9.520 in 2015

Statistical Learning Theory
and
Applications

Class Times:

Monday and Wednesday 1pm-2:30pm
Units: 3-0-9 H,G

Location:

46-5193

Instructors: Carlo Ciliberto, Georgios Evangelopoulos, Maximilian Nickel, Ben Deen, Hongyi Zhang,
Steve Voinea, Owen Lewis, -

T. Poggio, L. Rosasco ~ ;

Web site: http://www.mit.edu/~9.520/

Office Hours:
Friday 2-3 pm in 46-5156, CBCL lounge (by appointment)

Email Contact :
9.520@mit.edu
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Class

http:/www.mit.edu/~9.520/

Class 3 (Wed, Sept 16): Mathcamps

e Functional analysis (~45mins)

~

Linear Algebra

Basic notion and definitions: matrix and
vectors norms, positive, symmetric,
invertible matrices, linear systems,
condition number.

& Multivariate Calculus:

(xtremal problems, differential, gradient. J

e Probability (~45mins)

/Functional Analysis

Linear and Euclidean spaces
scalar product, orthogonality

Hilbert spaces, function spaces

orthonormal bases, norms and semi-norms,
Cauchy sequence and complete spaces

and linear functional, Riesz representation
weorem, convex functions, functional calculus

~

_J

Probability Theory:

Random Variables (and related
concepts), Law of Large Numbers,
Probabilistic Convergence,
Concentration Inequalities.



http://www.mit.edu/~9.520/

9.520: Statistical Learning Theory and Applications,
Fall 2015

e Course focuses on regularization techniques, that provide a
theoretical foundation to high- dimensional supervised learning.
e Support Vector Machines, manifold learning, sparsity, batch and
online supervised learning, feature selection, structured

prediction and multitask learning.

e Optimization theory critical for machine learning (first order
methods, proximal/splitting techniques).

¢ In the final part focus on deep theory: deep learning networks,
theory of invariance, extension of convolutional layers, learning
invariance, connection of DCLNs with hierarchical splines,
possibility of theory.

The goal of this class is to provide the theoretical knowledge and
the basic intuitions needed to use and develop effective machine
learning solutions to a variety of problems. °



Class
http:/www.mit.edu/~9.520/

Rules of the game:

* problem sets (2)

* final project: you have to give us title + abstract before November 25th

* participation

* Grading is based on Psets (27.5%+27.5%) + Final Project (32.5%) + Participation
(12.5%)

Slides on the Web site (most classes on blackboard)
Staff mailing list is 9.520@mit.edu

Student list will be 9.520students@mit.edu
Please fill form!

Friday 2-3 pm in 46-5156,

: : CBCL lounge (by appointment)
send email to us if you want to be added Problem Set 1: 05 Oct (Class 8)

to mailing list Problem Set 2: 09 Nov (Class 18)
Final Project Decision: 25 Nov (Class 22)


http://www.mit.edu/~9.520/

Final Project

The final project can be

e a Wikipedia entry or

e problems for chapters of the textbook of the class or

e contributions to GURLs (GURLS: a Toolbox for Regularized
Least Squares Learning) or

® a research project.

For the Wikipedia article we suggest to post 1-2 pages (short)
using Wikipedia standard format (of course).

For the research project (either Application or Theory) you

should use the template on the Web site. i



Project: posting/editing article on Wikipedia
(past examples below)

e Kernel methods for vector output : hitp://en.wikipedia.org/wiki/
Kernel_methods_for_vector_output

e Principal component regression : hitp://en.wikipedia.org/wiki/Principal_component_regression
e Reproducing kernel Hilbert space : http://en.wikipedia.org/wiki/
Reproducing_kernel_Hilbert_space

e Proximal gradient methods for learning :
http://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning

e Regularization by spectral filtering : https://en.wikipedia.org/wiki/
Regularization_by_spectral_filtering

e Online

learning and stochastic gradient descent : hitp://en.wikipedia.org/wiki/Online_machine_learning
e Kernel embedding of distributions : hitp://en.wikipedia.org/wiki/
Kernel_embedding_of_distributions

