
10. Directed Paths in Random Media

10.1 Introduction

Many physical problems involve calculating sums over paths. Each path could rep-

resent one possible physical realization of an object such as a polymer, in which case the

weight of the path is the probability of that configuration. The weights themselves could

be imaginary as in the case of Feynman paths describing the amplitude for the propagation

of a particle. Path integral calculations are now a standard tool of the theoretical physicist,

with many excellent books devoted to the subject[1][2].

What happens to sums over paths in the presence of quenched disorder in the medium?

Individual paths are no longer weighted simply by their length, but are influenced by the

impurities along their route. The sum may be dominated by “optimal” paths pinned to the

impurities; the optimal paths usually forming complex hierarchical structures. Physical

examples are provided by the interface of the random bond Ising model in two dimensions,

and by magnetic flux lines in superconductors. The actual value of the sum naturally

depends on the particular realization of randomness and varies from sample to sample. I

shall initially motivate the problem in the context of the high temperature expansion for

the random bond Ising model. Introducing the sums over paths for such a lattice model

avoids the difficulties associated with short distance cutoffs. Furthermore, the Ising model

is sufficiently well understood to make the nature of various approximations more evident.

The high temperature correlation functions of the Ising model are dominated by the

shortest paths connecting the spins. Such configurations, that exclude loops and overhangs,

are referred to as directed paths. They dominate the asymptotic behavior of the sum

over distances that are much longer than the correlation length. Most of this chapter is

devoted to describing the statistical properties of sums over such directed paths. As in

all multiplicative noise processes, the probability distribution for the sum is broad. Hence

Monte Carlo simulations may not be an appropriate tool for numerical studies; failing to

find typical members of the ensemble. Instead, we shall focus on a transfer matrix method

that allows a numerical evaluation of the sum in polynomial time in the length of the path.

The results indeed show that the sum has a broad probability distribution that resembles

(but is not quite) log–normal.

To obtain analytical information about this probability distribution we shall introduce

the replica method for examining the moments. It can be shown easily that the one
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dimensional sum has a log–normal distribution. The moments of the sum over directed

paths in two dimensions can be obtained by using a simple Bethe Ansatz. The implications

and limitations of this approach are discussed. There is little analytical information in three

and higher dimensions, but a variety of numerical results are available, mostly by taking

advantage of a mapping to the growing surfaces introduced in the previous chapter.

The spin glass problem describes a mixture of ferromagnetic and antiferromagnetic

bonds. The resulting sums in the high temperature expansion involve products over a

random mixture of positive and negative factors. The calculation of moments is somewhat

different from the case of purely positive random bonds. However, we shall demonstrate

that the scaling behavior of the distribution is unchanged. A similar sum involving prod-

ucts of random signs is encountered in calculating the probability of an electron tunneling

under a random potential. In the strongly localized limit, it is again sufficient to focus on

the interference of the forward–scattering (directed) paths. A magnetic field introduces

random phases in the sum; while to describe the tunneling of an electron in the presence

of spin–orbit scattering requires examining the evolution of a two component spinor and

keeping track of products of random matrices. We shall argue that all these cases are in

fact described by the same universal probability distribution which, however, does retain

some remnant of the underlying symmetries of the original electronic Hamiltonian.

Yet another class of directed paths is encountered in the context of light scattering in

turbulent media. Assuming that inelastic scattering can be neglected, the intensity of the

beam is left unchanged, and the evolution is unitary. Due to the constraint of unitarity

the resulting directed paths are described by a probability distribution belonging to a new

universality class. We shall introduce a discrete matrix model that explicitly takes care of

the unitarity constraint. In this model, several properties of the resulting sum over paths

can be calculated exactly.

10.2 High-T expansions for the random–bond Ising model

Consider a d dimensional hypercubic lattice of N sites. On each site there is an Ising

variable σi = ±1, and the spins interact through a Hamiltonian

H = −
∑

<ij>

Jijσiσj . (10.1)

The symbol < ij > implies that the sum is restricted to the dN nearest neighbor bonds

on the lattice. The bonds {Jij} are quenched random variables, independently chosen
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from a probability distribution p(J). For each realization of random bonds, the partition

function is computed as

Z[Jij ] =
∑

{σi}
exp (−βH) =

∑

{σi}

∏

<ij>

eKijσiσj , (10.2)

where the sums are over the 2N possible configurations of spins, β = 1/(kBT ) and Kij =

βJij . To obtain a high temperature expansion, it is more convenient to organize the

partition function in powers of tanhKij . Since (σiσj)
2 = 1, the Boltzmann factor for each

bond can be written as

eKijσiσj =
eKij + e−Kij

2
+
eKij − e−Kij

2
σiσj = coshKij (1 + τijσiσj) , (10.3)

where τij ≡ tanhKij . Applying this transformation to each bond of the lattice results in

Z[Jij ] =
∑

{σi}
e

∑

〈ij〉
Kijσiσj

= C
∑

{σi}

∏

〈ij〉
(1 + τijσiσj) , (10.4)

and

C ≡




∏

〈ij〉
coshKij



 .

The term C is non-singular, and will be mostly ignored henceforth. The final product

in Eq.(10.4) generates 2dN terms which can be represented diagrammatically by drawing

lines connecting sites i and j for each factor of τijσiσj . Each site now obtains a factor

of σpi

i , where 0 ≤ pi ≤ 2d is the number of bonds emanating from i. Summing over the

two possible values σi = ±1, gives a factor of 2 if pi is even and 0 is pi is odd. Thus the

only graphs that survive the sum have an even number of lines passing through each site.

The contribution of each graph G is the product of τij for the bonds making up the graph,

resulting in

Z[Jij ] = 2N × C
∑

G




∏

〈ij〉∈G
τij



 . (10.5)

For a d-dimensional hypercubic lattice the smallest closed graph is a square of 4 bonds

and the next graph has 6 bonds. Thus,

Z[Jij ] = 2N × C
[

1 +
∑

P

τP1τP2τP3τP4 +O(τ6) + · · ·
]

, (10.6)
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where the sum runs over the Nd(d− 1)/2 plaquettes on the lattice and τPα indicates one

of the four bonds around plaquett P . A quench averaged free energy is now obtained as

lnZ

N
= ln 2 + d ln coshK +

d(d− 1)

2
τ 4 + · · · , (10.7)

where the over–lines indicate averages over the probability distribution p(J). The expan-

sion up to this order is quite similar to that of the non–random Ising model, with τ in

place of the pure τ . However, starting with order of τ8 we need to evaluate averages of τ2
ij

(and higher moments) quickly removing any semblance to the expansion of the pure Ising

model.

The same conclusion applies to expansions for other spin operators. For example the

two spin correlation function is given by

〈σmσn〉 =
∑

{σi}

e

∑

〈ij〉
Kijσiσj

Z
σmσn =

C

Z

∑

{σi}
σmσn

∏

〈ij〉
(1 + τijσiσj) . (10.8)

The terms in the numerator involve an additional factor of σmσn. To get a finite value

after summing over σm = ±1 and σn = ±1 we have to examine graphs with an odd number

of bonds emanating from these external sites. After canceling the common factors between

the numerator and denominator, we obtain

〈σmσn〉 =

∑

Gmn

(
∏

〈ij〉∈Gmn
τij

)

∑

G
(
∏

〈ij〉∈G τij
) . (10.9)

Whereas the graphs in G have an even number of bonds going through each site, those

of Gmn have an odd number of bonds going through the external points m and n. In

calculated the quench averaged correlation function, the simplest graphs involving single

occurrences of each bond give contributions similar to the corresponding term for the pure

model with τ replaced by τ . However, the graphs with multiple factors of a particular τij

involve higher moments and complicate the computation.

As equations (10.6) and (10.8) indicate, the partition function and correlation func-

tions of the random system are themselves random quantities, dependent on all the bonds

Jij . It may not be sufficient to just characterize the mean value of Z (or lnZ), since the

full information about these fluctuating quantities is only contained in their respective

probability distributions p(Z) and p (〈σmσn〉).
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A particularly useful way of describing a random variable is through its characteristic

function, which is simply the Fourier transform of its probability distribution function

(PDF), i.e.

p̃(k) =
〈
e−ikx

〉
=

∫

dxp(x) e−ikx . (10.10)

Moments of the distribution can be obtained by expanding p̃(k) in powers of k,

p̃(k) =

〈 ∞∑

n=0

(−ik)n

n!
xn

〉

=
∞∑

n=0

(−ik)n

n!
〈xn〉 . (10.11)

Similarly, cumulants of the random variable are generated by the expansion of the logarithm

of the characteristic function as

ln p̃(k) =
∞∑

n=1

(−ik)n

n!
〈xn〉c . (10.12)

10.3 The one dimensional chain

The calculations of section 7.C are easily generalized to the case of the random bond

Ising model in d = 1 (and zero field). In particular, for the open chain of N sites, we have

Z = 2N
N−1∏

α=1

coshKα , (10.13)

where Kα ≡ Kα α+1 is the interaction between neighboring sites. There is also only one

graph that contributes to the two point correlation function,

〈σmσn〉 =
∑

{σi}

e
∑

i
Kiσiσi+1

Z
σmσn =

n−1∏

α=m

τα . (10.14)

Since the partition function is the sum of N − 1 independent variables,

lnZ

N
= ln 2 +

∑N−1

α=1

ln coshKα

N
, (10.15)

we can use the central limit theorem to conclude that as N →∞ the probability distribu-

tion p(lnZ/N), has a Gaussian distribution with mean

lnZ = N
(
ln 2 + ln coshK

)
, (10.16)
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and variance

(lnZ)2c ≡ (lnZ)2 − (lnZ)
2

= N(ln coshK)2c . (10.17)

(We have ignored the small difference between N and N − 1 in the thermodynamic limit.)

Similarly, for the correlation function of two points separated by a distance t, we have

ln 〈σ0σt〉 =
∑t−1

α=0
ln τα . (10.18)

As long as the random variables on the bonds are independently distributed, the cumulants

of ln 〈σ0σt〉 are given by,







ln〈σ0σt〉 = t ln tanhK

(ln〈σ0σt〉)2c = t (ln tanhK)2c
...

...

(ln〈σ0σt〉)p
c = t (ln tanhK)p

c

. (10.19)

In the following sections we shall try to obtain similar information about probability

distribution functions for the partition and correlation functions in higher dimensions. To

do so, we shall employ the replica method for calculating the moments of the distribution.

For example, the cumulants of the free energy are given by

Zn = en ln Z = exp

[

nlnZ +
n2

2
(lnZ)2c + · · ·+ np

p!
(lnZ)p

c + · · ·
]

, (10.20)

where we have taken advantage of Eq.(10.12), replacing (−ik) with n. Usually, the mo-

ments on the left hand side of the above equation are known only for integer n, while the

evaluation of the cumulants on the right hand side relies on an expansion around n = 0.

This is one of the difficulties associated with the problem of deducing a probability distri-

bution p(x), from the knowledge of its moments xn. There is in fact a rigorous theorem

that the probability distribution cannot be uniquely inferred if its nth moment increases

faster than n![3]. Most of the distributions of interest to us (such as the above log-normal)

do not satisfy this condition! Similar problems are encountered in the replica studies of

spin glasses[4]. It turns out that many of the difficulties associated with a rigorous inver-

sion are related to the behavior at the tail (extreme values) of the distribution. Most of the

information of interest to us is contained in the “bulk” of the distribution which is easier

to investigate. Rather than taking a rigorous approach to the problem, we shall illustrate

the difficulties and their resolution by examining the above one dimensional example in
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some detail, since it actually presents a worst case scenario for deducing a distribution

from its moments.

We used the central limit theorem to deduce that the probability distribution for

〈σ0σt〉 is log–normal. Its moments are computed from,

〈σ0σt〉n =
t−1∏

α=0

τn
α =

(

en ln τ
)t

= exp

[

t
∑

p

np

p!
(ln τ)p

c

]

. (10.21)

Let us consider a binary distribution in which τ takes two positive values of τ1 and τ2 > τ1

with equal probability. Then

τn =
τn
1 + τn

2

2
, (10.22)

and the generating function for the cumulants of the correlation function is

ln τn =n ln τ1 + ln

(
1 + (τ2/τ1)

n

2

)

=

n→ 0
n ln τ1 + ln

(
1 + 1 + n ln (τ2/τ1) + n2/2 ln2 (τ2/τ1) + · · ·

2

)

=n ln τ1 + ln

[

1 +
n

2
ln

(
τ2
τ1

)

+
n2

4
ln2

(
τ2
τ1

)

+ · · ·
]

=n ln τ1 +
n

2
ln

(
τ2
τ1

)

+
n2

8
ln2

(
τ2
τ1

)

+ · · ·

=n ln(
√
τ1τ2) +

n2

8
ln2

(
τ2
τ1

)

+ · · · .

(10.23)

Combining Eqs.(10.21) and (10.23), the cumulants of the correlation function are given by







ln〈σ0σt〉 =t ln(
√
τ1τ2) = a1t

ln〈σ0σt〉2c =
t

4
ln2 (τ2/τ1) = a2t

...

