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Preface: introduction and objectives

The digital communication industry is an enormous and rapidly growing industry, roughly com-
parable in size to the computer industry. The objective of this text is to study those aspects
of digital communication systems that are unique to those systems. That is, rather than focus-
ing on hardware and software for these systems, which is much like hardware and software for
many other kinds of systems, we focus on the fundamental system aspects of modern digital
communication.

Digital communication is a field in which theoretical ideas have had an unusually powerful
impact on system design and practice. The basis of the theory was developed in 1948 by
Claude Shannon, and is called information theory. For the first 25 years or so of its existence,
information theory served as a rich source of academic research problems and as a tantalizing
suggestion that communication systems could be made more efficient and more reliable by using
these approaches. Other than small experiments and a few highly specialized military systems,
the theory had little interaction with practice. By the mid 1970’s, however, mainstream systems
using information theoretic ideas began to be widely implemented. The first reason for this was
the increasing number of engineers who understood both information theory and communication
system practice. The second reason was that the low cost and increasing processing power
of digital hardware made it possible to implement the sophisticated algorithms suggested by
information theory. The third reason was that the increasing complexity of communication
systems required the architectural principles of information theory.

The theoretical principles here fall roughly into two categories - the first provide analytical tools
for determining the performance of particular systems, and the second put fundamental limits on
the performance of any system. Much of the first category can be understood by engineering un-
dergraduates, while the second category is distinctly graduate in nature. It is not that graduate
students know so much more than undergraduates, but rather that undergraduate engineering
students are trained to master enormous amounts of detail and to master the equations that deal
with that detail. They are not used to the patience and deep thinking required to understand
abstract performance limits. This patience comes later with thesis research.

My original purpose was to write an undergraduate text on digital communication, but experi-
ence teaching this material over a number of years convinced me that I could not write an honest
exposition of principles, including both what is possible and what is not possible, without losing
most undergraduates. There are many excellent undergraduate texts on digital communication
describing a wide variety of systems, and I didn’t see the need for another. Thus this text is
now aimed at graduate students, but accessible to patient undergraduates.

The relationship between theory, problem sets, and engineering/design in an academic subject is
rather complex. The theory deals with relationships and analysis for models of real systems. A
good theory (and information theory is one of the best) allows for simple analysis of simplified
models. It also provides structural principles that allow insights from these simple models
to be applied to more complex and realistic models. Problem sets provide students with an
opportunity to analyze these highly simplified models, and, with patience, to start to understand
the general principles. Engineering deals with making the approximations and judgment calls to
create simple models that focus on the critical elements of a situation, and from there to design
workable systems.

The important point here is that engineering (at this level) cannot really be separated from the-
ory. Engineering is necessary to choose appropriate theoretical models, and theory is necessary
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to find the general properties of those models. To oversimplify it, engineering determines what
the reality is and theory determines the consequences and structure of that reality. At a deeper
level, however, the engineering perception of reality heavily depends on the perceived structure
(all of us carry oversimplified models around in our heads). Similarly, the structures created by
theory depend on engineering common sense to focus on important issues. Engineering some-
times becomes overly concerned with detail, and theory overly concerned with mathematical
niceties, but we shall try to avoid both these excesses here.

Each topic in the text is introduced with highly oversimplified toy models. The results about
these toy models are then related to actual communication systems and this is used to generalize
the models. We then iterate back and forth between analysis of models and creation of models.
Understanding the performance limits on classes of models is essential in this process.

There are many exercises designed to help understand each topic. Some give examples showing
how an analysis breaks down if the restrictions are violated. Since analysis always treats models
rather than reality, these examples build insight into how the results about models apply to real
systems. Other exercises apply the text results to very simple cases and others generalize the
results to more complex systems. Yet others explore the sense in which theoretical models apply
to particular practical problems.

