
IV.E Perturbative RG (First Order)

The last section demonstrated how various expectation values associated with the

Landau–Ginzburg Hamiltonian can be calculated perturbatively in powers of u. However,

the perturbative series is inherently divergent close to the critical point and cannot be used

to characterize critical behavior in dimensions d ≤ 4. Wilson showed that it is possible to

combine perturbative and renormalization group approaches into a systematic method for

calculating critical exponents. Accordingly, we shall extend the RG calculation of Gaussian

model in sec.III.G to the Landau–Ginzburg Hamiltonian, by treating U = u
∫

ddxm4 as a

perturbation.

1. Coarse Grain: This is the most difficult step of the RG procedure. As before, subdivide

the fluctuations into two components as,

~m(q) =







~̃m(q) for 0 < q < Λ/b

~σ(q) for Λ/b < q < Λ

. (IV.28)

In the partition function,

Z =

∫

D ~̃m(q)D~σ(q) exp

{

−

∫ Λ

0

ddq

(2π)d

(

t + Kq2

2

)

(

|m̃(q)|2 + |σ(q)|2
)

− U [ ~̃m(q), ~σ(q)]

}

,

(IV.29)

the two sets of modes are mixed by the operator U . Formally, the result of integrating out

{~σ(q)} can be written as

Z =

∫

D ~̃m(q) exp

{

−

∫ Λ/b

0

ddq

(2π)d

(

t + Kq2

2

)

|m̃(q)|2

}

×

exp

{

−
nV

2

∫ Λ

Λ/b

ddq

(2π)d
ln

(

t + Kq2
)

}

〈

e−U [ ~̃m,~σ]
〉

σ
≡

∫

D ~̃m(q)e−β
˜H[ ~̃m].

(IV.30)

Here we have defined the partial averages

〈O〉σ ≡

∫

D~σ(q)

Zσ
O exp

[

−

∫ Λ

Λ/b

ddq

(2π)d

(

t + Kq2

2

)

|σ(q)|2

]

, (IV.31)

with Zσ =
∫

D~σ(q) exp{−βH0[~σ]}, being the Gaussian partition function associated with

the short wavelength fluctuations. From eq.(IV.30), we obtain

˜βH[ ~̃m] = V δf0
b +

∫ Λ/b

0

ddq

(2π)d

(

t + Kq2

2

)

|m̃(q)|2 − ln
〈

e−U [ ~̃m,~σ]
〉

σ
. (IV.32)
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The final expression can be calculated perturbatively as,

ln
〈

e−U
〉

σ
= −〈U〉σ +

1

2

(

〈

U2
〉

σ
− 〈U〉

2
σ

)

+· · ·+
(−1)ℓ

ℓ!
×ℓth cumulant of U+· · · . (IV.33)

The cumulants can be computed using the rules set in the previous sections. For example,

at the first order we need to compute

〈

U
[

~̃m, ~σ
]〉

σ
= u

∫

ddq1d
dq2d

dq3d
dq4

(2π)4d
(2π)dδd(q1 + q2 + q3 + q4)

〈[

~̃m(q1) + ~σ(q1)
]

·
[

~̃m(q2) + ~σ(q2)
] [

~̃m(q3) + ~σ(q3)
]

·
[

~̃m(q4) + ~σ(q4)
]〉

σ

. (IV.34)

The following types of terms result from expanding the product:

[1] 1
〈

~̃m(q1) · ~̃m(q2) ~̃m(q3) · ~̃m(q4)
〉

σ

[2] 4
〈

~σ(q1) · ~̃m(q2) ~̃m(q3) · ~̃m(q4)
〉

σ

[3] 2
〈

~σ(q1) · ~σ(q2) ~̃m(q3) · ~̃m(q4)
〉

σ

[4] 4
〈

~σ(q1) · ~̃m(q2)~σ(q3) · ~̃m(q4)
〉

σ

[5] 4
〈

~σ(q1) · ~σ(q2)~σ(q3) · ~̃m(q4)
〉

σ

[6] 1 〈~σ(q1) · ~σ(q2)~σ(q3) · ~σ(q4)〉σ

. (IV.35)

The second element in each line is the number of terms with the a given ‘symmetry’.

The total of these coefficients is 24 = 16. Since the averages 〈O〉σ, involve only the short

wavelength fluctuations, only contractions with ~σ appear. The resulting internal momenta

are integrated from Λ/b to Λ.

Term [1] has no ~σ factors and evaluates to U [ ~̃m]. The second and fifth terms involve

an odd number of ~σs and their average is zero. Term [3] has one contraction and evaluates

to

− u × 2

∫

ddq1 · · ·d
dq4

(2π)4d
(2π)dδd(q1 + · · ·+ q4)

δjj(2π)dδd(q1 + q2)

t + Kq2
1

~̃m(q3) · ~̃m(q4) =

− 2nu

∫ Λ/b

0

ddq

(2π)d
|m̃(q)|2

∫ Λ

Λ/b

ddk

(2π)d

1

t + Kk2
.

