
VIII. Dissipative Dynamics

VIII.A Brownian Motion of a Particle

Observations under a microscope indicate that a dust particle in a liquid drop under-

goes a random jittery motion. This is because of the random impacts of the much smaller

fluid particles. The theory of such (Brownian) motion was developed by Einstein in 1905

and starts with the equation of motion for the particle. The displacement ~x(t), of a particle

of mass m is governed by,

m~̈x = − ~̇x

µ
− ∂V

∂~x
+ ~frandom(t). (VIII.1)

The three forces acting on the particle are:

(i) A friction force due to the viscosity of the fluid. For a spherical particle of radius R,

the mobility in the low Reynolds number limit is given by µ = (6πη̄R)−1, where η̄ is

the specific viscosity.

(ii) The force due to the external potential V(~x), e.g. gravity.

(iii) A random force of zero mean due to the impacts of fluid particles.

The viscous term usually dominates the inertial one (i.e. the motion is overdamped),

and we shall henceforth ignore the acceleration term. Eq.(VIII.1) now reduces to a

Langevin equation,

~̇x = ~v(~x) + ~η(t), (VIII.2)

where ~v(~x) = −µ∂V/∂~x is the deterministic velocity. The stochastic velocity, ~η(t) =

µ~frandom(t), has zero mean,

〈~η(t)〉 = 0. (VIII.3)

It is usually assumed that the probability distribution for the noise in velocity is Gaussian,

i.e.

P [~η(t)] ∝ exp

[

−
∫

dτ
η(τ)2

4D

]

. (VIII.4)

Note that different components of the noise, and at different times, are independent, and

the covariance is

〈ηα(t)ηβ(t′)〉 = 2Dδα,βδ(t − t′). (VIII.5)
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The parameter D is related to diffusion of particles in the fluid. In the absence of any

potential, V(~x) = 0, the position of a particle at time t is given by

~x(t) = ~x(0) +

∫ t

0

dτ~η(τ).

Clearly the separation ~x(t) − ~x(0) which is the sum of random Gaussian variables is itself

Gaussian distributed with mean zero, and a varaince

〈

(~x(t) − ~x(0))
2
〉

=

∫ t

0

dτ1dτ2 〈~η(τ1) · ~η(τ2)〉 = 3 × 2Dt.

For an ensemble of particles released at ~x(t) = 0, i.e. with P (~x, t = 0) = δ3(~x), the

particles at time t are distributed according to

P (~x, t) =

(
1√

4πDt

)3/2

exp

[

− x2

4Dt

]

,

which is the solution to the diffusion equation

∂P
∂t

= D∇2P.

A simple example is provided by a particle connected to a Hookian spring, with

V(~x) = Kx2/2. The deterministic velocity is now ~v(~x) = −µK~x, and the Langevin

equation, ~̇x = −µK~x + ~η(t), can be rearranged as

d

dt

[
eµKt~x(t)

]
= eµKt~η(t). (VIII.6)

Integrating the equation from 0 to t yields

eµKt~x(t) − ~x(0) =

∫ t

0

dτeµKτ~η(τ), (VIII.7)

and

~x(t) = ~x(0)e−µKt +

∫ t

0

dτe−µK(t−τ)~η(τ). (VIII.8)

Averaging over the noise indicates that the mean position,

〈~x(t)〉 = ~x(0)e−µKt, (VIII.9)
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decays with a characteristic relaxation time, τ = 1/(µK). Fluctuations around the mean

behave as

〈(
~x(t) − 〈~x(t)〉

)2
〉

=

∫ t

0

dτ1dτ2e
−µK(2t−τ1−τ2)

2Dδ(τ1−τ2)×3
︷ ︸︸ ︷

〈~η(τ1) · ~η(τ2)〉

=6D

∫ t

0

dτe−2µK(t−τ)

=
3D

µK

[
1 − e−2µKt

] t→∞−→ 3D

µK
.

(VIII.10)

However, once the dust particle reaches equilibrium with the fluid at a temperature T , its

probability distribution must satisfy the normalized Boltzmann weight

Peq.(~x) =

(
K

2πkBT

)3/2

exp

[

− Kx2

2kBT

]

, (VIII.11)

yielding
〈
x2

〉
= 3kBT/K. Since the dynamics is expected to bring the particle to equilib-

rium with the fluid at temperature T , eq.(VIII.10) implies the condition

D = kBTµ . (VIII.12)

This is the Einstein relation connecting the fluctuations of noise to the dissipation in the

medium.