It is important to understand that the purpose of the exercises is not so much to get the ‘answer’
as to acquire understanding. Thus students using this text will learn much more if they discuss
the exercises with others and think about what they have learned after completing the exercise.
The point is not to manipulate equations (which computers can now do better than students)
but rather to understand the equations (which computers can not do).

As pointed out above, the material here is primarily graduate in terms of abstraction and pa-
tience, but requires only a knowledge of elementary probability, linear systems, and simple
mathematical abstraction, so it can be understood at the undergraduate level. For both under-
graduates and graduates, I feel strongly that learning to reason about engineering material is
more important, both in the workplace and in further education, than learning to pattern match
and manipulate equations.

Most undergraduate communication texts aim at familiarity with a large variety of different
systems that have been implemented historically. This is certainly valuable in the workplace, at
least for the near term, and provides a rich set of examples that are valuable for further study.
The digital communication field is so vast, however, that learning from examples is limited,
and in the long term it is necessary to learn the underlying principles. The examples from
undergraduate courses provide a useful background for studying these principles, but the ability
to reason abstractly that comes from elementary pure mathematics courses is equally valuable.

Most graduate communication texts focus more on the analysis of problems with less focus on
the modeling, approximation, and insight needed to see how these problems arise. Our objective
here is to use simple models and approximations as a way to understand the general principles.
We will use quite a bit of mathematics in the process, but the mathematics will be used to
establish general results precisely rather than to carry out detailed analyses of special cases.
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Chapter 1

Introduction to digital
communication

Communication has been one of the deepest needs of the human race throughout recorded
history. It is essential to forming social unions, to educating the young, and to expressing a
myriad of emotions and needs. Good communication is central to a civilized society.

The various communication disciplines in engineering have the purpose of providing technological
aids to human communication. One could view the smoke signals and drum rolls of primitive
societies as being technological aids to communication, but communication technology as we
view it today became important with telegraphy, then telephony, then video, then computer
communication, and today the amazing mixture of all of these in inexpensive, small portable
devices.

Initially these technologies were developed as separate networks and were viewed as having little
in common. As these networks grew, however, the fact that all parts of a given network had to
work together, coupled with the fact that different components were developed at different times
using different design methodologies, caused an increased focus on the underlying principles and
architectural understanding required for continued system evolution.

This need for basic principles was probably best understood at American Telephone and Tele-
graph (AT&T) where Bell Laboratories was created as the research and development arm of
AT&T. The Math center at Bell Labs became the predominant center for communication re-
search in the world, and held that position until quite recently. The central core of the principles
of communication technology were developed at that center.

Perhaps the greatest contribution from the math center was the creation of Information Theory
[23] by Claude Shannon in 1948. For perhaps the first 25 years of its existence, Information
Theory was regarded as a beautiful theory but not as a central guide to the architecture and
design of communication systems. After that time, however, both the device technology and the
engineering understanding of the theory were sufficient to enable system development to follow
information theoretic principles.

A number of information theoretic ideas and how they affect communication system design
will be explained carefully in subsequent chapters. One pair of ideas, however, is central to
almost every topic. The first is to view all communication sources, e.g., speech waveforms,
image waveforms, text files, as being representable by binary sequences. The second is to design

1



2 CHAPTER 1. INTRODUCTION TO DIGITAL COMMUNICATION

communication systems that first convert the source output into a binary sequence and then
convert that binary sequence into a form suitable for transmission over particular physical media
such as cable, twisted wire pair, optical fiber, or electromagnetic radiation through space.

Digital communication systems, by definition, are communication systems that use such a digital1

sequence as an interface between the source and the channel input (and similarly between the
channel output and final destination) (see Figure 1.1).

Source � Source
Encoder

�Channel
Encoder

�

Channel

� Source
Decoder

� Channel
Decoder

Binary
Interface

�Destination

Figure 1.1: Placing a binary interface between source and channel. The source en-
coder converts the source output to a binary sequence and the channel encoder (often
called a modulator) processes the binary sequence for transmission over the channel.
The channel decoder (demodulator) recreates the incoming binary sequence (hopefully
reliably), and the source decoder recreates the source output.

