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Computational Learning

Statistical Learning Theory

Learning is viewed as a generalization/inference problem from
usually small sets of high dimensional, noisy data.

Today’s class is one of the most difficult – because it is abstract.
Reasons for it:

Science of Learning

Big picture and flavor

Mathcamp is next

This classroom is not large enough.
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Learning Tasks and Models

There are in principle several “learning problems”. The one
which is most crisply defined is supervised learning. If the
conjecture about Implicit Supervised Examples were correct,
then supervised learning – together with reinforcement learning
– would be the most important building block for the whole of
biological learning.

Supervised

Semisupervised

Unsupervised

Online

Transductive

Active

Variable Selection

Reinforcement

.....

In addition one can consider the data to be created in a deterministic, or stochastic or even adversarial way.
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Where to Start?

Statistical and Supervised Learning

Statistical Models are essentially to deal with noise
sampling and other sources of uncertainty.
Supervised Learning is the best understood type of
learning problems and may be a building block for most of
the others.

Regularization

Regularization provides a rigorous framework to solve
learning problems and to design learning algorithms.
In the course we will present a set of ideas and tools
which are at the core of several developments in
supervised learning and beyond it.
We will see the close connection during the last classes between kernel machines and deep networks.
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Remarks on Foundations of Learning Theory

This class establish our program for the first 10 classes:
Main goal of learning is generalization and predictivity not
explanation
Which algorithms to guarantee ensure generalization?
We derive “equivalence” of generalization and
stability/well-posedness
Since it is known that regularization techniques guarantee
well-posedness we will use them to guarantee also
generalization
Notice that they usually result in computationally “nice” and
well-posed constrained optimization problems
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Plan

Part I: Basic Concepts and Notation
Part II: Foundational Results
Part III: Algorithms
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Learning Problem at a Glance

Given a training set of input-output pairs

Sn = (x1, y1), . . . , (xn, yn)

find fS such that
fS(x) ∼ y .

e.g. the x ′s are vectors and the y ′s discrete labels in
classification and real values in regression.
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Learning is Inference

For the above problem to make sense we need to assume input
and output to be related!

Statistical and Supervised Learning

Each input-output pairs is a sample from a fixed but
unknown distribution µ(x , y).
Under some condition we can associate to µ(z) the
probability

p(x , y) = p(y |x)p(x).

the training set Sn is a set of identically and
independently distributed samples drawn from µ(z).
It is crucial to note that we view p(x , y) as fixed but
unknown.
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Why Probabilities

YX

p (y|x)

x

the same x can generate different y (according to p(y |x)):

the underlying process is deterministic, but there is noise
in the measurement of y ;
the underlying process is not deterministic;
the underlying process is deterministic, but only
incomplete information is available.
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Sampling

p(x)

y

x

x

even in a noise free case we
have to deal with sampling

the marginal p(x) distribution
might model

errors in the location of
the input points;
discretization error for a
given grid;
presence or absence of
certain input instances

Tomaso Poggio The Learning Problem and Regularization



Sampling

p(x)

��

y

x

x

even in a noise free case we
have to deal with sampling

the marginal p(x) distribution
might model

errors in the location of
the input points;
discretization error for a
given grid;
presence or absence of
certain input instances

Tomaso Poggio The Learning Problem and Regularization



Sampling

x

p(x)

y

x

even in a noise free case we
have to deal with sampling

the marginal p(x) distribution
might model

errors in the location of
the input points;
discretization error for a
given grid;
presence or absence of
certain input instances

Tomaso Poggio The Learning Problem and Regularization



Sampling
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Learning, Generalization/Prediction

Predictivity or Generalization
Given the data, the goal is to learn how to make
decisions/predictions about future data / data not belonging to
the training set. Generalization is the key requirement
emphasized in Learning Theory: generalization is a masure of
predictivity. This emphasis makes it different from Bayesian or
traditional statistics (especially explanatory statistics).

The problem is often: Avoid overfitting!!
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Loss functions

In order to define generalization we need to define and
measure errors.

