
8.334: Statistical Mechanics II Problem Set # 4 Due: 4/10/25

Transfer Matrices & Duality

This problem set is partly intended to introduce the transfer matrix method, which

is used to solve a variety of one-dimensional models with near-neighbor interactions. As

an example, consider a linear chain of N Ising spins (σi = ±1), with a nearest–neighbor

coupling K, and a magnetic field h. To simplify calculations, we assume that the chain

is closed upon itself such that the first and last spins are also coupled (periodic boundary

conditions), resulting in the Hamiltonian

−βH = K (σ1σ2 + σ2σ3 + · · ·+ σN−1σN + σNσ1) + h
N
∑

i=1

σi . (1)

The corresponding partition function, obtained by summing over all states, can be ex-

pressed as the product of matrices, since

Z =
∑

σ1=±1

∑

σ2=±1

· · ·
∑

σN=±1

N
∏

i=1

exp

[

Kσiσi+1 +
h

2
(σi + σi+1)

]

≡ tr [〈σ1|T |σ2〉〈σ2|T |σ3〉 · · · 〈σN |T |σ1〉] = tr
[

TN
]

;

(2)

where we have introduced the 2× 2 transfer matrix T , with elements

〈σi|T |σj〉 = exp

[

Kσiσj +
h

2
(σi + σj)

]

, i.e. T =

(

eK+h e−K

e−K eK−h

)

. (3)

The expression for trace of the matrix can be evaluated in the basis that diagonalizes

T , in which case it can be written in terms of the two eigenvalues λ± as

Z = λN
+ + λN

− = λN
+

[

1 + (λ−/λ+)
N
]

≈ λN
+ . (4)

We have assumed that λ+ > λ−, and since in the limit of N → ∞ the larger eigenvalue

dominates the sum, the free energy is

βf = − lnZ/N = − lnλ+. (5)

Solving the characteristic equation, we find the eigenvalues

λ± = eK coshh±
√

e2K sinh2 h+ e−2K . (6)



We shall leave a discussion of the singularities of the resulting free energy (at zero temper-

ature) to the next section, and instead look at the averages and correlations in the limit

of h = 0.

To calculate the average of the spin at site i, we need to evaluate

〈σi〉 =
1

Z

∑

σ1=±1

∑

σ2=±1

· · ·
∑

σN=±1

σi

N
∏

j=1

exp (Kσjσj+1)

≡
1

Z
tr [〈σ1|T |σ2〉 · · · 〈σi−1|T |σi〉σi〈σi|T |σi+1〉 · · · 〈σN |T |σ1〉]

=
1

Z
tr
[

T i−1σ̂zT
N−i+1

]

=
1

Z
tr
[

TN σ̂z

]

,

(7)

where have permuted the matrices inside the trace, and σ̂z =

(

1 0
0 −1

)

, is the usual 2×2

Pauli matrix. One way to evaluate the final expression in Eq.(7) is to rotate to a basis

where the matrix T is diagonal. For h = 0, this is accomplished by the unitary matrix

U = 1√
2

(

1 1
1 −1

)

, resulting in

〈σi〉 =
1

Z
tr

[(

λN
+ 0
0 λN

−

)(

0 1
1 0

)]

=
1

Z

(

0 λN
+

λN
− 0

)

= 0. (8)

Note that under this transformation the Pauli matrix σ̂z is rotated into σ̂x =

(

0 1
1 0

)

.

The vanishing of the magnetization at zero field is of course expected by symmetry.

A more interesting quantity is the two-spin correlation function

〈σiσi+r〉 =
1

Z

∑

σ1=±1

∑

σ2=±1

· · ·
∑

σN=±1

σiσi+r

N
∏

j=1

exp (Kσjσj+1)

=
1

Z
tr
[

T i−1σ̂zT
rσ̂zT

N−i−r+1
]

=
1

Z
tr
[

σ̂zT
rσ̂zT

N−r
]

.

(9)

Once again rotating to the basis where T is diagonal simplifies the trace to

〈σiσi+r〉 =
1

Z
tr

[(

0 1
1 0

)(

λr
+ 0
0 λr

−

)(

0 1
1 0

)(

λN−r
+ 0

0 λN−r
−

)]

=
1

Z
tr

(

λN−r
+ λr

− 0

0 λN−r
− λr

+

)

=
λN−r
+ λr

− + λN−r
− λr

+

λN
+ + λN

−
.

