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These notes present a brief summary of some of the basic definitions from calculus that we
will need in this class. Throughout these notes, we assume that we are working with the base
field R.

1.1 Structures on Vector Spaces

A vector space V is a set with a linear structure. This means we can add elements of the
vector space or multiply elements by scalars (real numbers) to obtain another element. A
familiar example of a vector space is R

n. Given x = (x1, . . . ,xn) and y = (y1, . . . , yn) in R
n, we

can form a new vector x + y = (x1 + y1, . . . ,xn + yn) ∈ R
n. Similarly, given r ∈ R, we can form

rx = (rx1, . . . , rxn) ∈Rn.
Every vector space has a basis. A subset B = {v1, . . . , vn} of V is called a basis if every vector

v ∈ V can be expressed uniquely as a linear combination v = c1v1 + · · · + cmvm for some con-
stants c1, . . . , cm ∈ R. The cardinality (number of elements) of V is called the dimension of V .
This notion of dimension is well defined because while there is no canonical way to choose
a basis, all bases of V have the same cardinality. For example, the standard basis on R

n is
e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . , en = (0, . . . ,0,1). This shows that R

n is an n-dimensional
vector space, in accordance with the notation. In this section we will be working with finite
dimensional vector spaces only.

We note that any two finite dimensional vector spaces over R are isomorphic, since a bijec-
tion between the bases can be extended linearly to be an isomorphism between the two vector
spaces. Hence, up to isomorphism, for every n ∈ N there is only one n-dimensional vector
space, which is R

n. However, vector spaces can also have extra structures that distinguish
them from each other, as we shall explore now.

A distance (metric) on V is a function d : V ×V →R satisfying:

• (positivity) d(v,w) ≥ 0 for all v,w ∈ V , and d(v,w) = 0 if and only if v = w.

• (symmetry) d(v,w) = d(w,v) for all v,w ∈ V .

• (triangle inequality) d(v,w) ≤ d(v,x) + d(x,w) for all v,w,x ∈ V .

The standard distance function on R
n is given by d(x,y) =

√
(x1 − y1)2 + · · ·+ (xn − yn)2. Note

that the notion of metric does not require a linear structure, or any other structure, on V ; a
metric can be defined on any set.

A similar concept that requires a linear structure on V is norm, which measures the “length”
of vectors in V . Formally, a norm is a function ‖ · ‖ : V → R that satisfies the following three
properties:

• (positivity) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

• (homogeneity) ‖rv‖ = |r |‖v‖ for all r ∈R and v ∈ V .

• (subadditivity) ‖v +w‖ ≤ ‖v‖+ ‖w‖ for all v,w ∈ V .
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For example, the standard norm on R
n is ‖x‖2 =

√
x2

1 + · · ·+ x2
n, which is also called the `2-norm.

Also of interest is the `1-norm ‖x‖1 = |x1| + · · · + |xn|, which we will study later in this class in
relation to sparsity-based algorithms. We can also generalize these examples to any p ≥ 1 to
obtain the `p-norm, but we will not do that here.

Given a normed vector space (V ,‖ · ‖), we can define the distance (metric) function on V
to be d(v,w) = ‖v −w‖. For example, the `2-norm on R

n gives the standard distance function

d(x,y) = ‖x − y‖2 =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

while the `1-norm on R
n gives the Manhattan/taxicab distance,

d(x,y) = ‖x − y‖1 = |x1 − y1|+ · · ·+ |xn − yn|.

As a side remark, we note that all norms on a finite dimensional vector space V are equiva-
lent. This means that for any two norms µ and ν on V , there exist positive constants C1 and C2
such that for all v ∈ V , C1µ(v) ≤ ν(v) ≤ C2µ(v). In particular, continuity or convergence with re-
spect to one norm implies continuity or convergence with respect to any other norms in a finite
dimensional vector space. For example, on R

n we have the inequality ‖x‖1/
√
n ≤ ‖x‖2 ≤ ‖x‖1.

Another structure that we can introduce to a vector space is the inner product. An inner
product on V is a function 〈·, ·〉 : V ×V →R that satisfies the following properties:

• (symmetry) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

• (linearity) 〈r1v1 + r2v2,w〉 = r1〈v1,w〉+ r2〈v2,w〉 for all r1, r2 ∈R and v1,v2,w ∈ V .

• (positive-definiteness) 〈v,v〉 ≥ 0 for all v ∈ V , and 〈v,v〉 = 0 if and only if v = 0.

For example, the standard inner product on R
n is 〈x,y〉 = x1y1 + · · ·+ xnyn, which is also known

as the dot product, written x · y.
Given an inner product space (V ,〈·, ·〉), we can define the norm of v ∈ V to be ‖v‖ =

√
〈v,v〉.

It is easy to check that this definition satisfies the axioms for a norm listed above. On the other
hand, not every norm arises from an inner product. The necessary and sufficient condition that
has to be satisfied for a norm to be induced by an inner product is the parallelogram law:

‖v +w‖2 + ‖v −w‖2 = 2‖v‖2 + 2‖w‖2.

If the parallelogram law is satisfied, then the inner product can be defined by polarization
identity:

〈v,w〉 =
1
4

(
‖v +w‖2 − ‖v −w‖2

)
.

