
1 Random-Field Ising Model

1.1 Recap: Replica formulation and dimensional-reduction

For a given realization of the random field, the Hamiltonian is

βH[m;h] =

∫
ddx
[
K
2 (∇m)2 + t

2m
2 + u‘m4 − h(x)m(x)

]
, .

The statistical of the quenched field is assumed to satisfy h(x) = 0, and
h(x)h(x′) = σ2h δ

d(x− x′).

In the replica formalism, n copies of the field are introduced, which upon
averaging of Zn, are governed by a Hamiltonian

βH[{mα}] =

∫
ddx
[ n∑
α=1

(
K
2 (∇mα)2 + t

2(mα)2 + u(mα)4
)
− σ2

h
2

∑
α,β

mαmβ
]
.

In the n → 0, the Gaussian model (with u = 0) leads to the expectation
value

m̃(k)|2 =
1

t+Kk2
+

σ2h
(t+Kk2)2

.

For k→ 0 the disorder piece dominates, and prescribes a 1/k4 divergence.
The perturbative integrals, with replacement of 1/k2 from the usual propa-
gator with the 1/k4 from the disordered average, carry two extra powers of
k−2 compared with the pure m4 theory. It can then be shown that the up-
per critical dimension is shifted to 6, and that to all orders in perturbation
theory, the exponents are the same as those of the pure theory in two lower
dimensions. This elegant result, however, is in conflict with the following
simple estimate of the lower critical dimension.

1.2 Imry–Ma argument

Let us consider an Ising model which in the absence of random fields has
settled to one of its symmetry broken ground states (say all spins up) at
very low temperature. We ask whether this ground state is stable upon
the introduction of random fields. The type of instability we have in mind
is flipping a large compact region of linear size L to a different state (say
spins down). In the absence of random fields, such a flip will carry a cost
from the unsatisfied bonds at the boundary of the flipped domain. This cost
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scales as σLd−1 in d-dimensions, where σ is an appropriate surface tension
energy. Clearly thermal fluctuations are unable to overcome the energy
barrier for large L and only small islands of the opposite spin will permeate
the symmetry broken state at low temperatures. This is a rough justification
for the possibility of symmetry breaking in pure systems in dimensions above
the lower critical dimension of 1.

The presence of random fields, however, provides a different incentive for
spin flips. Due to random fluctuations of random fields, a particular region
of size L may have a net magnetic field that favors the opposite state. Since
the domain of size L contains Ld spins, fluctuations in average may provide

a net field of order
√
σ2hL

d. Comparing the surface tension cost of σLd−1,

with a potential gain of σh L
d/2 indicates that large domains will then to flip

in dimensions below 2, destroying long-range order. Above 2 dimensions,
random fields will flip domains of typical size ` ∼ (σh/σ)(2−2)/2.

Note that dimensional reduction predicts absence of long-range order in
d ≤ 3 (up 2 from lower critical dimension of 1 for pure system), yet the Imry–
Ma argument would support persistence of such order in d > 2, including the
important case of three dimensions. This conflict was eventually resolved in
favor the simple Imry-Ma argument, likely due to non-perturbative effects
becoming important.

Finally, note that the dimensional reduction argument also holds for vec-
torial spins. In the case of continuous symmetry breaking, the cost of a
domain wall scales as Ld−2 for the pure system, indicating a lower critical
dimension of 2. Generalizing the Imry–Ma argument to this case, then leads
to a lower critical dimension of 4 in the presence of random fields.

1.3 Rounding of discontinuous (first–order) phase transitions

An elegant heuristic extension of the Imry–Ma argument was proposed by
Nihat Berker in the context of discontinuous (first–order) phase transitions.
The hallmark of such systems is that upon the change of an external knob (be
it a symmetry breaking magnetic field, or non-symmetry breaking parame-
ters such as pressure or temperature), the phase transition point is marked
by the coexistence of two (as in a liquid–gas system) or more (as in a dis-
ordered phases coexisting with symmetry broken states) phases. Quenched
randomness is most likely to prefer one such states. This is manifestly the
case for random fields in an Ising model, but random bonds in at the liquid
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gas transition would play a similar role.

As a concrete case, let us consider a Potts model, which for q > 4 in d = 2 is
known to undergo a discontinuous transition between disordered and ordered
phases. At the point of transition, the disordered phase should coexist with
any one of the q symmetry broken states. However, random-bonds– while
not breaking the symmetry between Potts states– are likely to locally prefer
the disordered or ordered state. Invoking the Imry–Ma argument suggests
that a large domain of disordered phase can invade any of the ordered states
by gain of such random energy.