(IV.36)

Term [4] also has one contraction but there is no closed loop (the factor δjj) and hence no

factor of n. The various contractions of 4 ~σ in term [6] lead to a number of terms with
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no dependence on ~̃m. We shall denote the sum of these terms by uV δf1
b . Summing up all

terms, the coarse grained Hamiltonian at order of u is given by

˜βH[ ~̃m] =V
(

δf0
b + uδf1

b

)

+

∫ Λ/b

0

ddq

(2π)d

(

t̃ + Kq2

2

)

|m̃(q)|2

+ u

∫ Λ/b

0

ddq1d
dq2d

dq3

(2π)3d
~̃m(q1) · ~̃m(q2) ~̃m(q3) · ~̃m(−q1 − q2 − q3)

, (IV.37)

where

t̃ = t + 4u(n + 2)

∫ Λ

Λ/b

ddk

(2π)d

1

t + Kk2
. (IV.38)

The coarse grained Hamiltonian is thus described by the same 3 parameters t, K, and u.

The other two parameters in the coarse grained Hamiltonian are unchanged, i.e.

K̃ = K, and ũ = u. (IV.39)

2. Rescale by setting q = b−1q′, and

3. Renormalize, ~̃m = z ~m′, to get

(βH)′[m′] =V
(

δf0
b + uδf1

b

)

+

∫ Λ

0

ddq′

(2π)d
b−dz2

(

t̃ + Kb−2q′2

2

)

|m′(q′)|2

+ uz4b−3d

∫ Λ

0

ddq′

1d
dq′

2d
dq′

3

(2π)3d
~m′(q′

1) · ~m′(q′

2) ~m′(q′

3) · ~m′(−q′

1 − q′

2 − q′

3)

.

(IV.40)

The renormalized Hamiltonian is characterized by the triplet of interactions (t′, K ′, u′),

such that

t′ = b−dz2 t̃, K ′ = b−d−2z2K, u′ = b−3dz4u. (IV.41)

As in the Gaussian model there is a fixed point at t∗ = u∗ = 0, provided that we set

z = b1+ d

2 , such that K ′ = K. The recursion relations for t and u in the vicinity of this

point are given by











t′b = b2

[

t + 4u(n + 2)

∫ Λ

Λ/b

ddk

(2π)d

1

t + Kk2

]

u′

b = b4−du

. (IV.42)

While the recursion relation for u at this order is identical to that obtained by dimensional

analysis; the one for t is different. It is common to convert the discrete recursion relations

to continuous differential equations by setting b = eℓ, such that for an infinitesimal δℓ,

t′b ≡ t(b) = t(1 + δℓ) = t + δℓ
dt

dℓ
+ O(δℓ2) , u′

b ≡ u(b) = u + δℓ
du

dℓ
+ O(δℓ2).
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Expanding eqs.(IV.42) to order of δℓ, gives















t + δℓ
dt

dℓ
= (1 + 2δℓ)

(

t + 4u(n + 2)
Sd

(2π)d

1

t + KΛ2
Λdδℓ

)

u + δℓ
du

dℓ
= (1 + (4 − d)δℓ)u

. (IV.43)

The differential equations governing the evolution of t and u under rescaling are then















dt

dℓ
= 2t +

4u(n + 2)KdΛ
d

t + KΛ2

du

dℓ
= (4 − d)u

. (IV.44)

The recursion relation for u is easily integrated to give u(ℓ) = u0e
(4−d)ℓ = u0b

(4−d).

The recursion relations can be linearized in the vicinity of the fixed point t∗ = u∗ = 0,

by setting t = t∗ + δt and u = u∗ + δu, as

d

dℓ

(

δt
δu

)

=

(

2 4(n+2)KdΛd−2

K
0 4 − d

) (

δt
δu

)

(IV.45)

In the differential form of the recursion relations, the eigenvalues of the matrix determine

the relevance of operators. Since the above matrix has zero elements on one side, its

eigenvalues are the diagonal elements, and as in the Gaussian model we can identify yt = 2,

and yu = 4− d. The results at this order are identical to those obtained from dimensional

analysis on the Gaussian model. The only difference is in the eigen–directions. The

exponent yt = 2 is still associated with u = 0, while yu = 4 − d is actually associated

with the direction t = −4u(n + 2)KdΛ
d−2/K. This agrees with the shift in the transition

temperature calculated to order of u from the susceptibility.

For d > 4 the Gaussian fixed point has only one unstable direction associated with yt.

It thus correctly describes the phase transition. For d < 4 it has two relevant directions

and is unstable. Unfortunately, the recursion relations have no other fixed point at this

order and it appears that we have learned little from the perturbative RG. However, since

we are dealing with an alternating series we can anticipate that the recursion relations at

the next order are modified to















dt

dℓ
= 2t +

4u(n + 2)KdΛ
d

t + KΛ2
− Au2

du

dℓ
= (4 − d)u − Bu2

, (IV.46)
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with A and B positive. There is now an additional fixed point at u∗ = (4 − d)/B for

d < 4. For a systematic perturbation theory we need to keep the parameter u small. Thus

the new fixed point can be explored systematically only for small ǫ = 4 − d; we are led to

consider an expansion in the dimension of space in the vicinity of d = 4! For a calculation

valid at O(ǫ) we have to keep track of terms of second order in the recursion relation for

u, but only to first order in that of t. It is thus unnecessary to calculate the term A in the

above recursion relation.
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