
8.334: Statistical Mechanics II Problem Set # 2 Due: 3/6/25

Fluctuations

1. The Higgs mechanism: The Hamiltonian for a superconductor in the presence of a

magnetic field takes the form

βH =

∫

d3~x

[

t

2
|ψ|2 + u|ψ|4 +

K

2
|~∇ψ − ie ~A ψ|2 +

L

2
(~∇× ~A)2

]

,

where the complex field ψ(~x) is the superconducting order parameter, ~A(~x) is the electro-

magnetic gauge field, such that ~B = ~∇ × ~A is the magnetic field, and K, L, and u are

positive. Note that the joint (gauge) symmetry ψ → ψeieφ(~x) and ~A → ~A + ~∇φ(~x) leaves

the Hamiltonian unchanged.

(a) The guage symmetry allows us to set ~∇ · ~A = 0 (with choice of e~∇2φ = ~∇ · ~A).

Justify why (~∇ × ~A)2 can then be replaced by (∇ ~A)2 ≡
∑

α,β ∂αAβ∂αAβ. Assuming a

corresponding replacement is possible in all dimensions, in the remainder of the problem

generalize from 3 to arbitrary dimensions d.

(b) Show that there is a saddle point solution of the form ψ(~x) = ψeieφ(~x) and A(~x) =

~∇φ(~x), and find ψ for t > 0 and t < 0.

(c) Sketch the heat capacity C = ∂2 lnZ/∂t2, and discuss its singularity as t → 0 in the

saddle point approximation.

(d) Include fluctuations by setting

{

ψ(x) =
(

ψ + ψℓ(x)
)

eieφ(x)

~A(x) = e~∇φ(x) + ~a(x)
.

and expanding βH to quadratic order in ψℓ and ~a.

(e) Find the correlation length for the longitudinal fluctuations ξℓ, for t > 0 and t < 0.

(f) Find the correlation length ξa for the fluctuations of the ‘transverse’ field ~a, for t > 0

and t < 0. (Note that the field ~A acquires a correlation length (mass) due to spontaneous

symmetry breaking of the (Higgs) field ψ.)

(g) Calculate the correlation function 〈ai(x)aj(0)〉 for t > 0.

(h) Compute the correction to the saddle point free energy lnZ, from fluctuations. (You

can leave the answer in the form of integrals involving ξℓ and ξa.)



(i) Find the fluctuation corrections to the heat capacity in (b), again leaving the answer

in the form of integrals.

(j) Discuss the behavior of the integrals appearing above schematically, and state their

dependence on the correlation length ξ, and cutoff Λ, in different dimensions.

(k) What is the critical dimension for the validity of saddle point results, and how is it

modified by the coupling to the vector field ~A?

********

2. Random magnetic fields: Consider the Hamiltonian

βH =

∫

ddx

[

K

2
(∇m)2 +

t

2
m2 + um4 − h(x)m(x)

]

,

where m(x) and h(x) are scalar fields, and u > 0. The random magnetic field h(x)

results from frozen (quenched) impurities that are independently distributed in space. For

simplicity h(x) is assumed to be an independent Gaussian variable at each point x, such

that

h(x) = 0, and h(x)h(x′) = ∆δd(x− x′), (1)

where the over-line indicates (quench) averaging over all values of the random fields. The

above equation implies that the Fourier transformed random field h(q) satisfies

h(q) = 0, and h(q)h(q′) = ∆(2π)dδd(q+ q′). (2)

(a) Calculate the quench averaged free energy, fsp = min{Ψ(m)}m, assuming a saddle

point solution with uniform magnetization m(x) = m. (Note that with this assumption,

the random field disappears as a result of averaging and has no effect at this stage.)

(b) Include fluctuations by setting m(x) = m + φ(x), and expanding βH to second order

in φ.

(c) Express the energy cost of the above fluctuations in terms of the Fourier modes φ(q).

(d) Calculate the mean 〈φ(q)〉, and the variance
〈

|φ(q)|2
〉

c
, where 〈· · ·〉 denotes the usual

thermal expectation value for a fixed h(q).