(10)

Note that because of the periodic boundary conditions, the above answer is invariant under

r → (N − r). We are interested in the limit of N ≫ r, for which

〈σiσi+r〉 ≈

(

λ−
λ+

)r

≡ e−r/ξ, (11)



with the correlation length

ξ =

[

ln

(

λ+

λ−

)]−1

= −
1

ln tanhK
. (12)

The above transfer matrix approach can be generalized to any one dimensional chain

with variables {si} and nearest neighbor interactions. The partition function can be written

as

Z =
∑

{si}
exp

[

N
∑

i=1

B(si, si+1)

]

=
∑

{si}

N
∏

i=1

eB(si,si+1), (13)

where we have defined a transfer matrix T with elements,

〈si|T |sj〉 = eB(si,sj). (14)

In the case of periodic boundary conditions, we then obtain

Z = tr
[

TN
]

≈ λN
max. (15)

Note that for N → ∞, the trace is dominated by the largest eigenvalue λmax. Quite

generally the largest eigenvalue of the transfer matrix is related to the free energy, while

the correlation lengths are obtained from ratios of eigenvalues. Frobenius’ theorem states

that for any finite matrix with finite positive elements, the largest eigenvalue is always

non-degenerate. This implies that λmax and Z are analytic functions of the parameters

appearing in B, and that one dimensional models can exhibit singularities (and hence a

phase transition) only at zero temperature (when some matrix elements become infinite).

While the above formulation is framed in the language of discrete variables {si}, the

method can also be applied to continuous variables as illustrated in the following problems.

As an example of the latter, let us consider three component unit spins ~si = (sxi , s
y
i , s

z
i ),

with the Heisenberg model Hamiltonian

−βH = K

N
∑

i=1

~si · ~si+1. (16)

Summing over all spin configurations, the partition function can be written as

Z = tr
~si
eK
∑

N

i=1
~si·~si+1 = tr

~si
eK~s1·~s2eK~s2·~s3 · · · eK~sN ·~s1 = trTN , (17)



where 〈~s1|T |~s2〉 = eK~s1·~s2 is a transfer function. Quite generally we would like to bring T

into the diagonal form
∑

α λα|α〉〈α| (in Dirac notation), such that

〈~s1|T |~s2〉 =
∑

α

λα 〈~s1|α〉 〈α|~s2〉 =
∑

α

λαfα(~s1)f
∗
α(~s2). (18)

From studies of plane waves in quantum mechanics you may recall that the exponential of

a dot product can be decomposed in terms of the spherical harmonics Yℓm. In particular,

eK~s1·~s2 =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

4πiℓjℓ(−ik)Y ∗
ℓm(~s1)Yℓm(~s2), (19)

is precisely in the form of Eq.(18), from which we can read off the eigenvalues λℓm(k) =

4πiℓjℓ(−ik), which do not depend on m. The partition function is now given by

Z = trTN =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

λN
ℓm =

∞
∑

ℓ=0

(2ℓ+ 1)λN
ℓ ≈ λN

0 , (20)

with λ0 = 4πj0(−ik) = 4πsinhK/K as the largest eigenvalue. The second largest eigen-

value is three fold degenerate, and given by λ1 = 4πj1(−ik) = 4π
[

coshK/K − sinhK/K2
]

.

1. The spin–1 model: Consider a linear chain where the spin si at each site takes on

three values si = −1, 0, +1. The spins interact via a Hamiltonian

−βH =
∑

i

Ksisi+1.

(a) Write down the transfer matrix 〈s|T |s′〉 = eKss′ explicitly.

(b) Use symmetry properties to find the largest eigenvalue of T and hence obtain the

expression for the free energy per site (lnZ/N).

(c) Obtain the expression for the correlation length ξ, and note its behavior as K → ∞.

(d) If we try to perform a renormalization group by decimation on the above chain we find

that additional interactions are generated. Write down the simplest generalization of βH

whose parameter space is closed under such RG.

********

2. Potts chain (RG): Consider a one-dimensional array of N Potts spins si = 1, 2, · · · , q,

subject to the Hamiltonian −βH = J
∑

i δsi,si+1
.



(a) Using the transfer matrix method (or otherwise) calculate the partition function Z,

and the correlation length ξ.

(b) Is zero temperature a critical point (infinite correlation length) for antiferromagnetic

couplings J < 0?

(c) Construct a renormalization group (RG) treatment by eliminating every other spin.

Write down the recursion relations for the coupling J , and the additive constant g.

(d) Discuss the fixed points, and their stability.

********

3. (Optional) Helical Potts model: Consider a variant of the chain of 3-state Potts

spins si = 1, 2, 3, subject to the Hamiltonian

−βH =

N
∑

i=1

[

Kδsi,si+1
+ Lδsi,si+1+1

]

.

For L > K, the ground state switches to alternating spins {1, 2, 3, 1, 2, 3, · · ·}, encoding a

helical (chiral) preference to the sequence {1, 3, 2, 1, 3, 2, · · ·}.

(a) Construct the transfer matrix of this Hamiltonian, and find its eigenvalues.

(b) Construct a renormalization group (RG) treatment by eliminating every other spin.

Write down the recursion relations for the coupling’ K, L, and the additive constant g.

(c) Construct the recursion relation K ′(K,L) and L′(K,L) in d–dimensions for b = 2,

using the Migdal–Kadanoff bond moving scheme.

(d) For d = 2, obtain the fixed point K∗ for L∗ = 0.

(e) From the above RG equations, is a finite helicity, L 6= 0, expected change the nature

of the phase transition of the 3 state Potts model?