e Vapnik—Chervonenkis theory : hitps://en.wikipedia.org/wiki/VC_theory

e Deep learning : http://en.wikipedia.org/wiki/Deep_learning

e Early stopping and regularization : http://en.wikipedia.org/wiki/Early_stopping

e Statistical learning theory : http://en.wikipedia.org/wiki/Statistical_learning_theory

e Representer theorem : http://en.wikipedia.org/wiki/Representer_theorem

e Regularization perspectives on support vector machines :
http://en.wikipedia.org/wiki/Regularization_perspectives_on_support_vector_machines
e Semisupervised

learning : http://en.wikipedia.org/wiki/Semi_supervised_learning
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e Representer theorem http //en W|k|ped|a org/W|k|/Representer theorem

e Regularization perspectives on support vector machines :
http://en.wikipedia.org/wiki/Regularization_perspectives_on_support_vector_machines

e Semisupervised

learning : http://en.wikipedia.org/wiki/Semi_supervised_learning

e Bayesian interpretation of regularization :
http://en.wikipedia.org/wiki/Bayesian_interpretation_of_regularization

e Regularized least squares (RLS) : http://en.wikipedia.org/wiki/User:Bdeen/sandbox

e Occam Learning (PAC Learning) : https://en.wikipedia.org/wiki/Occam_learning

e Multiple Kernel Learning: https://en.wikipedia.org/wiki/Multiple_kernel_learning

e Loss Function for Classification : https://en.wikipedia.org/wiki/Loss_functions_for_classification
e Online Machine Learning : https://en.wikipedia.org/wiki/Online_machine_learning

e Sparse PCA : https://en.wikipedia.org/wiki/Sparse_PCA

e Distribution Learning Theory : https://en.wikipedia.org/wiki/Distribution_learning_theory
e Sample Complexity : https://en.wikipedia.org/wiki/Sample_complexity

e Hyper Basis Function Network : https://en.wikipedia.org/wiki/Hyper_basis_function_network
e Diffusion Map : https://en.wikipedia.org/wiki/Diffusion_map

e Matrix Regularization: https://en.wikipedia.org/wiki/Matrix_regularization

e Mtheory

(Learning Framework) : https://en.wikipedia.org/wiki/MTheory_(

learning_framework)

e Feature Learning : hitps://en.wikipedia.org/wiki/Feature_learning

Done but not submitted in (public) Wikipedia

e Lasso Regression : https://en.wikipedia.org/wiki/User:Rezamohammadighazi/sandbox

e Unsupervised Learning: Dim. Red. : https://en.wikipedia.org/wiki/User:lloverobotics/sandbox
e Regularized Least Squares : hitps://en.wikipedia.org/wiki/User:Yakirrr

e Error Tolerance (PAC Learning): https://en.wikipedia.org/wiki/User:Alex_e_e_alex/sandbox



Done but not submitted in (public) Wikipedia

e L asso Regression : hitps://en.wikipedia.org/wiki/User:Rezamohammadighazi/sandbox

e Unsupervised Learning: Dim. Red. : hitps://en.wikipedia.org/wiki/User:lloverobotics/sandbox
e Regularized Least Squares : https://en.wikipedia.org/wiki/User:Yakirrr

e Error Tolerance (PAC Learning): https://en.wikipedia.org/wiki/User:Alex_e_e_alex/sandbox
e Desnity Estimation : https://en.wikipedia.org/wiki/User:Linjing1119/sandbox

e Matrix Completion : https://en.wikipedia.org/wiki/User:Milanambiar/sandbox

e Multiple Instance Learning : we have Wiki markup

e Uniform Stability and Generalization in Learning Theory :
https://en.wikipedia.org/wiki/Draft:Uniform_Stability_and_Generalization_in_learning_theory

e Generalization Error: https://en.wikipedia.org/wiki/User:Agkonings/sandbox

e Tensor Completion : https://en.wikipedia.org/wiki/User:Aali9520/Tensor_Completion

e Structured Sparsity Regularization : hitps://en.wikipedia.org/wiki/User:A.n.campero/sandbox
e Proximal Operator for Matrix Function : hitps://en.wikipedia.org/wiki/User:Lovebeloved/sandbox
e Sparse Dictionary Learning : we have pdf

e PAC Learning : https://en.wikipedia.org/wiki/User:Scott.linderman/sandbox

e Convolutional Neural Networks : https://en.wikipedia.org/wiki/User:Wfwhitney/sandbox

e Frames/Basis Functions: htips://en.wikipedia.org/wiki/Frame_(linear_algebra)



