
Scaling and Disorder in the Replica formalism

1 Recap of scaling and renormalization group

In the perspective of renormalization group (RG), critical points are con-
trolled by a scale invariant (fixed point) Hamiltonian −βH∗. Approach of
a physical system to criticality is then characterized by distance from the
fixed point characterized by local densities and conjugate fields. For exam-
ple, onset of ferromagnetic order is described by

−βH = −βH∗ +

∫

ddx
[

hm(x) + t e(x) + u g(x) + · · ·
]

,

where m(x) is the magnetization density (conjugate to the magnetic field h),
e(x) the energy density (conjugate to the reduced temperature t), and g(x)
a generic (likely irrelevant) operator with coupling u.

Starting with the partition function Z =
∫

Dm(x) e−βH and (singular part)
of free energy f(t, h, u) = − lnZ/V, we can obtain bulk quantities

M =
∂ lnZ

∂h
= 〈

∫

ddx m(x)〉, E =
∂ lnZ

∂t
= 〈

∫

ddx e(x)〉, G =
∂ lnZ

∂u
= 〈

∫

dd xg(x)〉.

Susceptibilities follow from second derivatives, e.g. χg = (∂G/∂u)/V =
∂2f/∂u2, and are related to connected two–point correlations, as in

χg =

∫

ddx 〈g(x) g(0)〉c.

Due to scale invariance, at criticality correlations decay as a power-law,
which can be parameterized as

〈g(x)g(0)〉c ∼ |x|−2yg .
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Away from criticality, cutting the power-law at the scale of the correlation
length ξ yields

χg ∼

∫ ξ

0
dr rd−1−2yg ∼ ξd−2yg .

Renormalization: Under an RG transformation that rescales distances by
a factor b (x→b x), the fields are expected to transform as

t → bytt, h → byh , h u → byuu.

Also, the (non-analytic) free energy density f(h, t, u) = − lnZ/V satisfies
the scaling form

f(h, t, u) = b−df(byhh, bytt, byuu).

Obtaining susceptibilities from second derivatives of f with respect to the
fields, yields for example

χg(h, t, u) =
∂2f

∂u2
∼ b−d+2yuχg(b

yhh, bytt, byuu).

Along a particular path away from criticality, the scale parameter b is chosen
to elucidate singular form of the correlation length ξ. For deviations along
the thermal direction, we set b ∼ ξ, where ξ ∼ t−ν , with ν = 1/yt, we get

χg ∼ ξ−d+2yu .

Comparing this scaling to the earlier form obtained from spatial integration,
χg ∼ ξd−2yg , we obtain the identity

yu + yg = d.

This is general scaling relation that links the scaling dimensions of a field
u → byuu and the associated observable density g(x) → b−ygg(x), can al-
ternatively be obtained as follows: Under the change of scale x→ b x, the
critical correlations behave as

〈g(x)g(0)〉c ∼ |x|−2yg → |bx|−2yg ∼ 〈[b−ygg(x)][b−ygg(0)]〉c .

Using the above scaling of the density, g(x) → b−ygg(x), we observe

u

∫

ddx g(x) → u bd b−yg

∫

ddx g(x) , indicating byu = bd−yg .
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2 Random bonds and the Harris Criterion

We can inquire as to what happens if one of the fields is inhomogeneously
distributed in space. A relevant example is a ferromagnet with quenched
impurities in which the interaction between spins varies with location. Such
a random bond system in the field theory perspective is described by a local
‘temperature’ t(x) that is a quenched random variable, appearing in the
Hamiltonian as

−βH[m(x)] = −βH∗ +

∫

ddx [t(x)e(x) + other terms] .

Here, e(x) is the local energy density and t(x) = t+ δt(x) fluctuates in posi-
tion with δt(x) = 0 and (for uncorrelated impurity positions) δt(x) δt(y) =
σ2
t δ

d(x− y).

Replica Hamiltonian: To perform the disorder average, introduce n repli-
cas:

Zn =

n
∏

α=1

∫

Dmα e−
∫
ddx [t(x)eα(x)+··· ].

Averaging over the Gaussian-distributed t(x) with variance σ2
t , and using

the standard formula for Gaussian averages, we obtain:

Zn =

∫

∏

α

Dmα exp



−

∫

ddx



t
∑

α

eα(x)−
σ2
t

2

∑

α,β

eα(x)eβ(x) + · · ·







 .

Thus, the disorder induces a cross-replica interaction

−
σ2
t

2

∑

α,β

eα(x)eβ(x).

(The sign of the interaction indicates preference of replicas to freeze in sim-
ilar states for a given realization of random bonds.)

Scaling Analysis: We ask the question if the randomness parameter σ2
t is

a relevant perturbation at the fixed point described the uniform system. At
the pure fixed point, the energy density scales under RG with x → bx as:

e(x) → b−yee(x), with ye = d− yt,
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where yt is the RG eigenvalue of t, with t → bytt. The disorder-induced
coupling σ2

t multiplies an operator
∫

ddx eα(x)eβ(x),

which under rescaling transforms as:
∫

[bd ddx] [b−yeeα(x)][b
−yeeβ(x)] ,

indicating that
σ2
t → b2yt−dσ2

t .

