
6.975 Week 5: Grammar-Based Codes

Emin Martinian

October 7, 2002

Abstract

This week’s paper [1] discusses a method of lossless data compression called grammar-based

codes. These codes compress a data string, x, by first transforming it into a context-free

grammar G, and then compressing G. The main result of the paper is that this compression

technique will be universal (i.e., asymptotically achieve optimal compression without knowing

the source model) for the class of finite state sources provided that the grammar G satisfies

some mild conditions.

Grammar based codes can be viewed as a generalization of the well known Lempel-Ziv lossless

compression algorithm. The main advantage of the grammar framework is that it provides a way

to construct families of universal compression algorithms and thus optimize their components.

A companion paper [2] illustrates simulation results demonstrating that grammar based codes

can significantly outperform the Lempel-Ziv algorithm.

1 Introduction

Transform coding is a well-known source coding technique for lossy compression applications such

as image compression. The idea behind transform coding is to find a basis where the components

of the data vector become independent or at least uncorrelated and then use scalar quantization

to compress each component separately. Grammar based codes operate in an analogous manner.

The data string is represented using symbols of a context-free grammar and then the symbols of

the grammar are compressed using a memoryless lossless source code such as an arithmetic code.

Before presenting the definition of a context-free grammar, we illustrate this idea with an

1

example. Suppose we wish to compress the data string

x = cababcccababcccab. (1)

Notice that x consists mostly of the patterns ab and ccc. This observations suggests that we could

define a variable A1 to represent ab and another variable A2 to represent ccc. Using these definitions

we can represent x as

x = cA1A1A2A1A1A2A1.

Once again we observe that the data contains the pattern A1A1A2, thus we define the variable A3

to represent A1A1A2 to yield

x = cA3A3A1.

Thus we have transformed the data string in (1) into the grammar Gx specified by the following

production rules:

A0 → cA3A3A1 (2)

A1 → ab (3)

A2 → ccc (4)

A3 → A1A1A2 (5)

with the understanding that x is derived by starting with the variable A0 and applying the relevant

production rules. Intuitively, Gx is a representation of x in a basis which captures the relationship

between letters by parsing commonly occurring letters together into variables. With inter-letter

redundancy accounted for by the parsing, the redundancy due to the different frequencies of vari-

ables can be accounted for using memoryless entropy coding (e.g., Huffman coding or arithmetic

coding). In the following sections, we present various theorems to justify this intuition.

2

2 Grammars Yielding Universal Codes

The main focus [1] is on classes of grammars which result in universal source codes. A grammar

transform x → G is defined to be asymptotically compact if

For each x, the grammar Gx representing x belongs to G∗(A) (6)

lim
n→∞

max
x∈An

|Gx|

|x|
= 0 (7)

where G∗(A) will be defined shortly and |x| and |Gx| represent the length of data string x and the

sum of the lengths of the production rules in the grammar Gx respectively.

Asymptotically compact grammars are interesting because [1, Theorem 7] provides a bound on

the maximal pointwise redundancy of a grammar based code as a function of

max
x∈An

|Gx|

|x|
.

This result essentially means that in order to design good universal lossless source codes we can

focus on the more concrete problem of designing asymptotically compact grammars.

Before summarizing the conditions for a grammar to be in G∗(A) we recall the formal definitions

of a context-free grammar.

2.1 Context-Free Grammars

A context-free grammar, G, designed to represent strings in the alphabet T using variables in the

set V where T ∩ V = ∅, is a quadruple (V, T, P, S). The set P contains production rules of the

form

A → α

indicating that any occurrence of the variable A can be replaced with the string α. Left members

of rules must be elements of V while right members must be strings of elements in V ∪T . The set of

strings which can be derived by applying the rules in P to the start symbol S ∈ V are referred to as

the language of G, L(G). For example, the grammar in Section 1 is the quadruple corresponding

3

to

V ={A0, A1, A2, A3}

T ={a, b, c}

P ={A0 → cA3A3A1, A1 → ab,A2 → ccc, A3 → A1A1A2}

S =A0

and the language of this grammar is the data string in (1).