Class
http:/ www.mit.edu/~9.520/

e The pace is fast on purpose...

e Big picture will be provided today and repeated at the end of the
course...

e Be ready for a lot of material: this is MIT.

e If you need a refreshment in Fourier analysis you should not be in this
class.

e We do not compare the approach in this class to others —- such as
Bayesian one —- because we do not like to complain too much about
others.


http://www.mit.edu/~9.520/

9.520 in 2015

Credits Vs Listeners

listener

25%

unsure credits
13.2% 61.8%
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Summary of today’s overview

Motivations for this course: a golden age for new Al (and the
key role of Machine Learning)

Statistical Learning Theory

Success stories from past research in Machine Learning:
examples of engineering applications

In this machine learning class: computer science and
neuroscience, developing a theory for deep learning.



Summary of today’s overview

e Motivations for this course: a golden age for new Al (and the
key role of Machine Learning)



The problem of intelligence:
how it arises in the brain and how to replicate it
IN machines

The problem of intelligence is one of the great problems in science,
probably the greatest.

Research on intelligence:

® g great intellectual mission: understand the brain, reproduce it in machines
e will help develop intelligent machines

These advances will be critical to of our society’s
® future prosperity

® cducation, health, security



The Center for

Brains, Minds and Machines

MIT Harvard

Boyden, Desimone ,Kaelbling , Kanwisher,
Katz, Poggio, Sassanfar, Saxe,
Schulz, Tenenbaum, Ullman, Wilson,
Rosasco, Winston

Blum, Kreiman, Mahadevan,
Nakayama, Sompolinsky,
Spelke, Valiant

Stanford Cornell

Goodman

Rockefeller

Freiwald

Allen Institute ‘
Koch

Hirsh

Wellesley

Howard

Manaye, Chouikha,
Rwebargira

Puerto Rico

Bykhovaskaia, Ordonez,

Hunter

Epstein,Sakas,
Chodorow
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Industrial partners
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Metta, Rosasco,

Hebrew U.

MPI
Sandini Shashua Buelthoff
Genoa U Weizmann NCBS
Verri Ullman

Raghavan
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Boston

Dynamics
Raibert

DeepMind

Orcam
Shashua

Rethink Robotics

Hassabis

MobilEye
Shashua

Brooks




At the core of the problem of
Intelligence
Is the problem of

Learning

brainsc.\ I
and

machines

Learning is the gateway to
understanding the brain and to
making intelligent machines.

Problem of learning:

a focus for
o math
o computer algorithms
o Neuroscience



Theory of Learning

® | earning is now the lingua franca of Computer Science
® | earning is at the center of recent successes in Al over the last 15
years

e Now and the next 10 year will be a golden age for technology
based on learning: Google, Siri, Mobileye, Deep Mind etc.

® [he next 50 years will be a golden age for the science and
engineering of intelligence. Theories of learning and their tools will

be a key part of this.
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e The pace is fast on purpose, otherwise we get too bored.

e Big picture will be provided today and repeated at the end of the
course. Listen carefully.

e Be ready for a lot of material: this is MIT.

e If you think that the course is disorganized, it means you have not
really understood it.a

e | am passionate about ML and | will show it today. If you think Lorenzo
is not, complain to him, not to me!

e Notation is kept inconsistent throughout the course on purpose to
train you to read and understand different papers with different
notations.

e If you need a refreshment in Fourier analysis you should not be in this
class.

e We do not compare the approach in this class to others -- such as
Bayesian one —- because we do not like to complain too much about
others.