The idea of converting an analog source output to a binary sequence was quite revolutionary
in 1948, and the notion that this should be done before channel processing was even more
revolutionary. By today, with digital cameras, digital video, digital voice, etc., the idea of
digitizing any kind of source is commonplace even among the most technophobic. The notion
of a binary interface before channel transmission is almost as commonplace. For example, we
all refer to the speed of our internet connection in bits per second.

There are a number of reasons why communication systems now usually contain a binary inter-
face between source and channel (i.e., why digital communication systems are now standard).
These will be explained with the necessary qualifications later, but briefly they are as follows:

• Digital hardware has become so cheap, reliable, and miniaturized, that digital interfaces are
eminently practical.

• A standardized binary interface between source and channel simplifies implementation and
understanding, since source coding/decoding can be done independently of the channel,
and, similarly, channel coding/decoding can be done independently of the source.

1A digital sequence is a sequence made up of elements from a finite alphabet (e.g., the binary digits {0, 1},
the decimal digits {0, 1, . . . , 9} , or the letters of the English alphabet) . The binary digits are almost universally
used for digital communication and storage, so we only distinguish digital from binary in those few places where
the difference is significant.
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• A standardized binary interface between source and channel simplifies networking, which
now reduces to sending binary sequences through the network.

• One of the most important of Shannon’s information theoretic results is that if a source
can be transmitted over a channel in any way at all, it can be transmitted using a binary
interface between source and channel. This is known as the source/channel separation
theorem.

In the remainder of this chapter, the problems of source coding and decoding and channel coding
and decoding are briefly introduced. First, however, the notion of layering in a communication
system is introduced. One particularly important example of layering was already introduced in
Figure 1.1, where source coding and decoding are viewed as one layer and channel coding and
decoding are viewed as another layer.

1.1 Standardized interfaces and layering

Large communication systems such as the Public Switched Telephone Network (PSTN) and the
Internet have incredible complexity, made up of an enormous variety of equipment made by
different manufacturers at different times following different design principles. Such complex
networks need to be based on some simple architectural principles in order to be understood,
managed, and maintained.

Two such fundamental architectural principles are standardized interfaces and layering.

A standardized interface allows the user or equipment on one side of the interface to ignore all
details about the other side of the interface except for certain specified interface characteris-
tics. For example, the binary interface2 above allows the source coding/decoding to be done
independently of the channel coding/decoding.

The idea of layering in communication systems is to break up communication functions into a
string of separate layers as illustrated in Figure 1.2.

Each layer consists of an input module at the input end of a communcation system and a ‘peer’
output module at the other end. The input module at layer i processes the information received
from layer i+1 and sends the processed information on to layer i−1. The peer output module at
layer i works in the opposite direction, processing the received information from layer i−1 and
sending it on to layer i.

As an example, an input module might receive a voice waveform from the next higher layer and
convert the waveform into a binary data sequence that is passed on to the next lower layer. The
output peer module would receive a binary sequence from the next lower layer at the output
and convert it back to a speech waveform.

As another example, a modem consists of an input module (a modulator) and an output module
(a demodulator). The modulator receives a binary sequence from the next higher input layer
and generates a corresponding modulated waveform for transmission over a channel. The peer
module is the remote demodulator at the other end of the channel. It receives a more-or-
less faithful replica of the transmitted waveform and reconstructs a typically faithful replica
of the binary sequence. Similarly, the local demodulator is the peer to a remote modulator
(often collocated with the remote demodulator above). Thus a modem is an input module for

2The use of a binary sequence at the interface is not quite enough to specify it, as will be discussed later.
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input� input
module i