. (10.24)

While it is true that ln〈σ0σt〉 is normally distributed for large t, and that characteristic

function of a normal distribution is itself a Gaussian, we should be careful about the order

of limits in terminating the power series in the exponent at the second order. If we do so,

from

〈σ0σt〉n ≈ exp
[
t
(
na1 + n2a2/2

)]
, (10.25)

we should not infer anything about the high moments (n → ∞) and the tail of the dis-

tribution. Otherwise (since a2 > 0), we would conclude that sufficiently large moments of
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〈σ0σt〉 diverge with separation; a clearly false conclusion as 〈σ0σt〉 is bounded by unity!

The correct result is that

lim
n→∞

〈σ0σt〉n =
τnt
2

2t
, (10.26)

i.e., the high moments are almost entirely dominated by the one exceptional sample in

which all bonds are equal to τ2.

We can summarize the situation as follows: The “bulk” of the probability distribution

for ln〈σ0σt〉 is described by the small moments (n→ 0), while the tail of the distribution

is governed by the large moments (n→∞). We should have a clear idea of the crossover

point n∗ in applying the replica method. For the above one dimensional example, an

estimate of n∗ is given by the ratio of the successive terms in the expansion, i.e.

n∗ =
1

ln(τ2/τ1)
. (10.27)

Note that as τ2/τ1 becomes large, n∗ decreases, possibly becoming even smaller than unity.

This does not imply that we should conclude that ln〈σ0σt〉 is not normally distributed,

just that the tail of the distribution is more prominent. Failure to appreciate this point is

the source of some misunderstandings on the use of the replica method[5].

Clearly, it is possible to come up with many different microscopic distributions p(τ),

which result in the same first two cumulants in Eqs.(10.24), but different higher cumulants.

All these cases lead to the same universal bulk probability distribution for ln〈σ0σt〉 at

large t, but very different tails. Thus the non-uniqueness of the overall probability in this

example has to do with the rather uninteresting (and nonuniversal) behavior of the tail

of the distribution. The correct interpretation of Eqs.(10.24) is that the mean value for

the logarithm of the correlation function grows linearly with the separation t. In analogy

with pure systems, we can regard the coefficient of this decay as the inverse correlation

length, i.e. ξ−1 = − ln
√
τ1τ2. However, due to randomness in the medium, correlations

have different decays between different realizations (and between different points in the

same realization). The variations in this “inverse correlation length” are scale dependent

and fall off as 1/
√
t. In the next sections we shall attempt to generalize these results to

higher dimensions.
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10.4 Directed paths and the transfer matrix

Calculation of the correlation function in higher dimensions is complicated by the

presence of an exponentially large number of paths connecting any pair of points. On

physical grounds we expect the high temperature phase to be disordered, with correlations

that decay exponentially as a function of the separation t. The essence of this exponential

decay is captured by the lowest order terms in the high temperature expansion. The first

term in the series comes from the shortest path connecting the two points. Actually, along a

generic direction on a hypercubic lattice there are many paths that have the same shortest

length. (In two dimensions, the length of the shortest path connecting (0, 0) to (t, x) is the

“Manhattan” distance |t| + |x|.) The number of paths grows from a minimum of 1 along

a cardinal lattice direction to a maximum of d per step along the diagonal. (The number

of paths on the square lattice is (t + x)!/(t!x!).) Thus the decay of correlations depends

on orientation, a consequence of the anisotropy of the hypercubic lattice. (Note that this

anisotropy is absent at distances less than the correlation length. We don’t have to worry

about anisotropy in discretizing critical (massless) theories on a lattice.)

In a uniform system these shortest paths are sufficient to capture the essence of cor-

relation functions of the high temperature phase: An exponential decay with separation

which is generic to all spin systems with finite interactions. As temperature is reduced,

more complicated paths (e.g. with loops and overhangs) start contributing to the sum.

Although the contribution of these paths decays exponentially with their length, their

number grows exponentially. Ultimately at the critical point this “entropic” increase in

the number of paths overcomes the “energetic” decrease due to the factors of τ < 1, and

paths of all length become important below Tc. However, throughout the high temper-

ature phase it is possible to examine the paths at a coarse grained scale where no loops

and overhangs are present. The scale of such structures is roughly the correlation length

ξ, and if we use ξ as the unit of a coarse–grained lattice, the graphs contributing to the

correlation function are directed paths.

Let us define “directed paths” more carefully: Between any pair of points on the lattice

we can draw an imaginary line which can be regarded as a “time” axis t. Transverse

directions (perpendicular to the t axis) are indicated by ~x. Directed paths are similar

to the worldlines of a particle ~x(t) in time; they exclude any path from the initial to

the final point that has steps opposite to the main time direction. The validity of this

approximation, and the importance of the neglected loops, must be carefully considered.

It is certainly not valid in the vicinity of the critical point where loops of all sizes are
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present and equally important. Away from the critical point, we must distinguish between

properties at scales smaller or larger than the correlation length ξ. Limiting the sum for

the correlation function to directed paths is only useful for separations t ≫ ξ. Loops,

overhangs, and additional structures occur up to size ξ (the only relevant length scale) and

can be removed by coarse graining such that the lattice spacing is larger than or equal to

ξ. This is automatically satisfied in a high temperature expansion since the correlation

length is zero at infinite temperature. By the same argument, we may also neglect the

closed loops (vacuum bubbles) generated by the denominator of Eq.(10.9).

In the remainder of this section we shall recap how sums over directed paths in the

uniform system can be calculated exactly by transfer matrix methods. The method is then

generalized to random systems, providing an algorithm for summing all paths in polynomial

time. For ease of visualization, let us first consider the problem in two dimensions; the

results are easily generalizable to higher dimensions. Also to emphasize the general features

of the transfer matrix method, we shall compare and contrast the behavior of correlations

along the axis and the diagonal of the square lattice.

x

t

10.1. A directed path along the principal axis of the square lattice.
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To calculate the correlation function 〈σ0,0σ0,t〉, on a non-random square lattice, we

shall focus on directed paths oriented along the main axis of the square. These paths

are specified by a set of transverse coordinates (x0, x1, x2, · · · , xt), with x0 = xt = 0. Of

course, there is only one shortest path with all xi equal to zero, but we would like to

explore the corrections due to longer directed paths. Consider the set of quantities

〈x, t|W |0, 0〉 = sum over paths from (0, 0) to (x, t) ≡W (x, t) . (10.28)

The calculation of W (x, t) is easily accomplished by taking advantage of its Markovian

property: Each step of a path proceeds from its last location and is independent of the

previous steps. Hence W can be calculated recursively from,

W (x, t+ 1) = τ
[
W (x, t) + τ (W (x− 1, t) +W (x+ 1, t)) +O(τ2)

]

≡
∑

x′
〈x|T |x′〉 W (x′, t) ,

(10.29)

where we have introduced a transfer matrix,

〈x|T |x′〉 = τδx,x′ + τ2 (δx,x′+1 + δx,x′−1) +O(τ3) . (10.30)

If we treat the values of W at a particular t as a vector, Eq.(10.29) can be iterated as,

W (t) = TW (t− 1) = · · · = T t W (0) , (10.31)

starting from

W (0) =










...
τ
1
τ
...










. (10.32)

The calculations are simplified by diagonalizing the matrix T , using the Fourier basis

〈x|q〉 = eiq·x/
√
N , as

T (q) = τ (1 + 2τ cos q + · · ·) = τ exp

[

2τ

(

1− q2

2
+ · · ·

)]

. (10.33)

In this basis, W is calculated as

W (x, t) = 〈x|T t|0〉 =
∑

q

〈x|q〉T (q)t〈q|0〉

= τ te2τt

∫
dq

2π
exp

[
iqx− q2τt+ · · ·

]

= exp
[
t
(
ln τ + 2τ +O(τ2)

)]
× 1√

4πτt
exp

[

− x2

4τt

]

.

(10.34)
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x

t

10.2. A directed path along the diagonal of the square lattice.

The result is proportional to a gaussian form in x of width
√

2τt. The exponential decay

with ξ−1 = ln(1/τ)− 2τ +O(τ2) at x = 0 is accompanied by a subleading 1/
√
t reflecting

the constraint to return to the origin.

The corresponding calculation for paths along the diagonal, contributing to 〈σ0,0σ0,t〉,
is even simpler. (Note that the t and x axes are rotated by 45◦ compared to the previous

example.) At each step the path may proceed up or down, leading to the recursion relation

W (x, t+ 1) = τ (W (x− 1, t) +W (x+ 1, t)) ≡
∑

x′

〈x|T |x′〉W (x′, t) , (10.35)

with the transfer matrix

〈x|T |x′〉 = τ (δx,x′+1 + δx,x′−1) =⇒ T (q) = 2τ cos q . (10.36)

The calculation of W proceeds as before,

W (x, t) = 〈x|T t|0〉 =
∑

q
〈x|q〉T (q)t 〈q|0〉

=

∫
dq

2π
(2τ)t(cos q)teiqx

≈ (2τ)t × 1√
2πt

exp

[

−x
2

2t

]

,

(10.37)
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where the final result is obtained by a saddle point evaluation of the integral, essentially

replacing cost q with exp
(
−q2t/2

)
.

The similarity between Eqs.(10.34) and (10.37) is apparent. Note that in both cases

the leading exponential decay is determined by T (q = 0), i.e.

W (0, t) ≈ λt
max = T (q = 0)t . (10.38)

This is an example of the dominance of the largest eigenvalue in the product of a large

number of matrices. There is a corresponding ground state dominance in the evolution of

quantum systems. The similarities become further apparent by taking the continuum limit

of the recursion relations, which are obtained by regarding W (x, t) as a smooth function,

and expanding in the derivatives. From Eq.(10.29), we obtain

W +
∂W

∂t
+ · · · = τW + τ2

(

2W +
∂2W

∂x2
+ · · ·

)

, (10.39)

while Eq.(10.35) leads to

W +
∂W

∂t
+ · · · = 2τW + τ

∂2W

∂x2
+ · · · . (10.40)

For large t, the function W decays slowly for adjacent points in the x direction, and it is

justified to only consider the lowest order derivatives with respect to x. The decay factor

along the t direction is, however, quite big and we shall keep track of all derivatives in this

direction, leading to

e∂tW = τ exp
[
2τ + τ∂2

x + · · ·
]
W , (10.41)

and

e∂tW = 2τ exp

[
1

2
∂2

x + · · ·
]

W , (10.42)

respectively. Both equations can be rearranged (and generalized in higher dimensions) into

the differential form,
∂W

∂t
= − W

ξ(θ)
+ ν(θ)∇2W , (10.43)

where ξ(θ) and ν(θ) are the orientation dependent correlation length and dispersion coef-

ficient. Eq.(10.43) can be regarded as a diffusion equation in the presence of a sink, or an

imaginary–time Schrödinger equation.
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It is of course quite easy to integrate this linear equation to reproduce the results in

Eqs.(10.34) and (10.37). However, it is also possible[1] to express the solution in the form

of a continuous path integral. The solution is trivial in Fourier space,

∂W (q)

∂t
= −(ξ−1 + νq2)W, =⇒ W (q, t+ ∆t) = e−(ξ−1+νq2)∆t W (q, t) , (10.44)

while in real space,

W (x, t+ ∆t) =

∫
dq

2π
eiqxe−(ξ−1+νq2)∆tW (q, t)

=

∫
dq

2π
eiqxe(−ξ−1−νq2)∆t

∫

dxte
−iqxtW (xt, t)

=

∫

dxt exp

[

−∆t

ξ
− (x− xt)

2

4ν∆t

]

W (xt, t)

=

∫

dxt exp

[

−∆t

ξ
+

∆t

4ν

(
xt+∆t − xt

∆t

)2
]

W (xt, t) ,

(10.45)

which is just a continuum version of Eqs.(10.29) and (10.35). We can subdivide the interval

(0, t) into N subintervals of length ∆t = t/N . In the limit of N → ∞, recursion of

Eq.(10.45) gives

W (x, t) =

∫ (x,t)

(0.0)

Dx(t′) exp

[∫ t

0

dt′
(

− 1

ξ(θ)
− ẋ2

4ν(θ)

)]

, (10.46)

where ẋ = dx/dt′, and the integration is over all functions x(t′).

It is instructive to compare the above path integral with the partition function of a

string stretched between (0, 0) and (x, t),

Z(x, t) =

∫ (x,t)

(0,0)

Dx(t′) exp

[

−βσ
∫ t

0

dt′
√

1 + ẋ2

]

=

∫ (x,t)

(0,0)

Dx(t′) exp

[

−
∫ t

0

dt′
(

βσ +
βσ

2
ẋ2 + · · ·

)]

,

(10.47)

where σ is the line tension. Whereas for the string ξ−1 = (2ν)−1 = βσ, in general due to

the anisotropy of the lattice these quantities need not be equal. By matching solutions at

nearby angles of θ and θ+dθ, it is possible to obtain a relation between ξ−1(θ) and ν−1(θ).

(For a similar relation in the context of interfaces of Ising models, see Ref.[6].) However,

ξ(θ)−1 calculated from the shortest paths only is singular along the axis θ = 0. This is why

to calculate the parameter ν along this direction it is necessary to include longer directed

paths.
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10.5 Moments of the correlation function

We now return to the correlation functions in the presence of random bonds. In the

high temperature limit, we can still set

W (x, t) ≡ 〈σ0,0σx,t〉 =
∑

P

t∏

i=1

τPi , (10.48)

where the sum is over all the diagonally oriented directed paths P from (0, 0) to (x, t), and

the τPi denote factors of tanhK encountered for the random bonds along each path. The

τi are random variables, independently chosen for each bond. We shall assume that the

probability distribution p(τ) is narrowly distributed around a mean value τ with width

σ. Clearly, W (x, t) is itself a random variable and we would like to find its probability

distribution. Rather than directly calculating p(W ), we shall first examine its moments

Wn.

