
8.334: Statistical Mechanics II Problem Set # 1 Due: 2/20/25

Mean field approaches to Phase transitions

1. Surfactant condensation: N surfactant molecules are added to the surface of water

over an area A. They are subject to a Hamiltonian

H =
N
∑

i=1

~pi
2

2m
+

1

2

∑

i,j

V(~qi − ~qj),

where ~qi and ~pi are two dimensional vectors of position and momentum for particle i.

(a) Write down the expression for the partition function Z(N, T,A) in terms of integrals

over ~qi and ~pi, and perform the integrals over the momenta.

The inter–particle potential V(~r) is infinite for separations |~r | < a, and attractive for

|~r | > a such that
∫∞

a
2πrdrV(r) = −u0.

(b) Estimate the total non–excluded area available in the positional phase space of the

system of N particles.

(c) Estimate the total potential energy of the system, within a uniform density approxima-

tion n = N/A. Using this potential energy for all configurations allowed in the previous

part, write down an approximation for Z.

(d) The addition of surfactants modifies the surface tension of water, from an initial value

of σ0, by σs = − ∂ lnZ/∂A|T,N (similar to a two-dimensional pressure. Calculate the

surface tension σ(n, T ) in the presence of surfactants.

(e) Show that below a certain temperature, Tc, the above expression for σ violates stability

requirements. What do you think happens at low temperatures?

********

2. Critical behavior of a gas: The pressure P of a gas is related to its density n = N/V ,

and temperature T by the truncated expansion

P = kBTn−
b

2
n2 +

c

6
n3 ,

where b and c are assumed to be positive, temperature independent constants.

(a) Locate the critical temperature Tc below which this equation must be invalid, and

the corresponding density nc and pressure Pc of the critical point. Hence find the ratio

kBTcnc/Pc.



(b) Calculate the isothermal compressibility κT = − 1

V
∂V
∂P

∣

∣

T
, and sketch its behavior as a

function of T for n = nc.

(c) On the critical isotherm give an expression for (P − Pc) as a function of (n− nc).

(d) The instability in the isotherms for T < Tc is avoided by phase separation into a liquid

of density n+ and gas of density n−. For temperatures close to Tc, these densities behave

as n± ≈ nc (1± δ). Using a Maxwell construction, or otherwise, find an implicit equation

for δ(T ), and indicate its behavior for (Tc − T ) → 0. (Hint: Along an isotherm, variations

of chemical potential obey dµ = dP/n.)

********

3. (Optional) Dieterici’s equation of state has the form

P (v − b) = kBT exp

(

−
a

kBTv

)

, where v = V/N.

(a) Find the ratio Pv/kBT at its critical point.

(b) Calculate the isothermal compressibility κT for v = vc as a function of T − Tc.

(c) On the critical isotherm expand the pressure to the lowest non-zero order in (v− vc).

********

4. Magnetic thin films: A crystalline film (simple cubic) is obtained by depositing a

finite number of layers n. Each atom has a three component (Heisenberg) spin, and they

interact through the Hamiltonian

−βH =
n
∑

α=1

∑

<i,j>

JH~s
α
i · ~sα

j +
n−1
∑

α=1

∑

i

JV ~s
α
i · ~sα+1

i .

(The unit vector ~sα
i indicates the spin at site i in the αth layer. The subscript < i, j >

indicates that the spin at i interacts with its 4 nearest-neighbors, indexed by j on the square

lattice on the same layer.) A mean–field approximation is obtained from the variational

density ρ0 ∝ exp (−βH0), with the trial Hamiltonian

−βH0 =
n
∑

α=1

∑

i

~hα · ~sα
i .



(Note that the most general single–site Hamiltonian may include the higher order terms

Lα
c1,···,cp

sαc1 · · · s
α
c1
, where sc indicates component c of the vector ~s.)

(a) Calculate the partition function Z0

({

~hα
})

, and βF0 = − lnZ0.

(b) Obtain the magnetizations mα =
∣

∣〈~sα
i 〉0

∣

∣, and 〈βH0〉0, in terms of the Langevin func-

tion L(h) = coth(h)− 1/h.

(c) Calculate 〈βH〉
0
, with the (reasonable) assumption that all the variational fields

({

~hα
})

are parallel.

(d) The exact free energy, βF = − lnZ, satisfies the Gibbs inequality (see below), βF ≤

βF0 + 〈βH− βH0〉0. Give the self-consistent equations for the magnetizations {mα} that

optimize βH0. How would you solve these equations numerically?

(e) Assuming all couplings scale inversely with temperature, e.g. J = Ĵ/kBT , find the

critical temperature, and the behavior of the magnetization in the bulk by considering the

limit n→ ∞. (Note that limm→0 L
−1(m) = 3m+ 9m3/5 +O(m5).)

(f) By linearizing the self-consistent equations, show that the critical temperature of film

depends on the number of layers n, as kTc(n≫ 1) ≈ kTc(∞)− ĴV π
2/(3n2).

(g) Derive a continuum form of the self-consistent equations, and keep terms to cubic order

in m. Show that the resulting non-linear differential equation has a solution of the form

m(x) = mbulk tanh(kx). What circumstances are described by this solution?

(h) How can the above solution be modified to describe a semi–infinite system? Obtain

the critical behaviors of the healing length λ ∼ 1/k.

(i) Show that the magnetization of the surface layer vanishes as |T − Tc|.

† The result in (f) illustrates a quite general trend that the transition temperature of

a finite system of size L, approaches its asymptotic (infinite–size) limit from below, as

Tc(L) = TC(∞) − A/L1/ν, where ν is the exponent controlling the divergence of the

correlation length. However, some liquid crystal films appeared to violate this behavior.