� input
module i−1

� · · · � input
module 1

�

channel

output
module i−1

�� · · · output
module 1

layer 1layer i−1layer i

output� output
module i

� �

interface
i−2 to i−1

interface
i−1 to i−2

interface
i−1 to i

interface
i to i−1

Figure 1.2: Layers and interfaces: The specification of the interface between layers
i and i−1 should specify how input module i communicates with input module i−1,
how the corresponding output modules communicate, and, most important, the in-
put/output behavior of the system to the right of interface. The designer of layer i−1
uses the input/output behavior of the layers to the right of i−1 to produce the required
input/output performance to the right of layer i. Later examples will show how this
multi-layer process can simplify the overall system design.

communication in one direction and an output module for independent communication in the
opposite direction. Later chapters consider modems in much greater depth, including how noise
affects the channel waveform and how that affects the reliability of the recovered binary sequence
at the output. For now, however, it is enough to simply view the modulator as converting a
binary sequence to a waveform, with the peer demodulator converting the waveform back to the
binary sequence.

As another example, the source coding/decoding layer for a waveform source can be split into 3
layers as shown in Figure 1.3. One of the advantages of this layering is that discrete sources are
an important topic in their own right (treated in Chapter 2) and correspond to the inner layer
of Figure 1.3. Quantization is also an important topic in its own right, (treated in Chapter 3).
After both of these are understood, waveform sources become quite simple to understand.

The channel coding/decoding layer can also be split into several layers, but there are a number
of ways to do this which will be discussed later. For example, binary error-correction cod-
ing/decoding can be used as an outer layer with modulation and demodulation as an inner
layer, but it will be seen later that there are a number of advantages in combining these layers
into what is called coded modulation.3 Even here, however, layering is important, but the layers
are defined differently for different purposes.

It should be emphasized that layering is much more than simply breaking a system into com-
ponents. The input and peer output in each layer encapsulate all the lower layers, and all these
lower layers can be viewed in aggregate as a communication channel. Similarly, the higher layers
can be viewed in aggregate as a simple source and destination.

The above discussion of layering implicitly assumed a point-to-point communication system
with one source, one channel, and one destination. Network situations can be considerably
more complex. With broadcasting, an input module at one layer may have multiple peer output
modules. Similarly, in multiaccess communication a multiplicity of input modules have a single

3Notation is nonstandard here. A channel coder (including both coding and modulation) is often referred to
(both here and elsewhere) as a modulator.
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encoder
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binary
channel

table
lookup

� discrete
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output� analog
filter
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symbol
sequence

analog
sequence

binary
interface

Figure 1.3: Breaking the source coding/decoding layer into 3 layers for a waveform
source. The input side of the outermost layer converts the waveform into a sequence
of samples and output side converts the recovered samples back to the waveform. The
quantizer then converts each sample into one of a finite set of symbols, and the peer
module recreates the sample (with some distortion). Finally the inner layer encodes
the sequence of symbols into binary digits.

peer output module. It is also possible in network situations for a single module at one level
to interface with multiple modules at the next lower layer or the next higher layer. The use of
layering is at least as important for networks as for point-to-point communications systems. The
physical layer for networks is essentially the channel encoding/decoding layer discussed here, but
textbooks on networks rarely discuss these physical layer issues in depth. The network control
issues at other layers are largely separable from the physical layer communication issues stressed
here. The reader is referred to [1], for example, for a treatment of these control issues.

The following three sections give a fuller discussion of the components of Figure 1.1, i.e., of the
fundamental two layers (source coding/decoding and channel coding/decoding) of a point-to-
point digital communication system, and finally of the interface between them.

1.2 Communication sources

The source might be discrete, i.e., it might produce a sequence of discrete symbols, such as letters
from the English or Chinese alphabet, binary symbols from a computer file, etc. Alternatively,
the source might produce an analog waveform, such as a voice signal from a microphone, the
output of a sensor, a video waveform, etc. Or, it might be a sequence of images such as X-rays,
photographs, etc.

Whatever the nature of the source, the output from the source will be modeled as a sample
function of a random process. It is not obvious why the inputs to communication systems
should be modeled as random, and in fact this was not appreciated before Shannon developed
information theory in 1948.

