Scaling and Disorder in the Replica formalism

1 Recap of scaling and renormalization group

In the perspective of renormalization group (RG), critical points are con-
trolled by a scale invariant (fixed point) Hamiltonian —SH*. Approach of
a physical system to criticality is then characterized by distance from the
fixed point characterized by local densities and conjugate fields. For exam-
ple, onset of ferromagnetic order is described by

—BH :_5H*+/ddx [hm(z) + te(z) + ug(x)+---],

where m(x) is the magnetization density (conjugate to the magnetic field h),
e(z) the energy density (conjugate to the reduced temperature t), and g(x)
a generic (likely irrelevant) operator with coupling w.

Starting with the partition function Z = [ Dm(z) e #* and (singular part)
of free energy f(t,h,u) = —In Z/V, we can obtain bulk quantities

518122 = (/ddzn m(z)), B = alantZ = (/ddzn e(z)), G = 5181;2 — (/dd 2g(x)).

M =

Susceptibilities follow from second derivatives, e.g. x, = (90G/0u)/V =
0% f /ou?, and are related to connected two-point correlations, as in

Xg = / @1z (g(z) g(0))..

Due to scale invariance, at criticality correlations decay as a power-law,
which can be parameterized as

(9(2)g(0))e ~ ||~



Away from criticality, cutting the power-law at the scale of the correlation
length ¢ yields

3
Xg ~ / dr 1729 ~ ¢4=25
0

Renormalization: Under an RG transformation that rescales distances by
a factor b (x—bx), the fields are expected to transform as

t — bYie, h — b h u — b¥*u.

Also, the (non-analytic) free energy density f(h,t,u) = —InZ/V satisfies
the scaling form
f(hot,u) = b9 f (B9 h, bYet, bYuu).

Obtaining susceptibilities from second derivatives of f with respect to the
fields, yields for example

r

o3 ~ b—d+2yqu(byhh7 bt b)),

Xg(h7 t7 U) -

Along a particular path away from criticality, the scale parameter b is chosen
to elucidate singular form of the correlation length £. For deviations along
the thermal direction, we set b ~ £, where £ ~ t™¥, with v = 1/y;, we get

—d+2
XgNg +yu‘

Comparing this scaling to the earlier form obtained from spatial integration,
Xg ~ £€472Y9 we obtain the identity

yu+yg:d-

This is general scaling relation that links the scaling dimensions of a field
u — bY»u and the associated observable density g(z) — b~ g(x), can al-
ternatively be obtained as follows: Under the change of scale x — bz, the
critical correlations behave as

(9(2)g(0))e ~ |22 — |ba| 72 ~ (™% g(x)][b~* g(0)]). -

Using the above scaling of the density, g(x) — b~ %9 g(x), we observe

u/ddx glz) — ubdpvs /ddzn g(x), indicating b¥» = p?~Ys .



2 Random bonds and the Harris Criterion

We can inquire as to what happens if one of the fields is inhomogeneously
distributed in space. A relevant example is a ferromagnet with quenched
impurities in which the interaction between spins varies with location. Such
a random bond system in the field theory perspective is described by a local
‘temperature’ t(x) that is a quenched random variable, appearing in the
Hamiltonian as

—BH[m(z)] = —pH* + /ddzn [t(z)e(x) + other terms] .

Here, e(x) is the local energy density and t(x) = t + §t(x) fluctuates in posi-
tion with d¢(z) = 0 and (for uncorrelated impurity positions) dt(z) dt(y) =
ofod(z —y).

Replica Hamiltonian: To perform the disorder average, introduce n repli-
cas:

7i=1] / Dy, e~ I 4 t(w)ea(z) ],
a=1

Averaging over the Gaussian-distributed #(z) with variance ¢7, and using
the standard formula for Gaussian averages, we obtain:

o2
Zn = /HDma exp —/dd:E EZ eq(z) — é Zea($)eﬁ($) T+
a «@ a,f

Thus, the disorder induces a cross-replica interaction
of
2 S co@lenta).
a7/B

(The sign of the interaction indicates preference of replicas to freeze in sim-
ilar states for a given realization of random bonds.)

Scaling Analysis: We ask the question if the randomness parameter o? is

a relevant perturbation at the fixed point described the uniform system. At
the pure fixed point, the energy density scales under RG with z — bx as:

e(r) = b Ye(x), with ye=d—y,



where g, is the RG eigenvalue of ¢, with ¢ — b¥*¢. The disorder-induced
coupling o7 multiplies an operator

/dda: eq(z)eg(z),

which under rescaling transforms as:

/ b d] [ e ()] ep ()]

indicating that
ol — bzyt_datz.