Calculation of the first moment is trivial: Each factor of τi occurs at most once in

Eq.(10.48), and hence after averaging,

W (x, t) ≡ 〈σ0,0σx,t〉 =
∑

P

τ t . (10.49)

This is precisely the sum encountered in a non-random system, with τ replacing τ . For

example, along the square diagonal,

W (x, t) ≈ (2τ)t × 1√
2πt

exp

[

−x
2

2t

]

, (10.50)

and in general, in the continuum limit,

∂W

∂t
= −W

ξ
+ ν

∂2W

∂x2
. (10.51)

For the calculation of the second moment we need to evaluate

WW =
∑

P,P ′

t∏

i=1

τPiτP ′i . (10.52)

For a particular step i, there are two possible averages depending on whether or not the

two paths cross the same bond,

τPiτP ′i =

{

τ 2 if Pi 6= P ′i
τ2 if Pi = P ′i

. (10.53)
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Since τ2 > τ 2 there is an enhanced weight favoring paths that intersect to those that

don’t. This can be regarded as an attraction between the two paths, represented by a

Boltzmann weight,

U =
τ2

τ 2
=
τ 2 + σ2

τ 2
= 1 +

σ2

τ 2
≈ eσ2/τ 2

. (10.54)

Including this attraction, the recursion relation for WW is,

W2(x1, x2, t) ≡W (x1, t)W (x2, t) =
∑

x′
1x′

2

〈x1x2|T2|x′1x′2〉 W (x′1, x
′
2, t− 1) , (10.55)

with the two body transfer matrix

〈x1x2|T2|x′1x′2〉 = τ2
(
δx1,x′

1+1 + δx1,x′
1−1

) (
δx2,x′

2+1 + δx2,x′
2−1

) (
1 + (U − 1)δx1,x2

δx′
1,x′

2

)
.

(10.56)

x

t

10.3. A pair of paths (dashed and solid) contributing to calculation of the second moment of the

sum over diagonally directed paths. The averaging over random bonds enhances the weight when

the two paths cross the same bond.
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The significance of the attraction in Eq.(10.54) is as follows: In the random system

the paths prefer to pass through regions with particularly favorable values of τ . After

performing the average there are no preferred locations. The tendency for replicas of the

original paths to bunch up at favorable spots is instead mimicked by the uniform attraction

which tends to bundle together multiple paths representing the higher moments.

In the continuum limit, Eq.(10.55) goes over to a differential equation of the form,

∂W2(x1, x2, t)

∂t
= −2W2

ξ
+ ν

∂2W2

∂x2
1

+ ν
∂2W2

∂x2
2

+ u δ(x1 − x2)W2 ≡ −H2W2 , (10.57)

with u ≈ σ2/τ 2. Alternatively, we could have obtained Eq.(10.57) from the continuum

version of the path integral,

W2(x1, x2, t) =

∫ (x1,t)

(0.0)

Dx1(t
′)
∫ (x2,t)

(0.0)

Dx2(t
′) exp

[∫ t

0

dt′uδ (x1(t
′)− x2(t

′))

]

exp

[∫ t

0

dt′
(

−1

ξ
− ẋ2

1

4ν

)]

exp

[∫ t

0

dt′
(

−1

ξ
− ẋ2

2

4ν

)] .

(10.58)

Formally integrating Eq.(10.57) yields W2 ∝ exp(−tH2), which can be evaluated in the

basis of eigenvalues of H2 as

W2(x1, x2, t) = 〈x1x2|T t
2 |00〉 =

∑

m

〈x1x2|m〉e−ǫmt〈m|00〉 ≈
t→∞ e−ε0t , (10.59)

where {εm} are the eigenenergies of H2, regarded as a quantum Hamiltonian. The expo-

nential growth of W2 for t→∞ is dominated by the ground state ‘energy’ of ε0.

The two body Hamiltonian depends only on the relative separation of the two particles.

After transforming to the center of mass coordinates,

{
r =x1 − x2

R =(x1 + x2)/2
, =⇒ ∂2

1 + ∂2
2 =

1

2
∂2

R + 2∂2
r , (10.60)

the Hamiltonian reads,

H2 =
2

ξ
− ν

2
∂2

R − 2ν∂2
r − uδ(r) . (10.61)

The relative coordinate describes a particle in a delta–function potential, which has a

ground state wavefunction

ψ0(r, R) ∝ e−κ|r| . (10.62)
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The value of κ is obtained by integrating H2ψ0 from 0− to 0+, and requiring the discon-

tinuity in the logarithmic derivative of ψ0 to match the strength of the potential; hence

−2ν(−κ− κ) = u, =⇒ κ =
u

4ν
≈ σ2

2τ 2
. (10.63)

The ground state energy of this two particle system is

ε0 = +
2

ξ
− 2νκ2 ≈ 2

ξ
− u2

8ν
. (10.64)

The inequality,

W 2(t) = exp

[

−2t

ξ
+
u2t

8ν

]

= W (t) 2 exp

(
u2t

8ν

)

≫ W (t) 2 , (10.65)

implies that the probability distribution forW (t) is quite broad, and becomes progressively

wider distributed as t→∞.

Higher moments of the sum are obtained from

Wn =
∑

P1,···,Pn

t∏

i=1

τP1i · · · τPni . (10.66)

At a particular “time” slice there may or may not be intersections amongst the paths. Let

us assume that τ is Gaussian distributed with a mean τ , and a narrow width σ; then,

τm ≈
∫

dx xm

√
2πσ2

exp

[

−(x− τ)2
2σ2

]

(set x = τ + ǫ and expand in ǫ)

≈
∫

dǫ√
2πσ2

(

τ m +mτ m−1ǫ+
m(m− 1)

2
τ m−2ǫ2 + · · ·

)

exp

[

− ǫ2

2σ2

]

≈ τ m +
m(m− 1)

2
τ m−2σ2 + · · · ≈ τ m

(

1 +
m(m− 1)

2

σ2

τ 2
+ · · ·

)

≈ τ m exp

[
m(m− 1)

2
u

]

.

(10.67)

Since there are m(m−1)/2 possibilities for pairing m particles, the above result represents

the Boltzmann factor with a pairwise attraction of u for particles in contact. Since τ is

bounded by unity, the approximations leading to Eq.(10.67) must break down for suffi-

ciently large m. This implies the presence of three and higher body interactions. Such
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x

t

10.4. A configuration of four paths with attraction upon contact.

interactions are usually of less importance at low densities and can be safely ignored. For

a discussion of these higher order interactions in a similar context see Ref.[7].

The continuum version of the resulting path integral is

Wn(x1, · · · , xn, t) ≡W (x1, t) · · ·W (xn, t) =

∫ (x1,···,xn,t)

(0,0,···,0)
Dx1(t

′) · · ·Dxn(t′)

exp



−nt
ξ
−
∫ t

0

dt′




∑

α

ẋ2
α

4ν
− u

2

∑

α 6=β

δ (xα(t′)− xβ(t′))







 ,

(10.68)

and evolves according to

∂Wn

∂t
= −nWn

ξ
+ ν

n∑

α=1

∂2Wn

∂x2
α

+
u

2

∑

α 6=β

δ (xα(τ)− xβ(τ))Wn ≡ −HnWn . (10.69)

The asymptotic behavior of Wn at large t is controlled by the ground state of Hn. The

corresponding wavefunction is obtained by a simple Bethe ansatz[8], which generalizes

Eq.(10.62) to

ψ0(x1, · · · , xn) ∝ exp



−κ
2

∑

α 6=β

|xα − xβ |



 with κ =
u

4ν
. (10.70)
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For each ordering of particles on the line, the wave function can be written as a product

of exponentials ψ0 ∝ exp [καxα], with the “momenta” κα getting permuted for different

orderings. For example, if x1 < x2 < · · · < xn, the momenta are

κα = κ [2α− (n+ 1)] , (10.71)

forming a so called n–string. The kinetic energy is proportional to

S =
∑n

α=1

[
2α− (n+ 1)

]2
=
∑n

α=1

[
(n+ 1)2 − 4α(n+ 1) + 4α2

]

=n(n+ 1)2 − 4(n+ 1) · n(n+ 1)

2
+

4 n(n+ 1)(2n+ 1)

6

=n(n+ 1)

[

−(n+ 1) +
2(2n+ 1)

3

]

=
n(n+ 1)(n− 1)

3
,

(10.72)

leading to the ground state energy

ε0 =
n

ξ
− ν

n∑

α=1

κ2
α =

n

ξ
− νκ2

3
n(n2 − 1) . (10.73)

Thus the asymptotic behavior of moments of the sum has the form

lim
t→∞

Wn(t) = exp

[

−nt
ξ

+
n(n2 − 1)νκ2t

3

]

= W (t) n exp

(
n(n2 − 1)u2t

48ν

)

. (10.74)

10.6 The probability distribution in two dimensions

It is tempting to use Eq.(10.74) in conjunction with

lim
n→0

ln
(

Wn(t)
)

= n lnW +
n2

2
(lnW )2c + · · ·+ np

p!
(lnW )p

c + · · · , (10.75)

to read off the cumulants for the probability distribution for lnW . The key point is the

absence of the n2 term and the presence of the n3t factor in the exponent of Eq.(10.74),

suggesting a third cumulant, and hence fluctuations in lnW that grow as t1/3[9]. However,

as discussed before, there are subtleties in trying to deduce a probability distribution from

the knowledge of its moments which we need to consider first. Since W (t) is bounded by

unity, Eq.(10.74) cannot be valid for arbitrarily large n. Our first task is to identify the

crossover point n∗ beyond which this result is no longer correct.

Eq.(10.73) is obtained for the ground state of n particles subject to a two body inter-

action in the continuum limit. A simple argument can be used to understand the origin

259



of the n3 term in the energy, as well as the limitations of the continuum approach. Let us

assume that the n particles form a bound state of size R. For large n, the energy of such

a state can be estimated as

ε ≈ n

ξ
+
νn

R2
− un2

R
. (10.76)

A variational estimate is obtained by minimizing the above expression with respect to R,

resulting in R ∝ ν/(un) and ε ∝ u2n3/ν. The size of the bound state decreases with

increasing n, and the continuum approximation breaks down when it becomes of the order

of the lattice spacing for n∗ ∝ ν/u ≈ τ 2/σ2. For n ≫ n∗ all the paths collapse together

and

lim
n→∞

Wn(t) ≃ (2τn )
t

. (10.77)

This asymptotic behavior is non-universal and depends on the extreme values of the local

probability distribution for τ . Depending on the choice of parameters, n∗ can be large

or small. However, as discussed in the context of the one dimensional problem, its value

controls only the relative importance of the tail and the bulk of the probability distribution

for lnW . The behavior of the bulk of the distribution is expected to be universal. The

crossover at n∗ is explicitly demonstrated in a related model in Ref.[10].

Another important consideration is the order of limits. Eq.(10.74) is obtained by

taking the t → ∞ limit at fixed n, while the cumulant series in Eq.(10.75) relies on

an expansion around n → 0 for fixed t. The two limits do not commute. In fact, we

would naively deduce from Eq.(10.74) that only the third cumulant of lnW is non-zero.

This is incorrect as it is impossible to have a probability distribution with only a third

cumulant[11]. The correct procedure[10] is to assume that the singular behavior associated

with n → 0 and t → ∞ is described by a scaling function of the form gs(nt
ω). (This is

similar to a singular form at a critical point with n behaving as a relevant operator with

scaling exponent of ω.) If t→∞ at fixed n, extensivity of the free energy of the n particle

system forces lnWn(t) to be proportional to t. At the other limit of n→ 0 at fixed t, the

result is a power series in n, i.e.

lnWn(t) = ant+ gs(nt
ω) =

{

ant+ ρn1/ωt for t→∞ at fixed n
ant+ g1nt

ω + g2 (ntω)
2

+ · · · for fixed t as n→ 0
.

(10.78)
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(Note the inclusion of a non-singular term, ant.) Similar considerations have been put

forward in Ref.[12]. Comparison with Eq.(10.74) gives ω = 1/3, and we can read off the

cumulants of lnW as 





lnW (t) =at+ g1 t
1/3

lnW 2(t)c =2g2 t
2/3

...

lnW p(t)c =p!gp t
p/3

. (10.79)

The existence of t1/3 corrections to the quench averaged value of lnW (t) was first

proposed by Bouchaud and Orland[13] and has been numerically verified[14]. The t2/3

growth of the variance of the probability distribution was obtained by Huse and Henley[15]

in the context of interfaces of Ising models at zero temperature where an optimal path

dominates the sum. The results remain valid at finite temperatures[16]. Simulations are

performed by implementing the transfer matrix method numerically. For example, along

the diagonal of the square lattice, the recursion relation

W (x, t+ 1) = τx,t,−W (x− 1, t) + τx,t,+W (x+ 1, t) , (10.80)

is iterated starting from W (x, 0) = δx,0. The random numbers τx,t,σ are generated as

the iteration proceeds. The memory requirement (the arrays W (x)) depend on the final

length t; each update requires t operations, and the total execution time grows as t2. Thus

for a given realization of randomness, exact results are obtained in polynomial time. Of

course the results have to be averaged over many realizations of randomness. The typical

values of t used in the transfer matrix simulations range from 103 to 104, with 102 to

103 realizations. Calculating higher cumulants becomes progressively more difficult. The

existence of the third cumulant was verified by Halpin–Healy[17]. A fourth cumulant,

growing as t4/3 was observed by Kim et al[18]. Starting from the replica result, Zhang[19]

proposed an analytical form, p(lnW, t) ∼ exp(−a| lnW − lnW |3/2/t1/2). While this form

captures the correct scaling of free energy fluctuations, it is symmetric about the average

value precluding the observed finite third cumulant. This deficiency was remedied by

Crisanti et al[20] who generalized the above probability to one with different coefficients

a± on the two sides of the mean value.

