense in
continuous functions (with the supremum norm, on compact
domains).



Separability

» X is separable if it has a countable dense subset.
» Examples:

1. R is separable.

2. R" is separable.

3. €, Ly([0,1]) are separable.



Orthonormal Basis

» A Hilbert space has a countable orthonormal basis if and only
if it is separable.

» Can write:

f=> (f.bi)d; forall f eIt
i=1
» Examples:

1. Basis of ¢, is (1,0,...,), (0,1,0,...), (0,0,1,0,...),...
2. Basis of L»([0,1]) is 1, 2sin 27tnx, 2 cos 27tnx for n € N



Functionals and Operators (Matrices)



Maps

Next we are going to review basic properties of maps on a Hilbert
space.
» functionals: ¥:H — R

» linear operators A : H — H, such that
A(af + bg) = aAf + bAg, with a,b € R and f,g € H.



Representation of Continuous Functionals

Let H be a Hilbert space and g € H, then
Ye(f)=(fg), feH

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional ¥ can
be written uniquely in the form,

Y(f) =(f. g)

for some appropriate element g € H.



Matrix

» Every linear operator L: R™ — R" can be represented by an
m X n matrix A.

> If Ae R™*" the transpose of Ais AT € R"™ satisfying
(Ax, y)rm = (Ax) Ty =xTATy = (x, AT y)gn
for every x € R” and y € R™.

> Ais symmetric if AT = A.



Eigenvalues and Eigenvectors

> Let A€ R" " A nonzero vector v € R" is an eigenvector of
A with corresponding eigenvalue A € R if Av = Av.

» Symmetric matrices have real eigenvalues.

» Spectral Theorem: Let A be a symmetric n X n matrix.
Then there is an orthonormal basis of R” consisting of the
eigenvectors of A.

» Eigendecomposition: A= VAV, or equivalently,

n
A= Z )\,'V,'V,-T.
i=1



Singular Value Decomposition

» Every A € R™*" can be written as
A=UzVT,

where U € R™*™ is orthogonal, £ € R™*" is diagonal, and
V € R"*" is orthogonal.

» Singular system:

AV,' = 0O, uj AATU,' = 0;u;

2
i
ATU,' = 0,V ATAV,' = O'%V,'



Matrix Norm

» The spectral norm of A € R™*" is

HAHspec - 0—max(A) - \/Amax(AAT) - \/Amax(ATA)-

» The Frobenius norm of A € R™*X" is




Positive Definite Matrix

A real symmetric matrix A € R™*™ is positive definite if
xTAx >0, VYxeR™

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.



Linear Operators



Linear Operator

» An operator L: H; — Hy is linear if it preserves the linear
structure.

> A linear operator L: H; — Hy is bounded if there exists
C > 0 such that

ILf||9¢c, < C||f|l9¢, forall f e Hi.

» A linear operator is continuous if and only if it is bounded.



Adjoint and Compactness

» The adjoint of a bounded linear operator L: H; — Hy is a
bounded linear operator L*: Hy — H; satisfying

(Lf,g)3c, = (f, L"g)g¢, forall f € Hy, g€ Ho.

> L is self-adjoint if L* = L. Self-adjoint operators have real
eigenvalues.

» A bounded linear operator L: H; — Hy is compact if the
image of the unit ball in J{; has compact closure in Ho.



Spectral Theorem for Compact Self-Adjoint Operator

» Let L: H — H be a compact self-adjoint operator. Then
there exists an orthonormal basis of J consisting of the
eigenfunctions of L,

Lbi = Ai;

and the only possible limit point of A; as i — oo is 0.

» Eigendecomposition:



Probability Space
A triple (Q, A, P), where Q is a set,

A a Sigma Algebra, i.e. a family of subsets of Q s.t.
» X, 0 e A,
» Ac A= OQ\A e A,
» AicAi=12--= U2 A cA

P a probability measure, i.e a function P: A — [0, 1]

» P(X) =1 (hence and P((})) =0),
» Sigma additivity: If A; € A,i=1,2... are disjoint, then

P(UR,A) =D P(A)
i=1



Real Random Variables (RV)

A measurable function X : QO — R, i.e. mapping elements of the
sigma algebra in open subsets of R.

» Law of a random variable: probability measure on R defined as

for all open subsets | C R.

» Probability density function of a probability measure p on X:
a function p: R — R such that

J, dp(x) = L p(x)dx

for open subsets | C R.



Convergence of Random Variables

X;, i=1,2,..., a sequence of random variables.

» Convergence in probability:

Ve € (0,00), lim P(IX;—X|>e)=0.

I—00

» Almost Sure Convergence:

P (,Iim X = x) =1
1—00



Law of Large Numbers

X, i=1,2,..., sequence of independent copies of a random
variable X

Weak Law of Large Numbers:

Ve € (0,00), lim IP<

n—00

>e> =0.

1 n
n;Xf—Em

Strong Law of Large Numbers:

1
P<nlbmwn,zlx’_E[X]> =1.



Concentration Inequalities

X, be a random variable Ve € (0, oo)
» Markov's inequality: if X >0

» Chebysev's inequality: If Var[X] < oo

Var[X]

P (X —EX]| > ¢) < —
€




Concentration Inequalities for Sums

Xi,..., X, identical independent random variables with
expectation E[X].

Chebysev's inequality can be applied to %Zle X; to get

P ( > e) < Var[X]

€2n
A stronger results holds if |Xj| < c.

1 n
n;x,- —E[X]

» Hoeffding's inequality:

|

1 n
=Y Xi—EIX]| > e> <2 2
n

i=1
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