Loss function
A loss function V : R× Y determines the price V (f (x), y) we
pay, predicting f (x) when in fact the true output is y .
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Loss functions for regression

The most common is the square loss or L2 loss

V (f (x), y) = (f (x)− y)2

Absolute value or L1 loss:

V (f (x), y) = |f (x)− y |

Vapnik’s ε-insensitive loss:

V (f (x), y) = (|f (x)− y | − ε)+
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Loss functions for (binary) classification

The most intuitive one: 0− 1-loss:

V (f (x), y) = θ(−yf (x))

(θ is the step function)
The more tractable hinge loss:

V (f (x), y) = (1− yf (x))+

And again the square loss or L2 loss

V (f (x), y) = (1− yf (x))2
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Loss functions
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Expected Risk

A good function – we will speak of function or hypothesis –
should incur in only a few errors. We need a way to quantify
this idea.

Expected Risk
The quantity

I[f ] =
∫

X×Y
V (f (x), y)p(x , y)dxdy .

is called the expected error and measures the loss averaged
over the unknown distribution.

A good function should have small expected risk.
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Learning Algorithms and Generalization

A learning algorithm can be seen as a map

Sn → fn

from the training set to the a set of candidate functions.
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Basic definitions

p(x , y) probability distribution,
Sn training set,
V (f (x), y) loss function,
In[f ] = 1

n
∑n

i=1 V (f (xi), yi), empirical risk,
I[f ] =

∫
X×Y V (f (x), y)p(x , y)dxdy , expected risk.
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Reminder

Convergence in probability

Let {Xn} be a sequence of bounded random variables. Then

lim
n→∞

Xn = X in probability

if
∀ε > 0 lim

n→∞
P{|Xn − X | ≥ ε} = 0

Convergence in Expectation

Let {Xn} be a sequence of bounded random variables. Then

lim
n→∞

Xn = X in expectation

if
lim

n→∞
E(|Xn − X |) = 0

. Convergence in the mean implies convergence in probability.
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Consistency and Universal Consistency

A requirement considered of basic importance in classical
statistics is for the algorithm to get better as we get more data
(in the context of machine learning consistency is less
immediately critical than generalization)...

Consistency
We say that an algorithm is consistent if

∀ε > 0 lim
n→∞

P{I[fn]− I[f∗] ≥ ε} = 0

Universal Consistency
We say that an algorithm is universally consistent if for all
probability p,

∀ε > 0 lim
n→∞

P{I[fn]− I[f∗] ≥ ε} = 0
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Sample Complexity and Learning Rates

The above requirements are asymptotic.

Error Rates
A more practical question is, how fast does the error decay?
This can be expressed as

P{I[fn]− I[f∗]} ≤ ε(n, δ)} ≥ 1− δ.

Sample Complexity
Or equivalently, ‘how many point do we need to achieve an
error ε with a prescribed probability δ?’
This can expressed as

P{I[fn]− I[f∗] ≤ ε} ≥ 1− δ,

for n = n(ε, δ).
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Empirical risk and Generalization

How do we design learning algorithms that work? One of the
most natural ideas is ERM...

Empirical Risk
The empirical risk is a natural proxy (how good?) for the
expected risk

In[f ] =
1
n

n∑
i=1

V (f (xi), yi).

Generalization Error
How good a proxy is captured by the generalization error,

P{|I[fn]− In[fn]| ≤ ε} ≥ 1− δ,

for n = n(ε, δ).
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Some (Theoretical and Practical) Questions

How do we go from here to an actual class of algorithms?
Is minimizing the empirical error – error on the data – a
good idea?
Under which conditions is the empirical error a good proxy
for the expected error?
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No Free Lunch Theorem Devroye et al.

Universal Consistency
Since classical statistics worries so much about consistency let
us start here even if I do not think it is a practically important
concept. Can we learn consistently any problem? Or
equivalently do universally consistent algorithms exist?
YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...

No Free Lunch Theorem
Given a number of points (and a confidence), can we always
achieve a prescribed error?
NO!