The study of communication before 1948 (and much of it well after 1948) was based on Fourier
analysis; basically one studied the effect of passing sine waves through various kinds of systems
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and components and viewed the source signal as a superposition of sine waves. Our study of
channels will begin with this kind of analysis (often called Nyquist theory) to develop basic
results about sampling, intersymbol interference, and bandwidth.

Shannon’s view, however, was that if the recipient knows that a sine wave of a given frequency
is to be communicated, why not simply regenerate it at the output rather than send it over
a long distance? Or, if the recipient knows that a sine wave of unknown frequency is to be
communicated, why not simply send the frequency rather than the entire waveform?

The essence of Shannon’s viewpoint is that the set of possible source outputs, rather than any
particular output, is of primary interest. The reason is that the communication system must be
designed to communicate whichever one of these possible source outputs actually occurs. The
objective of the communication system then is to transform each possible source output into a
transmitted signal in such a way that these possible transmitted signals can be best distinguished
at the channel output. A probability measure is needed on this set of possible source outputs
to distinguish the typical from the atypical. This point of view drives the discussion of all
components of communication systems throughout this text.

1.2.1 Source coding

The source encoder in Figure 1.1 has the function of converting the input from its original
form into a sequence of bits. As discussed before, the major reasons for this almost universal
conversion to a bit sequence are as follows: digital hardware, standardized interfaces, layering,
and the source/channel separation theorem.

The simplest source coding techniques apply to discrete sources and simply involve representing
each succesive source symbol by a sequence of binary digits. For example, letters from the 27-
symbol English alphabet (including a space symbol) may be encoded into 5-bit blocks. Since
there are 32 distinct 5-bit blocks, each letter may be mapped into a distinct 5-bit block with
a few blocks left over for control or other symbols. Similarly, upper-case letters, lower-case
letters, and a great many special symbols may be converted into 8-bit blocks (“bytes”) using
the standard ASCII code.

Chapter 2 treats coding for discrete sources and generalizes the above techniques in many ways.
For example the input symbols might first be segmented into m-tuples, which are then mapped
into blocks of binary digits. More generally yet, the blocks of binary digits can be generalized
into variable-length sequences of binary digits. We shall find that any given discrete source,
characterized by its alphabet and probabilistic description, has a quantity called entropy asso-
ciated with it. Shannon showed that this source entropy is equal to the minimum number of
binary digits per source symbol required to map the source output into binary digits in such a
way that the source symbols may be retrieved from the encoded sequence.

Some discrete sources generate finite segments of symbols, such as email messages, that are
statistically unrelated to other finite segments that might be generated at other times. Other
discrete sources, such as the output from a digital sensor, generate a virtually unending sequence
of symbols with a given statistical characterization. The simpler models of Chapter 2 will
correspond to the latter type of source, but the discussion of universal source coding in Section
2.9 is sufficiently general to cover both types of sources, and virtually any other kind of source.

The most straightforward approach to analog source coding is called analog to digital (A/D)
conversion. The source waveform is first sampled at a sufficiently high rate (called the “Nyquist
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rate”). Each sample is then quantized sufficiently finely for adequate reproduction. For example,
in standard voice telephony, the voice waveform is sampled 8000 times per second; each sample
is then quantized into one of 256 levels and represented by an 8-bit byte. This yields a source
coding bit rate of 64 Kbps.

Beyond the basic objective of conversion to bits, the source encoder often has the further ob-
jective of doing this as efficiently as possible— i.e., transmitting as few bits as possible, subject
to the need to reconstruct the input adequately at the output. In this case source encoding is
often called data compression. For example, modern speech coders can encode telephone-quality
speech at bit rates of the order of 6-16 kb/s rather than 64 kb/s.

