MIT 9.520/6.860 Statistical Learning Theory and Applications

Class 0: Mathcamp

Lorenzo Rosasco

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

\mathbb{R}^D

We like \mathbb{R}^D because we can

- ightharpoonup add elements v + w
- multiply by numbers 3v
- ▶ take scalar products $v^T w = \sum_{i=1}^{D} v^j w^j$
- ... and norms $||v|| = \sqrt{v^T v} = \sqrt{\sum_{j=1}^D (v^j)^2}$
- ▶ ...and distances $d(v, w) = ||v w|| = \sum_{j=1}^{D} (v^j w^j)^2$.

We want to do the same thing with $D = \infty$...

Vector Space

▶ A **vector space** is a set *V* with binary operations

$$+: V \times V \to V$$
 and $\cdot: \mathbb{R} \times V \to V$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

- 1. v + w = w + v
- 2. (v + w) + x = v + (w + x)
- 3. There exists $0 \in V$ such that v + 0 = v for all $v \in V$
- 4. For every $v \in V$ there exists $-v \in V$ such that v + (-v) = 0
- $5. \ a(bv) = (ab)v$
- 6. 1v = v
- 7. (a + b)v = av + bv
- 8. a(v+w) = av + aw
- **Example:** \mathbb{R}^n , space of polynomials, space of functions.

Inner Product

- ▶ An **inner product** is a function $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:
 - 1. $\langle v, w \rangle = \langle w, v \rangle$
 - 2. $\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$
 - 3. $\langle v, v \rangle \geqslant 0$ and $\langle v, v \rangle = 0$ if and only if v = 0.
- \triangleright $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.
- ▶ Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}$.
- ▶ Cauchy-Schwarz inequality: $\langle v, w \rangle \leq \langle v, v \rangle^{1/2} \langle w, w \rangle^{1/2}$.

Norm

- ▶ A **norm** is a function $\|\cdot\|$: $V \to \mathbb{R}$ such that for all $a \in \mathbb{R}$ and $v, w \in V$:
 - 1. $||v|| \ge 0$, and ||v|| = 0 if and only if v = 0
 - 2. ||av|| = |a| ||v||
 - 3. $||v + w|| \le ||v|| + ||w||$
- ▶ Can define norm from inner product: $||v|| = \langle v, v \rangle^{1/2}$.

Metric

- ▶ A **metric** is a function $d: V \times V \rightarrow \mathbb{R}$ such that for all $v, w, x \in V$:
 - 1. $d(v, w) \ge 0$, and d(v, w) = 0 if and only if v = w
 - 2. d(v, w) = d(w, v)
 - 3. $d(v, w) \leq d(v, x) + d(x, w)$
- ▶ Can define metric from norm: d(v, w) = ||v w||.

Basis

▶ $B = \{v_1, ..., v_n\}$ is a **basis** of V if every $v \in V$ can be uniquely decomposed as

$$v=a_1v_1+\cdots+a_nv_n$$
 for some $a_1,\ldots,a_n\in\mathbb{R}.$

An orthonormal basis is a basis that is orthogonal $(\langle v_i, v_j \rangle = 0$ for $i \neq j)$ and normalized $(||v_i|| = 1)$.

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

Hilbert Space, overview

 Goal: to understand Hilbert spaces (complete inner product spaces) and to make sense of the expression

$$f = \sum_{i=1}^{\infty} \langle f, \phi_i \rangle \phi_i, \ f \in \mathcal{H}$$

- ▶ Need to talk about:
 - 1. Cauchy sequence
 - 2. Completeness
 - 3. Density
 - 4. Separability

Cauchy Sequence

- ▶ Recall: $\lim_{n\to\infty} x_n = x$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x x_n|| < \epsilon$ whenever $n \ge N$.
- ▶ $(x_n)_{n\in\mathbb{N}}$ is a **Cauchy sequence** if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x_m x_n|| < \epsilon$ whenever $m, n \geqslant N$.
- ► Every convergent sequence is a Cauchy sequence (why?)

Completeness

- ▶ A normed vector space *V* is **complete** if every Cauchy sequence converges.
- Examples:
 - 1. \mathbb{Q} is not complete.
 - 2. \mathbb{R} is complete (axiom).
 - 3. \mathbb{R}^n is complete.
 - 4. Every finite dimensional normed vector space (over \mathbb{R}) is complete.