********

4. Clock model: Each site of the lattice is occupied by a q-valued spin si ≡ 1, 2, · · · , q,

with an underlying translational symmetry modulus q, i.e. the system is invariant under

si → (si + n)modq. The most general Hamiltonian subject to this symmetry with nearest–

neighbor interactions is

βHC = −
∑

<i,j>

J (|(si − sj)mod q|) ,



where J(n) is any function, e.g. J(n) = J cos(2πn/q). Potts models are a special case of

Clock models with full permutation symmetry; the Ising model is obtained for q = 2.

(a) For a closed linear chain of N clock spins subject to the above Hamiltonian show that

the partition function Z = tr [exp(−βH)] can be written as

Z = tr [〈s1|T |s2〉〈s2|T |s3〉 · · · 〈sN |T |s1〉] ;

where T ≡ 〈si|T |sj〉 = exp [J(si − sj)] is a q × q transfer matrix.

(b) Write down the transfer matrix explicitly and diagonalize it. Note that you do not

have to solve a qth order secular equation; because of the translational symmetry, the

eigenvalues are easily obtained by discrete Fourier transformation as

λ(k) =

q
∑

n=1

exp

[

J(n) +
2πink

q

]

.

(c) Show that Z =
∑q

k=1 λ(k)
N ≈ λ(0)N for N → ∞. Write down the expression for the

free energy per site βf = − lnZ/N .

(d) Show that the correlation function can be calculated from

〈

δsi,si+ℓ

〉

=
1

Z

q
∑

α=1

tr
[

ΠαT
ℓΠαT

N−ℓ
]

,

where Πα is a projection matrix. Hence show that
〈

δsi,si+ℓ

〉

c
∼ [λ(1)/λ(0)]ℓ. (You do not

have to explicitly calculate the constant of proportionality.)

********

5. Clock model duality: Consider spins si = (1, 2, · · · , q) placed on the sites of a square

lattice, interacting via the clock model Hamiltonian

βHC = −
∑

<i,j>

J ((si − sj)modq) ,

(a) Change from the N site variables to the 2N bond variables bij = si − sj. Show

that the difference in the number of variables can be accounted for by the constraint that

around each plaquette (elementary square) the sum of the four bond variables must be

zero modulus q.



(b) The constraints can be implemented by adding “delta–functions”

δ [Sp]modq =
1

q

q
∑

np=1

exp

[

2πinpSp

q

]

,

for each plaquette. Show that after summing over the bond variables, the partition function

can be written in terms of the dual variables, as

Z = q−N
∑

{np}

∏

〈p,p′〉
λ (np − np′) ≡

∑

{np}
exp





∑

〈p,p′〉
J̃ (np − np′)



 ,

where λ(k) is the discrete Fourier transform of eJ(n).

(c) Calculate the dual interaction parameter of a Potts model, and hence locate the critical

point Jc(q).

(d) Construct the dual of the anisotropic Potts model, with

−βH =
∑

x,y

(

Jxδsx,y,sx+1,y
+ Jyδsx,y,sx,y+1

)

;

i.e. with bonds of different strengths along the x and y directions. Find the line of self–dual

interactions in the plane (Jx, Jy).

********

6. (Optional) Cubic lattice: The geometric concept of duality can be extended to

general dimensions d. However, the dual of a geometric element of dimension D is an

entity of dimension d−D. For example, the dual of a bond (D = 1) in d = 3 is a plaquette

(D = 2), as demonstrated in this problem.

(a) Consider a clock model on a cubic lattice of N points. Change to the 3N bond variables

bij = si − sj . (Note that one must make a convention about the positive directions on the

three axes.) Show that there are now 2N constraints associated with the plaquettes of this

lattice.

(b) Implement the constraints through discrete delta-functions by associating an auxiliary

variable np with each plaquette. It is useful to imagine np as defined on a bond of the dual

lattice, perpendicular to the plaquette p.

(c) By summing over the bond variables in Z, obtain the dual Hamiltonian

˜βH =
∑

p

J̃ (np
12 − np

23 + np
34 − np

41) ,



where the sum is over all plaquettes p of the dual lattice, with
{

np
ij

}

indicating the four

bonds around plaquette p.

(d) Note that ˜βH is left invariant if all the six bonds going out of any site are simultaneously

increased by the same integer. Thus unlike the original model which only had a global

translation symmetry, the dual model has a local, i.e. gauge symmetry.

(e) Consider a Potts gauge theory defined on the plaquettes of a four dimensional hyper-

cubic lattice. Find its critical coupling Jc(q).

********

7. (Optional) XY model: Consider two component unit spins ~si = (cos θi, sin θi) in one

dimension, with the nearest neighbor interactions described by −βH = K
∑N

i=1 ~si · ~si+1.

(a) Write down the transfer matrix 〈θ|T |θ′〉, and show that it can be diagonalized with

eigenvectors fm(θ) ∝ eimθ for integer m.

(b) Calculate the free energy per site, and comment on the behavior of the heat capacity

as T ∝ K−1 → 0.

(c) Find the correlation length ξ, and note its behavior as K → ∞.

********