So far, we focused on the asymptotic behavior of W (x, t) at large t, ignoring the

dependence on the transverse coordinate. For the pure problem, the dependence of W

on the transverse coordinate is a Gaussian, centered at the origin, with a width that
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grows as t1/2. The full dependence is obtained in the non-random case by including the

band of eigenvalues with energies close to the ground state. Unfortunately, determining

the appropriate eigenvalues for the interacting problem is rather difficult. In addition

to the eigenvalues obtained by simply multiplying Eq.(10.70) by exp [iq (x1 + · · ·+ xn)],

there are other states with broken replica symmetry[21]. A treatment by Bouchaud and

Orland[13] includes some of the effects of such excitations but is not fully rigorous. It does

predict that the extent of transverse fluctuations grows as tζ with ζ = 2/3 as observed

numerically[15][16]. There is in fact a relation between the exponents ζ and ω which follows

from simple physical considerations[15]: By analogy with a string, the energy to stretch

a path by a distance x grows as x2/t. The path wanders away from the origin, only if

the cost of this stretching can be made up by favorable configurations of bonds. Since the

typical fluctuations in (free) energy at scale t grow as tω, we have

x2

t
∝ tω , =⇒ ω = 2ζ − 1 . (10.81)

This relation remains valid in higher dimensions and has been verified in many numerical

simulations. The first (indirect) proof of ω = 1/3 was based on a replica analysis of a

problem with many interacting paths[22]. It was soon followed by a more direct proof[23]

based on a completely different approach: the Cole–Hopf transformation and the mapping

to the interface problem (see below) described in the previous chapter.

10.7 Higher dimensions

The approach described in the previous sections is easily generalized to higher dimen-

sions. The directed path in d = D + 1 is described by ~x(t), where ~x is a D dimensional

vector. Along a diagonal, Eq.(10.80) is generalized to

W (~x, t+ 1) =

d∑

i=1

τ~x−~ei,tW (~x− ~ei, t) , (10.82)

where ~ei are unit vectors. The recursion relation is easily iterated on a computer, but

the memory requirement and execution time now grow as tD and tD+1 respectively. The

continuum limit of this recursion relation is

∂W (~x, t)

∂t
= −W

ξ
+ ν∇2W + µ(~x, t)W , (10.83)
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where µ(~x, t) represents the fluctuations of τ(~x, t) around its average. Thus it has zero

mean, and a variance

µ(~x, t)µ(~x ′, t′) = σ2δD (~x− ~x ′) δ(t− t′) . (10.84)

(In a more general anisotropic situation, Eq.(10.83) has to be generalized to include differ-

ent diffusivities να along different directions. Such anisotropy is easily removed by rescaling

the coordinates xα.)

Eq.(10.83) can be regarded as the imaginary time Schrödinger equation for a particle

in a random time dependent potential. It can be integrated to yield the continuous path

integral

W (~x, t) =

∫ (~x,t)

(0,0)

D~x(t′) exp

[

−
∫ t

0

dt′
(

1

ξ
+
~̇x 2

4ν
− µ (~x(t′), t′)

)]

, (10.85)

describing the fluctuations of a directed polymer in random medium (DPRM)[24]. The

nth moment of W is computed by replicating the above path integral and averaging over

µ(~x, t). This generalizes Eq.(10.58) to

Wn({~xα} , t) =

∫ ({~xα},t)

({~0},0)
D~x1(t

′) · · ·D~xn(t′)

exp



−
∫ t

0

dt′




∑

α

1

ξ
+
~̇x

2

α

4ν
− u

2

∑

α 6=β

δD (~xα(t′)− ~xβ(t′))









, (10.86)

with u ∝ σ2. The differential equation governing the evolution of Wn(t) is,

∂Wn

∂t
= −n

ξ
Wn + ν

∑

α

∇2
αWn +

u

2

∑

α 6=β

δD(~xα − ~xβ)Wn ≡ −HnWn . (10.87)

Evaluating the asymptotic behavior of Wn(t) requires knowledge of the ground state

energy of the Hamiltonian Hn. Unfortunately, the exact dependence of the bound state

energy on n is known only for D = 0 (ε ∝ n(n − 1)) and D = 1 (ε ∝ n(n2 − 1)). As

discussed earlier, these two results can then be used to deduce the behavior of the bulk of

the probability distribution for lnW (t). Elementary results from quantum mechanics tell

us that an arbitrarily small attraction leads to the formation of a bound state in D ≤ 2,

but that a finite strength of the potential is needed to form a bound state in D > 2.

Thus, in the most interesting case of 2 + 1 dimensions we expect a non-trivial probability
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distribution, while the replica method provides no information on its behavior. In higher

dimensions, there is a phase transition between weak and strong randomness regimes. For

weak randomness there is no bound state and asymptotically Wn(t) = W (t) n, indicating

a sharp probability distribution. This statement has also been established by more rig-

orous methods[25]. There is another phase for strong randomness where the probability

distribution for W (t) becomes broad. The resulting bound state has been analytically

studied in a 1/D expansion valid for large D[26]. The ground state wavefunction is rather

complex, involving replica symmetry breaking. Note that the phase transition in the prob-

ability distribution of the correlation function occurs in the high temperature phase of the

random bond Ising model. The implications of this phase transition for bulk properties

are not known. As the stiffness associated with line tension decreases on approaching the

order/disorder phase transition of the Ising model, close to this transition the probability

distribution for W (t) is likely to be broad.

As one of the simplest models of statistical mechanics in random systems (a “toy”

spin glass), the problem of DPRM has been rather extensively studiedt[27]. The model

has been generalized to manifolds of arbitrary internal dimensions in random media[28],

and treated by functional RG methods[29]. The same model has also been studied by

a variational approach that involves replica symmetry breaking[30]. The latter is also

exact in the D →∞ limit. Directed paths have been examined on non-Euclidean lattices:

In particular, the problem can be solved exactly on the Cayley tree[31], where it has a

transition between a “free” and a glassy state. There are also quite a few treatments

based on a position space renormalization group scheme[32] which becomes exact on a

hierarchical lattice[33]. This lattice has no loops, and at the m + 1th level is constructed

by putting together 2D branches, each containing two lattices of the mth level. Starting

from a set of random bonds at the first level, the values of the sum W (m = log2 t) are

constructed recursively from

W (m+ 1, β) =

2D
∑

α=1

W (m,α1)W (m,α2) , (10.88)

where the greek indices are used to indicate specific bonds for a particular realization.

Alternatively, these recursion relations can be used to study the evolution of the probability
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...

10.5. The hierarchical lattice corresponding to Eq.(10.88).

distribution for W [34]. The exponent ω ≈ 0.30 for D = 1 is not too far off from the exact

value of 1/3.

Additional information about the higher dimensional DPRM is obtained by taking

advantage of a mapping to the nonequilibrium problem of kinetic roughening of growing

interfaces. Using the Cole–Hopf transformation[35],

W (~x, t) = exp

[

−λh(~x, t)
2ν

]

, (10.89)

Eq.(10.83) is transformed to the Kardar, Parisi, Zhang (KPZ)[36] equation,

∂h

∂t
=

2ν

λξ
+ ν∇2h− λ

2
(∇h)2 − 2ν

λ
µ(~x, t) , (10.90)

describing the fluctuations in height h(~x, t) of a growing interface (see discussion around

Eq.(10.90)). A dynamical renormalization group (RG) analysis at the one–loop level[37][38]

of this equation indicates that the effective coupling constant g = 4σ2/ν, satisfies the

rescaling relation
dg

dℓ
= (2−D)g + C(D)g2 , (10.91)

where C(D) = KD(2D − 3)/D and KD is the D dimensional solid angle divided by (2π)D.

The RG equation merely confirms the expectations based on the replica analysis: there

is flow to strong coupling for D ≤ 2, while there is a transition between weak and strong

coupling behavior in higher dimensions. Can a perturbation analysis at higher order pro-

vide information about the scaling behavior in the strong coupling regime[39][40]? The

above analogy to attracting particles in quantum mechanics negates this possibility. In
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fact Wiese[41] has shown that to all orders in perturbation theory, the above form remains

unchanged, with an exact value of

C(D) =
2Γ(2− d/2)

(8π)d/2
.

Thus RG merely confirms the expectations based on the replica analysis: there is flow to

strong coupling for d ≤ 2 (formation of a bound state), while there is a transition between

weak (unbound) and strong (bound) coupling behavior in higher dimensions.

Since there are several comprehensive reviews of the KPZ equation[42], I will not

discuss its properties in any detail here. It suffices to say that there are many numerical

models of growth that fall in the universality class of this equation. They are in complete

agreement with the exactly known results for D = 1. The estimates for the exponent ζ

in higher dimensions are ζ = 0.624 ± 0.001 for D = 2[43] and ζ ≈ 0.59 for D = 3[44].

The numerical results in higher dimensions are consistent with an exponent ζ that gets

closer to 1/2 as D →∞. It is not presently known whether there is a finite upper critical

dimension[28][45] beyond which ζ = 1/2 exactly.

10.8 Random signs

So far we focused on nearest neighbor bonds {Kij}, which though random, are all

positive. For such couplings the ground state is uniform and ferromagnetic. The study

of low temperature states is considerably more complicated for the random spin glass

which describes a mixture of ferromagnetic and antiferromagnetic bonds. The competition

between the bonds leads to frustration, resulting in quite complicated landscapes for the

low energy states[4]. Here we shall explore the high temperature properties of spin glass

models. To focus on the effects of the randomness in sign, we study a simple binary

probability distribution in which negative and positive bonds of equal magnitude occur

with probabilities p and 1− p respectively.

The computation of the high temperature series for the correlation function (along

the diagonal) proceeds as before, and

W (~x, t) ≡ 〈σ0,0σ~x,t〉 = τ t
∑

P

t∏

i=1

ηPi , (10.92)

where τ indicates the fixed magnitude of tanhK, while ηPi = ±1 are random signs. Since

the elements of the sum can be both positive and negative, the first question is whether
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the system maintains a coherence in sign (at least for small p), i.e. what is the likelihood

that the two spins separated by a distance t have a preference to have the same sign. This

question can be answered definitively only in one and high enough dimensions.

For the one dimensional chain the moments of W (t) are easily calculated as

Wn(t) = τnt ×
{

(1− 2p)t for n odd,
1 for n even.

(10.93)

As all odd moments asymptotically decay to zero, at large distances W (t) is equally likely

to be positive or negative. This is expected since the sign of the effective bond depends

only on the product of the intermediate bonds and the appearance of a few negative bonds

is sufficient to remove any information about the overall sign. From Eq.(10.93), we can

define a characteristic sign correlation length ξs = −1/ ln(1− 2p).

There is also a “mean-field” type of approach to the sign coherence problem[46] which

is likely to be exact in high dimensions. For paths along the diagonal of the hypercubic

lattice, the mean value of W (t) is

W (t) ≈ [dτ(1− 2p)]
t

. (10.94)

Calculating the variance of W is complicated due to the previously encountered problem

of intersecting paths. We can approximately evaluate it by considering a subset of paths

contributing to the second moment as,

W 2 ≈ [dτ(1− 2p)]
2t

+ (dτ2) [dτ(1− 2p)]
2(t−1)

+ (dτ2)2 [dτ(1− 2p)]
2(t−2)

+ · · ·+
(
dτ2
)t

=τ2t [d(1− 2p)]
2(t+1) − dt+1

[d(1− 2p)]
2 − d

.

(10.95)

The first term in the above sum comes from two distinct paths between the end points;

the second term from two paths that have their first step in common and then proceed

independently. The mth term in the series describes two paths that take m steps together

before becoming separated. The underlying assumption is that once the two paths have

separated they will not come back together again. This independent path approximation

(IPA) is better justified in higher dimensions and leads to

W 2(t)

W (t) 2
=
d(1− 2p)2 −

[
d(1− 2p)2

]−t

d(1− 2p)2 − 1
. (10.96)
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For small p, such that d(1−2p)2 > 1, the above ratio converges to a constant as t→∞;

the distribution is asymptotically sharp and the correlations preserve sign information.

However, if the concentration of negative bonds exceeds pc =
(

1− 1/
√
d
)

/2, the ratio

diverges exponentially in t, indicating a broad distribution. This has been interpreted[47]

as signalling a sign transition. The IPA suggests that there is a finite pc for all d > 1.

However, it is important to note that the approximation ignores important correlations

between the paths. Shapir and Wang[48] criticize the assumption of independent paths and

suggest that as intersections are important for d ≤ 3, there should be no phase transition

in these dimensions. However, the identification of the lower critical dimension for the sign

transition is not completely settled. Numerical simulations based on the transfer matrix

method for t of up to 600[14], as well as exact enumeration studies[49] for t ≤ 10, fail to

find a phase transition in d = 2. The results suggest that if there is a phase transition in

d = 2 it occurs for pc < 0.05. The phase diagram of a generalized model with complex

phases has also been studied in higher dimensions[50][51].