http://www.mit.edu/~9.520/

Class http://www.mit.edu/~9.520/: big picture

e Classes 2-9 are the core: foundations + regularization

e Classes 10-20 are state-of-the-art topics for research in — and
applications of — ML

e Classes 21-26 are mostly new, about multilayer networks
(DCLNSs)


http://www.mit.edu/~9.520/

Summary of today’s overview

e Statistical Learning Theory



Learning:
Math, Engineering, Neuroscience

Theorems on foundations of learning

{
fla) =" K (i, %)
1=1 i

N \.1,_ \

Predictive algorithms

* Bioinformatics
ENGINEERING « Computer vision

APPLICATIONS « Computer graphics, speech
synthesis, creating a virtual actor

How visual cortex works




Statistical Learning Theory

Theorems on foundations of learning

Predictive algorithms




Statistical Learning Theory:
supervised learning

— —
—

INPUT = — QOUTPUT
—
— —

Given a set of | examples (data)

{(x19y1)9 (x2,y2),...,()€€,y£)}

Question: find function f such that
JS(x)=y

is a good predictor of y for a future input x (fitting the data is not enough!)



Statistical Learning Theory:
prediction, not curve fitting

= function f -—

@ -=datafromf | | / \ /
’ -’___---"- T T —— n;
. T

= approximation of f

Generalization:
estimating value of function where there are no data (good generalization means

predicting the function well; important is for empirical or validation error to be a good
proxy of the prediction error)



Statistical Learning Theory:
supervised learning

Classification




Statistical Learning Theory:
part of mainstream math not just statistics
(Valiant, Vapnik, Smale, Devore...)

BULLETIN (Now Saries) OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 39, Number 1. Pages 1-49

S T30 01) 009235

Article electronically published on Octaober 5, 2001

ON THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AXD STEVE SMALE>

The problem of learming 15 arguably at the
very core of the problem of mtelligence,
both bi

T. Pogzio and C.R. Shelton

INTRODUCTION

(1) A main theme of this report is the 1olatlon~lnp of «lppl'o‘(llllﬂlloll to learning and
the primary role of sampling (induct] : ‘v to emphasize relations
of the theory of learning to th¢ mainstream ot umtlncumtu_\ jn particular, there
are large roles for probability theo . ek past squares, and for
tools and ideas from linear algebra and linear analysis. An advantage of doing this
1= that communication is facilitated and the power of core mathematics is more
easily brought to bear.




Statistical Learning Theory:
supervised learning

There is an unknown probability distribution on the product
space Z = X x Y, written u(z) = u(x, y). We assume that X is
a compact domain in Euclidean space and Y a bounded subset
of R. The training set S = {(X1,¥1),.... Xn, ¥n)} = {21, ...Zn}

consists of n samples drawn i.i.d. from .
'H is the hypothesis space, a space of functions f: X — Y.

A learning algorithm is a map L : Z" — H that looks at S and
selects from H a function fs : X — y such that fs(x) ~ y in a
predictive way.



Statistical Learning Theory:
the learning problem should be well-posed

{

A problem is well-posed if its solution

exists, unique and J. S. Hadamard, 1865-1963

IS stable, eg depends continuously on the data (here
examples)



Statistical Learning Theory:
theorems extending foundations of learning
theory

Conditions for generalization in learning theory

have deep, almost philosophical, implications:

they can be regarded as equivalent conditions that
guarantee a
theory to be predictive (that is scientific)

» theory must be chosen from a small set

» theory should not change much with new data...most of the time



A classical algorithm in Statistical Learning Theory:
Kernel Machines eg Regularization in RKHS

fel

14 2
min ;E V(f(x)-y)+h | f HK_

implies

J(x) = E:laiK(Xﬂxi)

Equation includes splines, Radial Basis Functions and SVMs
(depending on choice of K and V).

For a review, see Poggio and Smale, 2003; see also Schoelkopf and Smola,
2002; Bousquet, O., S. Boucheron and G. Lugosi; Cucker and Smale; Zhou and
Smale...