The problems of sampling and quantization are largely separable. Chapter 3 develops the basic
principles of quantization. As with discrete source coding, it is possible to quantize each sample
separately, but it is frequently preferable to segment the samples into n-tuples and then quantize
the resulting n-tuples. As shown later, it is also often preferable to view the quantizer output
as a discrete source output and then to use the principles of Chapter 2 to encode the quantized
symbols. This is another example of layering.

Sampling is one of the topics in Chapter 4. The purpose of sampling is to convert the analog
source into a sequence of real-valued numbers, i.e., into a discrete-time, analog-amplitude source.
There are many other ways, beyond sampling, of converting an analog source to a discrete-time
source. A general approach, which includes sampling as a special case, is to expand the source
waveform into an orthonormal expansion and use the coefficients of that expansion to represent
the source output. The theory of orthonormal expansions is a major topic of Chapter 4. It
forms the basis for the signal space approach to channel encoding/decoding. Thus Chapter 4
provides us with the basis for dealing with waveforms both for sources and channels.

1.3 Communication channels

We next discuss the channel and channel coding in a generic digital communication system.

In general, a channel is viewed as that part of the communication system between source and
destination that is given and not under the control of the designer. Thus, to a source-code
designer, the channel might be a digital channel with binary input and output; to a telephone-
line modem designer, it might be a 4 KHz voice channel; to a cable modem designer, it might
be a physical coaxial cable of up to a certain length, with certain bandwidth restrictions.

When the channel is taken to be the physical medium, the amplifiers, antennas, lasers, etc. that
couple the encoded waveform to the physical medium might be regarded as part of the channel
or as as part of the channel encoder. It is more common to view these coupling devices as part
of the channel, since their design is quite separable from that of the rest of the channel encoder.
This, of course, is another example of layering.

Channel encoding and decoding when the channel is the physical medium (either with or with-
out amplifiers, antennas, lasers, etc.) is usually called (digital) modulation and demodulation
respectively. The terminology comes from the days of analog communication where modulation
referred to the process of combining a lowpass signal waveform with a high frequency sinusoid,
thus placing the signal waveform in a frequency band appropriate for transmission and regu-
latory requirements. The analog signal waveform could modulate the amplitude, frequency, or
phase, for example, of the sinusoid, but in any case, the original waveform (in the absence of
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noise) could be retrieved by demodulation.

As digital communication has increasingly replaced analog communication, the modula-
tion/demodulation terminology has remained, but now refers to the entire process of digital
encoding and decoding. In most such cases, the binary sequence is first converted to a baseband
waveform and the resulting baseband waveform is converted to bandpass by the same type of
procedure used for analog modulation. As will be seen, the challenging part of this problem is
the conversion of binary data to baseband waveforms. Nonetheless, this entire process will be
referred to as modulation and demodulation, and the conversion of baseband to passband and
back will be referred to as frequency conversion.

As in the study of any type of system, a channel is usually viewed in terms of its possible inputs,
its possible outputs, and a description of how the input affects the output. This description is
usually probabilistic. If a channel were simply a linear time-invariant system (e.g., a filter), then
it could be completely characterized by its impulse response or frequency response. However,
the channels here (and channels in practice) always have an extra ingredient— noise.

Suppose that there were no noise and a single input voltage level could be communicated exactly.
Then, representing that voltage level by its infinite binary expansion, it would be possible in
principle to transmit an infinite number of binary digits by transmitting a single real number.
This is ridiculous in practice, of course, precisely because noise limits the number of bits that
can be reliably distinguished. Again, it was Shannon, in 1948, who realized that noise provides
the fundamental limitation to performance in communication systems.

The most common channel model involves a waveform input X(t), an added noise waveform Z(t),
and a waveform output Y (t) = X(t)+Z(t) that is the sum of the input and the noise, as shown
in Figure 1.4. Each of these waveforms are viewed as random processes. Random processes are
studied in Chapter 7, but for now they can be viewed intuitively as waveforms selected in some
probabilitistic way. The noise Z(t) is often modeled as white Gaussian noise (also to be studied
and explained later). The input is usually constrained in power and bandwidth.

