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Abstract. A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions re-
ducible to a finite number of polynomial equalities and inequalities, it is shown how to construct polynomial-
time checkable conditions that prove infeasibility. The main tools employed are a semidefinite programming
formulation of the sum of squares decomposition for multivariate polynomials, and some results from real
algebraic geometry. The techniques provide a constructive approach for finding bounded degree solutions to
the Positivstellensatz, and are illustrated with examples from diverse application fields.
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1. Introduction

Numerous questions in applied mathematics can be formally expressed with a finite
number of polynomial equalities and inequalities. Well-known examples are optimiza-
tion problems with polynomial objective and constraints, such as quadratic, linear, and
boolean programming. This is a fairly broad class, including problems with a combina-
tion of continuous and discrete variables, and easily seen to be NP-hard in the general
case.

In this paper we introduce a new approach to the formulation of polynomial-time
computable relaxations for this kind of problems. The crucial enabling fact is the com-
putational tractability of the sum of squares decomposition for multivariate polynomi-
als, coupled with powerful results from semialgebraic geometry. As a result, a whole
new class of convex approximations for semialgebraic problems is obtained. The re-
sults generalize in a very natural way existing successful approaches, including the
well-known semidefinite relaxations for combinatorial optimization problems.

The paper includes notions from traditionally separated research areas, namely nu-
merical optimization and real algebra. In the interest of achieving the broadest possible
communication of the main ideas, we have tried to make it as self-contained as possible,
providing a brief introduction to both semidefinite programming and real algebra. It is
our belief that there is a lot of potential in the interaction between these fields, particu-
larly with regard to practical applications. Most of the material in the paper is from the
author’s dissertation [Par00], with the addition of new examples and references.

The paper is organized as follows: in section 2 the problem of global nonnegativity
of polynomial functions is introduced, and existing approaches are discussed. The sum
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of squares decomposition is presented as a sufficient condition for nonnegativity. In
section 3 a brief review of semidefinite programming is presented, and it is shown
how the sum of squares decomposition can be computed as a semidefinite program. In
the following section, some basic elements of semialgebraic geometry are described,
and the Positivstellensatz is stated. Our main result follows, showing how the sum of
squares decision procedure allows for the search of bounded degree solutions to the
Positivstellensatz equation. Section 5 contains some precisions on the computational
aspects of the implementation of the techniques. In section 6, a sample of applications
from different applied mathematics areas are presented. These include, among others,
enhanced semidefinite relaxations for quadratic programming problems, and stronger
conditions for matrix copositivity.

1.1. Notation

The notation is mostly standard. The inner product between two vectors in
���

is de-
fined as �����	��
����� ������ � � � � . Let � ����������� be the space of symmetric �! "� real
matrices, with inner product between #$�	%'&(� � being �)#"�	%*
+�,� trace #$% . A matrix- &!� � is positive semidefinite (PSD) if ��. - �0/21��435�6& �7� . Equivalently,

-
is

positive semidefinite if all its eigenvalues are nonnegative. Let � �8 be the self-dual cone
of positive semidefinite matrices, with the notation 9;:�< indicating that 9>=0< is
positive semidefinite..

2. Global nonnegativity and sums of squares

A fundamental question appearing in many areas of applied mathematics is that of
checking global nonnegativity of a function of several variables. Concretely, we have
the following:

Problem 2.1. Provide checkable conditions or a procedure for verifying the validity of
the proposition ?A@ � � �CBCBDBE�F� �HG /I1�� 35� � �CBCBDBC�	� � & � B (2.1)

This is an important problem, and considerable research efforts have been devoted to it.
In order to study the problem from a computational viewpoint, and avoid undecidability
results, it is clear that further restrictions on the class of functions

?
should be imposed.

However, at the same time we would like to keep the problem general enough, to enable
the practical applicability of the results. A good compromise is achieved by considering
the case of multivariate polynomials.

Definition 2.2. A polynomial J in � � �CBCBDBC�	� � is a finite linear combination of monomi-
als: JK�MLDNPO N � N �MLQN'O N � NSR� BDBCB	� NUT� � O N & � � (2.2)

where the sum is over a finite number of � -tuples V!� @ V � �CBDBCBD�	V � G , V � &$W�X . The set
of all polynomials in � � �CBDBCBD�F� � with real coefficients is written as

�ZY � � �DBCBCBC�F� ��[ .
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The total degree of the monomial \^] is equal to _a`+bdcDcCcebI_�f . The total degree of a
polynomial is equal to the highest degree of its component monomials.

An important special case is that of homogeneous polynomials (or forms), where all
the monomials have the same total degree.

Definition 2.3. A form is a polynomial where all the monomials have the same total
degree g . In this case, the polynomial is homogeneous of degree g , since it satisfiesh7ikj \5`elCmDmCmDl j \nfHoqp jnrsh7i \5`slDmCmDmClF\�f�o .
It is well-known that there is a correspondence between forms and polynomials. A form
in t variables and degree u can be dehomogenized to a polynomial in t�vxw variables, of
degree less than or equal to u , by fixing any variable to the constant value w . Conversely,
given a polynomial, it can be converted into a form by multiplying each monomial by
powers of a new variable, in such a way that the total degree of all monomials are the
same.

The set of forms in t variables and degree u can be associated with a vector space
of dimension y fez|{~}^`{ � . Similarly, the set of polynomials of total degree less than or
equal to u is a vector space of dimension y fez|{{ � . These quantities will be important
later in the study of the efficiency of the computational implementation of the proposed
methodology.

2.1. Exact and approximate approaches

It is a fact that many problems in applied mathematics can be formulated using only
polynomial equalities and inequalities, that are satisfied if and only if the problem has
a solution. In this regard, Tarski’s results on the existence of a decision procedure for
elementary algebra over the reals, settles the decidability of Problem 2.1 for this quite
large class of problems.

When � is a polynomial, the Tarski-Seidenberg decision procedure [BCR98,Mis93,
Bos82] provides an explicit algorithm for deciding if (2.1) holds, so the problem is
decidable. There are also a few alternative approaches, also based in decision algebra;
see [Bos82] for a survey of existing techniques.

Regarding complexity, the general problem of testing global nonnegativity of a
polynomial function is NP-hard (when the degree is at least four), as easily follows from
reduction from the matrix copositivity problem, see [MK87] and section 6.5. Therefore,
unless P=NP, any method guaranteed to obtain the right answer in every possible in-
stance will have unacceptable behavior for problems with a large number of variables.
This is the main drawback of theoretically powerful methodologies such as quantifier
elimination.

If we want to avoid the inherent complexity roadblocks associated with the exact
solution, an attractive option is to settle for approximate answers, that are “reasonably
close” to the original question. The issue therefore arises: are there conditions, that
can be efficiently tested, that guarantee global nonnegativity of a function? As we will
see in section 3.2, one such condition is given by the existence of a sum of squares
decomposition.
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3. Sums of squares and SDP

3.1. Semidefinite programming background

In this section we present a brief introduction to semidefinite programming (SDP). We
refer the reader to [VB96] for an excellent survey of the theory and applications, and
[WSV00] for a comprehensive treatment of the many aspects of the subject. SDP can
be understood as a generalization of linear programming, when the nonnegative orthant
constraint in the latter is replaced by the cone of positive semidefinite matrices.

A semidefinite program is defined as the optimization problem:

minimize �����F���
subject to �k���	�F���q��������I��� (3.1)

where the variable �����+� , ���"��� and ���	� � ����� are given symmetric matrices. A
geometric interpretation is the optimization of a linear functional, over the intersection
of an affine subspace and the self-dual cone of positive semidefinite matrices.

The crucial feature of semidefinite programs is its convexity, since the feasible set
defined by the constraints above is convex. For this reason, semidefinite programs have
a nice duality structure, with the associated dual program being:

maximize �k�s�	���
subject to � ������ �U�)���q I��¡ (3.2)

Any feasible solution of the dual provides a lower bound on the achievable values of
the primal; conversely, feasible primal solutions give upper bounds on dual solutions.
This is known as weak duality and follows since:

�k���	����¢���s�F���q�>�k���F����¢ �£ ����� � � � � �>�����F���E¢ �
£
����� � � �k� � �F���a�2�k�*¢ �

£
����� � � � � �	���+¤6�H�

with the last inequality being true because of self-duality of the PSD cone. Under stan-
dard constraint qualifications (for instance, existence of strictly feasible points), strong
duality holds, and the primal and the dual problems achieve exactly the same value.