Clearly the Langevin equation at long times reproduces the correct mean and variance

for a particle in equilibrium at a temperature T in the potential V(~x) = Kx2/2, provided

that eq.(VIII.12) is satisfied. Can we show that the whole probability distribution evolves

to the Boltzmann weight for any potential? Let P(~x, t) ≡ 〈~x|P(t)|0〉 denote the probability

density of finding the particle at ~x at time t, given that it was at 0 at t = 0. This probability

can be constructed recursively by noting that a particle found at ~x at time t+ ǫ must have

arrived from some other point ~x ′ at t. Adding up all such probabilities yields

P(~x, t + ǫ) =

∫

d3~x ′ P(~x ′, t) 〈~x|Tǫ|~x ′〉, (VIII.13)

where 〈~x|Tǫ|~x ′〉 ≡ 〈~x|P(ǫ)|~x ′〉 is the transition probability. For ǫ ≪ 1,

~x = ~x ′ + ~v (~x ′)ǫ + ~ηǫ , (VIII.14)
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where ~ηǫ =
∫ t+ǫ

t
dτ~η(τ). Clearly, 〈~ηǫ〉 = 0, and

〈
η2

ǫ

〉
= 2Dǫ × 3, and following eq.(VIII.4),

p(~ηǫ) =

(
1

4πDǫ

)3/2

exp

[

− η2
ǫ

4Dǫ

]

. (VIII.15)

The transition rate is simply the probability of finding a noise of the right magnitude

according to eq.(VIII.14), and

〈~x |T (ǫ)|~x ′〉 = p(ηǫ) =

(
1

4πDǫ

)3/2

exp

[

−(~x − ~x ′ − ǫ~v(~x ′))
2

4Dǫ

]

=

(
1

4πDǫ

)3/2

exp




−ǫ

(

~̇x − ~v(~x)
)2

4D




 .

(VIII.16)

By subdividing the time interval t, into infinitesimal segments of size ǫ, repeated

application of the above evolution operator yields

P(~x, t) =
〈

~x
∣
∣
∣T (ǫ)t/ǫ

∣
∣
∣ 0

〉

=

∫ (~x,t)

(0,0)

D~x(τ)

N exp




−

∫ t

0

dτ

(

~̇x − ~v(~x)
)2

4D




.

(VIII.17)

The integral is over all paths connecting the initial and final points; each path’s weight

is related to its deviation from the classical trajectory, ~̇x = ~v(~x). The recursion relation

(eq.(VIII.13)),

P(~x, t) =

∫

d3~x ′

(
1

4πDǫ

)3/2

exp

[

−(~x − ~x ′ − ǫ~v(~x ′))
2

4Dǫ

]

P(~x ′, t − ǫ), (VIII.18)

can be simplified by the change of variables,

~y =~x ′ + ǫ~v(~x ′) − ~x =⇒
d3~y =d3~x ′ (1 + ǫ∇ · ~v(~x′)) = d3~x ′

(
1 + ǫ∇ · ~v(~x) + O(ǫ2)

)
.

(VIII.19)

Keeping only terms at order of ǫ, we obtain

P(~x, t) = [1 − ǫ∇ · ~v(~x)]

∫

d3~y

(
1

4πDǫ

)3/2

e−
y2

4Dǫ P(~x + ~y − ǫ~v(~x), t − ǫ)

= [1 − ǫ∇ · ~v(~x)]

∫

d3~y

(
1

4πDǫ

)3/2

e−
y2

4Dǫ×
[

P(~x, t) + (~y − ǫ~v(~x)) · ∇P +
yiyj − 2ǫyivj + ǫ2vivj

2
∇i∇jP − ǫ

∂P
∂t

+ O(ǫ2)

]

= [1 − ǫ∇ · ~v(~x)]

[

P − ǫ~v · ∇ + ǫD∇2P − ǫ
∂P
∂t

+ O(ǫ2)

]

.

(VIII.20)
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Equating terms at order of ǫ leads to the Fokker-Planck equation,

∂P
∂t

+ ∇ · ~J = 0, with ~J = ~vP − D∇P . (VIII.21)

The Fokker-Planck equation is simply the statement of conservation of probability. The

probability current has a deterministic component ~vP , and a stochastic part −D∇P . A

stationary distribution, ∂P/∂t = 0, is obtained if the net current vanishes. It is now

easy to check that the Boltzmann weight, Peq.(~x) ∝ exp[−V(~x)/kBT ], with ∇Peq. =

~vPeq./(µkBT ), leads to a stationary state as long as the fluctuation–dissipation condition

in eq.(VIII.12) is satisfied.