For p > pc, the information on sign is lost beyond a coherence length ξs. If the

system is coarse grained beyond this scale, the effective bonds are equally likely to be

positive or negative. Thus we shall concentrate on the symmetric case of p = 1/2 in

the rest of this section. This corresponds to the much studied ±J Ising spin glass[52].

We performed[14] transfer matrix computations on systems of up to size t = 2000, and

averaged over 2000 realizations of randomness. The random numbers (+1 or −1) were

generated by a well tested random number generator[53]. Since W grows exponentially

in t, ln |W | has a well defined probability distribution; we examined its mean ln |W (t)|,
and variance ln |W (t)|2 − ln |W (t)| 2, for p = 1/2 (both signs equally probable). We also

computed the typical excursions of the paths in the lateral direction as defined by

[x(t)2]av ≡
∑

x x
2|W (x, t)|2

∑

x |W (x, t)|2 , (10.97)

and

[x(t)]
2
av ≡

(∑

x x|W (x, t)|2
∑

x |W (x, t)|2
)2

, (10.98)

where [·]av denotes an average over the lateral coordinate at a fixed t, using a weight

|W (x, t)|2.
The simulations confirm that the average of ln |W (t)| is extensive (ln |W (t)| = (0.322±

0.001)t), while its fluctuations satisfy a power law growth tω, with ω = 0.33 ± 0.05. For

several choices of t we also checked in detail that W (t) is positive or negative with equal
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probability. For lateral excursions, we examined simulations with t = 4000, and with 200

realizations of randomness (reasonable data for fluctuations of ln |W (t)| are only obtained

from higher averaging). The results for [x2]av and [x]2av appear to converge to a common

asymptotic limit; fitted to a power law t2ζ with ζ = 0.68 ± 0.05. The scaling properties

of |W (x, t)| thus appear identical to those of directed polymers with positive random

weights! It should be noted, however, that using a similar procedure, Zhang[54] concluded

from fits to his numerical results a value of ζ = 0.74± 0.01. Using a variety of theoretical

arguments[54], he suggests ω = 1/2 and ζ = 3/4. The exponent ω = 1/2 is clearly

inconsistent with our data, while ζ = 3/4 can be obtained if one fits only to [x]2av. Two

subsequent, rather extensive, numerical studies[55][56] shed more light on this problem.

Both simulations seem to equivocally point to the importance of including corrections to

scaling in the fits. In 1+1 dimensions they indeed find ω = 1/3 for the variance, and

ζ = 2/3 (with a large correction to scaling term) for transverse fluctuations.

(1 2)

(3 4)

(1 2), (13), (1 4)

(3 4), (2 4), (2 3)

10.6. Upon contact the paired paths can exchange partners leading to an effective attraction, as

the weight is increased by a factor of 3.

The similarity in the probability distributions of random weight and random sign

problems can be understood by examination of the moments. The terms in Wn corre-

spond to the product of contributions from n independent paths. Upon averaging, if m

paths cross a particular bond (0 ≤ m ≤ n), we obtain a factor of [1+ (−1)m]/2, which is 0

or 1 depending on the parity of m. For odd n there must be bonds with m odd, and hence

W 2n+1 = 0; which of course implies and follows from the symmetry p(W ) = p(−W ). For

even moments W 2n, the only configurations that survive averaging are those in which the

2n replicated paths are arranged such that each bond is crossed an even number of times.

The simplest configurations satisfying this constraint correspond to drawing n indepen-

dent paths between the end points and assigning two replica indices to each. The above
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constraint is also satisfied by forming groups of four or higher even numbers, but such con-

figurations are statistically unlikely and we shall henceforth consider only doublet paths.

There is an important subtlety in calculating W 2n from the n doublet–paths: After two

such paths cross, the outgoing doublets can either carry the same replica labels as the ingo-

ing ones, or they can exchange one label (e.g. (12)(34)→ (12)(34), (13)(24), or (14)(23)).

Therefore, after summing over all possible ways of labeling the doublet paths, there is a

multiplicity of three for each intersection. The n paired paths attract each other through

the exchange of replica partners!

Although the origin of the attraction between paths is very different from the case of

random weights, the final outcome is the same. The even moments in 1 + 1 dimension are

related by an expression similar to Eq.(10.74),

lim
t→∞

W 2n(t) = W (t)2 n exp
[
ρn(n2 − 1)t

]
, (10.99)

and the conclusions regarding lnW (t) are the same as before. If, rather than having only

one possible value for the magnitude of the random bond, we start with a symmetric

distribution p(τ), there will be an additional attraction between the paired paths coming

from the variance of τ2. This increases the bound state energy (and the factor ρ) in

Eq.(10.99) but does not affect the universal properties.

10.9 Other realizations of DPRM

So far we focused on sums over DPRM as encountered in high temperature series of

Ising models. In fact several other realizations of such paths have been discussed in the

literature, and others are likely to emerge in the future.

• Random–bond interface: One of the original motivations was to understand the domain

wall of an Ising model in the presence of random bond impurities[15]. As mentioned in the

previous section, if all the random bonds are ferromagnetic, in the ground state all spins

are up or down. Now consider a mixed state in which a domain wall is forced into the

system by fixing spins at opposite edges of the lattice to + and −. Bonds are broken at the

interface of the two domains, and the total energy of the defect is twice the sum of all the

Kij crossed by the interface. In the solid–on–solid approximation, configurations of the

domain wall are restricted to directed paths. The resulting partition function Z(t), can

be computed by exactly the same transfer matrix method used to calculate W (t). Rather
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10.7. Configuration of an interface separating + and - domains of an Ising model.

than looking at the finite temperature partition function, Huse and Henley[15] worked

directly with the zero temperature configuration of the interface.

Denoting by E(x, t) the minimum in the energy of all domain boundaries passing

through the vertical bonds at (0, 0) (x, t), oriented along the horizontal axis of the square

lattice, it is possible to construct the recursion relation,

E(x, t+ 1) = Jv
x,t + min

{
E(x− 1, t)− 2Jh

x,t , E(x+ 1, t)− 2Jh
x+1,t, · · ·

}
, (10.100)

where Jv and Jh denote bonds oriented in the vertical and horizonatal directions respec-

tively. The ellipsis refers to the interface jumping by two or more steps in the vertical

direction, the corresponding bond energies have to be added in this case. In practice, such

jumps are unlikely, and the same universal characteristics are obtained by allowing only

one-step jumps.

The statistics of the E(x, t) at T = 0 are identical to those of lnW (x, t): the optimal

path wanders as t2/3, while the fluctuations in E(t) scale as t1/3[15]. The scale of energy

fluctuations also sets the scale of energy barriers that the interface must cross from one

optimal state to another[57]. Since such barriers grow with t, any activated process is

slowed down to a logarithmic crawl[15].

• Optimal paths: The above interface is one example of a path optimizing a local energy

function. As another example, consider paths directed along the diagonal of the square

lattice as in Fig.10.8. Let us assume that a random variable µx,t is assigned to each bond

of the lattice, and we would like to find the configuration of the path that maximizes the
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t

10.8. A path directed along the diagonal of the square lattice. A random varaible µx,t is assigned

to each bond of this lattice.

accumulated sum of random variables in the path. We can again denote by M(x, t) the

maximum value obtained for all paths connecting (0, 0) to (x, t), and calculate it recursively

as

M(x, t+ 1) = max {M(x− 1, t) + µx−1,t , M(x+ 1, t) + µx+1,t} , (10.101)

closely related to Eq.(10.80). To find the actual configuration of the path, it is also nec-

essary to store in memory one bit of information at each point (x, t), indicating whether

the maximum in Eq.(10.101) comes from the first or second term. This bit of information

indicates the direction of arrival for the optimal path at (x, t). After the recursion rela-

tions have been iterated forward to “time” step t, the optimal location is obtained from

the maximum of the array {M(x, t)}. From this location the optimal path is reconstructed

by stepping backward along the stored directions.

This is how the pictures of optimal paths in Fig.10.9 (from refs.[24][38]) were con-

structed. These optimal paths have a beautiful hierarchical structure that resembles the

deltas of river basins, and many other natural branching patterns. Finding the optimal

path is reminiscent of the traveling salesman problem of finding the minimal route through

a given set of points. However, in former case, although the number of possible paths grow

as 2t, their directed nature allows us to find the best solution in polynomial time.

• It has been suggested that optimal paths are relevant to fracture and failure phenom-

ena[58]. Imagine a two dimensional elastic medium with impurities, e.g. a network of

springs of different strengths and extensions[59]. If the network is subjected to external

shear, a complicated stress field is set up in the material. It is possible that nonlinear
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10.9. A collection of optimal paths connecting the apex to the points on the base after t = 500

steps.

effects in combination with randomness enhance the stress field along particular paths in

the medium. Such bands of enhanced stress are visible by polarized light in a sheet of plex-

iglas. The localization of deformation is nicely demonstrated in a two dimensional packing

of straws[60]. The roughness of the localization band is characterized by the exponent

ζ = 0.73 ± 0.07, not inconsistent with the value of 2/3 for DPRM. The experiment was

inspired by random fuse models[61] which apply a similar procedure to describe the failure

of an electrical network. Hansen et al[62] suggest that at the threshold in all such models,

failure occurs along an optimal path with statistics similar to a DPRM. Their numerical

results obtain a roughness exponent of ζ = 0.7 for the crack interface with a precision of

about 10%.

In fact, the minimal directed path was proposed in 1964[63] as a model for tensile

rupture of paper. The variations in brightness of a piece of paper held in front of a light

source are indicative of nonuniformities in local thickness and density ρ(x). Tydeman and
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Hiron suggested that rupture occurs along the weakest line for which the sum of ρ(x) is

minimum. This is clearly just a continuum version of the optimal energy path in a random

medium. (Since the average of ρ(x) is positive, the optimal path will be directed.) This

model was tested by Kertész et al[64] who used a tensile testing machine to gradually tear

apart many sheets of paper. They found that the resulting rupture lines are self–affine,

characterized by 0.63 < ζ < 0.72.

• The three dimensional DPRM was introduced[24] as a model for a polyelectrolyte in

a gel matrix. Probably a better realization is provided by defect lines, such as disloca-

tions or vortices, in a medium with impurities. In fact, flux lines in high temperature

ceramic superconductors are highly flexible, and easily pinned by the oxygen impurities

that are usually present in these materials[65]. Pinning by impurities is crucial for any

application, as otherwise the flux lines drift due to the Lorentz force giving rise to flux

flow resistivity[66].

• Sequence alignment: The ability to rapidly sequence the DNA from different organisms

has made a large body of data available, and created a host of challenges in the emerging

field of bioinformatics. Let us suppose that the sequence of bases for a gene, or (equiv-

alently) the sequence of amino acids for a protein, has been newly discovered. Can one

obtain any information about the potential functions of this protein given the existing data

on the many sequenced proteins whose functions are (at least partially) known? A com-

monly used method is to try to match the new sequence to the existing ones, finding the

best possible alignment(s) based on some method of scoring similarities. Biostatisticians

have constructed efficient (so-called dynamic programming) algorithms whose output is

the optimal alignment, and a corresponding score. How can one be sure that the resulting

alignment is significant, and not due to pure chance? The common way of assessing this

significance for a given scoring scheme is to numerically construct a probability distribution

for the score by simulations of matchings between random sequences. This is time con-

suming (especially in the relevant tails of the distribution), and any analytical information

is a valuable guide.

It was noted by Hwa and Lässig[67] that finding the optimal alignment of two se-

quences {si} (i = 1, 2, · · · , I) and {sj} (j = 1, 2, · · · , J) is similar to finding the lowest

energy directed path on an I × J lattice. Each diagonal bond [from (i, j) to (i+ 1, j + 1)]

is assigned an ‘energy’ equal to the score of the local pairing [si and sj ], and there are ad-

ditional costs associated with segments along the axes (corresponding to insertions and/or

deletions). The ‘dynamic programming’ algorithm is an appropriate variant of Eq.(10.101)
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used to recursively obtain the directed path (alignment) of optimal energy (score). Some

aspects of the probability distribution for the score can then be gleaned from the knowl-

edge of the distribution for the energy of the directed paths in random media. Indeed,

some of these results are going to be implemented in the widely used alignment algorithms

(PSI-BLAST) disseminated by the National Center for Biotechnology Information.

10.10 Quantum interference of strongly localized electrons

The wavefunctions for non-interacting electrons in a regular solid are extended Bloch

states. In the presence of disorder and impurities, gradually more and more of these

states become localized. This was first pointed out by Anderson[68] who studied a random

tight–binding Hamiltonian

H =
∑

i

εia
+
i ai +

∑

<ij>

Vija
+
i aj . (10.102)

Here εi are the site energies and Vij represent the nearest neighbor couplings or transfer

terms. For simplicity we shall focus on

Vij =
{
V if i, j are nearest neighbors
0 otherwise

,

so that all the randomness is in the site energies. This is just a discretized version of the

continuum Hamiltonian H = ν∇2 + ε(~x), for a quantum particle in a random potential

ε(~x). For a uniform ε, the Hamiltonian is diagonalized by extended Fourier modes a†~q =
∑

~x exp (i~q · ~x) a†~x/
√
N , resulting in a band of energies ε(~q) = ε+2V (cos q1 +cos q2 + · · ·+

cos qd). (The lattice spacing has been set to unity.) As long as the fermi energy falls within

this band of excited states the system is metallic.