Statistical Learning Theory:
classical algorithms: Regularization

19 >
mln-;lzl V(f(xi)_yi)'l'}L HfHK

feHd

has a Bayesian interpretation:
data term is a model of the noise and the stabilizer is a prior on the hypothesis
space of functions f. That is, Bayes rule

" g P[Dqlf] PIS)

PLfIDg] = B(Dy)

leads to

1 (L S = F )2+ 713
Plf|D¢] = 77,7, (272'2 L ")
T T




Statistical Learning Theory:
classical algorithms: Regularization

Classical learning algorithms: Kernel Machines (eg Regularization in RKHS)

14 2
min ;E V(f(x)-y)+M | f HK_

fel

J(x) = E:laiK(Xﬂxi)

Remark (for later use):

Classical kernel machines correspond to
shallow networks




A present challenge:
a theory for Deep Learning

MSIA (2015) - 4.94%

VGG (2014) - 6.5% ! + Opfimized PRelU
Boidu (2015) - 5.33% + Improved (random) initiclzation

Gooouﬂd (2014) = 6.67%
* Inception module
* Mulli-scale convolutions (including 1x1 fillers)

AlexNet (2012) - 15.3%
Clarifai (2013) - 11.7%




Statistical Learning Theory:
note

Two connected and overlapping strands in learning theory:

 Bayes, hierarchical models, graphical models...

O Statistical learning theory, regularization



Summary of today’s overview

® Success stories from past research in Machine Learning:
examples of engineering applications



Supervised learning

Since the introduction of supervised learning techniques 20 years
ago, Al has made significant (and not well known) advances in a
few domains:

Vision

Graphics and morphing

Natural Language/Knowledge retrieval (\Watson and Jeopardy)
Speech recognition (Nuance, Microsoft, Google)

Games (Go, chess, Atari games...)

Semiautonomous driving

36



Learning

{ . .
f@) =3 K (xix) Theorems on foundations of learning
1=1 i

N

Predictive algorithms

Sung & Poggio 1995, also Kanade&
Baluja....

How visual cortex works




Engineering of Learning

Sung & Poggio 1995







Engineering of Learning

Face detection has been
available in digital cameras for
a few years now




Engineering of Learning

People detection

Papageorgiou&Poggio, 1997, 2000
also Kanade&Scheiderman




Engineering of Learning

O falalsld
LT

Pedestrian detection

Papageorgiou&Poggio, 1997, 2000
also Kanade&Scheiderman




Engineering of Learning

il Pedestrian and car detection
1 are also “solved” (commercial
systems, MobilEye)




Recent progress in Al
and
machine learning

44



‘Why now: recent progress in Al










Why now: very recent progress in Al
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Pedestrian accidents occur every day
in our increasingly intensive traffic environment.

Center for Brains,
Minds & Machines




Why now: very recent progress in Al







G2 CBMM Summer School Schedule

Center for Brans Asgust la‘w&"m 2
Mnds & Macmines Orgmized by the Center for Bradns, Minds, and Machines
At the Marine Biology Lab at Woods Hole

Morning 912 Aftersoon 1:30-5:30 Evening 8-9
Th 13 Reception - SPM - Swope
F 14 Intmductioa Student introductions Project introdections
Sa 15 Linesr algebra, probability Neuroscience, programming Project discussioa
Su 16 iCub, Google Glass Dinner - &30 - Swope
M 17 Computational newrcecience/ Biological and compaer vision Larty Abbott
Propagation of sensory repmsentatioas  Hm DiCado
in corex-like deep architectur s
Gabriel KeimanHaim Sompokinsky
Tu 18 Cognitive Neurcscience Computer vision, deep leaming Tom Mitchell
and Face Recogaition Andwi Bactu
Wiarich Foeiwald, Nancy Kaowisher
W 19  Machine learning Machine learning Demis Hasabis
Lomazo Rossco Lomso Rosssco
Th* X0  Swrya Ganguli Robotics A ftermoon
F 21  Computational cogsci Church
Josh Terenbeum, Tomer Ullman Tooser Ullman
Sa 2
Su 23 Martha's Vineyard trip
M 24 Memory Al / Visica Eero Simonce [
Mut Wilsos, Aude Ofive Shimon Ullman
Tu 25 1 Psychophy sics and mTurk Dorin Comaniciu
Lz Spelie, Alda Mastin Layls bk, Tomes Ullman

Neural data analysis

:
|

Th 27

F* 28

Sa 29

St X0

M 3 Amnca Shashua

Tu 1

W 2 Swedemt presentations Closing moeption - TPM
wk  socal  paml
project  tuoeial

*Starmed days will featere a journal club.