Theorem 3.1. Consider the primal-dual SDP pair (3.1)-(3.2). If either feasible set has
has a nonempty interior, then for every ¥M¦§� , there exist feasible �"�	� such that�k���	����¢¨�k�©�F���«ª2¥ . Furthermore, if both feasible sets have nonempty interiors, then
the optimal solutions are achieved by some �¬ , �e¬ .
From a computational viewpoint, semidefinite programs can be efficiently solved, both
in theory and in practice. In the last few years, research on SDP has experienced an
explosive growth, particularly in the areas of algorithms and applications. Two of the
main reasons for this practical impact are the versatility of the problem formulation,
and the availability of high-quality software, such as SeDuMi [Stu99].
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3.2. The sum of squares decomposition

If a polynomial ® satisfies (2.1), then an obvious necessary condition is that its degree
be an even number. A deceptively simple sufficient condition for a real-valued polyno-
mial ®A¯)°�± to be nonnegative is the existence of a sum of squares decomposition:

®A¯�°5±�²¨³n´�µ5¶´ ¯�°�±E· µ ´ ¯)°�±Z¸º¹Z» °H¼�½ (3.3)

It is clear that if a given polynomial ®A¯�°5± can be written as above, for some polynomialsµ ´ , then ® is nonnegative for all values of ° .
Two questions immediately arise:

– When is such decomposition possible?
– How do we compute it?

For the case of polynomials, the first question is a well-analyzed problem, first stud-
ied by David Hilbert more than a century ago. In fact, one of the items in his famous list
of twenty-three unsolved problems presented at the International Congress of Mathe-
maticians at Paris in 1900, deals with the representation of a definite form as a sum of
squares of rational functions. The reference [Rez00] contains a beautiful survey of the
fascinating history of this problem, and pointers to most of the available results.

For notational simplicity, we use the notation psd for “positive semidefinite” and
sos for “sum of squares.” Hilbert himself noted that not every psd polynomial is sos. A
simple explicit counterexample is the Motzkin form (here, for ¾º²�¿ )À ¯)°�·	Á�·ÃÂS±a²�°HÄQÁ ¶�Å ° ¶ Á4Ä Å ÂUÆZÇÈ¿e° ¶ Á ¶ Â ¶ ½ (3.4)

Positive semidefiniteness can be easily shown using the arithmetic-geometric inequal-
ity (see also Example 6.3), and the nonexistence of a sos decomposition follows from
standard algebraic manipulations (see [Rez00] for details), or the procedure outlined
below.

Following the notation in references [CLR95,Rez00], let ÉaÊ4Ë Ì be the set of psd
forms of degree Í in ¾ variables, and Î Ê4Ë Ì the set of forms Ï such that Ï�²PÐ¨Ñ7Ò ¶Ñ ,
where Ò Ñ are forms of degree ÍºÓÕÔ . Hilbert gave a complete characterization of when
these two classes are equivalent.

Theorem 3.2 (Hilbert). Let É7Ê4Ë Ìx·ÖÎ�Ê4Ë Ì be as above. Then Î×Ê4Ë ÌÙØIÉ�Ê4Ë Ì , with equal-
ity holding only in the following cases:

– Bivariate forms: ¾º²¨Ô .
– Quadratic forms: ÍÚ²�Ô .
– Ternary quartics: ¾"²Û¿H·FÍÚ²ÛÜ .

By dehomogenization, we can interpret these results in terms of polynomials (not nec-
essarily homogeneous). The first case corresponds to the equivalence of the psd and sos
conditions for polynomials in one variable. This is easy to show using a factorization
of the polynomial in linear and quadratic factors. The second one is the familiar case
of quadratic polynomials, where the sum of squares decomposition follows from an
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eigenvalue/eigenvector factorization. The somewhat surprising third case corresponds
to quartic polynomials in two variables.

The effective computation of the sum of squares decomposition has been analyzed
from different viewpoints by several authors. From a convex optimization perspec-
tive, the sum of squares decomposition is the underlying machinery in Shor’s global
bound for polynomial functions (see Example 6.1), as is explicitly mentioned in [Sho87,
Sho98]. From an algebraic perspective, it has been presented as the “Gram matrix”
method in Choi, Lam, and Reznick [CLR95], though undoubtely there are traces of it
in the authors’ earlier papers. An implementation of the Gram matrix method appeared
in Powers and Wörmann [PW98], though no reference to convexity is made: the re-
sulting SDPs are solved via decision methods. In the control theory literature, related
schemes appear in [BL68], and [HH96] (note also the important correction in [Fu98]).
The connections with SDP have also been explored, independently, by Ferrier [Fer98],
Nesterov [Nes00], and Lasserre [Las00].

The basic idea of the method is the following: express the given polynomial ÝAÞ)ß�à
of degree áÕâ as a quadratic form in all the monomials of degree less than or equal to â
given by the different products of the ß variables. Concretely:

ÝAÞ�ß5à�ãÛäSå�æ«änç äèã2éëêÕçFß^ìsç	ßníeçDîCîDîFßnï|çFß5ì�ßníUçCîDîCîCç	ß�ðïSñ ç (3.5)

with æ being a constant matrix. The length of the vector ä is equal to ò ïÕó ððõô . If in the
representation above the matrix æ is positive semidefinite, then ÝAÞ)ß�à is clearly also
psd. However, since the variables in ä are not algebraically independent, the matrix æ
in (3.5) is not unique, and æ may be psd for some representations but not for others.
By simply expanding the right-hand side of (3.5), and matching coefficients of ß , it is
easily shown that the set of matrices æ that satisfy (3.5) is an affine subspace.

If the intersection of this subspace with the positive semidefinite matrix cone is
nonempty, then the original function Ý is guaranteed to be sos (and therefore psd). This
follows from an eigenvalue factorization of æöã�÷ å�ø ÷�ç	âSùûú>ü , which produces the
sum of squares decomposition ÝAÞ�ß5à�ãÙý ù âUùÃÞ�÷~äSà íù . Notice that the number of squares
in the representation can always be taken to be equal to the rank of the matrix æ . For the
other direction, if Ý can indeed be written as the sum of squares of polynomials, then
expanding in monomials will provide the representation (3.5). By the above arguments,
the following is true:

Theorem 3.3. The existence of a sum of squares decomposition of a polynomial in þ
variables of degree áÕâ can be decided by solving a semidefinite programming feasibility
problem. If the polynomial is dense (no sparsity), the dimensions of the matrix inequality
are equal to ò ïÕó ðð ô×ÿ ò ïeó ðð ô .
Notice that the size of the resulting SDP problem is polynomial in both þ or â if the
other one is fixed. However, it is not jointly polynomial if both the degree and the
number of variables grow: ò íÃïï ô grows exponentially with þ (but in this case, the size of
the problem description also blows up).

Remark 3.4. If the input polynomial ÝAÞ�ß5à is homogeneous of degree áÕâ , then it is suf-
ficient to restrict the components of ä to the monomials of degree exactly equal to â .
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Example 3.5. Consider the quartic form in two variables described below, and define���������
	��� 	 ������	�������������� :��� ��������� ����!#"$�%� � �'&(� 	 � 	 "$)%�*!� +, �
	��	��� -.#/ +,�0 ��� 0 � 	 0 �1�0 � 	 0 	�	 0 	 �0 ��� 0 	 � 0 ��
-.2+, �3	��	��� -.� 0 �� � ! " 0 		 � ! " � 0 �� "4� 0 � 	 �5� 	 � 	 "$� 0 �1� � � �6"$� 0 	 � �
� �

Therefore, in order to have an identity, the following linear equalities should hold:0 ��7�8��� 0 		 �9)�� 0 ����"$� 0 � 	 �:&6;��<� 0 �1�=�8���>� 0 	 �=��?�@ (3.6)

A positive semidefinite A that satisfies the linear equalities can then be found using
semidefinite programming. A particular solution is given by:

A � +, ��&7B�;&7B )6?; ?C) -. ��D / D7� DE� ;F �$G �H&7BI;? ;�BKJ �
and therefore we have the sum of squares decomposition:��� �K������ ;� � �%� 	 &LB�� 	 "M����� 	 " ;� � � 	 "4B��
��� 	 @
Example 3.6. The following example is from [Bos82, Example 2.4], where it is required
to find whether or not the quartic polynomial,N�� �O�%�� 	 ���
���P��� ! � & � ��� 	 �3�#"�;Q�1� 	 � " � � 		 � 	� "4��� 	 �
��"$���R�
is positive definite. In [Bos82], this property is established using decision algebra.