In the random system the wave functions become distorted, and localized to the vicin-

ity of low energy impurities[68]. This localization starts with the states at the edge of the

band and proceeds to include all states as randomness is increased. In fact in d ≤ 2, as the

diffusing path of a non–localized electron will always encounter an impurity, all states are

localized by even weak randomness. The original ideas of Anderson localization[68], and

a heuristic scaling approach by Thouless[69], have been placed on more rigorous footing

by perturbative RG studies[70]-[72]. The perturbative approach emphasizes the impor-

tance of quantum interference effects in the weakly disordered metal. Weak localization

phenomena include the effects of magnetic fields, spin–orbit (SO) scattering (correspond-

ing respectively to interactions breaking time reversal and spin space symmetries) on the

275



conductivity[73], as well as predicting a universal value of the order of e2/h̄ for conduc-

tance fluctuations[74][75]. These phenomena can be traced to the quantum interference

of time reversed paths in backscattering loops and their suppression by magnetic fields

and SO[76]: In the of absence SO, a magnetic field causes an increase in the localization

length, and a factor of 2 decrease in the conductance fluctuations; with SO, it has the

opposite effect of decreasing the localization length, while still reducing the conductance

fluctuations[77][78]. An alternative description of these phenomena is based on the theory

of random matrices[79], where the only input is the symmetries of the underlying Hamil-

tonian and their modification by a magnetic field. Mesoscopic devices at low temperature

have provided many experimental verifications of weak localization theory[76][80] and there

are many excellent reviews on the subject[73][76][81].

When the electronic states at the fermi energy are localized, the material is an insu-

lator and there is no conductivity at zero temperature. However, at finite temperatures

there is a small conductivity that originates from the quantum tunneling of electrons be-

tween localized states, described by Mott’s variable range hopping (VRH) process[82]: The

probability for tunneling a distance t is the product of two factors

p(t) ∝ exp

(

−2t

ξ

)

× exp

(

− δε

kBT

)

. (10.103)

The first factor is the quantum tunneling probability and assumes that the overlap of the

two localized states decays with a characteristic localization length ξ. The second factor

recognizes that the different localized states must have different energies δε (otherwise

a new state is obtained by their mixture using degenerate perturbation theory). The

difference in energy must be provided by inelastic processes such as phonon scattering,

and is governed by the Boltzmann weight at temperature T . The most likely tunneling

sites must be close in energy. If there is a uniform density of states N(εf ) in the vicinity of

the fermi energy, there are roughly N(εf )td candidate states in a volume of linear size t in

d dimensions, with the smallest energy difference of the order of δε ∝
(
N(εf )td

)−1
. Thus

the two exponential factors in Eq.(10.103) oppose each other, encouraging the electron to

travel shorter and longer distances respectively. The optimal distance scales as

t ≈ ξ(T0/T )
1

d+1 , (10.104)

with T0 ∝
(
kBN(εf )ξd

)−1
, diverging at zero temperature.
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In the strongly localized regime, the optimal hopping length is many times greater

than the localization length ξ. The localized sites are then assumed to be connected by a

classical random resistor network[83]. Since the individual resistors are taken from a very

wide distribution, it is then argued[84] that the resistance of the whole sample is governed

by the critical resistor that makes the network percolate. This leads to a dependence

σ(T ) = σ0 exp[−(T0/T )
1

d+1 ] , (10.105)

for the conductivity. This behavior has been verified experimentally both in two and three

dimensions[85]. Due to the difficulty of measuring variations in the much smaller con-

ductivities of insulators, there have been relatively few studies of the conductivity and its

fluctuations for strongly localized electrons. Nonetheless, experiments[86] find a positive

magneto–conductance (MC) in Si-inversion layers, GaAs and In2O3−x films. Further-

more, the observed reproducible conductance fluctuations are quite suggestive of quantum

interference (QI) effects. However, the magnitudes of these fluctuations grow with lowering

temperature, and are about 100 times larger than e2/h̄ at the lowest temperatures.

Clearly a different theory is needed to account for QI effects in the strong localization

regime. The most natural candidate is the quantum overlap factor in Eq.(10.103). Nguyen,

Spivak, and Shklovskii (NSS) have proposed a model that accounts for QI of multiply

scattered tunneling paths in the hopping probability: In between the phonon assisted

tunneling events the electron preserves its phase memory. However, at low temperatures it

tunnels over very large distances according to Eq.(10.104), and encounters many impurities.

The overall tunneling amplitude is then obtained from the sum over all trajectories between

the initial and final sites. NSS emphasized that since the contribution of each trajectory

is exponentially small in its length, the dominant contributions to the sum come from

the shortest or forward scattering paths. The traditional explanations of weak localization

phenomena which rely on the QI of back scattering paths are therefore inappropriate to

this regime. This picture is clearly reminiscent of the directed paths and will be developed

more formally in the next section.
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10.11 The locator expansion and forward scattering paths

The overlaps in the insulating regime can be studied by performing a “locator” expan-

sion[68]; valid in the limit |Vij | = V ≪ (E−εi), where E is the electron energy. Indeed, for

V = 0, the eigenfunctions are just the single site states, and the localization length is zero

(no transfer term). For V/(E − εi)≪ 1, various quantities can be obtained perturbatively

around this solution, as expressed by the Lippman–Schwinger equation[87]

|Ψ+〉 = |Φ〉+ 1

E −H0 + iδ
V|Ψ+〉 . (10.106)

The bare Hamiltonian

H0 =
∑

i

εia
+
i ai ,

has no nearest-neighbor coupling, while the perturbation

V =
∑

<ij>

Vija
+
i aj ,

describes the small transfer terms. |Φ〉 represents the state with a localized electron at

the initial site (or incident wave), |Ψ+〉 the state where a localized electron is at the

final site. In the coordinate representation, the wavefunctions are exponentially localized

around the impurity sites and there are no propagating waves since electrons can only

tunnel under a potential barrier. (This situation was first addressed in detail by Lifshits

and Kirpichenko[88].) We can now iterate this implicit equation to obtain an expansion in

powers of the ratio V/(E − εi) as

|Ψ+〉 = |Φ〉+ 1

E −H0 + iδ
V|Φ〉+ 1

E −H0 + iδ
V 1

E −H0 + iδ
V|Φ〉+ · · · . (10.107)

Acting with 〈Ψ+| on the left and taking δ to zero, we obtain the overlap between the two

states

〈Ψ+|Ψ+〉 = 〈Ψ+|Φ〉+ 〈Ψ+| 1

E −H0
V|Φ〉+ 〈Ψ+| 1

E −H0
V 1

E −H0
V|Φ〉+ · · · . (10.108)

For a more general transfer term V connecting all sites, the first term represents an electron

starting from the initial site and ending at the final site without scattering (the overlap

〈Ψ+|Φ〉); the second term represents electrons scattering once off intermediate sites, the

third, scattering twice, etc.. The operator V acting on |Φ〉 produces a factor V for each

segment crossed, and H0 acting on a particular site i results in εi, the bare site energy.
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Thus we finally arrive at a simple expression for the amplitude or the Green’s function

between the initial and final states as

〈Ψ+|Ψ+〉 = 〈Φ|G(E)|Ψ+〉 = V
∑

Γ

∏

iΓ

V

E − εiΓ

. (10.109)

The terms in the above perturbation series correspond to all paths Γ connecting the

end points; iΓ label the sites along each path. Except that the random variables appear

on the sites rather than the bonds of the lattice, this sum over paths is quite reminiscent

of the corresponding one for the correlation functions of the random bond Ising model.

There is, however, one complication that distinguishes the localization problem: The en-

ergy denominators in Eq.(10.109) may accidentally be zero, invalidating the perturbation

series. Physically, this corresponds to intermediate sites that are at the same energy as

the external points. Presumably in this case a degenerate perturbation theory has to be

used to construct the wavefunction. NSS[47] circumvent this issue by considering initial

and final sites of approximately the same energy εF = E = 0, while the intermediate sites

have energies εi = ±U with equal probability. All the energy denominators in Eq.(10.109)

now contribute the same finite magnitude U , but random signs ηiΓ = εiΓ/U . The justifi-

cation is that the Mott argument implicitly assumes that the lowest energy difference δε

occurs at a distance t, and that there are no intermediate sites that are more favorable.

However, it is not clear that due to the very same considerations, we should not include

some dependence of the effective energy gap U on t. We shall set aside such considerations

and focus on the properties of the NSS model in the remainder.

A path of length ℓ now contributes an amplitude U(V/U)ℓ to the sum, as well as an

overall sign. In the localized regime the sum is rapidly convergent, dominated by its lowest

order terms[68]. In general, the sum is bounded by one in which all terms make a positive

contribution, i.e. by a lattice random walk which is convergent for z(V/U) < 1, where

z is the lattice coordination number. This provides a lower bound for the delocalization

transition, and the series is certainly convergent for smaller values of V/U . As in the

Ising model we expect loops to become important only after the transition, while in the

localized phase typical paths are directed beyond the localization length ξ. For (V/U)≪ 1,

the localization length is less than a single lattice spacing, and only directed (forward

scattering) paths need to be considered. Loops (back scattering paths) are irrelevant in the
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renormalization group sense. For sites separated by a distance t + 1 along a diagonal of

the square lattice, Eq.(10.109) is now simplified to

〈i|G(E)|f〉 = V

(
V

U

)t ∑

P

t∏

i=1

ηPi , (10.110)

which is identical to Eq.(10.92) with (V/U) replacing τ . The diagonal geometry maximizes

possible interference by having a large number of shortest paths. For tunneling along the

axes rather than the diagonal of a square lattice there is only one shortest path. Then,

including longer paths with kinks is essential to the interference phenomena. However,

the analogy to previous results suggests that the universal behavior is the same in the two

cases while the approach to asymptotic behavior is much slower in the latter.
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< i | | f >

10.10. Two paths (solid and dashed) contributing to the locator expansion for tunneling between

sites i and f .

Using the equivalence to Eq.(10.99), in conjunction with Eq.(10.78), results in

lim
t→∞

ln |〈i|G|f〉|2 = ln

[

2

(
V

U

)2
]

t− ρt ≡ −2t
(
ξ−1
0 + ξ−1

g

)
, (10.111)

where we have defined local and global contributions to the effective localization length,

respectively given by

ξ0 =

[

ln

(
U√
2V

)]−1

, and ξ−1
g =

ρ

2
. (10.112)
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The QI information is encoded in 2ξ−1
g = ρ. Numerical estimates indicate that for the

NSS model ξg ≈ 40, and confirm that the width of the distribution scales as

δ ln |〈i|G|f〉| ∼
∣
∣
∣
∣

t

ξg

∣
∣
∣
∣

1/3

. (10.113)

Since t ∝ T−1/3 in Mott VRH, we expect fluctuations in log–conductivity to grow as

T−1/9 for T → 0, in qualitative agreement with the experimental results of Ref.[86]. (A

quantitative test of this dependence has not yet been performed.)

10.12 Magnetic field response

All that is needed to include a magnetic field B in the tight binding Hamiltonian

of Eq.(10.102) is to multiply the transfer elements Vij by exp (Aij), where Aij is the line

integral of the gauge field along the bond from i to j. Due to these factors, the Hamiltonian

becomes complex and is no longer time reversal symmetric (H∗ 6= H). In the parlance of

random matrix theory[79], the Hamiltonian with B = 0 belongs to the orthogonal matrix

ensemble, while a finite field places it in the unitary matrix ensemble. Actually, random

matrix theory recognizes a third (symplectic matrix ensemble) of Hamiltonians which are

time reversal symmetric, but not invariant under rotations in spin space. Up to this point

we had not mentioned the spin of the electron: The states of Eq.(10.102) are thus doubly

degenerate and can be occupied by (non-interacting) up or down spin states. We can

remove this degeneracy by including spin-orbit (SO) scattering, which rotates the spin of

the electron as it moves through the lattice.

The generalized tight binding Hamiltonian that includes both the effects of SO scat-

tering and magnetic field is

H =
∑

i,σ

εia
†
i,σai,σ +

∑

<ij>,σσ′

Vij,σσ′eiAija†i,σaj,σ′ . (10.114)

The constant, nearest-neighbor only hopping, elements V in Eq.(10.102) are no longer

diagonal in spin space. Instead, each is multiplied by Uij , a randomly chosen SU(2)

matrix which describes the spin rotation due to strong SO scatterers on each bond[79].

Eq.(10.109) for the overlap of wavefunctions at the two end-points must now include the

initial and final spins, and Eq.(10.110) for the sum of directed paths generalizes to

A = 〈iσ|G(0)|fσ′〉 = V (V/U)tJ(t) ; J(t) =
∑

P

t∏

j=1

ηPje
iAP j,P (j+1)UPj,P (j+1) .