Talks (red) are in Lillie Audticrium.
Tetorials and Projects (ocange, green) ame in Loeb 306,

N NS O O B

|



Some other examples of
past ML applications
Computer Vision from my Iab

Face detection
Pedestrian detection
Scene understanding
Video categorization
Video compression
« Pose estimation
Graphics
Speech recognition
Speech synthesis
Decoding the Neural Code
Bioinformatics
Text Classification
Artificial Markets
Stock option pricing

55



Decoding the neural code: Matrix-like read-out from the brain

Perceived / reported object

[l = D)

=
| ==p-Neuronal pattern
> ¢ Real-time

accuracy

Amplify / filter

= Predicted
object percept: s

e

140-190 ms »

» G
120-160 ms .
v
. ’
100130 ma PEC > (N
; 40-60 ms
» 30-50 ma }
LGN 80-80ms o
. w
~ V4 §0-70 ms
. 1 1 -
ound » 70550 ms 4oy
20-40 ms ! AT ' u
-
80-100 ms

- T0 finger » 160-220 ms



The end station of the ventral stream
In visual cortex is IT

of command

Categorical judgments, 140-190 m
decision making

120-160 m:

Simple visual forms,
edges, comers

% V4 -
P =

.;-‘ adiate visual
' forms, feature
H cbject
faces, objects
\
e To spinal cord
‘o finger muscle e 160-220 ms

180-260 ms



Reading-out the neural code in AIT

!

/7 objects, |H *] HEEEREER
8 classes

|
|
S S EHOESE |
EEEEEEEE |

NEEESEENERE]
EeE E e EEE RS

[TTTTTTTRNNONI

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005




Recording at each recording site during passive viewing

time — 100 ms{100 ms

/7 visual objects
* 10 presentation repetitions per object
* presentation order randomized and counter-balanced



Example of one AIT cell
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‘m s | m lem

(s / S)UNo2) 8suodsal Jun-NwW [eu



Learning: read-out from the brain

— —
—
—
— —

From a set of data (vectors of activity of n neurons (x) and object label (y)

{(xlayl)a(xzayz)a---a(xwyf)}

Find (by training) a classifier eg a function f such that  f(x) =y

is a good predictor of object label y for a future neuronal activity x



Decoding the neural code ... using a classifier

cat/dog
Population activity ' human face
| | || | neuron 1 r_“]
AL toys
food
monkey face

white box contours

hand/body

Learning
from (Xx,y) |
palrs vehicles

Categorization y = {1 yuus ,8}

8 groups




We can decode the brain’s code and read-out from neuronal populations:
reliable object categorization (>90% correct) using ~200 arbitrary AIT “neurons”

Categorization

Vehicle Toy

Body

Video speed: 1 Human Face

frame/sec

Monkey Face
Vehicle

Food

Box

Cat/Dog

Actual presentation
rate: 5 objects/sec

Hung, Kreiman, Poggio, DiCarlo. Science 2005



We can decode the brain’s
code and read-out from
neuronal populations:

reliable object categorization
using ~100 arbitrary AIT sites

 [100-300 ms] interval

« 50 ms bin size

100 % -

50 % A

Classification performance

chance (1/8)

1 4 16 64 256

Number of sites



Learning: image analysis

= Bear (0° view)

= Bear (45° view)




Learning: image synthesis

UNCONVENTIONAL GRAPHICS

O =0° view =

O = 45° view =






Learning: image synthesis

3D Reconstruction from a Single Image

Blanz and Vetter,
MPI
SigGraph ‘99



Learning: image synthesis

Neue Ansichten aus einem eizelnen Bild

Voroge

Rekonstrukhion
ohne Texturexirakihon

Mit Texturexhrckion
und Mimik

Blanz and Vetter,
MPI
SigGraph ‘99



Mary101

A- more in 2 moment

Tony Ezzat,Geiger, Poggio, SigGraph 2002



1. Learning

System learns from 4 mins
of video face appearance
(Morphable Model) and
speech dynamics of the
person

2. Run Time

For any speech input the system
provides as output a synthetic video

stream
Phone Stream
Trajectory
Synthesis Phonetic Models
MMM Image Prototypes
|

I QI " I






B-Dido



C-Hikaru



D-Denglijun



E-Marylin



F-Katie Couric



http://people.csail.mit.edu/tonebone/research/mary101/news/300tdy_couric_mitvideo_020520.asf%0A




H-Rehema






A Turing test: what is real and what is synthetic?