Relevance of Disorder: If 2y, —d > 0, the disorder grows under renormal-
ization and is relevant. If 2y; —d < 0, the disorder shrinks and is irrelevant.
Using the known relation between y; and the heat capacity exponent a in

the pure system:

d

a=2—-—

Yt

we can rewrite: p
2y —d = 52— —) =y,

Yt
This is the classic Harris criterion which states that random bond disorder
is relevant and modifies the nature of the phase transition only if the heat

capacity is divergent (a > 0).

A stronger version of the Harris Criterion states that in systems where dis-
order is relevant, the new critical behavior must satisfy an additional con-
straint: The new correlation length exponent v/ must obey v/ > %. This
ensures that fluctuations in the local critical temperature across regions of
size £ become negligible at the critical point, maintaining self-consistency of
the critical scaling.

Clearly the above results can be generalized to demonstrate that uncorre-
lated randomness in a field u(x) is only relevant if the corresponding sus-
ceptibility x4 diverges at the fixed point.

3 Random Field Ising Model

We now consider the Random Field Ising Model (RFIM), in which a quenched
random field couples linearly to the order parameter. Whereas the heat ca-
pacity exponent o may be positive or negative, the susceptibility exponent y



is generally positive, and from previous discussion we expect random fields
to modify the nature of the phase transition.

Replicated Hamiltonian with Random Fields: In the framework of
the Landau-Ginzburg description, the RFIM Hamiltonian is

— BHIm( l/wi[ +;m,+um+—m@¢@),

with h(z) a Gaussian random field, with

h(z) =0, and h(z)h(z') = o} 6%z — 2').

Using the replica approach and averaging over disorder, the replicated Landau—
Ginzburg Hamiltonian becomes:

i) = [t |3 (5 (Fma? + 50+ utma)? ) - E:Wm

«

Disorder induces a replica—nondiagonal favorable interaction between all
pairs of fields mg, mg.

Gaussian correlations in Fourier space: At Gaussian level (i.e., setting
u = 0), the two point correlations at wave-vector k are obtained as the
inverse of

G 5(k) = (Kk* +t)dap — 0}

Inverting this matrix yields

K£+t+u@ﬁup’ﬁa:@
Gap(k) = o2
B2 4102 if a7 B

e The diagonal correlator G, (x — ') corresponds to (¢(z)p(a’)), which
includes both thermal and disorder-induced fluctuations.

e The off-diagonal correlator Gog(x — ') for o # 3 gives (¢(z))(p(z")),
measuring sample-to-sample fluctuations. A nonzero value indicates
freezing of spins induced by the random field.

In position space, the Gaussian correlations (m(z)m(0)) can be interpreted
as the sum of all phantom paths connecting points 0 and x along bonds



of the lattice, carrying a factor of ~ K for each bond they cross. As
random walks can be regarded as fractals of dimension 2, their intersec-
tions (penalized in field theory by coupling u) are irrelevant in dimensions
d > dyeqg = 2+ 2 = 4. The presence of random-fields adds to the propa-
gator an additional o7 /(Kk? 4 t)2. In position space, this corresponds to
a convolution of paths from 0 to an intermediate point y, and then from y
to x. Each segment terminating at y, gets a contribution from the random
field h(y), which upon averaging gives the factor J,%. As the two random
walk segments are assumed to be non-crossing, their overall structure can
be regarded as that of an object of dimension 2+ 2 = 4. To leading order in
0,2L, the correction from intersection of paths arises when a double segment
(contribution proportional to a}%) intersects with a regular path of dimen-
sion 2. This leads to an upper critical dimension of d,.q = 4 + 2 = 6 for the
random field problem.

In the field theoretic approach, the quartic coupling w is marginal in d = 4
for the pure theory. In the RFIM, the first correction to the renormalised
four-point function that contains the lowest disorder term is the diagram
below:

Ma Mq

Mq Ma

The contribution of this diagram to the renormalization of u is proportional

to d 2 d
d o 1 d
/ p h 2 p ~ 4d—6’

o
@m)T (Kp2+1)” (Ep?+t) =0 ") 5P

where A is a upper cut-off. The integral diverges logarithmically at d = 6,
making 6 the upper-critical dimension of the RFIM.

Substituting a propagator that behaves as ~ U%k“l, in RFIM perturbation
theory leads to two extra powers of k~2 compared with the pure m* theory.
Consequently, the RFIM in d dimensions shares the same power counting
(in all perturbative orders) as the pure model in d — 2 dimensions: 4
6 = 4 + 2. This is the field-theoretic origin of the celebrated dimensional



reduction by two. Non-perturbative effects (droplets, rare regions) invalidate
the reduction for d < 4, but it correctly predicts the upper critical dimension
shift 4—6.