(10.115)
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After averaging over the initial spin, and summing over the final spin, the tunneling prob-

ability is

T =
1

2
tr(A†A) = V 2(V/U)2tI(t) ; I(t) =

1

2
tr(J†J) . (10.116)

We numerically studied the statistical properties of I(t), using a transfer matrix

method to exactly calculate I up to t = 1000, for over 2000 realizations of the random

Hamiltonian. We found that the distribution is broad (almost log–normal), and that the

appropriate variable to consider is ln I(t). In all cases the mean of ln I(t) scaled linearly

with t, while its fluctuations scaled as tω with ω ≈ 1/3 [89]–[91]. For the sake of comparison

with experiments we define a log–magnetoconductance (MC) by

MC(t, B) ≡ ln I(t, B)− ln I(t, 0) . (10.117)

We find numerically that the magnetic field always causes an enhancement in tunneling (a

positive MC), but that the asymptotic behavior is quite distinct in the presence or absence

of SO scattering.

(1) In the absence of SO, the MC is unbounded and grows linearly with t. This can be

interpreted as an increase in the global contribution to the localization length. The

numerical results indicate that for small B, the change in slope is proportional to

B1/2. Indeed the data for different t and B can be collapsed together, using the fit

MC(t, B) = (0.15± 0.03)

(
φ

φ0

)1/2

t , (10.118)

where φ = Ba2 is the flux per plaquette, and φ0 is the elementary flux quantum.

(2) In the presence of SO, the MC quickly saturates with t and there is no change in the

localization length. The data can still be collapsed, but by using Bt3/2 as the scaling

argument, and we find

MCSO(t, B) =

{

cB2t3 if B2t3 < 1
C ≈ 0.25 if B2t3 > 1

. (10.119)

We can gain some analytic understanding of the distribution function for I(t, B) by

examining the moments I(t)n. From Eqs.(10.115) and (10.116) we see that each I(t)

represents a forward path from i to f , and a time reversed path from f to i. For I(t)n,

we have to average over the contributions of n such pairs of paths. Averaging over the

random signs of the site energies forces a pairing of the 2n paths (since any site crossed
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10.11. The behavior of the magneto-conductance in the presence of SO scattering.

by an odd number of paths leads to a zero contribution)[89]. To understand the MC, it

is useful to distinguish two classes of pairings: (1) Neutral paths in which one member is

selected from J and the other from J†. Such pairs do not feel the field since the phase

factors of eiA picked up by one member on each bond are canceled by the conjugate factors

e−iA collected by its partner. (2) Charged paths in which both elements are taken from J

or from J†. Such pairs couple to the magnetic field like particles of charge ±2e.

In the presence of SO, we must also average over the random SU(2) matrices. From

the orthogonality relation for group representations[92], we have

∫

Γk(g)∗ijΓ
k′

(g)i′j′W (α1, · · · , αn)dα1 · · ·dαn =
δii′δjj′δkk′

λk

∫

W (α1, · · · , αn)dα1 · · ·dαn,

(10.120)

where Γk(g)ij is the ij matrix element of a representation of the group element g,

W (α1, · · · , αn) is an appropriate weight function so that the matrix space is sampled

uniformly as the continuous parameters α1, · · · , αn vary (e.g. Euler angles for a represen-

tation of SU(2)). Finally λk is the order of the representation k. Choosing the Euler angle

parametrization of SU(2) it can be shown that the only nonzero paired averages are

Uαβ U∗
αβ =

1

2
, U↑↑ U↓↓ =

1

2
, U↑↓ U↓↑ = −1

2
, (10.121)
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1

2* Neutral Path

1

2 Charged Path

10.12. Averaging over randomness joins paths in pairs: Neutral paths arise from pairing of

complex conjugate paths and have parallel spins. Pairing paths that are not complex conjugates

(arrows in the same direction) leads to charged paths which feel the magnetic field, and carry

opposite spins.

and their complex conjugates. Thus SO averaging forces neutral paths to carry parallel

spins, while the spins on the two partners of charged paths must be antiparallel.

We next consider the statistical weights associated with the intersections of paths.

These weights depend crucially on the symmetries of the Hamiltonian in Eq.(10.114): For

B = 0 and without SO, the Hamiltonian has orthogonal symmetry. All pairings are allowed

and the attraction factor is 3, since an incoming (12)(34) can go to (12)(34), (13)(24),

or (14)(23). Note that even if both incoming paths are neutral, one of the exchanged

configurations is charged. A magnetic field breaks time reversal symmetry, discourages

charged configurations, and reduces the exchange attraction. The limiting case of a ‘large’

magnetic field is mimicked by replacing the gauge factors with random phases. In this

extreme, the Hamiltonian has unitary symmetry and only neutral paths are allowed. The

exchange factor is now reduced to 2; from (11∗)(22∗) → (11∗)(22∗), or (12∗)(21∗).

With SO averaging, we must also take into account the allowed spin exchanges: Two

neutral paths entering the intersection can have indices (αα), (αα) or (αα), (αα); there are

2 possibilities for the first (α =↑ or ↓) and two for the second (α) is antiparallel to α). In

the former case, however, there are two exchanges preserving neutrality, while in the latter

only one exchange is possible satisfying this constraint. Hence an overall multiplicity of

[2 × 2 + 2 × 1] × (1/2)2 = 3/2 is obtained, where the (1/2)2 comes from the averages in

Eq.(10.121). Thus the intersection of two paired paths results in an exchange attraction

of 3/2; a signature of the symplectic symmetry.

Based on the above symmetry dependent statistical attraction factors, we can provide

an understanding of the numerical results for MC. The sum over n attracting paths again

leads to

〈I(t)n〉 = A(n)2nt exp[ρn(n2 − 1)t] , (10.122)

284



where we have also allowed for an overall n–dependent amplitude. Without SO, the mag-

netic field gradually reduces the attraction factor from 3 to 2 leading to the increase in

slope. Addition of SO to the Hamiltonian has the effect of suddenly decreasing the at-

traction factor to 3/2. Why does the addition of the magnetic field lead to no further

change in ρ in the presence of SO? Without SO, the origin of the continuous change in the

attraction factor is a charged bubble that may appear in between successive intersections

of two neutral paths. In the presence of SO, from the averages in Eq.(10.121) we find the

contribution of such configurations to be zero. To produce intermediate charged paths

(with their antiparallel spins), the entering pair must have indices of the type (i i), (̄i ī)

(where ↓̄ =↑, and ↑̄ =↓). Within the bubble we can have intermediate sites labeled

(jj̄) and (kk̄) which must be summed over due to matrix contractions. It is easy to check

that, independent of the choice of j, if the incoming and outgoing spins (i and m) are the

same on a branch it contributes a positive sign, while if they are opposite the overall sign is

negative. However, for any choice of i and m, one may choose similar (e.g. i→ m on both

branches), or opposite (e.g. i→ m on top and i→ m̄ on lower branch) connections. The

difference in sign between the two choices thus cancels their overall contributions. Hence

the neutral paths traverse the system without being affected by charged segments. In a

magnetic field, their attraction factor stays at 3/2 and ρ = ξ−1
g is unchanged.

10.13. Magneto-conductance can be traced to the influence of loops of charged paths.
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The smaller positive MC observed in the simulations is due to changes in the amplitude

A(n) in Eq.(10.122). This originates from the charged paths that contribute to tunneling

at small B but are quenched at higher B. However, due to their lack of interactions,

we may treat the charged and neutral paths as independent. At zero field any of the

pairings into charged and neutral paths is acceptable, while at finite fields only neutral

pairs survive. This leads to a reduction in the amplitude A(n) for n ≥ 2, but an increase

in ln I (a positive MC). The typical value of ln I thus increases by a t independent amount.

This behavior is similar to the predictions of IPA, and is indeed due to the independence

of charged and neutral paths. Since the typical scale of decay for charged paths depends

on the combination Bt3/2 (typical flux through a random walk of length t), we can explain

the scaling obtained numerically in Eq.(10.119).

The exchange attraction between neutral paths can also be computed for (unphysi-

cal) SU(n) impurities and equals 1 + 1/n, which reproduces 2 for U(1) or random phases,

and 3/2 for SU(2) or SO scattering. The attraction vanishes in the n → ∞ limit, where

the paths become independent. The statistical exchange factors are thus universal num-

bers, simply related to the symmetries of the underlying Hamiltonian. The attractions in

turn are responsible for the formation of bound states in replica space, and the universal

scaling of the moments in Eq.(10.122). In fact, since the single parameter ρ completely

characterizes the distribution, the variations in the mean and variance of ln I(t) should be

perfectly correlated. This can be tested numerically by examining respectively coefficients

of the mean and the variance for different cases. All results do indeed fall on a single line,

parametrized by ρ. The largest value corresponds to the NSS model for B = 0 and no SO

(orthogonal symmetry, exchange attraction 3). Introduction of a field gradually reduces ρ

until saturated at the limit of random phases (unitary symmetry, exchange attraction 2).

SO scattering reduces ρ further (symplectic symmetry, exchange attraction 3/2).

10.13 Unitary propagation

We can put together the results discussed so far by generalizing Eq.(10.83) to allow for

complex (and matrix valued) parameters. In the originally encountered directed polymer,

the parameters ν > 0 and µ appearing in this equation were both real. To discuss the

wavefunction in a magnetic field, we have to allow µ to take complex values. Finally, SO

scattering is included by generalizing W to a two component spinor, and using matrix

valued µ. We found that in all these cases the statistical behavior of lnW (x, t) is the

same. Is this a general property of Eq.(10.83), independent of the choice of parameters?
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A special limit of this equation is when both µ→ −iµ and ν → −iν are purely imaginary.

Then Eq.(10.83) reduces to the Schrödinger equation

i
∂W

∂t
=
[
ν∇2 + µ(x, t)

]
W , (10.123)

for a particle in a random time dependent potential. This equation has been considered

in the context of particle diffusion in crystals at finite temperature[93]–[95], and to model

the environment of a light test particle in a gas of much heavier particles[96]. Several

authors[97]–[99] have also suggested that the diffusion of directed wave fronts in disordered

media are described by Eq.(10.123).

The path-integral solution to Eq.(10.123) is[1][100]

W (x, t) =

∫ (x,t)

(0,0)

Dx(t′) exp

{

−i
∫ t

0

dt′
[

1

4ν

(
dx

dt′

)2

+ µ(x(t′, t′)

]}

, (10.124)

where x(t′) now describes a path in d − 1 dimensions. In writing Eq.(10.124), we have

chosen the standard initial condition that at time t = 0, the “wave function” is localized at

the origin. The beam positions <x2> and <x>2 characterize the transverse fluctuations

of a directed beam W (x, t) about the forward path of least scattering. Here we use <· · ·>
to indicate an average with the weight |W (x, t)|2 for a given realization, and · · · to indicate

quenched averaging over all realizations of randomness. Roughly speaking, <x>2 describes

the wandering of the beam center, while <x2> − <x>2 provides a measure of the beam

width.

A special property of Eq.(10.123) which is valid only for real ν and µ is unitarity, i.e.

the norm
∫
dx|W (x, t)|2 is preserved at all times. (In the directed polymer and tunnelling

problems, the norm clearly decays with the length t.) This additional conservation law sets

apart the random directed wave problem from directed polymers, and in a sense makes its

solution more tractable. Unitarity is of course a natural consequence of particle conserva-

tion for the Schrödinger equation, but has no counterpart for directed wave propagation. It

is likely that a beam of light propagating in a random medium will suffer a loss of intensity,

due to either back–reflection, inelastic scattering, or localization phenomena[101].

A number of efforts at understanding unitary propagation in random media have

focused on the scaling behavior of the beam positions <x2> and <x>2 at large t. Lattice

models have been used here with some success. It has been shown using density-matrix

techniques, for instance, that <x2> scales linearly in time as a consequence of unitarity[94];

recent numerical simulations[102][103] also support this view. The scaling behavior of
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<x>2 at large t, however, is somewhat more complicated. An early numerical simulation

in Ref.[99], employed a discretization procedure in which the norm of the wave function

was not strictly preserved. In 2d, this lead to |<x>| growing super-diffusively as tζ with

ζ ≈ 3/4, and in 3d a phase transition separating regimes of weak and strong disorder.

However, subsequent numerical studies[102] on directed waves, when the time evolution is

strictly unitary, indicate that <x>2 scales sub-diffusively in 2d with ζ ≈ 0.3.

Somewhat surprising is the fact that a continuum formulation of the wave prob-

lem leads to different results. An exact treatment of the continuum Schrödinger equa-

tion (10.123) has been given by Jayannavar and Kumar[95]. They show that for a random

potential δ–correlated in time, <x2> ∼ t3 as t → ∞. This behavior is modified when

there are short-range correlations in time[96], but the motion remains non-diffusive in that

the particle is accelerated indefinitely as t → ∞. Lattice models introduce a momentum

cutoff pmax ∼ a−1, where a is the lattice spacing, and therefore do not exhibit this effect.

The momentum cutoff generated by the lattice discretization is in some sense artificial.

Nevertheless, in a real fluctuating medium, we do expect on large time scales to recover

the lattice result, i.e. normal diffusion. The reason is that dissipative effects do generate

an effective momentum cutoff in most physical systems. (Strictly speaking, even in the ab-

sence of dissipation, relativistic constraints lead to a velocity cutoff v = c.) The presence of

such a cutoff for the wave propagation problem, and hence the physical relevance of lattice

versus continuum models, is still a matter of debate. While there is no underlying lattice,

one suspects on physical grounds that there does exist an effective momentum cutoff for

propagating waves, related to the speed of light in the background medium.