By constructing the A matrix as described above, and solving the corresponding
SDPs, we obtain the sums of squares decomposition:N�� � � �� 	 ��� � �S�T;�"E� 	� " � ;7&L� 	� "M� 	 � � � 	 �
that immediately establishes global positivity. Notice that the decomposition actually
proves a stronger fact, namely that

N�� �U����� 	 ���3�V�CWX; for all values of �3Y . This lower
bound is optimal, since for example

N�� ?��Z;[�Z&6;Q�\�T; .
There are two crucial properties that distinguish the sum of squares viewpoint from

other approaches to the polynomial nonnegativity problem.

– The relative tractability, since the question now reduces to efficiently solvable SDPs.
– The fact that the approach can be easily extended to the problem of finding a sum

of squares polynomial, in a given convex set.
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To see this last point, consider the polynomial family ]�^`_�a�b3c , where ]d^`_�a�b3c is affine
in b , with the parameter b belonging to a convex set e�f:gPh defined by semidefinite
constraints. Then, the search over b$iEe for a ]d^`_Kajb
c that is a sum of squares can be
posed as a semidefinite program. The argument is exactly as before: writing k�^`_Kajb
c�lmon�p6m and expanding, we obtain linear equations among the entries of p and b . Since
both p are b are defined by semidefinite constraints, the result follows.

This last feature will be the critical one in the application of the techniques to prac-
tical problems.

3.3. The dual problem

It is enlightening to analyze the dual problem, that gives conditions on when a poly-
nomial q�^`_rc is not a sum of squares. Obviously, one such case is when q�^s_3c takes a
negative value for some _tlX_3u . However, because of the distiction between the psd
and sos conditions, other cases are possible.

By definition, the dual of the sum of squares cone are the linear functionals that take
nonnegative values on it. Obviously, these depend only the coefficients of the poly-
nomial, and not on the specific matrix p in the representation q�^`_3cvl m n p6m . Two
possible interpretations of the dual functionals are as differential forms [PS01], or as
measures [Las00]. The difference between the psd and sos cones indicates that not all
such functionals arise from pointwise function evaluations.

Given q�^`_3c , consider the representation:q�^`_rcSl m n pwm l trace m[m n p a
where m is the vector of monomials in (3.3). The matrix mom�n has rank one, and many of
its entries are repeated, due to the algebraic dependencies among the components of m .
Replace now the matrix momon by another one x , of the same dimensions, that is positive
semidefinite and satisfies the same constraints among its entries as m[m�n does. Then, by
construction, the pairing yzx{a pw| l trace x p does not depend on the specific choice ofp , as long as it represents the same polynomial.

Example 3.7. Consider again Example 3.5, where m[} l~_
�[a m � l~����a m�� l~_�� . In this
case, the dual variable is:x�l���o� }�} � } � � }��� } � � ��� � � �� }�� � � � � ���
�� a m[m n l���

m �} m } m � m } m �m } m � m �� m � m �m%}Rm��7m � m���m �� �� a (3.7)

and the constraint that m�}�m � l m �� translates into the condition � } � l � �� .Now, it is clear that a sufficient condition for q�^`_rc not to be a sum of squares is the
existence of a matrix x as above satisfying

trace x p:��� a x<� ���
The reason is the following: if q�^`_rc is a sum of squares, since the expression is in-
dependent of the choice of p , we could always choose a positive semidefinite p that
makes trace x p nonnegative, in contradiction with the expression above.
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The dual problem gives direct insight in the process of checking, after solving the
SDPs, if the relaxation was exact. In this case, under no degeneracies, the optimal �
matrix will have rank one, and the components of the corresponding factorization will
verify the constraints satisfied by the �%� variables.

4. Real algebra

At its most basic level, algebraic geometry deals with the study of the solution set of a
system of polynomial equations. From a more abstract viewpoint, it focuses on the close
relationship between geometric objects and the associated algebraic structures. It is a
subject with a long and illustrious history, and many links to seemingly unconnected
areas of mathematics, such as number theory.

Increasingly important in the last decades, particularly from a computational view-
point, is the fact that new algorithms and methodologies (for instance, Gröbner basis)
have enabled the study of very complicated problems, not amenable to paper and pencil
calculations.

In this section, a few basic elements from algebraic geometry are presented. For
comparison purposes and clarity of presentation, we present both the complex and real
cases, though we will be primarily concerned with the latter. An excellent introduc-
tory reference for the former is [CLO97], with [BCR98] being an advanced research
treatment of the real case.

The usual name for the specific class of theorems we use is Stellensätze, from the
German words Stellen (places) and Satz (theorem). The first such result was proved
by Hilbert, and deals with the case of an algebraically closed field such as � . Since
in many problems we are interested in the real roots, we need to introduce the Artin-
Schreier theory of formally real fields, developed along the search for a solution of
Hilbert’s 17th problem.

4.1. The complex case: Hilbert’s Nullstellensatz

Let the ring of polynomials with complex coefficients in � variables be ��� �����Z�V�Z�V���
�o� .
Recall the definition of a polynomial ideal [CLO97]:

Definition 4.1. The set �����#� � � �Z�V�Z�V��� � � is an ideal if it satisfies:

1. �¡ v� .
2. If ¢3��£= ¤� , then ¢¦¥$£� v� .
3. If ¢I v� and £= ¤�#� �r���Z�V�Z�V���
�o� , then ¢w§�£7 ¤� .

Definition 4.2. Given a finite set of polynomials ¨z© �«ª1�¬ ��®�¯�¯�¯�® ° , define the set± ©����V�Z�V�Z��©�°�²#³�´Xµ °¶ �¬ � © �`·�� � ·��  ¤��� �O���V�Z�V�R���3�*��¸
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It can be easily shown that the set ¹«º[»�¼Z½V½Z½R¼jº�¾�¿ is an ideal, known as the ideal generated
by the º%À .

The result we present next is the Nullstellensatz due to Hilbert. The theorem es-
tablishes a correspondence between the set of solutions of polynomials equations (a
geometric object known as an affine variety), and a polynomial ideal (an algebraic con-
cept). We state below a version appropriate for our purposes:

Theorem 4.3 (Hilbert’s Nullstellensatz).
Let Á«ºVÂQÃ«ÂÄ�»�Å�Æ�Æ�Æ�Å ¾ , be a finite family of polynomials in Ç�È ÉU»�¼Z½V½Z½R¼É
Ê*Ë . Let Ì be the

ideal generated by Á«ºQÂQÃ«ÂÄd»jÅ�Æ�Æ�Æ�Å ¾ . Then, the following statements are equivalent:

1. The set Í É¤Î¤Ç ÊIÏ º À Á`ÉrÃSÐ8Ñ�¼ÓÒÔÐ:Õ�¼V½Z½Z½Z¼�Ö�× (4.1)

is empty.
2. The polynomial Õ belongs to the ideal, i.e., Õ6ÎvÌ .
3. The ideal is equal to the whole polynomial ring: Ì'Ð�Ç�È É�»�¼V½Z½V½Z¼�É3ÊoË .
4. There exist polynomials Ø À Î¤Ç�È É » ¼Z½V½Z½V¼�É Ê Ë such that:º » ÁsÉ3ÃÙØ » Á`ÉrÃKÚ�ÛZÛZÛ%Ú4º ¾ Á`É3Ã5Ø ¾ Á`ÉrÃSÐ:Õ�½ (4.2)

The “easy” sufficiency direction ( Ü'ÝÞÕ ) should be clear: if the identity (4.2) is satisfied
for some polynomials Ø[À , and assuming there exists a feasible point Érß , after evaluating
the identity at É
ß we immediately reach the contradiction 0=1. The hard part of the
theorem, of course, is proving the existence of the polynomials Ø*À .