L-real-synth



A Turing test: what is real and what is synthetic?

Experiment # subjects | % correct | t p<
- Single pres. 22 M. 3% 1243 [ 0.3 |
Fast single pres. | 21 52.1% 0.619 | 0.5

" Double pres. 2 -

Table 1: Levels of correct identification of real and synthetic se-

quences. t represents the value from a standard t-test with signifi-
cance level of p<.

Tony Ezzat,Geiger, Poggio, SigGraph 2002



Summary of today’s overview

e (Our machine learning class: science of intelligence, learning
and the brain, CBMM.



What is this? | L _ '

ﬁ m“n\\

What does Huelhan think about Joel's thoughts about her?

il



Intelligence and Turing** Questions

* Intelligence —> Human Intelligence

- (Human) Intelligence: one word, many problems

« A CBMM mission: define and “answer” these
Turing** Questions

85



Turing** Questions
.

\theor/ m -f\
't LT~ @ — A
/ V\—‘ l

. i t B
’ i _
“YIR/E 3 - {
\ e 0 X
. . il

The challenge is to develop computational models that
answer questions about images and videos such as
what is there / who is there / what is the person doing
and eventually more difficult questions such as

who is doing what to whom?

- what happens next?

at the computational, psychophysical and neural levels.




Object recognition




The who question: face recognition

from experiments to theory
(Workshop, Sept 4-5, 2015)

Neural Circuits of
Intelligence

ML AL AM

Visual
Intelligence

orientation




Extended I-theory

Learning of invariant&selective Representations

MSRA (2015) - 4.94%

VGG (2014) - 6.8% 4 : ww"mum
Boidu (2015) - 5.33% * Improved (random) inttickzation

GoogleNet (2014) - 6.67%
+ Inception module
* Multi-scale convolutions (including 1x) fillers)

AlexNet (2012) - 15.3%
Clarifai (2013) < 11.7%

r .'.' ad a0 . oo — y ” rtar '¥; ..‘
175 Complex cets () Simple cells 4 \-
| '
| Mainroutes e TUNING \
[ | -

{—— Dypass rogtes e MAX

89



i-theory: invariant representations lead to lower sample complexity
for a supervised classifier

Theorem (translation case) * 1001 I —x
Consider a space of images of |
dimensions dXd pixels )
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Dendrites of a complex cells as simple cells...

Active properties in the dendrites of the complex cell




| am now more in favor of
deep learning as models of
parts of the brain

WHY?



The background:
DCLNs (Deep Convolutional Learning Networks)

are doing very well



In Poggio and Smale (2003) we wrote “A comparison with real
brains offers another, and probably related, challenge to learning
theory. The ‘learning algorithms' we have described in this paper
correspond to one-layer architectures. Are hierarchical
architectures with more layers justifiable in terms of learning
theory? Twelve years later, a most interesting theoretical question
that still remains open, both for machine learning and
neuroscience, Is indeed why hierarchies.



What if DCLNs are the secret of the brain?

Is supervised training

with millions of labeled

examples biologically
plausible?



Implicitly Labeled Examples (ILES):

Interesting research here!

Deep Convolutional Learning Networks like HMAX can be trained
effectively with large numbers of labeled examples. This may be
biologically plausible if we can show that ILEs could be be used to
the same effect. What needs to be done is to train, with a plausible
number of ILEs, Dbiologically plausible multilayer architectures. For
instance, for visual cortex take into account known parameters, such
as receptive field sizes, related range of pooling and especially
eccentricity dependence of RF.



Through a new theory for DCLNs to
the next frontier in machine learning

The first phase (and successes) of ML:

supervised learning: n— oo

-~ y , \

The next phase of ML: unsupervised and

implicitely supervised learning n—s1
of invariant representations for learning:



