
III.D The Renormalization Group (Conceptual)

Success of the scaling theory in correctly predicting various exponent identities

strongly supports the assumption that close to the critical point the correlation length

ξ, is the only important length scale, and that microscopic length scales are irrelevant.

The critical behavior is dominated by fluctuations that are self–similar up to the scale ξ.

The self–similarity is of course only statistical, in that a magnetization configuration is

generated with a weight W [~m(x)] ∝ exp{−βH[~m(x)]}. Kadanoff suggested taking advan-

tage of the self–similarity of the fluctuations to gradually eliminate the correlated degrees

of freedom at length scales x ≪ ξ, until one is left with the relatively simple, uncorrelated

degrees of freedom at scale ξ. This is achieved through a procedure called the renor-

malization group (RG), whose conceptual foundation is the three steps outlined in this

section.

(1) Coarse Grain: There is an implicit short distance length scale a, for allowed variations

of ~m(x) in the system. This is the lattice spacing for a model of spins, or the coarse graining

scale that underlies the Landau–Ginzburg Hamiltonian. In a digital picture of the system,

a corresponds to the pixel size. The first step of the RG is to decrease the resolution by

changing this minimum scale to ba (b > 1). The coarse–grained magnetization is then

given by

mi(x) =
1

bd

∫

Cell centered at x

ddx′mi(x
′). (III.27)

(2) Rescale: Due to the change in resolution, the coarse grained ‘picture’ is grainier than

the original. The original resolution of a can be restored by decreasing all length scales by

a factor of b, i.e. by setting

xnew =
xold

b
. (III.28)

(3) Renormalize: The variations of fluctuations in the rescaled magnetization profile is

in general different from the original, i.e. there is a difference in contrast between the

pictures. This can be remedied by introducing a change of contrast by a factor ζ, through

defining a renormalized magnetization

~mnew(xnew) =
1

ζbd

∫

Cell centered at bxnew

ddx′ ~m(x′). (III.29)

By following these steps, for each configuration ~mold(x), we generate a renormalized

configuration ~mnew(x). Eq.(III.29) can be regarded as a mapping from one set of random

variables to another, and can be used to construct the probability distribution, or weight

41



Wb[~mnew(x)] ≡ exp{−βHb[~mnew(x)]}. Kadanoff’s insight was that since on length scales

less than ξ, the renormalized configurations are statistically similar to the original ones,

they may be distributed by a Hamiltonian βHb that is also ‘close’ to the original. In

particular, the original Hamiltonian becomes critical by tuning the two parameter t and

h to zero, at which point the dominant configurations are similar to those of the rescaled

system; the critical Hamiltonian is thus invariant under such rescaling. In the original

problem, one moves away from criticality for finite t and h. Kadanoff’s assumption is that

the corresponding new Hamiltonian is also described by non-zero tnew or hnew.

The assumption that the vicinity of the original and renormalized Hamiltonians to

criticality is described by the two parameters t and h greatly simplifies the analysis. The

effect of the RG transformation on the probability of configurations is now described by

the two parameter mappings tnew ≡ tb(told, hold) and hnew ≡ hb(told, hold). The next

assumption is that since the transformation only involves changes at the shortest length

scales, it cannot cause any singularities. The renormalized parameters must be analytic

functions of the original ones, and hence expandable as

{

tb(t, h) = A(b)t + B(b)h + · · ·

hb(t, h) = C(b)t + D(b)h + · · ·
. (III.30)

Note that there are no constant terms in the above Taylor expansions. This expresses the

condition that if βH is at its critical point (t = h = 0), then βHb is also at criticality, and

tnew = hnew = 0. Furthermore, due to rotational symmetry, under the combined transfor-

mation (m(x) 7→ −m(x), h 7→ −h, t 7→ t) the weight of a configuration is unchanged. As

this symmetry is preserved by the RG, the coefficients B and C in the above expression

must be zero, leading to the further simplifications

{

tb(t, h) = A(b)t + · · ·

hb(t, h) = D(b)h + · · ·
. (III.31)

The remaining coefficients A(b) and D(b) depend on the (arbitrary) rescaling factor

b, and trivially A(1) = D(1) = 1 for b = 1. Since the above transformations can be

carried out in sequence, and the net effect of rescalings of b1 and b2 is a change of scale

by b1b2, the RG procedure is sometimes referred to as a semi-group. The term applies

to the action of RG on the space of configurations: each magnetization profile is mapped

uniquely to one at larger scale, but the inverse process is non-unique as some short scale

information is lost in the coarse graining. (There is in fact no problem with inverting the
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transformation in the space of the parameters of the Hamiltonian.) The dependence of

A and D in eqs.(III.31) on b can be deduced from this group property. Since at b = 1,

A = D = 1, and t(b1b2) ≈ A(b1)A(b2)t ≈ A(b1b2)t; we must have A(b) = byt , and similarly

D(b) = byh , yielding
{

t′ ≡ tb = bytt + · · ·

h′ ≡ hb = byhh + · · ·
. (III.32)

If βHold is slightly away from criticality, it is described by a large but finite correlation

length ξold. After the RG transformation, due to the rescaling in eq.(III.28), the new

correlation length is smaller by a factor of b. Hence the renormalized Hamiltonian is less

critical, and the RG procedure moves the parameters further away from the origin, i.e. the

exponents yt and yh must be positive.

• We can now explore some consequences of the assumptions leading to eq.(III.32).

1. The free energy: The RG transformation is a many to one map of the original configu-

rations to new ones. Since the weight of a new configuration, W ′([m′]), is the sum of the

weights W ([m]), of old configurations, the partition function is preserved, i.e.

Z =

∫

DmW ([m]) =

∫

Dm′W ′([m′]) = Z ′. (III.33)

Hence ln Z = lnZ ′, and the corresponding free energies are related by

V f (t, h) = V ′f(t′, h′). (III.34)

In d–dimensions, the rescaled volume is smaller by a factor of bd, and

f(t, h) = b−df(bytt, byth), (III.35)

where we have made use of the assumption that two free energies are obtained from

the same Hamiltonian in which only the parameters t and h have changed according to

eqs.(III.32). Eq.(III.35) describes a homogeneous function of t and h. This is made appar-

ent by choosing a rescaling factor b such that byt is a constant, say unity, i.e. b = t−1/yt ,

leading to

f(t, h) = td/ytf(1, h/tyh/yt) ≡ td/ytgf (h/tyh/yt). (III.36)

We have thus recovered the scaling form in eq.(III.4), and can identify the exponents as

2 − α = d/yt , ∆ = yh/yt. (III.37)
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2. Correlation length: All length scales are reduced by a factor of b during the RG

transformation. This is also true of the correlation length, ξ′ = ξ/b, implying

ξ(t, h) = bξ(bytt, byhh) = t−1/ytξ(1, h/tyh/yt) ∼ t−ν . (III.38)

This identifies ν = 1/yt, and using eq.(III.37) the hyperscaling identity, 2 − α = dν, is

recovered.

3. Magnetization: From the homogenous form of the free energy (eq.(III.36)), we can

obtain other bulk quantities such as magnetization. Alternatively, from the RG results for

Z, V , and h, we may directly conclude

m(t, h) = −
1

V

∂ lnZ(t, h)

∂h
= −

1

bdV ′

∂ lnZ ′(t′, h′)

b−yh∂h′
= byh−dm(bytt, byhh). (III.39)

Choosing b = t−1/yt , we obtain β = (yh − d)/yt, and ∆ = yh/yt as before.

It is thus apparent that quite generally, the singular part of any quantity X has a

homogeneous form

X(t, h) = byX X(bytt, byhh). (III.40)

For any conjugate pair of variables, contributing a term
∫

ddxF · X , to the Hamiltonian,

the scaling dimensions are related by yX = yF − d, where F ′ = byF F under RG.

III.E The Renormalization Group (Formal)

In the previous section we noted that all critical properties can be obtained from the

recursion relations in eqs.(III.32). Though conceptually appealing, it is not clear how such

a procedure can be formally carried out. In particular, why should the forms of the two

Hamiltonians be identical, and why are two parameters t and h sufficient to describe the

transformation? In this section we outline a more formal procedure for identifying the

effects of the dilation operation on the Hamiltonian. The various steps of the program are

as follows:

(1) Start with most general Hamiltonian allowed by symmetries. For example, in the

presence of rotational symmetry,

βH =

∫

ddx

[

t

2
m2 + um4 + vm6 + · · ·+

K

2
(∇m)2 +

L

2
(∇2m)2 + · · ·

]

. (III.41)

A particular system with such symmetry is therefore completely specified by a point in

the (infinite–dimensional) parameter space S ≡ (t, u, v, · · · , K, L, · · ·).
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(2) Apply the three steps of renormalization in configuration space: (i) Coarse grain by b;

(ii) Rescale, x′ = x/b; and (iii) Renormalize, m′ = m/ζ. This defines a change of variables,

m′(x′) =
1

ζbd

∫

Cell of size b centered at bx′

ddxm(x). (III.42)

Given the probabilities P [m(x)] ∝ exp(−βH[m(x)]), for the original configurations, we can

use the above change of variable to construct the corresponding probabilities P ′[m′(x′)],

for the new configurations. Naturally this is the most difficult step in the program.

(3) Since rotational symmetry is preserved by the RG procedure, the rescaled Hamiltonian

must also be described by a point in the parameter space of eq.(III.41), i.e.

βH′[m′(x′)] ≡ lnP [m′(x′)]

= fb +

∫

ddx′

[

t′

2
m′2 + u′m′4 + v′m′6 + · · · +

K ′

2
(∇m′)2 +

L′

2
(∇2m′)2 + · · ·

]

.
(III.43)

The renormalized parameters are functions of the original ones, i.e. t′ = tb(t, u, ...); u′ =

ub(t, u, ...), etc., defining a mapping S′ = ℜbS in parameter space.

