
V.C The Niemeijer–van Leeuwen Cumulant Approximation

Unfortunately, the decimation procedure cannot be performed exactly in higher di-

mensions. For example, the square lattice can be divided into two sublattices. For an

RG with b =
√

2, we can start by decimating the spins on one sublattice. The interac-

tions between the four spins surrounding each decimated spin are obtained by generalizing

eq.(V.13). If initially h = g = 0, we obtain

R(σ′
1, σ

′
2, σ

′
3, σ

′
4) =

∑

s=±1

eKs(σ′

1+σ′

2+σ′

3+σ′

4) = 2 cosh [K(σ′
1 + σ′

2 + σ′
3 + σ′

4)] . (V.28)

Clearly the four spins appear symmetrically in the above expression, and hence are subject

to the same two body interaction. This implies that new interactions along the diagonals

of the renormalized lattice are also generated, and the nearest neighbor form of the original

Hamiltonian is not preserved. There is also a four point interaction, and

R = exp [g′ + K ′(σ′
1σ

′
2 + σ′

2σ
′
3 + σ′

3σ
′
4 + σ′

4σ
′
1 + σ′

1σ
′
3 + σ′

2σ
′
4) + K ′

4σ
′
1σ

′
2σ

′
3σ

′
4] . (V.29)

The number (and range) of new interactions increases with each RG step, and some trun-

cating approximation is necessary. Two such schemes are described in the following sec-

tions.

One of the earliest approaches was developed by Niemeijer and van Leeuwen (NvL)

for treating the Ising model on a triangular lattice, subject to the usual nearest neighbor

Hamiltonian −βH = K
∑

〈ij〉 σiσj . The original lattice sites are grouped into cells of three

spins (e.g. in alternating up pointing triangles). Labelling the three spins in cell α as

{σ1
α, σ2

α, σ3
α}, we can use a majority rule to define the renormalized cell spin as

σ′
α = sign

[

σ1
α + σ2

α + σ3
α

]

. (V.30)

(There is no ambiguity in the rule for any odd number of sites, and the renormalized spin is

two–valued.) The renormalized interactions corresponding to the above map are obtained

from the constrained sum

e−βH′

[σ′

α] =
′
∑

{σi
α 7→σ′

α}

e−βH[σi
α] . (V.31)
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To truncate the number of interactions in the renormalized Hamiltonian, NvL intro-

duced a perturbative scheme by setting βH = βH0 + U . The unperturbed Hamiltonian

−βH0 = K
∑

α

(

σ1
ασ2

α + σ2
ασ3

α + σ3
ασ1

α

)

, (V.32)

involves only intra–cell interactions. Since the cells are decoupled, this part of the Hamil-

tonian can be treated exactly. The remaining inter–cell interactions are treated as a

perturbation

−U = K
∑

<α,β>

(

σ
(1)
β σ(2)

α + σ
(1)
β σ(3)

α

)

. (V.33)

The sum is over all neighboring cells, each connected by two bonds. (The actual spins

involved depend on the relative orientations of the cells.) Eq.(V.31) is now evaluated

perturbatively as

e−βH′

[σ′

α] =
′
∑

{σi
α 7→σ′

α}

e−βH0[σ
i
α]

[

1 − U +
U2

2
− · · ·

]

. (V.34)

The renormalized Hamiltonian is given by the cumulant series

βH′[σ′
α] = − lnZ0[σ

′
α] + 〈U〉0 −

1

2

(

〈

U2
〉

0
− 〈U〉20

)

+ O(U3), (V.35)

where 〈〉0 refers to the expectation values with respect to βH0, with the restriction of fixed

[σ′
α], and Z0 is the corresponding partition function.

To proceed, we construct a table of all possible configurations of spins within a cell,

their renormalized value, and contribution to the cell energy:

σ′
α σ1

α σ2
α σ3

α exp [−βH0]

+ + + + e3K

+ − + + e−K

+ + − + e−K

+ + + − e−K

− − − − e3K

− + − − e−K

− − + − e−K

− − − + e−K
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The restricted partition function is the product of contributions from the independent cells,

Z0[σ
′
α] =

∏

α





′
∑

{σi
α 7→σ′

α}

eK(σ1
ασ2

α+σ2
ασ3

α+σ3
ασ1

α)



 =
(

e3K + 3e−K
)N/3

. (V.36)

It is independent of [σ′
α], thus contributing an additive constant to the Hamiltonian. The

first cumulant of the interaction is

−〈U〉0 = K
∑

<α,β>

[

〈

σ1
β

〉

0

〈

σ2
α

〉

0
+
〈

σ1
β

〉

0

〈

σ3
α

〉

0

]