2.2 Requirements For G∗(A)

Essentially G∗(A) is a set of “reasonable” grammars which are constructed to avoid obviously

inefficient production rules, rules which make the transformation x → G not invertible or rules

which make the mapping from G to a data string one-to-many. The requirements for a grammar

to be in G∗(A) are the following:

1. For each variable A in the set of variables V (G), there is exactly one production rule in P (G)

whose left member is A. (This requirement insures that G maps to a unique x).

2. The empty string is not the right member of any production rule. (This requirement insures

that G does not contain useless rules which expand to nothing.)

3. L(G) is non-empty. (This requirement insures that G represents some string.)

4. G has no useless symbols, i.e., symbols which can not be reached from the start symbol.

5. The variable naming for G follows a certain canonical convention. (This is required to specify

an efficient encoding of the rules of G. Since any variable naming scheme can easily be

transformed to satisfy the canonical naming convention this requirement is quite mild).

6. Whenever A and B are distinct variables f∞
G

(A) 6= f∞
G

(B) where f 1

G
(α) is the result of

replacing every variable in the string α with the corresponding production rule and f i

G
(α) =

f1

G
(f i−1

G
(α)). (This rule states that no two distinct variables expand to the same result. If

such an A and B did exist in Gx, then every occurrence of B could be replaced with A

without changing the string x represented by Gx.)

4

In [1], the first four conditions are presented as requirements of an admissible grammar while the

last two are presented as requirements of G∗(A) which is a subset of admissible grammars.

2.3 Irreducible Grammars

The authors introduce the class of irreducible grammar transforms which, according to [1, Theo-

rem 8], are guaranteed to be asymptotically compact (i.e., yield a universal code). Specifically, a

grammar G is irreducible if the following four properties are satisfied:

1. G is admissible (i.e., G satisfies conditions 1-4 in Section 2.2).

2. If v1 and v2 are distinct variables in V (G), then f∞
G

(v1) 6= f∞
G

(v2).

3. Every variable in V (G) other than the start symbol appears at least twice as an entry in the

right members of the production rules of the grammar G.

4. There does not exist any pair Y1, Y2 of symbols in V (G) ∪ T (G) such that the string Y1Y2

appears more than once in non-overlapping positions as a substring of the right members of

the production rules for G.

Essentially, an irreducible grammar is a grammar that is well designed in the sense that it does not

contain redundant variables (condition 2), it does not contain unnecessary variables which are only

used once (condition 3), and no further patterns exist in multiple rules which could be compressed

with an additional rule.

In [1, Section VI], the authors provide five reduction rules which can always be applied to

produce an irreducible grammar transform. These rules provide a way to construct a family of

universal lossless compression algorithms. By choosing the order these rules are applied (or by

adding additional rules), a system designer can optimize the performance of the resulting algorithm

or tailor it for specific applications while still guaranteeing universality.

3 Conclusion

The key points of this week’s paper are the introduction of grammar based codes, a list of grammar

properties which are sufficient to yield a universal lossless source code, and a set of reduction rules

5

which are guaranteed to produce a grammar satisfying these properties. These results are a step

in moving universal lossless compression from an art to a science since they provide a systematic

method of designing lossless compression algorithms. In the presentation on Wednesday we will

discuss some more examples and explore the intuition behind the proofs for these results. Some

examples of the superior performance obtained by optimizing this construction are discussed in [2],

[3], [4].

References

[1] J. C. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal lossless source

codes. IEEE Trans. Inform. Theory, 46(3):737–754, May 2000.

[2] E.-H. Yang and J. C. Kieffer. Efficient universal lossless data compression algorithms based

on a greedy sequential grammar transform–part one: Without context models. IEEE Trans.

Inform. Theory, 46(3):755–777, May 2000.

[3] E.-H. Yang, A. Kaltchenko, and J.C. Kieffer. Universal lossless data compression with side

information by using a conditional mpm grammar transform. IEEE Trans. Inform. Theory,

47(6):2130–2150, Sep 2001.

[4] J.C. Kieffer, E.-H. Yang, G.J. Nelson, and P. Cosman. Universal lossless compression via

multilevel pattern matching. IEEE Trans. Inform. Theory, 46(4):1227–1245, July 2000.

6