VIII.B Equilibrium Dynamics of a Field

The next step is to generalize the Langevin formalism to a collection of degrees of

freedom, most conveniently described by a continuous field. Let us consider the order

parameter field ~m(x, t) of a magnet. In equilibrium, the probability to find a coarse-

grained configuration of the magnetization field is governed by the Boltzmann weight of

the Landau-Ginzburg Hamiltonian

H [~m] =

∫

ddx

[
r

2
m2 + um4 +

K

2
(∇m)

2
+ · · ·

]

. (VIII.22)

(To avoid confusion with time, the coefficient of the quadratic term is changed from t to

r.) Clearly the above energy functional contains no kinetic terms, and should be regarded

as the analog of the potential energy V(~x) employed in the previous section. To construct

a Langevin equation governing the dynamics of the field ~m(x), we first calculate the analo-

gous force on each field element from the variations of this potential energy. The functional

derivative of eq.(VIII.22) yields

Fi(x) = − δH[~m]

δmi(x)
= −rmi − 4umi|~m|2 + K∇2mi. (VIII.23)

The straightforward analog of eq.(VIII.2) is

∂mi(x, t)

∂t
= µFi(x) + ηi(x, t), (VIII.24)

with a random velocity, ~η, such that

〈ηi(x, t)〉 = 0, and 〈ηi(x, t)ηj(x
′, t′)〉 = 2Dδijδ(x− x′)δ(t − t′). (VIII.25)
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The resulting Langevin equation,

∂ ~m(x, t)

∂t
= −µr~m − 4µum2 ~m + µK∇2 ~m + ~η(x, t), (VIII.26)

is known as the time dependent Landau-Ginzburg equation. Because of the nonlinear term

m2 ~m, it is not possible to integrate this equation exactly. To gain some insight into

its behavior we start with the disordered phase of the model which is well described by

the Gaussian weight with u = 0. The resulting linear equation is then easily solved by

examining the Fourier components,

~m(q, t) =

∫

ddx eiq·x ~m(x, t), (VIII.27)

which evolve according to

∂ ~m(q, t)

∂t
= −µ(r + Kq2) ~m(q, t) + ~η(q, t). (VIII.28)

The Fourier transformed noise,

~η(q, t) =

∫

ddx eiq·x~η(x, t), (VIII.29)

has zero mean, 〈ηi(q, t)〉 = 0, and correlations

〈ηi(q, t)ηj(q
′, t′)〉 =

∫

ddxddx′ eiq·x+iq′
·x

′

2Dδijδd(x−x
′) δ(t−t′)

︷ ︸︸ ︷

〈ηi(x, t)ηj(x
′, t′)〉

=2Dδijδ(t − t′)

∫

ddx eix·(q+q
′)

=2Dδijδ(t − t′)(2π)dδd(q + q′).

(VIII.30)

Each Fourier mode in eq.(VIII.28) now behaves as an independent particle connected

to a spring as in eq.(VIII.6). Introducing a decay rate

γ(q) ≡ 1

τ(q)
= µ(r + Kq2), (VIII.31)

the evolution of each mode is similar to eq.(VIII.8), and follows

~m(q, t) = ~m(q, 0)e−γ(q)t +

∫ t

0

dτ e−γ(q)(t−τ)~η(q, t). (VIII.32)
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Fluctuations in each mode decay with a different relaxation time τ(q); 〈~m(q, t)〉 =

~m(q, 0) exp[−t/τ(q)]. When in equilibrium, the order parameter in the Gaussain model

is correlated over the length scale ξ =
√

K/r. In considering relaxation to equilibrium,

we find that at length scales larger than xi (or q ≪ 1/ξ), the relaxation time saturates

τmax = 1/(µr). On approaching the singular point of the Gaussian model at r = 0, the

time required to reach equilibrium diverges. This phenomena is know as critical slowing

down, and is also present for the non-linear equation, albeit with modified exponents. The

critical point is thus characterized by diverging length and time scales. For the critical

fluctuations at distances shorter than the correlation length ξ, the characteristic time scale

grows with wavelength as τ(q) ≈ (µKq2)−1. The scaling relation between the critical

length and time scales is described by a dynamic exponent z, as τ ∝ λz. The value of

z = 2 for the critical Gaussian model is reminiscent of diffusion processes.

Time dependent correlation functions are obtained from

〈mi(q, t)mj(q
′, t)〉c =

∫ t

0

dτ1dτ2e
−γ(q)(t−τ1)−γ(q′)(t−τ2)

2Dδijδ(τ1−τ2)(2π)dδd(q+q
′)

︷ ︸︸ ︷

〈ηi(q, τ1)ηj(q
′, τ2)〉

=(2π)dδd(q + q′) 2Dδij

∫ t

0

dτe−2γ(q)(t−τ)

=(2π)dδd(q + q′)δij
D

γ(q)

(

1 − e−2γ(q)t
)

t→∞−→ (2π)dδd(q + q′)δij
D

µ(r + Kq2)
.