The Nullstellensatz can be directly applied to prove the nonexistence of complex
solutions for a given system of polynomial equations. The polynomials Ø*À provide a
certificate (sometimes called a Nullstellensatz refutation) that the set described by (4.1)
is empty. Given the Ø À , the identity (4.2) can be efficiently verified. There are at least
two possible approaches to effectively find polynomials Ø À :
Linear algebra. The first one depends on having explicit bounds on the degree of the

products º À Ø À . A number of such bounds are available in the literature; see for in-
stance [Bro87,Kol88,BS91]. For example, if the polynomials ºoÀÁsÉ3Ã have maximum
degree à , and É¤Î¤Ç Ê , then the bound

deg º%À`Ø�À\á4â�ã�äOÁzå�¼�àoÃ Ê
holds. The bound is tight, in the sense that there exist specific examples of systems
for which the expression above is an equality. Therefore, given a upper bound on
the degree, and a parameterization of the unknown polynomials Ø*À , a solution can
be obtained by solving a system of linear equations. It is also possible to attempt
to search directly for low-degree solutions, since the known bounds can also be
extremely conservative.

Gröbner basis. An alternative procedure uses Gröbner basis methods [CLO97,Mis93].
By Hilbert’s Basis theorem, every polynomial ideal is finitely generated. Gröbner
bases provide a computationally convenient representation for a set of generating
polynomials of an ideal. As a byproduct of the computation of a Gröbner basis,
explicit expressions for the polynomials Ø À can be obtained.
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Example 4.4. As an example of a Nullstellensatz refutation, we prove that the following
system of polynomial inequalities does not have solutions over æ .ç�è%ésê3ë=ì�í9ê3î�ïEð�î�ñtò�í�óç î ésê3ë=ì�í9ê¡ïMð¡í8óç%ô�ésê3ë=ì�í õ�ê ô ïMð ô ï�ò=í8ó�ö
To show this, consider the polynomials÷ è%ésê3ë=ì�í èø é1òùñtòVú�ê�ñ$ò�õ%ðwñ{û�ê
ðCñ{ú�ð�îVë÷ î ésê3ë=ì�í èø é1ñ�ü%ðwñ(êHïEý[ð î ñtòVú=ï�òQõ�ê�ð¦ï$õ%ð ô ï4ú�ð î êrë÷ ô�ésê3ë=ì�í èø ésû=ïMý�ð�ë�ö
After simple algebraic manipulations, we verify thatç è ÷ è ï$ç î ÷ î ï4ç�ô ÷ ô7íTò[þ
proving the nonexistence of solutions over æ .

4.2. The real case: Positivstellensatz

The conditions in the Nullstellensatz are necessary and sufficient only in the case when
the field is algebraically closed (as in the case of æ ). When this requirement does not
hold, only the sufficiency argument is still valid. A simple example is the following:
over the reals, the equation ê î ï�ò=í8ó
does not have a solution (i.e., the corresponding variety is empty). However, the corre-
sponding polynomial ideal does not include the element

ò
.

When we are primarily interested in real solutions, the lack of algebraic closure
forces a different approach, and the theory should be modified accordingly. This led
to the development of the Artin-Schreier theory of formally real fields, see [BCR98,
Raj93] and the references therein.

The starting point is one of the intrinsic properties of ÿ :�� � � è ê
î� í8ówí�� ê è íTöVöZöoí�ê � í�ó�ö (4.3)

A field is formally real if it satisfies the above condition. The theory of formally real
fields has very strong connections with the sums of squares that we have seen at the
beginning of section 3.2. For example, an alternative (but equivalent) statement of (4.3)
is that a field is formally real if and only if the element

ñ6ò
is not a sum of squares.

In many senses, real algebraic geometry still lacks the full maturity of its counter-
part, the algebraically closed case (such as æ ). Fortunately, many important results are
available: crucial to our developments will be the Real Nullstellensatz, also known as
Positivstellensatz [Ste74,BCR98].
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Before proceeding further, we need to introduce a few concepts. Given a set of
polynomials ���
	��� ������������������� , let ��� ���"! be the multiplicative monoid generated by
the ��� , i.e., the set of finite products of the elements ��� (including the empty product,
the identity). The following definition introduces the ring-theoretic concept of cone.

Definition 4.5. A cone # of �� �����������������$� is a subset of �� �������������%����� satisfying the
following properties:

1. &��(')	*#,+-&/.0')	1#
2. &��(')	*#,+-&32�'4	*#
3. &5	1�� ���6���������%�����7+-&�89	1#

Given a set :<;=�� �����������������$� , let #5�":>! be the smallest cone of �� ���6���������%���?�
that contains : . It is easy to see that #5�"@A! corresponds to the polynomials that can be
expressed as a sum of squares, and is the smallest cone in �� � � ���������%� � � . For a finite set:CBEDF& � ���������(&�G/HI;J�
 � � ���������%� � � , its associated cone can be expressed as:

#5�":>!>B,D��K.MLN �POQ�QR �"'S��TU�V� R �F��������� R L 	W#5�"@A!��X'��Y���������(' L 	Z���[&��\!SH]�
The Positivstellensatz, due to Stengle [Ste74], is a central theorem in real algebraic
geometry. It is a common generalization of linear programming duality (for linear in-
equalities) and Hilbert’s Nullstellensatz (for an algebraically closed field). It states that,
for a system of polynomial equations and inequalities, either there exists a solution in� � , or there exists a certain polynomial identity which bears witness to the fact that no
solution exists. For concreteness it is stated here for � , instead of the general case of
real closed fields.

Theorem 4.6 ([BCR98, Theorem 4.4.2]). Let �"^F_Y!"_�O`�Uacbcbcbca d , �fe]gh!%g�OQ�Uacbcbcbca i , �\j�kU!lkmOQ�Sacbcbcb a n
be finite families of polynomials in �
 ���6��������������� . Denote by # the cone generated by�\^Y_Y!"_�OQ�Sacbcbcbca d , � the multiplicative monoid generated by �oe�gp!%gSO`�Uacbcbcbca i , and q the ideal
generated by �"j�kU!mklO`�Uacbcbcb a n . Then, the following properties are equivalent:

1. The set rs t �1	1� �Juuuuuu
^ _ �o�7!wvyx6�{z3B}|A���������U~e g �o�7!/�BEx6����B}|A���������%�j k �o�7!
BEx6�{z3B}|A�����������

� �
� (4.4)

is empty.
2. There exist ^Z	W#���e�	1�E�UjW	Wq such that ^�.�e�8�.�j�B�x .

Proof. We show only the sufficiency part, i.e., 2 + 1. We refer the reader to [BCR98]
for the other direction.

Assume that the set is not empty, and consider an element �7� from the set. In this
case, it follows from the definitions that:^��[� � !�v�x6� e 8 �o� � !���x�� jQ�o� � !>B�x
This implies that ^��o� � !�.�e?8A�o� � !�.�jQ�o� � !3��x , in contradiction with the assumption
that ^�.Ce 8 .�j�B�x . ��
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The Positivstellensatz guarantees the existence of infeasibility certificates or refu-
tations, given by the polynomials ����� and � . For complexity reasons these certificates
cannot be polynomial time checkable for every possible instance, unless NP=co-NP.
While effective bounds on the degrees do exist, their expressions are at least triply ex-
ponential.

Example 4.7. To illustrate the differences between the real and the complex case, and
the use of the Positivstellensatz, consider the very simple case of the standard quadratic
equation ���� ¢¡$�3 �£�¤y¥6¦
By the fundamental theorem of algebra (or in this case, just the explicit formula for
the solutions), the equation always has solutions on § . For the case when

�J¨0©
, the

solution set will be empty if and only if the discriminant ª satisfies

ª<« ¤�£�¬ ¡ �
<® ¥�¦

In this case, taking

��« ¤°¯3±² ³µ´ �� �¶��·l¸ �
��« ¤º¹
�»« ¤º¬�±³ ´ � �  ¢¡$�3 �£ · �

the identity �   � �   � ¤�¥
is satisfied.