The last statement can be interpreted as follows: inference
from finite samples can effectively performed if and only if the
problem satisfies some a priori condition.

Tomaso Poggio The Learning Problem and Regularization



No Free Lunch Theorem Devroye et al.

Universal Consistency
Since classical statistics worries so much about consistency let
us start here even if I do not think it is a practically important
concept. Can we learn consistently any problem? Or
equivalently do universally consistent algorithms exist?
YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...

No Free Lunch Theorem
Given a number of points (and a confidence), can we always
achieve a prescribed error?
NO!

The last statement can be interpreted as follows: inference
from finite samples can effectively performed if and only if the
problem satisfies some a priori condition.

Tomaso Poggio The Learning Problem and Regularization



No Free Lunch Theorem Devroye et al.

Universal Consistency
Since classical statistics worries so much about consistency let
us start here even if I do not think it is a practically important
concept. Can we learn consistently any problem? Or
equivalently do universally consistent algorithms exist?
YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...

No Free Lunch Theorem
Given a number of points (and a confidence), can we always
achieve a prescribed error?
NO!

The last statement can be interpreted as follows: inference
from finite samples can effectively performed if and only if the
problem satisfies some a priori condition.

Tomaso Poggio The Learning Problem and Regularization



No Free Lunch Theorem Devroye et al.

Universal Consistency
Since classical statistics worries so much about consistency let
us start here even if I do not think it is a practically important
concept. Can we learn consistently any problem? Or
equivalently do universally consistent algorithms exist?
YES! Neareast neighbors, Histogram rules, SVM with (so
called) universal kernels...

No Free Lunch Theorem
Given a number of points (and a confidence), can we always
achieve a prescribed error?
NO!

The last statement can be interpreted as follows: inference
from finite samples can effectively performed if and only if the
problem satisfies some a priori condition.

Tomaso Poggio The Learning Problem and Regularization



Hypotheses Space

In many learning algorithms (not all!) we need to choose a
suitable space of hypotheses H.

The hypothesis space H is the space of functions that we
allow our algorithm to “look at”. For many algorithms (such as
optimization algorithms) it is the space the algorithm is allowed
to search. As we will see in future classes, it is often important
to choose the hypothesis space as a function of the amount of
data n available.
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Hypotheses Space

Examples: linear functions, polynomial, RBFs, Sobolev
Spaces...

Learning algorithm

A learning algorithm A is then a map from the data space to H,

A(Sn) = fn ∈ H.
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Empirical Risk Minimization

ERM
A prototype algorithm in statistical learning theory is Empirical
Risk Minimization:

min
f∈H

In[f ].

How do we choose H? How do we design A?
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Reminder: Expected error, empirical error

Given a function f , a loss function V , and a probability
distribution µ over Z , the expected or true error of f is:

I[f ] = EzV [f , z] =
∫

Z
V (f , z)dµ(z)

which is the expected loss on a new example drawn at random
from µ.
We would like to make I[f ] small, but in general we do not know
µ.
Given a function f , a loss function V , and a training set S
consisting of n data points, the empirical error of f is:

IS[f ] =
1
n

∑
V (f , zi)
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Reminder: Generalization

A natural requirement for fS is distribution independent
generalization

lim
n→∞

|IS[fS]− I[fS]| = 0 in probability

This is equivalent to saying that for each n there exists a εn and
a δ(ε) such that

P {|ISn [fSn ]− I[fSn ]| ≥ εn} ≤ δ(εn), (1)

with εn and δ going to zero for n→∞.
In other words, the training error for the solution must converge
to the expected error and thus be a “proxy” for it. Otherwise the
solution would not be “predictive”.
A desirable additional requirement is consistency

ε > 0 lim
n→∞

P
{

I[fS]− inf
f∈H

I[f ] ≥ ε
}

= 0.
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A learning algorithm should be well-posed, eg stable

In addition to the key property of generalization, a “good”
learning algorithm should also be stable: fS should depend
continuously on the training set S. In particular, changing one
of the training points should affect less and less the solution as
n goes to infinity. Stability is a good requirement for the learning
problem and, in fact, for any mathematical problem. We open
here a small parenthesis on stability and well-posedness.
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General definition of Well-Posed and Ill-Posed
problems