(VIII.33)

However, direct diagonalization of the Hamiltonian in eq.(VIII.22) with u = 0 gives

H =

∫
ddq

(2π)d

(r + Kq2)

2
|~m(q)|2, (VIII.34)

leading to the equilibrium correlation functions

〈mi(q)mj(q
′)〉 = (2π)dδd(q + q′)δij

kBT

r + Kq2
. (VIII.35)

Comparing equations (VIII.33) and (VIII.35) indicates that the long-time dynamics repro-

duce the correct equilibrium behavior if the fluctuation–dissipation condition, D = kBTµ,

is satisfied.
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In fact, quite generally, the single particle Fokker-Planck equation (VIII.21) can be

generalized to describe the evolution of the whole probability functional, P([~m(x)], t), as

∂P([~m(x)], t)

∂t
= −

∫

ddx
δ

δmi(x)

[

−µ
δH

δmi(x)
P − D

δP
δmi(x)

]

. (VIII.36)

For the equilibrium Boltzmann weight

Peq.[~m(x)] ∝ exp

[

−H[~m(x)]

kBT

]

, (VIII.37)

the functional derivative results in

δPeq.

δmi(x)
= − 1

kBT

δH
δmi(x)

Peq.. (VIII.38)

The total probability current,

J [h(x)] =

[

−µ
δH

δmi(x)
+

D

kBT

δH
δmi(x)

]

Peq., (VIII.39)

vanishes if the fluctuation–dissipation condition, D = µkBT , is satisfied. Once again, the

Einstein equation ensures that the equilibrium weight indeed describes a steady state.

VIII.C Dynamics of a Conserved field

In fact it is possible to obtain the correct equilibrium weight with q dependent mobility

and noise, as long as the generalized fluctuation–dissipation condition,

D(q) = kBTµ(q), (VIII.40)

holds. This generalized condition is useful in considering the dissipative dynamics of a

conserved field. The prescription that leads to the Langevin equations (VIII.23)–(VIII.25),

does not conserve the field in the sense that
∫

ddx~m(x, t) can change with time. (Although

this quantity is on average zero for r > 0, it undergoes stochastic fluctuations.) If we are

dealing with the a binary mixture (n = 1), the order parameter which measures the

difference between densities of the two components is conserved. Any concentration that

is removed from some part of the system must go to a neighboring region in any realistic

dynamics. Let us then consider a dynamical process constrained such that

d

dt

∫

ddx ~m(x, t) =

∫

ddx
∂ ~m(x, t)

∂t
= ~0. (VIII.41)
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How can we construct a dynamical equation that satisfies eq.(VIII.41)? The integral clearly

vanishes if the integrand is a total divergence, i.e.

∂mi(x, t)

∂t
= −∇ · ji + ηi(x, t). (VIII.42)

The noise itself must be a total divergence, ηi = −∇ · σi, and hence in Fourier space,

〈ηi(q, t)〉 = 0, and 〈ηi(q, t)ηj(q
′, t′)〉 = 2Dδijq

2δ(t − t′)(2π)dδd(q + q′). (VIII.43)

We can now take advantage of the generalized Einstein relation in eq.(VIII.40) to ensure

the correct equilibrium distribution by setting,

ji = µ∇ ·
(

− δH
δmi(x)

)

. (VIII.44)

The standard terminology for such dynamical equations is provided by Hohenberg and

Halperin: In model A dynamics the field ~m is not conserved, and the mobility and

diffusion coefficients are constants. In model B dynamics the field ~m is conserved, and

µ̂ = −µ∇2 and D̂ = −D∇2.

Let us now reconsider the Gaussian model (u = 0), this time with a conserved order

parameter, with model B dynamics

∂ ~m(x, t)

∂t
= µr∇2 ~m − µK∇4 ~m + ~η(x, t). (VIII.45)

The evolution of each Fourier mode is given by

∂ ~m(q, t)

∂t
= −µq2(r + Kq2)~m(q, t) + ~η(q, t) ≡ − ~m(q, t)

τ(q)
+ ~η(q, t). (VIII.46)

Because of the constraints imposed by the conservation law, the relaxation of the field

is more difficult, and slower. The relaxation times diverge even away from criticality.

Depending on wavelength, we find scaling between length and time scales with dynamic

exponents z, according to

τ(q) =
1

µq2(r + Kq2)
≈

{

q−2 for q ≪ ξ−1 (z = 2)
q−4 for q ≫ ξ−1 (z = 4)

. (VIII.47)

The equilibrium behavior is unchanged, and

lim
t→∞

〈
|~m(q, t)|2

〉
= n

Dq2

µq2(r + Kq2)
=

nD

µ(r + Kq2)
, (VIII.48)

as before. Thus the same static behavior can be achieved by different dynamics. The

static exponents (e.g. ν) are determined by the equilibrium (stationary) state and are

unchanged, while the dynamic exponents may be different. As a result, dynamical critical

phenomena involve many more universality classes than the corresponding static ones.
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