= 2K
∑

<α,β>

〈

σi
α

〉

0

〈

σj
β

〉

0
, (V.37)

where we have taken advantage of the equivalence of the three spins in each cell. Using

the table, we can evaluate the restricted average of site spins as

〈

σi
α

〉

0
=















+e3K − e−K + 2e−K

e3K + 3e−K
for σ′

α = +1

−e3K + e−K − 2e−K

e3K + 3e−K
for σ′

α = −1















≡ e3K + e−K

e3K + 3e−K
σ′

α . (V.38)

Substituting in eq.(V.37) leads to

−βH′[σ′
α] =

N

3
ln
(

e3K + 3e−K
)

+ 2K

(

e3K + e−K

e3K + 3e−K

)2
∑

〈αβ〉

σ′
ασ′

β + O(U2). (V.39)

At this order, the renormalized Hamiltonian involves only nearest neighbor interactions,

with the recursion relation

K ′ = 2K

(

e3K + e−K

e3K + 3e−K

)2

. (V.40)

1. Eq.(V.40) has the following fixed points:

(a) The high temperature sink at K∗ = 0. If K ≪ 1, K ′ ≈ 2K(2/4)2 = K/2 < K, i.e.

this fixed point is stable, and has zero correlation length.

(b) The low temperature sink at K∗ = ∞. If K ≫ 1, then K ′ ≈ 2K > K, i.e. unlike the

one dimensional case, this fixed point is also stable with zero correlation length.

(c) Since both of the above fixed points are unstable, there must be at least one stable

fixed point at finite K ′ = K = K∗. From eq.(V.40), the fixed point position satisfies

1√
2

=
e3K∗

+ e−K∗

e3K∗ + 3e−K∗
, =⇒

√
2e4K∗

+
√

2 = e4K∗

+ 3. (V.41)
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The fixed point value

K∗ =
1

4
ln

(

3 −
√

2√
2 − 1

)

≈ 0.3356, (V.42)

can be compared to the exactly known value of 0.2747 for the triangular lattice.

2. Linearizing the recursion relation around the non-trivial fixed point yields,

∂K ′

∂K

∣

∣

∣

∣

K∗

= 2

(

e4K∗

+ 1

e4K∗ + 3

)2

+ 32K∗e4K∗ (e4K∗

+ 1)

(e4K∗ + 3)3
≈ 1.624. (V.43)

The fixed point is indeed unstable as required by the continuity of flows. This RG scheme

removes 1/3 of the degrees of freedom, and corresponds to b =
√

3. The thermal eigenvalue

is thus obtained as

byt =
∂K ′

∂K

∣

∣

∣

∣

K∗

, =⇒ yt ≈
ln(1.624)

ln(
√

3)
≈ 0.883. (V.44)

This can be compared to the exactly known value of yt = 1, for the two dimensional Ising

model. It is certainly better than the mean-field (Gaussian) estimate of yt = 2. From this

eigenvalue we can estimate the exponents

ν = 1/yt ≈ 1.13 (1), and α = 2 − 2/yt = −0.26 (0),

where the exact values are given in the brackets.

3. To complete the calculation of exponents, we need the magnetic eigenvalue yh, obtained

after adding a magnetic field to the Hamiltonian, i.e. from

βH = βH0 + U − h
∑

i

σi
α . (V.45)

Since the fixed point occurs for h∗ = 0, the added term can also be treated perturbatively,

and to the lowest order

βH′ = βH0 + 〈U〉0 − h
∑

α

〈

(σ1
α + σ2

α + σ3
α)
〉

0
, (V.46)

where the spins are grouped according to their cells. Using eq.(V.38),

βH′ = lnZ0 + K ′
∑

<α,β>

σ′
ασ′

β − 3h
∑

α

(

e3K + e−K

e3K + 3e−K

)

σ′
α, (V.47)
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thus identifying the renormalized magnetic field as

h′ = 3h

(

e3K + e−K

e3K + 3e−K

)

. (V.48)

In the vicinity of the unstable fixed point

byh =
∂h′

∂h

∣

∣

∣

∣

K∗

= 3
e4K∗

+ 1

e4K∗ + 3
=

3√
2
, (V.49)

and

yh =
ln
(

3/
√

2
)

ln
(√

3
) ≈ 1.37. (V.50)

This is lower than the exact value of yh = 1.875. (The Gaussian value of yh = 2 is closer

to the correct result in this case.)