A problem is well-posed if its solution:

exists
is unique
depends continuously on the data (e.g. it is stable)

A problem is ill-posed if it is not well-posed. In the context of
this class, well-posedness is mainly used to mean stability of
the solution.
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More on well-posed and ill-posed problems

Hadamard introduced the definition of ill-posedness. Ill-posed
problems are typically inverse problems.
As an example, assume g is a function in Y and u is a function
in X , with Y and X Hilbert spaces. Then given the linear,
continuous operator L, consider the equation

g = Lu.

The direct problem is is to compute g given u; the inverse
problem is to compute u given the data g. In the learning case
L is somewhat similar to a “sampling” operation and the inverse
problem becomes the problem of finding a function that takes
the values

f (xi) = yi , i = 1, ...n

The inverse problem of finding u is well-posed when
the solution exists,
is unique and
is stable, that is depends continuously on the initial data g.

Ill-posed problems fail to satisfy one or more of these criteria.
Often the term ill-posed applies to problems that are not
stable, which in a sense is the key condition.
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ERM

Given a training set S and a function space H, empirical risk
minimization as we have seen is the class of algorithms that
look at S and select fS as

fS = arg min
f∈H

IS[f ].

For example linear regression is ERM when V (z) = (f (x)− y)2

and H is space of linear functions f = ax .
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Generalization and Well-posedness of Empirical Risk
Minimization

For ERM to represent a “good” class of learning algorithms, the
solution should

generalize
exist, be unique and – especially – be stable
(well-posedness), according to some definition of stability.
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ERM and generalization: given a certain number of
samples...
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...suppose this is the “true” solution...
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... but suppose ERM gives this solution.
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Under which conditions the ERM solution converges
with increasing number of examples to the true
solution? In other words...what are the conditions for
generalization of ERM?
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ERM and stability: given 10 samples...
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...we can find the smoothest interpolating polynomial
(which degree?).
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But if we perturb the points slightly...
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...the solution changes a lot!
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If we restrict ourselves to degree two polynomials...
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...the solution varies only a small amount under a
small perturbation.
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ERM: conditions for well-posedness (stability) and
predictivity (generalization)

Since Tikhonov, it is well-known that a generally ill-posed
problem such as ERM, can be guaranteed to be well-posed
and therefore stable by an appropriate choice of H. For
example, compactness of H guarantees stability.
It seems intriguing that Vapnik’s (see also Cucker and Smale)
classical conditions for consistency of ERM – thus quite a
different property – consist of appropriately restricting H. It
seems that the same restrictions that make the approximation
of the data stable, may provide solutions that generalize...
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ERM: conditions for well-posedness (stability) and
predictivity (generalization)

We would like to have a hypothesis space that yields
generalization. Loosely speaking this would be a H for which
the solution of ERM, say fS is such that |IS[fS]− I[fS]| converges
to zero in probability for n increasing.
Note that the above requirement is NOT the law of large
numbers; the requirement for a fixed f that |IS[f ]− I[f ]|
converges to zero in probability for n increasing IS the law of
large numbers.
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ERM: conditions for well-posedness (stability) and
predictivity (generalization) in the case of regression
and classification

The theorem (Vapnik et al.) says that a proper choice of the hypothesis spaceH ensures generalization of
ERM (and consistency since for ERM generalization is necessary and sufficient for consistency and
viceversa). Other results characterize uGC classes in terms of measures of complexity or capacity of H
(such as VC dimension).

A separate theorem (Niyogi, Mukherjee, Rifkin, Poggio) says that stability (defined in a specific way) of
(supervised) ERM is sufficient and necessary for generalization of ERM. Thus with the appropriate definition
of stability, stability and generalization are equivalent for ERM; stability and H uGC are also equivalent.