Theorem 4.6 provides the basis for a hierarchy of sufficient conditions to verify that
a given semialgebraic set is empty. Notice that it is possible to affinely parameterize a
family of candidate � and � , since from section 3.2, the sum of squares condition can
be expressed as an SDP. Restricting the degree of the possible multipliers, we obtain
semidefinite programs, that can be efficiently solved.

Our main result provides therefore a constructive approach to solutions of the Posi-
tivstellensatz equations:

Theorem 4.8. Consider a system of polynomial equalities and inequalities of the form
(4.4). Then, the search for bounded degree Positivstellensatz refutations can be done
using semidefinite programming. If the degree bound is chosen to be large enough, then
the SDPs will be feasible, and the certificates obtained from its solution.

It is convenient to compare this result with the Nullstellensatz analogue, where the
search for bounded-degree certificates could be done using just linear algebra.

Proof. Given a degree ¼ , choose � in the following way: if ½ ¤y¥
, i.e., the set of inequa-

tions is empty, then � ¤¾¹
. Otherwise, let � ¤¾¿ZÀÁÃÂ ± � ��ÄÁ

, choosing Å such that the
degree of � is greater than or equal to ¼ . For the cone of inequalities, choose a degree¼ �/Æ ¼ , ¼ �9Æ

deg ´ � ·
. Write

� ¤¢Ç6È� 1Ç ± � ±  yÉ�É�ÉY 1Ç7Ê � Ê� 1Ç ± � � ± � �  �É�É�ÉY ZÇ ± ��ËcËcË Ê � ± ¦�¦�¦ � Ê
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and give a parametrization of the polynomials Ì7Í of degree less than or equal to Î�Ï .
Similarly, for the polynomial Ð in the ideal of equations, write

Ð�Ñ�ÒYÓ�Ð7Ó>ÔyÕ�Õ�ÕYÔ¢Ò�Ö$Ð�Ö�×
parametrizing the polynomials Ò Í of degree less than or equal to Î Ï .

Consider now the SDP feasibility problem:

Ì Í are sums of squares ×
with the equality constraints implied by the equation ØZÔyÙ Ï ÔÚÐEÑ¾Û , the decision
variables being the coefficients of the Ì Í ×�Ò Í .

If the set defined by (4.4) is empty, then by the Positivstellensatz, polynomial cer-
tificates ØFÜ$×�ÙpÜA×UÐ�Ü do exist. By construction of the SDP problem above, there exists a
finite number Î]Ý , such that for every ÎµÞ�Î$Ý the semidefinite program is feasible, since
there exists at least one feasible point, namely ØAÜ]×%ÙpÜA×UÐ�Ü . Therefore, a set of infeasibil-
ity certificates of the polynomial system can directly be obtained from a feasible point
of the SDP. ßà
Remark 4.9. The procedure as just described contains some considerable overparametriza-
tion of the polynomials, due to the generality of the formulation and the need to deal
with special cases. Once the problem structure is known, much more compact forms
can be given, as in the case of quadratic programming presented in section 6.4.

The presented formulation deals only with the case of proving that semialgebraic
sets are empty. Nevertheless, it can be easily applied to more general problems, such
as checking nonnegativity of a polynomial over a semialgebraic set. We describe two
simple cases, more being presented in section 6.

Example 4.10. Consider the problem of verifying if the implicationá7â[ã�ä ÑyÛKåçæ âoã7ä Þ�Û (4.5)

holds. The implication is true if and only if the setè ã�é`ê æ â[ã�ä ÞJÛ�×>æ â[ã�äìëÑ�Û�× á7âoã7ä Ñ�Û?í
is empty. By the Positivstellensatz, this holds iff there exist polynomials î Ó ×(îYÏA×%ï and an
integer ð such that: îhÓ ê î Ï æ�Ô0æ ÏUñ ÔCï á Ñ�Û6×
and î Ó and îYÏ are sums of squares. A special case, easy to verify, is obtained by takingîhÓ â[ã�ä Ñ�Û , ð5Ñ}ò , and ï âoã7ä ÑÚæ âoã7ämó?âoã7ä , in which case the expression above reduces to
the condition: æ âoã�ä Ô ó?âoã7ä�á7âoã7ä is a sum of squares × (4.6)

which clearly implies that (4.5) holds. Since this expression is affine in ó?âoã7ä , the search
for such an ó?â[ã�ä can be posed as a semidefinite program.
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Example 4.11. Let ô�õoö7÷ be a polynomial function, to be minimized over a semialgebraic
set ø . Then, ù is a lower bound of úPû�üSýpþ]ÿ4ô�õoö�÷ if and only if the semialgebraic set� ö��0ø��(ô�õ[ö�÷��Eù�� is empty. For fixed ù , we can search for certificates using SDP. It
is also possible, at the expense of fixing some of the variables, to search for the best
possible ù for the given degree.

In the case of basic compact semialgebraic sets, i.e., compact sets of the form	�
 � ö�������(ô��põoö�÷��������������(ô��Fõ[ö�÷������ , a stronger version of the Positivstellensatz,
due to Schmüdgen [Sch91] can be applied. It says that a polynomial ô�õ[ö�÷ that is strictly
positive on

	
, actually belongs to the cone generated by the ô! . The Positivstellensatz

presented in Theorem 4.6 only guarantees in this case the existence of "#�%$ in the cone
such that ô&" 
('*) $ . An important computational drawback of the Schmüdgen formu-
lation is that, due to the cancellations that must occur, the degrees of the infeasibility
certificates can be significantly larger than in the standard Positivstellensatz [Ste96].

4.3. A simple interpretation

The main idea of Positivstellensatz refutations can be easily summarized. If the con-
straints $& %õoö&+F÷ 
 � are satisfied, we can then generate by multiplication and addition
a whole class of expressions, namely those in the corresponding ideal, that should also
vanish at ö&+ . For the inequation case ( "! �,
 � ), multiplication of the constraints "! pro-
vides new functions that are guaranteed not to have a zero at ö + . For the constraintsô  �-� , new valid inequalities, nonnegative at ö + , are derived by multiplication with
other constraints and nonnegative functions (actually, sums of squares). By simultane-
ously searching over all these possibilities, and combining the results, we can obtain
a proof of the infeasibility of the original system. These operations are simultaneously
carried over by the optimization procedure.

It is interesting to compare this approach with the standard duality bounds in convex
programming. In that case, linear combinations of constraints (basically, linear func-
tionals), provide important information about the feasible set. The Positivstellensatz
formulation instead achieves improved results by combining the constraints in a non-
linear fashion, by allowing multiplication of constraints and products with nonnegative
functions.

There are many interesting links with foundational questions in logic and theoretical
computer science. The Positivstellensatz can be viewed as an algebraic proof system,
see [GV] and the references therein, so issues about proof length are very relevant.
For many practical problems, very concise (low degree) infeasibility certificates can be
constructed, even though in principle there seems to be no reason to expect so. This is
an issue that clearly deserves much more research.

It would be interesting to expand the connections with related ideas that have been
explored in the context of “lift-and-project” methods [LS91,Lov94,SA90] for deriving
valid inequalities in zero-one combinatorial optimization problems. In those papers,
the authors develop tractable approximations to the convex hull of zero-one points in a
given convex set. A typical application is the case of integer linear programs, a known
NP-hard problem. Some common elements of the approaches are the use of new vari-
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1 3 5 7 9 11 13 15

2 2 4 6 8 10 12 14 16
4 3 10 21 36 55 78 105 136
6 4 20 56 120 220 364 560 816
8 5 35 126 330 715 1365 2380 3876

10 6 56 252 792 2002 4368 8568 15504
12 7 84 462 1716 5005 12376 27132 54264

Table 5.1. Dimension of the matrix 5 as a function of the number of variables
3

and the degree
.0/

. The
corresponding expression is 687:9�;; < .
ables and constraints, defined as products of the original ones, and the use of semidefi-
nite constraints (in the Lovász-Schrijver =?> relaxation).