Standard numerical investigations of this problem start with a discretization of the

parabolic wave equation in Eq.(10.123). Alternatively, one can treat the path integral

representation as more fundamental and provide a direct discretization of Eq.(10.124) that

preserves unitarity[104]. For concreteness, we introduce the model in 2d. A discussion of

its generalization to higher dimensions is taken up later. As usual, we identify the time axis

with the primary direction of propagation and orient it along the diagonal of the square

lattice. The wave function is defined on the bonds of this lattice. We use W±(x, t) to refer

to the amplitude for arriving at the site (x, t) from the ±x direction. At t = 0, the wave

function is localized at the origin, with W±(0, 0) = 1/
√

2. Transfer matrix techniques are

then used to simulate diffusion in the presence of disorder. At time t, we imagine that

a random scattering event occurs at each site on the lattice at which either W+(x, t) or

W−(x, t) is non-zero. We implement these events by assigning to each scattering site a 2×2
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unitary matrix S(x, t). The values of the wave function at time t + 1 are then computed

from the recursion relation:

(
W−(x+ 1, t+ 1)

W+(x− 1, t+ 1)

)

=

(
S11(x, t) S12(x, t)
S21(x, t) S22(x, t)

)(
W−(x, t)

W+(x, t)

)

. (10.125)

The S-matrices are required to be unitary in order to locally preserve the norm of the wave

function. As a particular realization, we may consider the rotation matrix

S(θ, φ) =

(
cos (θ/2) eiφ sin (θ/2) e−iφ

− sin (θ/2) eiφ cos (θ/2) e−iφ

)

. (10.126)

A physical realization of this model is obtained by placing semi–polished mirrors of variable

thickness, parallel to the t axis, on the sites of a square lattice. Within this framework, it

should be clear that the value ofW±(x, t) is obtained by summing the individual amplitudes

of all directed paths which start at the origin and arrive at the point (x, t) from the ±x
direction. We thus have a unitary discretization of the path integral in Eq.(10.124) in

which the phase change from the potential µ(x, t) is replaced by an element of the matrix

S(x, t). A lattice S-matrix approach for the study of electron localization and the quantum

Hall effect has been used by Chalker and Coddington[105]. A related model has also been

used[106] to investigate the localization of wave packets in random media. These models

also include back scattering and hence involve a larger matrix at each site.

10.14 Unitary averages

A particularly nice feature of unitary propagation is that the weights W (x, t) are

automatically normalized. In particular, we are interested in the beam positions

<x2(t)> =
∑

x

P (x, t) x2 , (10.127)

and

<x(t)>2 =
∑

x1,x2

P (x1, t) P (x2, t) x1x2 , (10.128)

where P (x, t) is the probability distribution function on the lattice at time t, defined by

P (x, t) =| W+(x, t) |2 + | W−(x, t) |2 . (10.129)
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(Defining the weights directly on the bonds does not substantially change the results.)

Note that unlike the directed polymer problem, P (x, t) is properly normalized, i.e.

∑

x

P (x, t) = 1 ,

and Eqs.(10.127) and (10.128) are not divided by normalizations such as
∑

x P (x, t). This

simplification is a consequence of unitarity and makes the directed wave problem tractable.

The average · · ·, in Eqs.(10.127) and (10.128) is to be performed over a distribution

of S-matrices that closely resembles the corresponding distribution for µ in the continuum

problem. However, by analogy to the directed polymer problem we expect any disorder

to be relevant. Hence, to obtain the asymptotic scaling behavior, we consider the extreme

limit of strong scattering in which each matrix S(x, t) is an independently chosen random

element of the group U(2). With such a distribution we lose any pre–asymptotic behavior

associated with weak scattering[96]. The results are expected to be valid over a range of

length scales a ≪ x ≪ ξ, where a is a distance over which the change of phase due to

randomness is around 2π, and ξ is the characteristic length for the decay of intensity and

breakdown of unitarity. In the language of path integrals, the quantity P (x, t) represents

the average over a conjugate pair of paths (from W± and W ∗
± respectively.) As in the

random sign problem, the paths must be exactly paired to make a non-zero contribution

(since Sαβ = 0). In the strong disorder limit, each step along the paired paths contributes

a factor of 1/2. (It can be easily checked from Eq.(10.126) that |Sαβ|2 = cos2(θ/2) =

sin2(θ/2) = 1/2.) Thus, in this limit, the effect of an impurity at (x, t) is to redistribute

the incident probability flux P (x, t) at random in the +x and −x directions. On average,

the flux is scattered symmetrically so that the disorder-averaged probability describes the

event space of a classical random walk, i.e.

P (x, t) =
t!

( t−x
2

)!( t+x
2

)!
. (10.130)

Substituting this into Eq.(10.127), we find <x2(t)> = t, in agreement with previous stud-

ies[94].

Consider now the position of the beam center <x(t)>2, given by Eq.(10.128). Unlike

P (x, t), the correlation function P (x1, t)P (x2, t) does not have a simple form. It involves

a sum over four paths, collapsed into two pairs by randomness averaging. The center of
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mass coordinate R = (x1 + x2)/2, performs a random walk with R2 = t/2. Let us define

a new correlation function for the relative coordinate r = x2 − x1, as

W2(r, t) =
∑

R

P (R− r/2, t)P (R+ r/2, t) , (10.131)

with the initial condition

W2(r, t = 0) = δr,0 . (10.132)

The value of W2(r, t) is the disorder-averaged probability that two paired paths, evolved

in the same realization of randomness, are separated by a distance r at time t, and can

be computed as a sum over all configurations that meet this criteria. Consider now the

evolution of two such pairs from time t to t + 1. Clearly, at times when r 6= 0, the two

pairs behave as independent random walks. On the other hand, when r = 0, there is an

increased probability that the paths move together as a result of participating in the same

scattering event. An event in which the pairs stay together is enhanced (since |Sαβ |4 =

cos4(θ/2) = sin4(θ/2) = 3/8), while one in which the pairs separate is diminished (since

sin2(θ/2) cos2(θ/2) = 1/8). These observations lead to the following recursion relation for

the evolution of W2(r, t),

W2(r, t+1) =

(
1 + ǫδr,0

2

)

W2(r, t)+

(
1− ǫδr,2

4

)

W2(r−2, t)+

(
1− ǫδr,−2

4

)

W2(r+2, t).

(10.133)

The parameter ǫ ≥ 0 measures the tendency of the paths to stick together on contact.

(If the S–matrix is uniformly distributed over the group U(2), then ǫ = 1/4.) Note that
∑

r W2(r) is preserved, as required by unitarity.

Using Eq.(10.133), we evolved W2(r, t) numerically for various values of 0 < ǫ < 1

up to t ≤ 15000. The position of the beam center was then calculated from

<x(t)>2 =
∑

R,r

(

R2 − r2

4

)

P (R− r/2, t)P (R+ r/2, t) =
t

2
− 1

4

∑

r

W2(r, t) r
2 .

(10.134)

The results suggest quite unambiguously that <x(t)>2 scales as t2ζ , with ζ = 1/4. We

emphasize here the utility of the S-matrix model for directed waves in random media.

Not only does our final algorithm compute averages over disorder in an exact way, but

it requires substantially less time to do so than simulations which perform averages by

statistical sampling as in DPRM. We have in fact confirmed our 2d results with these

slower methods on smaller lattices (t < 2000).
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The model is easily extended to higher dimensions. The wave function takes its values

on the bonds of a lattice in d dimensions. Random d× d dimensional S-matrices are then

used to simulate scattering events at the sites of the lattice. When the matrices S(x, t) are

distributed uniformly over the group U(d), the same considerations as before permit one to

perform averages over disorder in an exact way. In addition, one obtains the general result

for d ≥ 2 that <x2> scales linearly in time. The computation of <x>2 in d > 2, of course,

requires significantly more computer resources. We have computed <x>2 on a d = 3

body-centered cubic lattice, starting from the appropriate generalization of Eq.(10.133).

The results for t < 3000, indicate that <x>2 scales logarithmically in time.

The above numerical results can be understood by appealing to some well-known

properties of random walks. Consider a random walker on a D = d − 1 dimensional

hypercubic lattice. We suppose, as usual, that the walker starts out at the origin, and that

at times t = 0, 1, 2, · · ·, the walker has probability 0 < p ≤ 1/2D to move one step in any

lattice direction and probability 1− 2Dp to pause for a rest. The mean time t0 spent by

the walker at the origin grows as[107]

t0 ∼







t
1
2 (D = 1)

ln t (D = 2)

constant (D = 3)

. (10.135)

The numerical results indicate a similar scaling for the wandering of the beam center <x>2

in d = D + 1 dimensions, for d = 2 and d = 3. We now show that this equivalence is not

coincidental; moreover, it strongly suggests that du = 3 is a critical dimension for directed

waves in random media. To this end, let us consider a continuum version of Eq.(10.133),

which in general dimensions takes the form

W2(r, t+ 1) = W2(r, t) +∇2
[
W2

(
1− ǫδD(r) + · · ·

)]
. (10.136)

The asymptotic solution for ǫ = 0 is just a gaussian packet of width r2 = 2t. We can next

perform a perturbative calculation in ǫ. However, simple dimensional analysis shows the

corrections scale as powers of ǫ/rD ∼ ǫt−D/2, and thus

lim
t→∞

W2(r, t) =
1

(4πt)D/2
exp

(

−r
2

4t

)[

1 +O
(

ǫt−(d−1)/2
)]

. (10.137)
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Applying the above results to the continuum version of Eq.(10.133), gives

〈x〉2t+1 − 〈x〉2t =
1

2
− 1

4

∑

r

[W2(r, t+ 1)−W2(r, t)] r
2

≃1

2
− 1

4

∫

dDr r2∇2
[
W2

(
1− ǫδD(r) + · · ·

)]

≃1

2
− 1

2

∫

dDrW2

(
1− ǫδD(r)

)
= ǫW2(0, t) .

(10.138)

Summing both sides of this equation over t, one finds

<x(t+ 1)>2 = ǫ
t∑

t′=0

W2(0, t
′) ≈

∫ t

0

dt′(4πt′)−D/2 . (10.139)

The final integral is proportional to the time a random walker spends at the origin, and

reproduces the results in Eq.(10.135).

We can also regard W2(r, t) as a probability distribution function for the relative

coordinate between two interacting random walkers. In this interpretation, the value of ǫ

in Eq.(10.133) parametrizes the strength of a contact interaction between the walkers. If

ǫ = 0, the walkers do not interact at all; if ǫ = 1, the walkers bind on contact. According to

Eq.(10.139), the wandering of the beam center <x(t)>2 is proportional to the mean number

of times that the paths of these walkers intersect during time t. If ǫ = 0, the number

of intersections during time t obeys the scaling law in Eq.(10.135), since in this case, the

relative coordinate between the walkers performs a simple random walk. Numerical results

indicate that the same scaling law applies when 0 < ǫ < 1: the contact attraction does

not affect the asymptotic properties of the random walk. In summary, three classes of

behavior are possible in this model. For ǫ = 0, i.e. no randomness, the incoming beam

stays centered at the origin, while its width grows diffusively. For 0 < ǫ < 1, the beam

center, <x>2 , also fluctuates, but with a dimension dependent behavior as in Eq.(10.135).

In the limit of ǫ = 1, interference phenomena disappear completely. In this case, the beam

width is zero and the beam center performs a simple random walk.

We conclude by comparing the situation here to that of the DPRM. In the replica

approach to DPRM, the n-th moment of the weight W (x, t) is obtained from the statistics

of n directed paths. Disorder–averaging produces an attractive interaction between these

paths with the result that they may form a bound state. In d ≤ 2, any amount of random-

ness (and hence attraction) leads to the formation of a bound state. The behavior of the

bound state energy can then be used to extract an exponent of ζ = 2/3 for superdiffusive
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wandering. By contrast, the replicated paths encountered in the directed wave problem

(such as the two paths considered for Eq.(10.131)), although interacting, cannot form a

bound state[102], as such is inconsistent with unitarity. This result also emerges in a nat-

ural way from our model of directed waves. In d = 2, for instance, it is easy to check

that W2(r) ∼ (1 − ǫδr,0)
−1 is the eigenstate of largest eigenvalue for the evolution of the

relative coordinate. Hence, as t → ∞, for randomness δ-correlated in space and time,

there is no bound state. This result holds in d ≥ 2 and is not modified by short-range

correlations in the randomness. The probability-conserving nature of Eq.(10.133) is crucial

in this regard[108] as it precludes a uδD(r) attraction in Eq.(10.136). Small perturbations

that violate the conservation of probability lead to the formation of a bound state. In the

language of the renormalization group, the scaling of directed waves in random media is

governed by a fixed point that is unstable with respect to changes that do not preserve a

strictly unitary evolution.

Subsequently, a number of authors have obtained additional results from the random

S-matrix model. Friedberg and Yu[109] calculated the leading terms in the scaling laws for

the beam center in d ≥ 2, and also the next-order corrections. The analytical results are in

agreement with those presented above. Cule and Shapir[110] extended the methods of this

section to compute the higher moments of the probability distribution for directed waves

in random media. If this probability distribution is multifractal, as claimed in Ref.[103],

the higher moments should obey new scaling laws whose exponents are not simply related

to those of the lower moments. Within the framework of the S-matrix model, Cule and

Shapir did not find evidence for multifractal scaling, while suggesting that certain aspects

of the scaling behavior may be sensitive to details of the unitary time evolution. The above

model has also found applications in the diverse contexts such as force chains in granular

media, and surface of quantum Hall multilayers[111]
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