Thus the two desirable conditions for a supervised learning
algorithm – generalization and stability – are equivalent (and
they correspond to the same constraints on H).
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Key Theorem(s) Illustrated
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Regularization

The “equivalence” between generalization and stability gives us
a an approach to predictive algorithms. It is enough to
remember that regularization is the classical way to restore well
posedness. Thus regularization becomes a way to ensure
generalization. Regularization in general means retricting H, as
we have in fact done for ERM. There are two standard
approaches in the field of ill-posed problems that ensure for
ERM well-posedness (and generalization) by constraining the
hypothesis space H. The direct way – minimize the empirical
error subject to f in a ball in an appropriate H – is called Ivanov
regularization. The indirect way is Tikhonov regularization
(which is not strictly ERM).
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Ivanov and Tikhonov Regularization

ERM finds the function in (H) which minimizes

1

n

n∑
i=1

V (f (xi ), yi )

which in general – for arbitrary hypothesis spaceH – is ill-posed.

Ivanov regularizes by finding the function that minimizes

1

n

n∑
i=1

V (f (xi ), yi )

while satisfyingR(f ) ≤ A.

Tikhonov regularization minimizes over the hypothesis spaceH, for a fixed positive parameter γ, the
regularized functional

1

n

n∑
i=1

V (f (xi ), yi ) + γR(f ). (2)

R(f ) is the regulirizer, a penalization on f . In this course we will mainly discuss the caseR(f ) = ‖f‖2
K where ‖f‖2

K
is the norm in the Reproducing Kernel Hilbert Space (RKHS)H, defined by the kernel K .
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Tikhonov Regularization

As we will see in future classes

Tikhonov regularization ensures well-posedness eg
existence, uniqueness and especially stability (in a very
strong form) of the solution
Tikhonov regularization ensures generalization
Tikhonov regularization is closely related to – but different
from – Ivanov regularization, eg ERM on a hypothesis
space H which is a ball in a RKHS.
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Remarks on Foundations of Learning Theory

Intelligent behavior (at least learning) consists of optimizing
under constraints. Constraints are key for solving
computational problems; constraints are key for prediction.
Constraints may correspond to rather general symmetry
properties of the problem (eg time invariance, space invariance,
invariance to physical units (pai theorem), universality of
numbers and metrics implying normalization, etc.)

Key questions at the core of learning theory:
generalization and predictivity not explanation
probabilities are unknown, only data are given
which constraints are needed to ensure generalization
(therefore which hypotheses spaces)?
regularization techniques result usually in computationally
“nice” and well-posed optimization problems
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Statistical Learning Theory and Bayes

Unlike statistical learning theory the Bayesian approach does
not emphasize

the issue of generalization (following the tradition in
statistics of explanatory statistics);
that probabilities are not known and that only data are
known: assuming a specific distribution is a very strong –
unconstrained by any Bayesian theory – seat-of-the-pants
guess;
the question of which priors are needed to ensure
generalization;
that the resulting optimization problems are often
computationally intractable and possibly ill-posed
optimization problems (for instance not unique).
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Plan

Part I: Basic Concepts and Notation

Part II: Foundational Results
Part III: Algorithms

INSTEAD....
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Appendix: Target Space, Sample and Approximation
Error

In addition to the hypothesis space H, the space we allow our
algorithms to search, we define...
The target space T is a space of functions, chosen a priori in
any given problem, that is assumed to contain the “true”
function f0 that minimizes the risk. Often, T is chosen to be all
functions in L2, or all differentiable functions. Notice that the
“true” function if it exists is defined by µ(z), which contains all
the relevant information.
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Sample Error (also called Estimation Error)

Let fH be the function in H with the smallest true risk.
We have defined the generalization error to be IS[fS]− I[fS].
We define the sample error to be I[fS]− I[fH], the difference in true
risk between the best function in H and the function in H we actually
find. This is what we pay because our finite sample does not give us
enough information to choose to the “best” function in H. We’d like
this to be small. Consistency – defined earlier – is equivalent to the
sample error going to zero for n→∞.
A main goal in classical learning theory (Vapnik, Smale, ...) is
“bounding” the generalization error. Another goal – for learning theory
and statistics – is bounding the sample error, that is determining
conditions under which we can state that I[fS]− I[fH] will be small
(with high probability).
As a simple rule, we expect that if H is “well-behaved”, then, as n
gets large the sample error will become small.
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Approximation Error

