Due: 5/8/25

Spin glass

1. Mean-Field Edwards-Anderson Model with Ferromagnetic Bias: Consider the Hamiltonian

$$H = -\sum_{\langle i,j\rangle} J_{ij}\sigma_i\sigma_j - h_0 \sum_i \sigma_i ,$$

where each spin has z neighbors. The interactions $\{J_{ij}\}$ are independently distributed with mean \overline{J}/z and variance J^2/z .

- (a) Within the mean field approximation, what is the distribution of the effective field \tilde{h} ?
- (b) Show that the self-consistent equation for $m = \overline{\langle \sigma \rangle}$ takes the form

$$m = \int dx \frac{e^{-x^2/2}}{\sqrt{2\pi}} \tanh[\beta(h_0 + \overline{J}m + J\sqrt{q}x)],$$

and derive the corresponding equation for $q = \overline{\langle \sigma \rangle^2}$.

- (c) At the disordered to glass transition, q becomes non-zero, while m stays zero. Find the transition temperature $T_c = 1/\beta_c$, and the critical behaviors of q with $(T_c T)$ on the ordered side.
- (d) At the disordered to ferromagnetic transition m and q switch from zero to non-zero values. Find the transition temperature $T_c = 1/\beta_c$, and the critical behaviors of m and q with $(T_c T)$ on the ordered side.
- (e) At the spin glass to ferromagnetic transition m switches from zero to non-zero value at a finite value of q. Find the transition temperature $T_c = 1/\beta_c$, and the critical behaviors of m and q with $(T_c T)$ on the ordered side.

2. Replica analysis of the Sherrington-Kirkpatrick model Model with Ferromagnetic Bias Consider the Hamiltonian

$$H = -\sum_{i < j=1}^{N} J_{ij} \sigma_i \sigma_j - h_0 \sum_i \sigma_i ,$$

where each spin is coupled to all other $(N-1) \approx N$ spins with interaction $\{J_{ij} \text{ that are independently distributed with } \langle J_{ij} \rangle = \overline{J}/N \text{ and variance } \langle J_{ij}^2 \rangle_c = J^2/N.$

- (a) Perform the disorder average of $\overline{Z^n}$ using the replica trick. Show that in addition to the quadratic term in $Q_{\alpha\beta}$, a linear coupling to $\sum_{\alpha} m_{\alpha}$ appears, where $m_{\alpha} = \frac{1}{N} \sum_{i} \sigma_{i}^{\alpha}$.
- (b) Using the replica symmetric (RS) ansatz $Q_{\alpha\beta} = q$ for $\alpha \neq \beta$ and $m_{\alpha} = m$ for all α , find the effective free energy f(m,q).
- (c) Derive the coupled saddle-point equations for m and q.

- **3.** (Optional:) Instability of the mean field solution: For this problem set $\overline{J} = 0$, and (except in calculating susceptibility) $h_0 = 0$.
- (a) Show that the zero-field susceptibility satisfies $\chi = \beta(1-q)$.
- (b) Using the RS expression for free energy, compute the internal energy E in the limit $h_0 = \overline{J} = 0$.
- (c) Show that as $T = 1/\beta \to 0$, $q \approx 1 4/(\sqrt{2\pi}T/J)$.
- (d) Show that the RS energy goes down linearly with T for $T > T_c$, and that it attains a value E(T=0) > J, which must imply a non-monotonic form of the RS energy as function of temperature, and hence a thermodynamic instability.
- (e) By considering small fluctuations around the RS solution in the overlap matrix $Q_{\alpha\beta}$, it can be shown that the most important eigenvalue of the stability matrix in the $n \to 0$ limit, is the so-called replicon eigenvalue

$$\lambda_{\rm R} = 1 - \beta^2 J^2 \int Dx \operatorname{sech}^4(\beta J \sqrt{q} x).$$

Show that this implies that the RS solution is always unstable.