The main differences in our work, however, are the extensions to the general semial-
gebraic case via the sum of squares decomposition, and the use of the Positivstellensatz
to formulate the corresponding sufficient conditions.

5. Computational considerations

5.1. Implementation

In this section, we briefly discuss some aspects of the computational implementation of
the sum of squares decision procedure. As we have seen in section 3, for semidefinite
programs, just like in the linear programming case, there are two formulations: primal
and dual. In principle, it is possible to pose the sum of squares problem as either of
them, with the end results being mathematically equivalent. However, for reasons to
be described next, one formulation may be numerically more efficient than the other,
depending on the dimension of the problem.

As mentioned in Section 3, a semidefinite program can be interpreted as an opti-
mization problem over the intersection of an affine subspace @ and the cone ACB> . De-
pending on the dimension of @ , it may be computationally advantageous to describe the
subspace with either an image or a kernel representation. If the dimension of @ is small
relative to the ambient space, then an efficient representation is given by a set of genera-
tors (or a basis). On the other hand, if @ is nearly full dimensional, then a more concise
description would be a list of the linear equations satisfied by the elements of @ . While
the resulting problems are formally the same, there are usually significant differences
in the associated computation times.

Consider the problem of checking if a dense polynomial of total degree D�E in F
variables is a sum of squares, using the techniques described earlier. The number of
coefficients is, as we have seen, equal to G B >*H%IHJILK . The dimension of the corresponding
matrix M is G B >*IINK (see Table 5.1).

If we use an explicit representation the total number of additional variables we need
to introduce can be easily be shown to be:=PO�QSRD T�U FWV�EEYX H V U FZVNEEYX�[]\ U F^V�D�ED�E_Xa`
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On the other hand, in the implicit formulation the number of equality constraints (i.e.,
the number of matrices bdc in (3.1)) is exactly equal to the number of coefficients, i.e.egfih4j�kWlnm�om�oqpsr
Example 5.1. We revisit Example 3.5, where an implicit (or kernel) representation of the
one dimensional subspace of matrices t was given. An explicit (image) representation
of the same subspace is given by:

t hvuw myxiz {xiz}| ~{ ~2m�z?xn{��� r
The particular matrix in Example 3.5 corresponds to the choice z h��

. Notice that
the free variable z corresponds to the algebraic dependency among the entries of � :��� f:� ��� f�� h ���&� ��f

.

For fixed o , both quantities
eW���%eaf

are � � k f%��� ; however, the corresponding constants
can be vastly different. In fact, the following expressions hold:e ���4j {m � o&� � f x {� m�o � ��p k fJ� � e fi�4j�{� m�o � ��p k f%� r
For large values of o , the second expression is much smaller than the first one, making
the implicit formulation preferable. For small values of k and o , however, the situation
is not clear-cut, and the explicit one can be a better choice.

We consider next three representative examples:

1. The case of a quartic univariable polynomial ( k h { � m�o h��
). Notice that this

is equivalent, by dehomogenization, to the quartic bivariate form in Examples 3.5
and 5.1. The resulting matrix t has dimensions

�?���
, and the number of variables

for the explicit and implicit formulation are
eW��h { and

eafih | , respectively.
2. A trivariate polynomial of degree 10 ( k h���� m�o h {:~ ). The corresponding matrix

has dimensions |�� � |�� , and the number of variables is
eW��h { � {�~ and

egfih m���� .
The advantages of the second approach are clear.

3. A quartic polynomial in 15 variables ( k h {�| � m�o h(� ). The corresponding matrix
has dimensions { � � � { � � , and the number of variables is

e � h | ��� ~ and
e f h� ����� .

A minor inconvenience of the implicit formulation appears when the optimization prob-
lem includes additional variables, for which no a priori bounds are known. Most current
SDP implementations do not easily allow for an efficient mixed primal-dual formula-
tion, where some variables are constrained to be in the psd cone and others are free.
This is a well-known issue already solved in the linear programming setting, where
current software allows for the efficient simultaneous handling of both nonnegative and
unconstrained variables.
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5.2. Exploiting structure

If the polynomials are sparse, in the sense that only a few of the monomials are nonzero,
then it is usually possible to considerably simplify the resulting SDPs. To do this, we
can use a result, first formulated in [Rez78], that characterizes the monomials that can
appear in a sum of squares representation, in terms of the Newton polytope of the input
polynomial.

Another property that can be fully exploited for algorithmic efficiency is the pres-
ence of symmetries. If the problem data is invariant under the action of a symmetry
group, then the computational burden of solving the optimization problem can be sub-
stantially reduced. This aspect has strong connections with representation and invariant
theories, and is analyzed in much more detail in [GP01].

In practice, the actual performance will be affected by other elements in addition to
the number of variables in the chosen formulation. In particular, the extent to which the
specific problem-dependent structure can be exploited is usually the determining factor
in the application of optimization methods to medium or large-scale problems.

6. Applications

In this section we outline some specific application areas to which the developed tech-
niques have shown a great potential, when compared to traditional tools. The descrip-
tions are necessarily brief, with more detailed treatments appearing elsewhere. Needless
to say, the generality of the semialgebraic problem formulation makes possible the use
of the presented approach in numerous other areas.

6.1. Global bounds for polynomial functions

It is possible to apply the technique to compute global lower bounds for polynomial
functions [Sho87,Sho98,Las00]. For an in-depth analysis of this particular problem,
including numerous examples and a comparison with traditional algebraic techniques,
we refer the reader to [PS01].

The condition �W�� #¡�¢¤£
is a sum of squares

is affine in
£

, and therefore it is possible to efficiently compute the maximum value of
£

for which this property holds. For every feasible
£

,
�W�¥ ¦¡i§�£

for all
 

, so
£

is a lower
bound on the global minimum. In many cases, as in the Example below, the resulting
bound is optimal, i.e., equal to the global minimum, and a point

 ©¨
achieving the global

minimum can be recovered from a factorization of the dual solution.

Example 6.1. Consider the function�W�� *ª¬«�¡®�¯� &°�¢²±�³³�´  &µ·¶¸³¹  &º·¶L &«a¢»¯�«�°®¶L¯�«�µ�ª
cited in [Mun99, p. 333] as a test example for global minimization algorithms, since it
has several local extrema. Using the techniques described earlier, it is possible to find
the largest

£
such that

�W�� #¡¼¢¤£
is a sum of squares.
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Doing so, we find ½&¾g¿ÁÀ�Â�Ã Ä�Å�Â�Æ!Ç�È�É�Ê . This turns out to be the exact global mini-
mum, since that value is achieved for ËÌ¿ÍÄ�Ã Ä�È�Î�È�É�Ç�ÏÑÐs¿�ÀCÄ�ÃÓÒ�Â:Ç�Æ�Ê�Æ�É .

However, for the reasons mentioned earlier in section 3.2, it is possible to obtain a
lower bound that is strictly less than the global minimum, or even no useful bound at
all.

Example 6.2. As examples of a problem with nonzero gaps, we compute global lower
bounds of dehomogenizations of the Motzkin polynomial Ô-Õ�ËÖÏÑÐ#Ï¬×�Ø presented in (3.4).
Since Ô-Õ¥Ë*ÏÑÐ#Ï%×!Ø is nonnegative, its dehomogenizations also have the same property.
Furthermore, since Ô-Õ�Â�Ï�Â�Ï�Â:Ø�ÙÚÄ , they always achieve its minimum possible value.

Fixing the variable Ð , we obtainÛ Õ�ËÖÏ¬×�Ø·ÜÝÙÍÔ-Õ�ËÖÏ�Â�Ï%×!Ø�ÙÞË�ß·àNË&á�àN×!â�ÀãÅ�Ë&á�×�á�Ã
To obtain a lower bound, we search for the maximum ½ for which

Û Õ�Ë*Ï%×!ØäÀ]½ is a sum
of squares.