Hilbert Space

- ▶ A **Hilbert space** is a complete inner product space.
- **Examples**:
 - 1. \mathbb{R}^n
 - 2. Every finite dimensional inner product space.
 - 3. $\ell_2 = \{(a_n)_{n=1}^{\infty} \mid a_n \in \mathbb{R}, \sum_{n=1}^{\infty} a_n^2 < \infty\}$
 - 4. $L_2([0,1]) = \{f : [0,1] \to \mathbb{R} \mid \int_0^1 f(x)^2 dx < \infty\}$

Density

- ▶ *Y* is **dense** in *X* if $\overline{Y} = X$.
- Examples:
 - 1. \mathbb{Q} is dense in \mathbb{R} .
 - 2. \mathbb{Q}^n is dense in \mathbb{R}^n .
 - Weierstrass approximation theorem: polynomials are dense in continuous functions (with the supremum norm, on compact domains).

Separability

- ▶ *X* is **separable** if it has a countable dense subset.
- **Examples**:
 - 1. \mathbb{R} is separable.
 - 2. \mathbb{R}^n is separable.
 - 3. ℓ_2 , $L_2([0,1])$ are separable.

Orthonormal Basis

- ► A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$f = \sum_{i=1}^{\infty} \langle f, \phi_i \rangle \phi_i$$
 for all $f \in \mathcal{H}$.

- Examples:
 - 1. Basis of ℓ_2 is $(1,0,\ldots,)$, $(0,1,0,\ldots)$, $(0,0,1,0,\ldots)$, ...
 - 2. Basis of $L_2([0,1])$ is $1, 2\sin 2\pi nx, 2\cos 2\pi nx$ for $n \in \mathbb{N}$

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

Maps

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi: \mathcal{H} \to \mathbb{R}$
- ▶ linear operators $A: \mathcal{H} \to \mathcal{H}$, such that A(af + bg) = aAf + bAg, with $a, b \in \mathbb{R}$ and $f, g \in \mathcal{H}$.

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$\Psi_{\mathbf{g}}(f) = \langle f, \mathbf{g} \rangle, \qquad f \in \mathcal{H}$$

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

$$\Psi(f) = \langle f, g \rangle$$

for some appropriate element $g \in \mathcal{H}$.

Matrix

- ▶ Every linear operator $L: \mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.
- ▶ If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying $\langle Ax, y \rangle_{\mathbb{R}^m} = (Ax)^{\top} y = x^{\top} A^{\top} y = \langle x, A^{\top} y \rangle_{\mathbb{R}^n}$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.
- ▶ *A* is symmetric if $A^{\top} = A$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.
- ▶ **Spectral Theorem:** Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^n consisting of the eigenvectors of A.
- ▶ Eigendecomposition: $A = V \Lambda V^{\top}$, or equivalently,

$$A = \sum_{i=1}^{n} \lambda_i v_i v_i^{\top}.$$

Singular Value Decomposition

▶ Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\top}$$
,

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

Singular system:

$$Av_i = \sigma_i u_i$$
 $AA^{\top} u_i = \sigma_i^2 u_i$
 $A^{\top} u_i = \sigma_i v_i$ $A^{\top} Av_i = \sigma_i^2 v_i$

Matrix Norm

▶ The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\text{spec}} = \sigma_{\text{max}}(A) = \sqrt{\lambda_{\text{max}}(AA^\top)} = \sqrt{\lambda_{\text{max}}(A^\top A)}.$$

▶ The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2}.$$

Positive Definite Matrix

A real symmetric matrix $A \in \mathbb{R}^{m \times m}$ is positive definite if

$$x^T A x > 0$$
, $\forall x \in \mathbb{R}^m$.

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by \ge .

Vector Spaces

Hilbert Spaces

Functionals and Operators (Matrices)

Linear Operators

Probability Theory

Linear Operator

- ▶ An operator $L: \mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.
- ▶ A linear operator $L: \mathcal{H}_1 \to \mathcal{H}_2$ is bounded if there exists C > 0 such that

$$\|Lf\|_{\mathcal{H}_2}\leqslant C\|f\|_{\mathcal{H}_1}\ \ \text{for all}\ f\in\mathcal{H}_1.$$

▶ A linear operator is continuous if and only if it is bounded.