In fact, in these films the couplings are stronger on the surface layers, which thus order

before the bulk. For a discussion of the dependence of Tc on the number of layers in this

case, see H. Li, M. Paczuski, M. Kardar, and K. Huang, Phys. Rev. B 44, 8274 (1991).

• Proof of the Gibbs inequality: To approximate the partition function Z = tr
(

e−βH
)

of a difficult problem, we start we a simpler Hamiltonian H0 whose properties are easier



to calculate. The Hamiltonian H(λ) = H0 + (H−H0) interpolates between the two as λ

changes from zero to one. The corresponding partition function

Z(λ) = tr{exp [−βH0 − λβ (H−H0)]},

must satisfy the convexity condition d2 lnZ(λ)/dλ2 = β2

〈

(H−H0)
2
〉

0c
≥ 0, and hence

lnZ(λ) ≥ lnZ(0) + λ
d lnZ

dλ

∣

∣

∣

∣

λ=0

.

But it is easy to show that d lnZ/dλ|λ=0
= β 〈H0 −H〉

0
, where the subscript indicates

expectation values with respect to H0. Defining free energies via βF = − lnZ, we thus

arrive at the inequality

βF ≤ βF0 + 〈βH− βH0〉0 .

********

5. Superfluid He4–He3 mixtures: The superfluid He4 order parameter is a complex

number ψ(x) . In the presence of a concentration c(x) of He3 impurities, the system has

the following Landau–Ginzburg energy

βH[ψ, c] =

∫

ddx

[

K

2
|∇ψ|2 +

t

2
|ψ|2 + u |ψ|4 + v |ψ|6 +

c(x)2

2σ2
− γc(x)|ψ|2

]

,

with positive K, u and v.

(a) Integrate out the He3 concentrations (approximately allowing −∞ < c(x) < +∞) to

find the effective Hamiltonian, βHeff [ψ], for the superfluid order parameter, given by

Z =

∫

Dψ exp (−βHeff [ψ]) ≡

∫

DψDc exp (−βH[ψ, c]) .

(b) Obtain the phase diagram for βHeff [ψ] using a saddle point approximation. Find the

limiting value of σ∗ above which the phase transition becomes discontinuous.

(c) The discontinuous transition is accompanied by a jump in the magnitude of ψ. How

does this jump vanish as σ → σ∗?

(d) Show that the discontinuous transition is accompanied by a jump in He3 concentration.



(e) Sketch the phase boundary in the (t, σ) coordinates, and indicate how its two segments

join at σ∗.

(f) Going back to the original joint probability for the fields c(x) and Ψ(x), show that

〈c(x)− γσ2|Ψ(x)|2〉 = 0.

(g) Show that 〈c(x)c(y)〉 = γ2σ4〈|Ψ(x)|2|Ψ(y)|2〉, for x 6= y.

(h) Qualitatively discuss how 〈c(x)c(0)〉 decays with x = |x| in the disordered phase.

(i) Qualitatively discuss how 〈c(x)c(0)〉 decays to its asymptotic value in the ordered

phase.

********

6. Potts model in mean field: Each site of a square lattice can be occupied by one of

q possible states (Potts spins) Si = 1, 2, · · · , q. Interactions between neighboring sites are

constrained by a permutation symmetry, and described by the energy

H = −J
∑

<i,j>

δSi,Sj
,

i.e. neighboring sites reduce energy by −J only if they are in the same state. A mean-field

estimate of free energy of the system can be obtained by assuming that Nα = Npα total

spins of type α = 1, 2, · · · , q, randomly distributed among the N lattice sites.

(a) Estimate the energy of the system in terms of the probabilities {pα}.

(b) Estimate the mixing entropy of the system in the same approximation.

(c) Obtain the free energy estimate F ({pα}). Anticipating a Taylor expansion, compute

∂nF/∂pα
n for n ≤ 4. (Note the absence of mixed partial derivatives.)

(d) Given
∑q

α=1
pα = 1, the disordered state we have pα = 1/q. A spontaneously broken

symmetry enriching say α = 1 states, would then lead to (for x ≥ 0) p1 = 1/q + x, with

p2 = · · · = pq = 1/q − x/(q − 1). Expand the free energy up to fourth order in x.

(e) By examining the signs of the low order terms in the expansion of F (x), discuss

(qualitatively, computation not needed) the nature of the phase transition for different

values of q.

********

7. (Optional) Crumpled surfaces: The configurations of a crumpled sheet of paper

can be described by a vector field ~r(x), denoting the position in three dimensional space,



~r = (r1, r2, r3), of the point at location x = (x1, x2) on the flat sheet. The energy of each

configuration is assumed to be invariant under translations and rotations of the sheet of

paper.

(a) Show that the two lowest order (in derivatives) terms in the quadratic part of a Landau–

Ginzburg Hamiltonian for this system are:

βH0[~r] =
∑

α=1,2

∫

d2x

[

t

2
∂α~r · ∂α~r +

K

2
∂2α~r · ∂

2
β~r

]

.

(b) Write down the lowest order terms (there are two) that appear at the quartic level.

(c) Now consider the case t < 0, with positive K and quartic terms providing the required

stability. Similar to the Landau-Ginzburg Hamiltonian, the weight is now maximized for

a finite value of ∂αri. The sheet that is crumpled for t > 0, stretches to open along a

spontaneously selected direction for t < 0. Setting ∂αri = mδα,i (noting α = 1, 2, while

i = 1, 2, 3), find the behavior of m at the crumpling transition.

********