This generalization of the argument suggests that there can be no discon-
tinuous phase transition in two dimensional systems with random bonds,
and that first order transitions are also weakened or rounded out in higher
dimensions. The heuristic argument by Berker, was proven rigorously by
Aizenman and Wehr (1989); their theorem states:

Theorem (Aizenman & Wehr, 1989). Let a two–dimensional
spin system (with finite local state space) be perturbed by any
quenched random variable that couples linearly to the local en-
ergy density, with translation–ergodic distribution and finite vari-
ance. Then no phase coexistence with non–vanishing order?parameter
discontinuity can occur at equilibrium; i.e. all finite–temperature
phase transitions are either continuous or absent.

As a consequence of this theorem, the Potts model phase transitions must
become continuous for all q in d = 2, and that there can be no tricritical
type phase diagrams.

2 Surface tension at criticality

Clearly surface tension plays a key role in stabilizing ordered phases, either
due to thermal fluctuations, or energetic costs associated with quenched
random impurities. It is worthwhile to discuss the behavior of surface tension
close to a critical phase transition in the pure case.

Let σ(T ) denote the equilibrium interface free energy per unit area between
two coexisting phases of a pure system. Close to the critical temperature
Tc the singular part of the bulk free-energy density scales as fsing ∼ |t|2−α
with t = (T − Tc)/Tc. Widom’s hyperscaling argument equates the excess
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free energy of a slab of thickness ξ (correlation length) to the cost of a single
interface, yielding

σ(T ) ξ d−1 ∼ fsing ξ d =⇒ σ(T ) ∼ |t|µ, µ = (d− 1) ν ,

where ν is the correlation-length exponent (ξ ∼ |t|−ν). In two dimensions,
ν = 1 for the Ising universality class, so µ = 1: the interface tension vanishes
linearly at criticality.

It can be shown that the exact value of surface tension for the two dimen-
sional Ising model is given by

σ(T ) = 2J
[
1− sinh−2(2βJ)

]1/2
, β =

1

kBT
,

with σ(0) = 2J (breaking two bonds per lattice spacing) as T → 0, and
σ(Tc − t) = 2J t +O(t2), confirming Widom with µ = 1. Surprisingly, this
expression can be obtained via an uncontrolled approximation intoduced by

3 Müller–Hartmann–Zittartz estimate

Consider a square lattice with periodic boundary conditions in the x–direction.
Neglecting islands and overhangs, an interface is specified by integer heights
hn (1 ≤ n ≤ L). For an anisotropic Ising model with couplings (Kx,Ky)
each unsatisfied (+−) bond raises the energy by 2Ki: i = x for vertical
bonds, i = y for horizontal. Neglecting islands/overhangs, the interface has
L horizontal bonds and

∑
n|hn+1 − hn| vertical bonds, giving

−βH = −2KyL− 2Kx

L∑
n=1

∣∣hn+1 − hn
∣∣.

We can construct a transfer matrix〈
h
∣∣T ∣∣h′〉 = exp

[
−2Ky − 2Kx |h′ − h|

]
,

in the matrix form

T = e−2Ky

 1 e−2Kx e−4Kx · · ·
e−2Kx 1 e−2Kx · · ·

...
. . .

 .
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Figure 1: Square?lattice interface geometry used by Mller–Hartmann and
Zittartz.

Because each row is a one–step shift of the previous row, T is diagonal
in Fourier space. For wave number k = 2πm/H (m = 0, . . . ,H − 1) the
eigenvalue is

λ(k) = e−2Ky

∞∑
n=−∞

e−2Kx|n| eikn.

In the H→∞ limit the largest eigenvalue occurs at k = 0:

λmax = e−2Ky

(
1 + 2

∞∑
n=1

e−2Kxn

)
= e−2Ky cothKx.

From the above result, the free energy per interface step is

F = −kBT lnλmax = −kBT
[

ln(cothKx)− 2Ky

]
.

(A direct sum over heights produces the same result: Z =
[
e−2Ky cothKx

]L
.)

The interface tension vanishes when

cothKx = e2Ky ,
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which is exactly the self–duality critical line of the 2-D anisotropic Ising
model. Thus long–wavelength interface fluctuations determine the critical
boundary.
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