For example, you can check that the `2-norm on R
n is induced by the standard inner product,

while the `1-norm is not induced by an inner product since it does not satisfy the parallelogram
law.

A very important result involving inner product is the following Cauchy-Schwarz inequal-
ity:

〈v,w〉 ≤ ‖v‖‖w‖ for all v,w ∈ V .

Inner product also allows us to talk about orthogonality. Two vectors v and w in V are
said to be orthogonal if 〈v,w〉 = 0. In particular, an orthonormal basis is a basis v1, . . . , vn that
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is orthogonal (〈vi ,vj〉 = 0 for i , j) and normalized (〈vi ,vi〉 = 1). Given an orthonormal basis
v1, . . . , vn, the decomposition of v ∈ V in terms of this basis has the special form

v =
n∑
i=1

〈v,vi〉vi .

For example, the standard basis vectors e1, . . . , en form an orthonormal basis of Rn. In general,
a basis v1, . . . , vn can be orthonormalized using the Gram-Schmidt process.

Given a subspace W of an inner product space V , we can define the orthogonal comple-
ment of W to be the set of all vectors in V that are orthogonal to W ,

W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

If V is finite dimensional, then we have the orthogonal decomposition V = W ⊕W⊥. This
means every vector v ∈ V can be decomposed uniquely into v = w + w′, where w ∈ W and
w′ ∈W⊥. The vector w is called the projection of v on W , and represents the unique vector in
W that is closest to v.

1.2 Matrices

In addition to talking about vector spaces, we can also talk about operators on those spaces.
A linear operator is a function L : V →W between two vector spaces that preserves the linear
structure. In finite dimension, every linear operator can be represented by a matrix by choosing
a basis in both the domain and the range, i.e. by working in coordinates. For this reason we
focus the first part of our discussion on matrices.

If V is n-dimensional and W is m-dimensional, then a linear map L : V →W is represented
by an m×n matrix A whose columns are the values of L applied to the basis of V . The rank of
A is the dimension of the image of A, and the nullity of A is the dimension of the kernel of A.
The rank-nullity theorem states that rank(A) + nullity(A) =m, the dimension of the domain of
A. Also note that the transpose of A is an n×m matrix A> satisfying

〈Av,w〉
R
m = (Av)>w = v>A>w = 〈v,A>w〉

R
n

for all v ∈Rn and w ∈Rm.
Let A be an n×n matrix with real entries. Recall that an eigenvalue λ ∈R of A is a solution

to the equation Av = λv for some nonzero vector v ∈ Rn, and v is the eigenvector of A corre-
sponding to λ. If A is symmetric, i.e. A> = A, then the eigenvalues of A are real. Moreover, in
this case the spectral theorem tells us that there is an orthonormal basis of Rn consisting of
the eigenvectors of A. Let v1, . . . , vn be this orthonormal basis of eigenvectors, and let λ1, . . . ,λn
be the corresponding eigenvalues. Then we can write

A =
n∑
i=1

λiviv
>
i ,

which is called the eigendecomposition of A. We can also write this as

A = VΛV >,

where V is the n×n matrix with columns vi , and Λ is the n×n diagonal matrix with entries λi .
The orthonormality of v1, . . . , vn makes V an orthogonal matrix, i.e. V −1 = V >.
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A symmetric n× n matrix A is positive definite if v>Av > 0 for all nonzero vectors v ∈ Rn.
A is positive semidefinite if the inequality is not strict (i.e. ≥ 0). A positive definite (resp.
positive semidefinite) matrix A has positive (resp. nonnegative) eigenvalues.

Another method for decomposing a matrix is the singular value decomposition (SVD).
Given an m×n real matrix A, the SVD of A is the factorization

A =UΣV >,

where U is an m×m orthogonal matrix (U>U = I), Σ is an m× n diagonal matrix, and V is an
n× n orthogonal matrix (V >V = I). The columns u1, . . . ,um of U form an orthonormal basis of
R
m, and the columns v1, . . . , vn of V form an orthonormal basis of Rn. The diagonal elements

σ1, . . . ,σmin{m,n} in Σ are nonnegative and called the singular values of A. This factorization
corresponds to the decomposition

A =
min{m,n}∑
i=1

σiuiv
>
i .

This decomposition shows the relations between σi , ui , and vi more clearly: for 1 ≤ i ≤min{m,n},

Avi = σiui AA>ui = σ2
i ui

A>ui = σivi A>Avi = σ2
i vi

This means the ui ’s are eigenvectors of AA> with corresponding eigenvalues σ2
i , and the vi ’s

are eigenvectors of A>A, also with corresponding eigenvalues σ2
i .

Given an m× n matrix A, we can define the spectral norm of A to be largest singular value
of A,

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

Another common norm on A is the Frobenius norm,

‖A‖F =

√√√ m∑
i=1

n∑
j=1

a2
ij =

√
trace(AA>) =

√
trace(A>A) =

√√√min{m,n}∑
i=1

σ2
i .

However, since the space of all matrices can be identified with R
m×n, the discussion in Sec-

tion 1.1 still holds and all norms on A are equivalent.
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