
VII.C Perturbative Computation of Dielectric Response

The two partition functions in eq.(VII.58) are independent and can be calculated

separately. As the Gaussian partition function is analytic, any phase transitions of the

XY model must originate in the Coulomb gas. As briefly discussed earlier, in the low

temperature phase the charges appear only in the small density of tightly bound dipole

pairs. The dipoles dissociate in the high temperature phase, forming a plasma. The

two phases can be distinguished by examining the interaction between two external test

charges at a large separation X . In the absence of any internal charges (for y0 = 0) in

the medium, the two particles interact by the bare Coulomb interaction C(X). A finite

density of internal charges for small y0 partially screens the external charges, and reduces

the interaction between the test charges to C(X)/ε, where ε is an effective dielectric

constant. There is an insulator to metal transition at sufficiently large y0. In the metallic

(plasma) phase, the external charges are completely screened and their effective interaction

decays exponentially.

To quantify the above picture, we shall compute the effective interaction between two

external charges at x and x′, perturbatively in the fugacity y0. To lowest order, we need

to include configurations with two internal charges (at y and y′), and

e−βV(x−x′) = e−4π2KC(x−x′)×
[

1 + y2
0

∫

d2yd2y′ e−4π2KC(y−y′)+4π2K[C(x−y)−C(x−y′)−C(y′−x)+C(x′−y′)] + O(y4
0)
]

[

1 + y2
0

∫

d2yd2y′ e−4π2KC(y−y′) + O(y4
0)
]

= e−4π2KC(x−x′)

[

1 + y2
0

∫

d2yd2y′ e−4π2KC(y−y′)
(

e4π2KD(x,x′;y,y′) − 1
)

+ O(y4
0)

]

,

(VII.60)

where D(x,x′;y,y′) is the interaction between the internal and external dipoles. The

direct interaction between internal charges tends to keep the separation r = y′ − y small.

Using the center of mass R = (y + y′)/2, we can change variables to y = R − r/2 and

y′ = R + r/2, and expand the dipole–dipole interaction for small r as

D (x,x′;y,y′) =C
(

x− R +
r

2

)

− C
(

x −R − r

2

)

− C
(

x′ − R +
r

2

)

+ C
(

x′ − R − r

2

)

= − r · ∇RC(x − R) + r · ∇RC(x′ −R) + O(r3).
(VII.61)

To the same order

e4π2KD(x,x′;y,y′) − 1 = − 4π2Kr · ∇R (C(x −R) − C(x′ − R))

+8π4K2 [r · ∇R (C(x − R) − C(x′ −R))]
2

+ O(r3).
(VII.62)
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After the change of variables
∫

d2yd2y′ →
∫

d2rd2R, the effective interaction becomes

e−βV(x−x′) = e−4π2KC(x−x′)

{[

1 + y2
0

∫

d2rd2R e−4π2KC(r)×
(

− 4π2Kr · ∇R (C(x− R) − C(x′ − R)) + 8π4K2 [r · ∇R (C(x −R) − C(x′ − R))]
2

+ O(r3)
)

+ O(y4
0)

]}

.

(VII.63)

Following the angular integrations in d2r, the term linear in r vanishes, while the angular

average of (r · ∇RC)2 is r2|∇RC|2/2. Hence eq.(VII.63) simplifies to

e−βV(x−x′) = e−4π2KC(x−x′)×
[

1 + y2
0

∫

(2πrdr)e−4π2KC(r)8π4K2 r
2

2

∫

d2R
(

∇R (C(x− R) − C(x′ − R))
)2

+ O(r4)

]

.

(VII.64)

The remaining integral can be evaluated by parts,

∫

d2R [∇R (C(x − R) − C(x′ −R))]
2

= −
∫

d2R (C(x −R) − C(x′ − R))
(

∇2C(x− R) −∇2C(x′ −R)
)

= −
∫

d2R (C(x −R) − C(x′ − R))
(

δ2(x− R) − δ2(x′ − R)
)

= 2C(x− x′) − 2C(0).

(VII.65)

The short distance divergence can again be absorbed into a proper cutoff with C(x) →
ln(x/a)/2π, and

e−βV(x−x′) = e−4π2KC(x−x′)

[

1 + 16π5K2y2
0C(x− x′)

∫

drr3e−2πK ln(r/a) + O(y4
0)

]

.

(VII.66)

The second order term can be exponentiated to give an effective interaction βV(x− x′) ≡
4π2KeffC(x− x′), with

Keff = K − 4π3K2y2
0a

2πK

∫ ∞

a

drr3−2πK + O(y4
0). (VII.67)

We have thus evaluated the dielectric constant of the medium, ε = K/Keff , pertur-

batively to order of y2
0 . However, the perturbative correction is small only as long as

the integral in r converges at large r. The breakdown of the perturbation theory for
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K < Kc = 2/π, occurs precisely at the point where the free energy of an isolated vortex

changes sign. This breakdown of perturbation theory is reminiscent of that encountered

in the Landau–Ginzburg model for d < 4. Using the experience gained from that problem,

we shall reorganize the perturbation series into a renormalization group for the parameters

K and y0.
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