4. NvL carried out the approach to the second order in U . At this order two additional

interactions over further neighbor spins are generated. The recursion relations in this three

parameter space have a non-trivial fixed point with one unstable direction. The resulting

eigenvalue of yt = 1.053, is tantalizingly close to the exact value of 1, but this agreement

is probably accidental.

V.D The Migdal–Kadanoff Bond Moving Approximation

Consider a b = 2 RG for the Ising model on a square lattice, in which every other spin

along each lattice direction is decimated. As noted earlier, such decimation generates new

interactions between the remaining spins. One way of overcoming this difficulty is to simply

remove the bonds not connected to the retained spins. The renormalized spins are then

connected to their nearest neighbors by two successive bonds. Clearly after decimation, the

renormalized bond is given by the recursion relation in eq.(V.18), characteristic of a one

dimensional chain. The approximation of simply removing the unwanted bonds weakens

the system to the extent that it behaves one dimensionally. This is remedied by using the

unwanted bonds to strengthen those that are left behind. The spins that are retained are

now connected by a pair of double bonds (of strength 2K), and the decimation leads to

K ′ =
1

2
ln cosh(2 × 2K) . (V.51)

1. Fixed points of this recursion relation are located at

(a) K∗ = 0: For K ≪ 1, K ′ ≈ ln(1 + 8K2)/2 ≈ 4K2 ≪ K, i.e. this fixed point is stable.
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(b) K∗ → ∞: For K ≫ 1, K ′ ≈ ln(e4K/2)/2 ≈ 2K ≫ K, indicating that the low

temperature sink is also stable.

(c) The domains of attractions of the above sinks are separated by a third fixed point at

e2K∗

=
e4K∗

+ e−4K∗

2
, =⇒ K∗ ≈ 0.305, (V.52)

which can be compared with the exact value of Kc ≈ 0.441.

2. Linearizing eq.(V.51) near the fixed point gives

byt =
∂K ′

∂K

∣

∣

∣

∣

K∗

= 2 tanh 4K∗ ≈ 1.6786, =⇒ yt ≈ 0.747, (V.53)

compared to the exact value of yt = 1.

The bond moving procedure can be extended to higher dimensions. For a hypercubic

lattice in d-dimensions, the bond moving step strengthens each bond by a factor of 2d−1.

After decimation, the recursion relation is

K ′ =
1

2
ln cosh

[

2 × 2d−1K
]

. (V.54)

The high and low temperature sinks at K∗ = 0 and K∗ → ∞, are stable, since

K ≪ 1, =⇒ K ′ ≈ 1

2
ln(1 + 22d−1K2) ≈ 22(d−1)K2 ≪ K, (V.55)

and

K ≫ 1, =⇒ K ′ ≈ 1

2
ln

e2dK

2
≈ 2d−1K ≫ K. (V.56)

(Note that the above result correctly identifies the lower critical dimension of the Ising

model, in that the low temperature sink is stable only for d > 1.) The intervening fixed

point has an eigenvalue

2yt =
∂K ′

∂K

∣

∣

∣

∣

K∗

= 2d−1 tanh
(

2dK∗
)

. (V.57)

The resulting values of K∗ ≈ 0.065 and yt ≈ 0.934 for d = 3, can be compared with the

known values of Kc ≈ 0.222 and yt ≈ 1.59 on a cubic lattice. Clearly the approximation

gets worse at higher dimensions. (It fails to identify an upper critical dimension, and as

d → ∞, K∗ → 22(1−d) and yt → 1.)
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The Migdal–Kadanoff scheme can also be applied to more general spin systems. For

a one dimensional model described by the set of interactions {K}, the transfer matrix

method in eq.(V.27) gives the recursion relations as

T ′
b({K ′}) = T ({K})b.

For a d-dimensional lattice, the bond moving step strengthens each bond by a factor of

bd−1, and the generalized Migdal–Kadanoff recursion relations are

T ′
b({K ′}) = T ({bd−1K})b. (V.58)

The above equations can be used as a quick way of estimating phase diagrams and

exponents. The procedure is exact in d = 1, and does progressively worse in higher

dimensions. It thus compliments mean–field (saddle point) approaches that are more

reliable in higher dimensions. Unfortunately, it is not possible to develop a systematic

scheme to improve upon its results. The RG procedure also allows evaluation of free

energies, heat capacities, and other thermodynamic functions. One possible worry is that

the approximations used to construct RG schemes may result in unphysical behavior, e.g.

negative values of response functions C and χ. In fact most of these recursion relations

(e.g. eq.(V.58)) are exact on hierarchical (Berker) lattices. The realizability of such lattices

ensures that there are no unphysical consequences of the recursion relations.
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