Let f0 be the function in T with the smallest true risk.
We define the approximation error to be I[fH]− I[f0], the
difference in true risk between the best function in H and the
best function in T . This is what we pay when H is smaller than
T . We’d like this error to be small too. In much of the following
we can assume that I[f0] = 0.
We will focus less on the approximation error in 9.520, but we
will explore it.
As a simple rule, we expect that as H grows bigger, the
approximation error gets smaller. If T ⊆ H – which is a situation
called the realizable setting –the approximation error is zero.
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Error

We define the error to be I[fS]− I[f0], the difference in true risk
between the function we actually find and the best function in
T . We’d really like this to be small. As we mentioned, often we
can assume that the error is simply I[fS].
The error is the sum of the sample error and the approximation
error:

I[fS]− I[f0] = (I[fS]− I[fH]) + (I[fH]− I[f0])

If we can make both the approximation and the sample error
small, the error will be small. There is a tradeoff between the
approximation error and the sample error...
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The Approximation/Sample Tradeoff

It should already be intuitively clear that making H big makes
the approximation error small. This implies that we can (help)
make the error small by making H big.
On the other hand, we will show that making H small will make
the sample error small. In particular for ERM, if H is a uGC
class, the generalization error and the sample error will go to
zero as n→∞, but how quickly depends directly on the “size”
of H. This implies that we want to keep H as small as possible.
(Furthermore, T itself may or may not be a uGC class.)
Ideally, we would like to find the optimal tradeoff between these
conflicting requirements.

Tomaso Poggio The Learning Problem and Regularization



Generalization, Sample Error and Approximation Error

Generalization error is IS[fS]− I[fS].
Sample error is I[fS]− I[fH]
Approximation error is I[fH]− I[f0]
Error is I[fS]− I[f0] = (I[fS]− I[fH]) + (I[fH]− I[f0])
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Hypotheses Space

We are going to look at hypotheses spaces which are
reproducing kernel Hilbert spaces.

RKHS are Hilbert spaces of point-wise defined
functions.
They can be defined via a reproducing kernel, which is a
symmetric positive definite function.

n∑
i,j=1

cicjK (ti , tj) ≥ 0

for any n ∈ N and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ R.
functions in the space are (the completion of) linear
combinations

f (x) =
p∑

i=1

K (x , xi)ci .

the norm in the space is a natural measure of complexity

‖f‖2H =

p∑
j,i=1

K (xj , xi)cicj .
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Examples of pd kernels

Very common examples of symmetric pd kernels are
• Linear kernel

K (x , x ′) = x · x ′

• Gaussian kernel

K (x , x ′) = e−
‖x−x′‖2

σ2 , σ > 0

• Polynomial kernel

K (x , x ′) = (x · x ′ + 1)d , d ∈ N

For specific applications, designing an effective kernel is a
challenging problem.
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Kernel and Features

Often times kernels, are defined through a dictionary of features

D = {φj , i = 1, . . . ,p | φj : X → R, ∀j}

setting

K (x , x ′) =
p∑

i=1

φj(x)φj(x ′).
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Ivanov regularization

We can regularize by explicitly restricting the hypotheses space
H— for example to a ball of radius R.

Ivanov regularization

min
f∈H

1
n

n∑
i=1

V (f (xi), yi)

subject to
‖f‖2H ≤ R.

The above algorithm corresponds to a constrained optimization
problem.
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Tikhonov regularization

Regularization can also be done implicitly via penalization

Tikhonov regularizarion

arg min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λ ‖f‖2H .

λ is the regularization parameter trading-off between the two
terms.

The above algorithm can be seen as the Lagrangian
formulation of a constrained optimization problem.
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The Representer Theorem

An important result
The minimizer over the RKHS H, fS, of the regularized
empirical functional

IS[f ] + λ‖f‖2H,

can be represented by the expression

fn(x) =
n∑

i=1

ciK (xi , x),

for some (c1, . . . , cn) ∈ R.