(4) The operation ℜb describes the effects of dilation on the Hamiltonian of the system.

Hamiltonians that describe statistically self–similar configurations must thus correspond

to fixed points S∗, such that ℜbS
∗ = S∗. Since the correlation length, a function of

Hamiltonian parameters, is reduced by b under the RG operation (i.e. ξ(S) = bξ(ℜbS)),

the correlation length at a fixed point must be zero or infinity. Fixed points with ξ∗ =

0 describe independent fluctuations at each point and correspond to complete disorder

(infinite temperature), or complete order (zero temperature). A fixed point with ξ∗ = ∞

describes a critical point (T = Tc).

(5) Eqs.(III.32) represent a simplified case in which the parameter space is two dimensional.

The point t = h = 0 is a fixed point, and the lowest order terms in these equations describe

the behavior in its neighborhood. In general, we can study the stability of a fixed point by

linearizing the recursion relations in its vicinity: Under RG, a point S∗+δS is transformed

to

S∗
α + δS′

α = S∗
α + (ℜL

b )αβδSβ + · · · , where (ℜL
b )αβ ≡

∂S′
α

∂Sβ

∣

∣

∣

∣

S∗

. (III.44)
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We now diagonalize the matrix (ℜL
b )αβ to get the eigenvectors Oi, and corresponding

eigenvalues λ(b)i. Because of the group property†,

ℜL
b ℜ

L
b′Oi = λ(b)iλ(b′)iOi = ℜL

bb′Oi = λ(bb′)iOi. (III.45)

Together with the condition λ(1)i = 1, the above equation implies

λ(b)i = byi . (III.46)

The vectors Oi are called scaling directions associated with the fixed point S∗, and

yi are the corresponding anomalous dimensions. Any Hamiltonian in the vicinity of the

fixed point is described by a point S = S∗ +ΣigiOi. The renormalized Hamiltonian has to

interaction parameters S′ = S∗ + Σigib
yiOi. The following terminology is used to classify

the eigen-operators:

• If yi > 0, gi increases under scaling, and Oi is a relevant operator.

• If yi < 0, gi decreases under scaling, and Oi is an irrelevant operator.

• If yi = 0, gi is called a marginal operator, and higher order terms are necessary to track

its behavior.

The subspace spanned by the irrelevant operators is the basin of attraction of the fixed

point S∗. Since ξ always decreases under RG, and ξ(S∗) = ∞; then ξ is also infinite for

any point on the basin of attraction of S∗. For a general point in the vicinity of S∗, the

correlation length satisfies

ξ(g1, g2, · · ·) = bξ(by1g1, b
y2g2, · · ·). (III.47)

For a sufficiently large b, all the irrelevant operators scale to zero. The leading singularities

of ξ are then determined by the remaining set of relevant operators. In particular if

the operators are indexed in order of decreasing dimensions, we can choose b such that

by1g1 = 1. In this case, eq.(III.47) implies

ξ(g1, g2, · · ·) = g
−1/y1

1 f(g2/g
y2/y1

1 , · · ·). (III.48)

† The group property ℜL
b ℜ

L
b′ = ℜL

bb′ = ℜL
b′ℜ

L
b , also implies that the linearized matrices

for different b commute. It is thus possible to diagonalize them simultaneously, implying

that the eigenvectors {Oi} are independent of b.
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We have thus obtained an exponent ν1 = 1/y1, for the divergence of ξ, and a generalized

set of gap exponents ∆α = yα/y1, associated with gα.

Let us imagine that the fixed point S∗ describes the critical point of the magnet in

eq.(III.41) at zero magnetic field. As the temperature, or some other control parameter,

is changed, the coefficients of the Hamiltonian are altered, and the point S moves along a

trajectory in parameter space. Except for a single point (at the critical temperature) the

magnet has a finite correlation length. This can be achieved if the trajectory taken by the

point S intersects the basis of attraction of S∗ only at one point. To achieve this, the basin

of attraction must have co-dimension one, i.e. the fixed point S∗ must have one and only

one relevant operator. This provides an explanation of universality, in that the very many

microscopic details of the system make up the huge space of irrelevant operators comprising

the basin of attraction. In the presence of a magnetic field, two system parameters must

be adjusted to reach the critical point (T = Tc and h = 0). Thus the magnetic field

corresponds to an additional relevant operator at S∗. Again, other ‘odd’ interactions, such

as {m3, m5, · · ·} should not lead to any other relevant operators.

Although the formal procedure outlined in this section is quite rigorous, it suffers from

some quite obvious shortcomings: How do we actually implement the RG transformations

of step (2) analytically? There are an infinite number of interactions allowed by symmetry,

and hence the space of parameters S, is inconveniently large. How do we know a priori that

there are fixed points for the RG transformation; that ℜb can be linearized; that relevant

operators are few, etc.? Following the initial formulation of RG by Kadanoff, there was a

period of uncertainty until Wilson showed how these steps can be implemented (at least

perturbatively) in the Landau–Ginzburg model.
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