Adjoint and Compactness

▶ The adjoint of a bounded linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator L^* : $\mathcal{H}_2 \to \mathcal{H}_1$ satisfying

$$\langle \mathit{Lf}, \mathit{g} \rangle_{\mathfrak{H}_2} = \langle \mathit{f}, \mathit{L}^* \mathit{g} \rangle_{\mathfrak{H}_1} \ \text{ for all } \mathit{f} \in \mathfrak{H}_1, \mathit{g} \in \mathfrak{H}_2.$$

- ▶ L is self-adjoint if $L^* = L$. Self-adjoint operators have real eigenvalues.
- ▶ A bounded linear operator $L: \mathcal{H}_1 \to \mathcal{H}_2$ is compact if the image of the unit ball in \mathcal{H}_1 has compact closure in \mathcal{H}_2 .

Spectral Theorem for Compact Self-Adjoint Operator

▶ Let $L: \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$L\phi_i = \lambda_i \phi_i$$

and the only possible limit point of λ_i as $i \to \infty$ is 0.

► Eigendecomposition:

$$L = \sum_{i=1}^{\infty} \lambda_i \langle \phi_i, \cdot \rangle \phi_i.$$

Probability Space

A triple (Ω, \mathcal{A}, P) , where Ω is a set,

 \mathcal{A} a Sigma Algebra, i.e. a family of subsets of Ω s.t.

- $\triangleright \ \mathfrak{X}, \emptyset \in \mathcal{A},$
- $A \in \mathcal{A} \Rightarrow \Omega \backslash A \in \mathcal{A},$
- $A_i \in \mathcal{A}, i = 1, 2 \cdots \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}.$

P a probability measure, i.e a function $P:\mathcal{A} \to [0,1]$

- ▶ P(X) = 1 (hence and $P(\emptyset) = 0$),
- ▶ Sigma additivity: If $A_i \in A$, i = 1, 2... are disjoint, then

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$$

Real Random Variables (RV)

A measurable function $X : \Omega \to \mathbb{R}$, i.e. mapping elements of the sigma algebra in open subsets of \mathbb{R} .

lacktriangle Law of a random variable: probability measure on $\mathbb R$ defined as

$$\rho(I) = P(X^{-1}(I))$$

for all open subsets $I \subset \mathbb{R}$.

▶ Probability density function of a probability measure ρ on X: a function $ρ : \mathbb{R} \to \mathbb{R}$ such that

$$\int_{I} d\rho(x) = \int_{I} p(x) dx$$

for open subsets $I \subset \mathbb{R}$.

Convergence of Random Variables

 X_i , i = 1, 2, ..., a sequence of random variables.

Convergence in probability:

$$\forall \epsilon \in (0, \infty), \quad \lim_{i \to \infty} \mathbb{P}\left(|X_i - X| > \epsilon\right) = 0.$$

► Almost Sure Convergence:

$$\mathbb{P}\left(\lim_{i\to\infty}X_i=X\right)=1.$$

Law of Large Numbers

 X_i , i = 1, 2, ..., sequence of independent copies of a random variable X

Weak Law of Large Numbers:

$$\forall \epsilon \in (0, \infty), \quad \lim_{n \to \infty} \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}[X]\right| > \epsilon\right) = 0.$$

Strong Law of Large Numbers:

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nX_i=\mathbb{E}[X]\right)=1.$$

Concentration Inequalities

X, be a random variable $\forall \epsilon \in (0, \infty)$

▶ Markov's inequality: if X > 0

$$\mathbb{P}(X \geqslant \epsilon) \leqslant \frac{\mathbb{E}[X]}{\epsilon}$$

▶ Chebysev's inequality: If $\mathbb{V}ar[X] < \infty$

$$\mathbb{P}(|X - \mathbb{E}[X]| \geqslant \epsilon) \leqslant \frac{\mathbb{V}ar[X]}{\epsilon^2}$$

Concentration Inequalities for Sums

 X_1, \ldots, X_n identical independent random variables with expectation $\mathbb{E}[X]$.

Chebysev's inequality can be applied to $\frac{1}{n} \sum_{i=1}^{n} X_i$ to get

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}[X]\right|\geqslant\epsilon\right)\leqslant\frac{\mathbb{V}ar[X]}{\epsilon^{2}n}$$

A stronger results holds if $|X_i| < c$.

Höeffding's inequality:

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}[X]\right|\geqslant\epsilon\right)\leqslant2e^{-\frac{\epsilon^{2}n}{2c^{2}}}$$