Solving the corresponding SDPs, the best lower bound that can be obtained this way
can be shown to be Àæå á¬çß%è%ç%â ¿�ÀCÄ�ÃéÂ�Ò�Ò�Î!Ò�È , and follows from the decomposition:Û Õ�Ë*Ï%×!Øäà}å á%çß%è%ç%â Ù�Õ�À çê ×dàN×!ë�Ø á àÍÕ á åâ¬ß àLË á À ëá × á Ø á à}ìë á Ë á

The gap can also be infinite, for some particular problems. Consider the dehomog-
enization in × : í Õ�ËÖÏÑÐ�Ø�ÜÓÙÍÔ-Õ¥Ë*Ï¬Ð¦Ï�Â:Ø�ÙÞË�ß:Ð�á®àNË&á�Ð�ßîàÞÂ�ÀãÅ�Ë¦á�Ð�á�Ã
While

í Õ¥Ë*Ï¬Ð�Øaï²Ä , it can be shown that

í Õ�ËÖÏÑÐ�ØîÀL½ is not a sum of squares for any
value of ½ , and therefore no useful information can be obtained in this case. This can be
fixed (using the Positivstellensatz, or the approach in Example 6.3 below) at the expense
of more computation.

As we have seen, the method can sometimes produce suboptimal bounds. This is to
be expected, for computational complexity reasons and because the class of psd poly-
nomials is not equal to the sos ones. It is not clear yet how important this is in practical
applications: for example, for the class of random instances analyzed in [PS01], no ex-
ample was produced on which the obtained bound does not coincide with the optimal
value. In other words, even though bad examples do indeed exist, they seem to be “rare,”
at least for some particular ensembles.

In any case, there exist possible workarounds, at a higher computational cost. For
a psd

Û Õ�Ë#Ø , Artin’s positive answer to Hilbert’s 17th problem assures the existence
of a polynomial

í Õ�Ë#Ø , such that
Û Õ¥Ë¦Ø í á Õ�Ë¦Ø can be written as a sum of squares. In

particular, Reznick’s results [Rez95] show that if
Û

is positive definite it is always
possible to take

í Õ¥Ë¦Ø·Ù²ÕñðSË áò Ø�ó , for sufficiently large ô .
Example 6.3. Consider the case of the Motzkin form given in equation (3.4). As men-
tioned earlier, it cannot be written as a sum of squares of polynomials. Even though it
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is only semidefinite (so in principle we cannot apply Reznick’s theorem), after solving
the SDPs we obtain the decomposition:õ�ö¦÷îøLù�÷îø�ú!÷�û�ü-õ�öÖýÑù#ý¬ú�ûîþÿõ¥ö&÷�ù�ú��¤ù�ú � û�÷îøÍõ�ö&ù�÷�ú��»ö&ú � ûÑ÷îøÚõ¥ö&÷�ù�÷��»ú��:ûÑ÷îøø��	 õ¥ö�ù � �»ö � ù�û ÷ ø�
	 õ�ö&ù � øLö � ù����ö�ù�ú ÷ û ÷ ý
from where nonnegativity is obvious. Since the polynomials in Example 6.2 are deho-
mogenizations of

ü-õ�öÖýÑù#ý¬ú�û
, it follows that this method yields exact solutions for those

examples.

To give a rough idea of the large scale problems to which we have applied the tech-
niques in [PS01], we mention that the SOS lower bound for a dense quartic polynomial
in thirteen variables (i.e., with 2380 monomials) can be solved on a standard desktop
machine, using off-the-shelf software, in approximately 30 minutes.

6.2. Geometric problems

Many problems in computational geometry can be fully described using a semialge-
braic formulation. Properties such as intersection of geometric objects reduce to the
feasibility of a set of polynomial equations. In the following very simple example, we
use the Positivstellensatz to compute a lower bound on the distance between a point and
an algebraic curve.

Example 6.4. In this problem, we compute a lower bound on the distance between a
given point

õ�ö��!ýÑù��:û
and an algebraic curve � õ�öÖýÑù�ûsþ��

. Take
õ�ö��!ýÑù��:û�þ õ � ý � û , and

let the algebraic curve be � õ¥ö*ýÑù�û��ÓþÚö � ����ö����ùWþ����
In this case, we can formulate the optimization problem���! "$#!%�& ')(+* � õ�ö,�¤ö � û ÷ øÚõ¥ù-�»ù � û ÷ (6.1)

A lower bound on the optimal value can be obtained as described earlier. Restricting the
degree of the auxiliary polynomials to a simple linear expression in

ö
, we can compute

the maximum value of . that satisfiesõ�ö,� � û�÷®øÍõ�ù/� � û�÷�� . ÷îøÍõ10 ø�2*ö¦û�õ¥ö � �3��ö4���ù�û is a sum of squares
�

(6.2)

It should be clear that if condition (6.2) holds, then every pair of points
õ�öÖýÑù�û

in the
curve are at a distance at least equal to . from

õ�ö � ý¬ù � û
. To see this, note that if the pointõ�öÖýÑù�û

is in the curve � õ¥ö*ý¬ù�ûPþ5�
, then the last term in (6.2) vanishes, and thereforeõ�ö6� � û ÷ øÍõ¥ù�� � û ÷�7 . . The expression is affine in

0®ý82
, and . ÷ , and so the problem

can be directly solved using SDP.
The optimal solution of the SDPs is:039:�;���<=� 	�>�>�	 ��� ý?2@9A�B� �DC 
 ��E=�FE�C�ý . 9 � � 	 C=� ��� > E��
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Fig. 6.1. The curve GIH!JDKMLONBPRQ and the minimum distance circle.

The obtained bound S is sharp, since it is achieved by the valuesTRUWV;X�Y[Z]\=^�_�`�`�_=a�^Bb?c�U�XBY<\=X�_=aFd�\eZf^�g�Y
In Figure 6.1 a plot of h�i Tkj and the optimal solution is presented.

Notice that the original optimization formulation (6.1) is not a convex program, and
has other local extrema. Nevertheless, the procedure always computes a bound, and in
this case we actually recover the global minimum.

6.3. The discriminant of symmetric matrices

The following example illustrates the sum of squares techniques, and deals with the
discriminant of symmetric matrices. It has been previously analyzed in [Ily92,Lax98].
Given a symmetric matrix lWm6npo , define its characteristic polynomial qrits j as:qrits j�uwvAxey{z iMsB| V l j}Y
This is a polynomial in s , of degree ~ . Its discriminant � (see for instance [Mis93]) is
a homogeneous polynomial of degree ~�i1~ V�ZOj in the � o=������ coefficients of l . Sincel is symmetric, its eigenvalues (the roots of q ) are real, and therefore the discriminant� takes only nonnegative values, i.e., ��� X . The results in [Ily92,Lax98] show that
additionally the polynomial q is always a sum of squares. For instance, when ~ v5_ ,
we have:l v��O������B� b q�iMs j�v s �I� i V � V � j s � �D� V � � b � vAa � ��� � ��� � � V�_ �F� b
and the SOS property holds since � can be alternatively expressed as� v i � V � j � � i _ � j � Y
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An explicit expression for the discriminant as a sum of squares is presented in [Ily92].
An interesting unsolved problem is finding a representation with the minimum possible
number of squares. For the case ����� , i.e.,� ����D�4������/ �� �¡

¢£�¤
after solving the SDPs, using as objective function the trace of the matrix ¥ as a heuris-
tic for the rank, we obtain the following decomposition using seven squares:¦ � ¡k§¨�© ¡k§§ © ¡k§ª�© ¡k§« ©�¬O�® ¡k§¯�© ¡k§°�© ¡k§±B²¡ ¨ �   § ¡ © � § � © � § �-³3�f¡ § ³3�D� § ³�¡k� § ³3�{  § ³3�e� § ³�¡k� § © � § ¡ © � § � © ¡ § �¡ § ��´ � ª ³���  § ³�� § �-³ ´ ��� § © ´ �F�{¡,³��) ]¡ © ´ �}�) µ³ ´ �F�¶¡4³3�e�}  © ´ �F�{�¡ ª ��´   ª ³� ]� § ³3� §  ·³ ´  ]� § © ´  ]�D�I³3�D�}� © ´ ���e�I³ ´ ¡k ]��³�¡k�D� © ´ ¡k�D ¡ « ��´ � ª ³��}� § ³�  § �I³ ´ �)¡ § © ´ �)¡k��³� O�F� © ´  ¸¡k��³ ´ �f�}��³��) ]� © ´ �{¡¹�¡ ¯ � �}  § ³3�F�) º³��)� § © �D�� ¡ ° � �F� § ³3 ]�e�I³3�F  § © ¡k ¸�¡ ± �  ]� § ³��)¡k��³� ¸� § © �{�}��»
For the case �R��� , the expressions in [Ily92] produce a decomposition with ten distinct
square terms.