Relevance of Disorder: If 2yt−d > 0, the disorder grows under renormal-
ization and is relevant. If 2yt − d < 0, the disorder shrinks and is irrelevant.
Using the known relation between yt and the heat capacity exponent α in
the pure system:

α = 2−
d

yt
,

we can rewrite:

2yt − d = yt(2−
d

yt
) = ytα.

This is the classic Harris criterion which states that random bond disorder
is relevant and modifies the nature of the phase transition only if the heat
capacity is divergent (α > 0).

A stronger version of the Harris Criterion states that in systems where dis-
order is relevant, the new critical behavior must satisfy an additional con-
straint: The new correlation length exponent ν ′ must obey ν ′ ≥ 2

d
. This

ensures that fluctuations in the local critical temperature across regions of
size ξ become negligible at the critical point, maintaining self-consistency of
the critical scaling.

Clearly the above results can be generalized to demonstrate that uncorre-
lated randomness in a field u(x) is only relevant if the corresponding sus-
ceptibility χg diverges at the fixed point.

3 Random Field Ising Model

We now consider the Random Field Ising Model (RFIM), in which a quenched
random field couples linearly to the order parameter. Whereas the heat ca-
pacity exponent α may be positive or negative, the susceptibility exponent χ
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is generally positive, and from previous discussion we expect random fields
to modify the nature of the phase transition.

Replicated Hamiltonian with Random Fields: In the framework of
the Landau-Ginzburg description, the RFIM Hamiltonian is

−βH[m(x);h(x)] =

∫

ddx

[

K

2
(∇m)2 +

t

2
m2 + um4 − h(x)φ(x)

]

,

with h(x) a Gaussian random field, with

h(x) = 0, and h(x)h(x′) = σ2
h δ

d(x− x′).

Using the replica approach and averaging over disorder, the replicated Landau–
Ginzburg Hamiltonian becomes:

−βH[mα}] =

∫

ddx





∑

α

(

K

2
(∇mα)

2 +
t

2
(mα)

2 + u(mα)
4

)

−
σ2
h

2

∑

α,β

mα(x)mβ(x)



 .

Disorder induces a replica–nondiagonal favorable interaction between all
pairs of fields mα, mβ.

Gaussian correlations in Fourier space: At Gaussian level (i.e., setting
u = 0), the two point correlations at wave-vector k are obtained as the
inverse of

G−1
αβ(k) = (Kk2 + t)δαβ − σ2

h.

Inverting this matrix yields

Gαβ(k) =















1

Kk2 + t
+

σ2
h

(Kk2 + t)2
, if α = β,

σ2
h

(Kk2 + t)2
, if α 6= β.

• The diagonal correlator Gαα(x−x′) corresponds to 〈φ(x)φ(x′)〉, which
includes both thermal and disorder-induced fluctuations.

• The off-diagonal correlator Gαβ(x− x′) for α 6= β gives 〈φ(x)〉〈φ(x′)〉,
measuring sample-to-sample fluctuations. A nonzero value indicates
freezing of spins induced by the random field.

In position space, the Gaussian correlations 〈m(x)m(0)〉 can be interpreted
as the sum of all phantom paths connecting points 0 and x along bonds
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of the lattice, carrying a factor of ∼ K for each bond they cross. As
random walks can be regarded as fractals of dimension 2, their intersec-
tions (penalized in field theory by coupling u) are irrelevant in dimensions
d > ducd = 2 + 2 = 4. The presence of random-fields adds to the propa-
gator an additional σ2

h/(Kk2 + t)2. In position space, this corresponds to
a convolution of paths from 0 to an intermediate point y, and then from y
to x. Each segment terminating at y, gets a contribution from the random
field h(y), which upon averaging gives the factor σ2

h. As the two random
walk segments are assumed to be non-crossing, their overall structure can
be regarded as that of an object of dimension 2+2 = 4. To leading order in
σ2
h, the correction from intersection of paths arises when a double segment

(contribution proportional to σ2
h) intersects with a regular path of dimen-

sion 2. This leads to an upper critical dimension of ducd = 4+2 = 6 for the
random field problem.

In the field theoretic approach, the quartic coupling u is marginal in d = 4
for the pure theory. In the RFIM, the first correction to the renormalised
four-point function that contains the lowest disorder term is the diagram
below:

mα

mα

σ2
h

mα

mα

The contribution of this diagram to the renormalization of u is proportional
to

∫

ddp

(2π)d
σ2
h

(

Kp2 + t
)2

1
(

Kp2 + t
) −−−→

t→0
σ2
h

∫

ddp

p6
∝ Λ d−6,

where Λ is a upper cut-off. The integral diverges logarithmically at d = 6,
making 6 the upper-critical dimension of the RFIM.

Substituting a propagator that behaves as ∼ σ2
hk

−4, in RFIM perturbation
theory leads to two extra powers of k−2 compared with the pure m4 theory.
Consequently, the RFIM in d dimensions shares the same power counting
(in all perturbative orders) as the pure model in d − 2 dimensions: 4 7→
6 = 4 + 2. This is the field-theoretic origin of the celebrated dimensional
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reduction by two. Non-perturbative effects (droplets, rare regions) invalidate
the reduction for d ≤ 4, but it correctly predicts the upper critical dimension
shift 4→6.
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