(e) Use the above results, in conjunction with Eq.(2), to calculate the quench averaged

scattering line shape S(q) = 〈|φ(q)|2〉.



(f) Perform the Gaussian integrals over φ(q) to calculate the fluctuation corrections,

δf [h(q)], to the free energy.

(

Reminder :

∫

∞

−∞

dφdφ∗ exp

(

−
K

2
|φ|2 + h∗φ+ hφ∗

)

=
2π

K
exp

(

2|h|2

K

) )

(g) Use Eq.(2) to calculate the corrections due to the fluctuations in the previous part to

the quench averaged free energy f . (Leave the corrections in the form of two integrals.)

(h) Estimate the singular t dependence of the integrals obtained in the fluctuation correc-

tions to the free energy.

(i) Find the upper critical dimension, du, for the validity of saddle point critical behavior.

********

3. Long–range interactions: Consider a continuous spin field ~s(x), subject to a long–range

ferromagnetic interaction
∫

ddxddy
~s(x) · ~s(y)

|x− y|d+σ
,

as well as short-range interactions.

(a) How is the quadratic term in the Landau-Ginzburg expansion modified by the pres-

ence of this long-range interaction? For what values of σ is the long-range interaction

dominant?

(b) By evaluating the magnitude of thermally excited Goldstone modes (or otherwise),

obtain the lower critical dimension dℓ below which there is no long–range order.

(c) Find the upper critical dimension du, above which saddle point results provide a correct

description of the phase transition.

********

4. Crumpling: Configurations of a two-dimensional sheet are described by a vector field

~r(x) = (r1, r2, · · · , rd), denoting the embedding of an element x = (x1, x2) in d-dimensional

space. The energy cost of such configuration is described by

βH[~r] =

∫

d2x

[

t

2
∂αri∂αri +

K

2
∂α∂αri∂β∂βri + u∂αri∂αri∂βrj∂βrj + v∂αri∂βri∂αrj∂βrj

]

,

with implicit summation over α, β = 1, 2 and i, j = 1, 2, · · ·d.



(a) For t < 0 (with positive K) the most likely configuration of the sheet is stretched along

a spontaneously chosen direction. Setting ∂αri = mδα,i (noting α = 1, 2, while i = 1, 2, 3),

find the most likely value of m.

(b) Include fluctuations by setting

{

rα(x) = m
(

xα + uα(x)
)

for α = 1, 2

ri(x) = m hi(x) for i = 3, · · · , d
.

and expanding βH to quadratic order in ui and h, and to lowest power in gradients.

********

5. (Optional) Ginzburg criterion along the field direction: Consider the Hamiltonian

βH =

∫

ddx

[

K

2
(∇~m)2 +

t

2
~m2 + u(~m2)2 − ~h · ~m

]

,

describing an n–component magnetization vector ~m(x), with u > 0.

(a) In the saddle point approximation, the free energy is f = min{Ψ(m)}m. Sketch the

form of the resulting magnetization isotherms m(h, t) for t > 0, t = 0, and t < 0, and the

corresponding phase boundary in the (h, t) plane. (h denotes the magnitude of ~h.)

(b) For t and h close to zero, the magnetization has the scaling form m = tβgm(h/t∆).

Identify the exponents β and ∆ in the saddle point approximation.

For the remainder of this problem set t = 0.

(c) Include fluctuations by setting ~m(x) =
(

m+ φℓ(x)
)

êℓ + ~φt(x)êt, and expanding βH to

second order in the φs. (êℓ is a unit vector parallel to the average magnetization, and êt

is perpendicular to it.)

(d) Calculate the longitudinal and transverse correlation lengths, ξℓ and ξt.

(e) Calculate the first correction to the free energy from these fluctuations. You don’t have

to evaluate any integrals- just use dimensional arguments to express the singular part of

the correction in terms of scaling forms involving the correlation length ξℓ ∝ ξt.

(f) Using the above singular scaling form find the fluctuation–correction to magnetization,

and obtain an upper critical dimension by comparison to the saddle–point value.

(g) For d < du obtain a Ginzburg criterion by finding the field hG below which fluctuations

are important. (You may ignore the numerical coefficients in hG, but the dependances on

K and u are required.)

********