6.4. Quadratic programming

In this section we specialize the results presented earlier to the common case of quadratic
inequalities. Concretely, given ¼ symmetric matrices ½ ¨ ¤ »f»{» ¤ ½·¾�¿,ÀIÁ , define the setÂ

as: ÂÄÃ �ÆÅ�Ç�¿ÉÈ Á�ÊrËÍÌ ½·Î Ë3ÏÑÐ ¤ÓÒ Ë Ò � ¬DÔ (6.3)

A well-known sufficient condition for the set
Â

to be empty is given by the existence
of scalars Õ�Î that satisfy the condition:¾Ö Î[× ¨ Õ Î ½ Î$Ø ³;Ù ¤ Õ Î ÏÑÐ » (6.4)

The reasoning is very simple: assume
Â

is not empty, and multiply (6.4) left and right
by any Ë ¿ Â . In this case, the left-hand side of (6.4) is nonnegative, since all terms are
nonnegative, but the right-hand side is ³ ¬ . This is a contradiction, so

Â
is empty.

The condition (6.4) is the basis of many results in semidefinite relaxations for
quadratic programming problems, such as the one underlying the Goemans-Williamson
MAXCUT algorithm [GW95], and many others. It is well-known that it can be conser-
vative, generally speaking.

In the framework of this paper, a good interpretation of condition (6.4) is as a
Positivstellensatz refutation, with the multipliers restricted to be a constant. By lifting
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the degree restrictions, more powerful tests can be devised. In the following theorem
[Par00], the case of quadratic multipliers is stated. The generalizations to higher de-
grees are straightforward, following directly from Theorem 4.8.

Theorem 6.5. Assume there exists solutions Ú-Û$Ü6ÝIÞ¹ßáàOÛ<â�ÜRã to:Þ�äå Û!æ�ç Ú Û8è+ékêìë·Ûíè1é�êïî åçíðkÛ+ñBâ)ð Þ ä à ÛwâOë·Ûòè+ékêìë�âeè+ékê�óõô ß ö é Ü÷ã Þ�øDù ôeúFû (6.5)

where Ú Û8è+ékê�ü<ýAé�þ Ú Ûté ßòÚ Û ÿÑô and à Ûwâ � ô . Then, the set � is empty.

Proof. It basically follows from the same arguments as in the Positivstellensatz case:
the existence of a nontrivial é implies a contradiction. ��
Note that the left-hand size of (6.5) is a homogeneous form of degree four. Checking
the full condition as written would be again a hard problem, so we check instead a
sufficient condition: that the left-hand side of (6.5) can be written (except for the sign
change) as a sum of squares. As we have seen in section 3.2, this can be checked using
semidefinite programming methods.

The new relaxation is always at least as powerful as the standard one: this can be
easily verified, just by taking Ú Û�ý���Û�� and à Û<â@ý ô . Then, if (6.4) is feasible, then
the left hand side of (6.5) is obviously a sum of squares (recall that positive definite
quadratic forms are always sums of squares).

In [Par00], we have applied the new procedure suggested by Theorem 6.5 to a few
instances of the MAXCUT problem where the standard relaxation is known to have
gaps, such as the 	 -cycle and the Petersen graph. For these instances, the new relax-
ations are exact, i.e., they produce the optimal solution.

6.5. Matrix copositivity

A symmetric matrix 
 Ü÷ã Þ���Þ is said to be copositive if the associated quadratic form
takes only nonnegative values on the nonnegative orthant, i.e., if éÍÛ � ô� é�þ 
 é � ô .
As opposed to positive definiteness, which can be efficiently verified, checking if a
given matrix is not copositive is an NP-complete problem [MK87].

There exist in the literature explicit necessary and sufficient conditions for a given
matrix to be copositive. These conditions are usually expressed in terms of principal
minors (see [Väl86,CPS92] and the references therein). However, the complexity re-
sults mentioned above imply that in the worst case these tests can take an exponential
number of operations (unless P = NP). Thus, the need for efficient sufficient conditions
to guarantee copositivity.

Example 6.6. We briefly describe an application of copositive matrices [QDRT98]. Con-
sider the problem of obtaining a lower bound on the optimal solution of a linearly con-
strained quadratic optimization problem:��� ý ����������������! "� æ�ç é þ Ú é
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If there exists a solution # to the SDP:$&%('*) # ',+.-�/
where # is a copositive matrix, then it immediately follows that 02143 - . Thus, having
semidefinite programming tests for copositivity allows for enhanced bounds for this
type of problems.

The main question is how to deal with the constraints in the variables, since each 576
has to be nonnegative. While we could apply the general Positivstellensatz construction
to this problem, we opt here for a more natural, though equivalent, approach. To check
copositivity of 8 , we can consider 596;:=<?>6 and study the global nonnegativity of the
fourth order form given by:@BA�C?DFE : C ) 8 C :HG 6JI KBL 6MK < >6 < >K
where

C :ON <P>QPR <?>> RTSTS�STR <?>U?V ) . It is easy to verify that 8 is copositive if and only if
the form

@BAWCPD
is positive semidefinite. Therefore, sufficient conditions for

@BA�C?D
to be

nonnegative will translate into sufficient conditions for 8 being copositive.
If we use the sum of squares sufficient condition, then this out to be equivalent to the

condition that the original matrix 8 can be written as the sum of a positive semidefinite
and an elementwise nonnegative matrix, i.e.8X: @ZY\[ R @ +^] R`_ 6MKa3 ] S (6.6)

This is a well-known sufficient condition for copositivity (see for example [Dia62]).
The equivalence between these two tests has also been noticed in [CL77, Lemma 3.5].

The advantage of the approach is that stronger conditions can be derived. By con-
sidering higher order forms, a hierarchy of increasingly powerful tests is obtained. Of
course, the computational requirements increase accordingly.

Take for example the family of b AWcdY b D -forms given by@2e?A�C?D :gf UG 6�h Q < >6ji
e @BAWCPD S

Then it is easy to see that if
@ 6 is a sum of squares, then

@ 6�k Q is also a sum of squares.
The converse proposition does not necessarily hold, i.e.

@ 6�k Q can be a sum of squares,
while

@ 6 is not. Additionally, if
@2e?AWC?D

is nonnegative, then so is
@BA�C?D

. So, by testing if@2e�AWCPD
is a sum of squares (which can be done using SDP methods, as described), we

can guarantee the nonnegativity of
@BA < D , and as a consequence, copositivity of 8 .

For concreteness, we will analyze in some detail the case
c :,l , i.e., the sixth order

form @ Q AWC?DmE : G6JI KnI o L 6pK < >6 < >K < >o S
The associated SDP test is expressed in the following
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Theorem 6.7. Consider the SDPs:qsrut;v;wZxzy {}|�~?yT���T��y��
(6.7)t vv�v |&xzy {}|�~?yT���T��y��t v���;� t �� v � t � v � |&xzy {��|��t;v�n�m� t � � v � t �v ��� xzy {��|����|��

where the

�
matrices

t v4�^�;�
are symmetric (

t v�n� |�t v��� ). If there exists a feasible
solution, then �}���W�P� is nonnegative, and therefore

q
is copositive. Furthermore, this

test is at least as powerful as condition (6.6).

This hierarchy of enhanced conditions for matrix copositivity has been recently
employed in [dKP] in the formulation of strengthened bounds for the stability number
of a graph. A very interesting result in that paper is an explicit example of a copositive
matrix

q ��� ��� , for which the test corresponding to � |�� is the first one that is exact.
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