Hence, minimizing over the (possibly infinite dimensional)
Hilbert space, boils down to minimizing over Rn.
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SVM and RLS

The way the coefficients c = (c1, . . . , cn) are computed depend
on the loss function choice.

RLS: Let Let y = (y1, . . . , yn) and Ki,j = K (xi , xj) then
c = (K + λnI)−1y.
SVM: Let αi = yici and Qi,j = yiK (xi , xj)yj
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Bayes Interpretation
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Regularization approach

More generally we can consider:

In(f ) + λR(f )

where, R(f ) is a regularizing functional.

Sparsity based methods
Manifold learning
Multiclass
...
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Summary

statistical learning as a foundational framework to predict
from data
a proxy for predictivity is the empirical error iff
generalization holds for the class of algorithms
stability and generalization are equivalent
regularization as a fundamental tool in learning algorithm
to ensure stability and generalization
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Generalization, Sample Error and Approximation Error

Generalization error is IS[fS]− I[fS].
Sample error is I[fS]− I[fH]
Approximation error is I[fH]− I[f0]
Error is I[fS]− I[f0] = (I[fS]− I[fH]) + (I[fH]− I[f0])
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Final (optional) Remarks
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Remarks: constrained optimization

Intelligent behavior (at least learning) consists of optimizing
under constraints. Constraints are key for solving
computational problems; constraints are key for prediction.
Constraints may correspond to rather general symmetry
properties of the problem (eg time invariance, space invariance,
invariance to physical units (π theorem), universality of
numbers and metrics implying normalization, etc.)
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ERM: conditions for well-posedness (stability) and
predictivity (generalization) in the case of regression
and classification

Theorem [Vapnik and Červonenkis (71), Alon et al (97),
Dudley, Giné, and Zinn (91)]

A (necessary) and sufficient condition for generalization (and
consistency) of ERM is that H is uGC.
Definition
H is a (weak) uniform Glivenko-Cantelli (uGC) class
if

∀ε > 0 lim
n→∞

sup
µ

PS

{
sup
f∈H
|I[f ]− IS[f ]| > ε

}
= 0.
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Key Theorem(s)

Uniform Glivenko-Cantelli Classes
We say that H is a uniform Glivenko-Cantelli (uGC) class, if for
all p,

∀ε > 0 lim
n→∞

P
{

sup
f∈H
|I[f ]− In[f ]| > ε

}
= 0.

A necessary and sufficient condition for consistency of ERM is
that H is uGC.
See: [Vapnik and Červonenkis (71), Alon et al (97), Dudley, Giné, and
Zinn (91)].

In turns the UGC property is equivalent to requiring H to have
finite capacity: Vγ dimension in general and VC dimension in
classification.
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Stability

notation: S training set, Si,z training set obtained replacing the
i-th example in S with a new point z = (x , y).

Definition
We say that an algorithm A has uniform stability β (is
β-stable) if

∀(S, z) ∈ Zn+1, ∀i , sup
z′∈Z
|V (fS, z ′)− V (fSi,z , z ′)| ≤ β.
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CV loo Stability

z = (x , y)
S = z1, ..., zn
Si = z1, ..., zi−1, zi+1, ...zn

CV Stability
A learning algorithm A is CV loo stable if for each n there exists
a β(n)CV and a δ(n)CV such that for all p

P
{
|V (fSi , zi)− V (fS, zi)| ≤ β

(n)
CV

}
≥ 1− δ(n)CV ,

with β(n)CV and δ(n)CV going to zero for n→∞.
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Kernel and Data Representation

In the above reasoning the kernel and the hypotheses space
define a representation/parameterization of the problem and
hence play a special role.

Where do they come from?

There are a few off the shelf choices (Gaussian,
polynomial etc.)
Often they are the product of problem specific engineering.

Are there principles– applicable in a wide range of situations–
to design effective data representation?
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