X(t) � ��
Z(t)

� Y (t)
Input Output

Noise

Figure 1.4: An additive white Gaussian noise (AWGN) channel.

Observe that for any channel with input X(t) and output Y (t), the noise could be defined to
be Z(t) = Y (t)−X(t). Thus there must be something more to an additive-noise channel model
than what is expressed in Figure 1.4. The additional required ingredient for noise to be called
additive is that its probabilistic characterization does not depend on the input.

In a somewhat more general model, called a linear Gaussian channel, the input waveform X(t)
is first filtered in a linear filter with impulse response h(t), and then independent white Gaussian
noise Z(t) is added, as shown in Figure 1.5, so that the channel output is

Y (t) = X(t) ∗ h(t) + Z(t),

where “∗” denotes convolution. Note that Y at time t is a function of X over a range of times,
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i.e.,

Y (t) =
∫ ∞

−∞
X(t − τ)h(τ) dτ + Z(t)

X(t) � h(t) � ��
Z(t)

� Y (t)
Input Output

Noise

Figure 1.5: Linear Gaussian channel model.

The linear Gaussian channel is often a good model for wireline communication and for line-of-
sight wireless communication. When engineers, journals, or texts fail to describe the channel of
interest, this model is a good bet.

The linear Gaussian channel is a rather poor model for non-line-of-sight mobile communication.
Here, multiple paths usually exist from source to destination. Mobility of the source, destination,
or reflecting bodies can cause these paths to change in time in a way best modeled as random.
A better model for mobile communication is to replace the time-invariant filter h(t) in Figure
1.5 by a randomly-time-varying linear filter, H(t, τ), that represents the multiple paths as they
change in time. Here the output is given by Y (t) =

∫ ∞
−∞ X(t − u)H(u, t)du + Z(t). These

randomly varying channels will be studied in Chapter 9.

1.3.1 Channel encoding (modulation)

The channel encoder box in Figure 1.1 has the function of mapping the binary sequence at
the source/channel interface into a channel waveform. A particularly simple approach to this
is called binary pulse amplitude modulation (2-PAM). Let {u1, u2, . . . , } denote the incoming
binary sequence, where each un is ±1 (rather than the traditional 0/1). Let p(t) be a given
elementary waveform such as a rectangular pulse or a sin(ωt)

ωt function. Assuming that the binary
digits enter at R bits per second (bps), the sequence u1, u2, . . . is mapped into the waveform∑

n unp(t − n
R).

Even with this trivially simple modulation scheme, there are a number of interesting questions,
such as how to choose the elementary waveform p(t) so as to satisfy frequency constraints
and reliably detect the binary digits from the received waveform in the presence of noise and
intersymbol interference.

Chapter 6 develops the principles of modulation and demodulation. The simple 2-PAM scheme
is generalized in many ways. For example, multi-level modulation first segments the incoming
bits into m-tuples. There are M = 2m distinct m-tuples, and in M -PAM, each m-tuple is
mapped into a different numerical value (such as ±1,±3,±5,±7 for M = 8). The sequence
u1, u2, . . . of these values is then mapped into the waveform

∑
n unp(t− mn

R ). Note that the rate
at which pulses are sent is now m times smaller than before, but there are 2m different values
to be distinguished at the receiver for each elementary pulse.

The modulated waveform can also be a complex baseband waveform (which is then modulated
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up to an appropriate passband as a real waveform). In a scheme called quadrature amplitude
modulation (QAM), the bit sequence is again segmented into m-tuples, but now there is a
mapping from binary m-tuples to a set of M = 2m complex numbers. The sequence u1, u2, . . . ,
of outputs from this mapping is then converted to the complex waveform

∑
n unp(t − mn

R ).

Finally, instead of using a fixed signal pulse p(t) multiplied by a selection from M real or complex
values, it is possible to choose M different signal pulses, p1(t), . . . , pM (t). This includes frequency
shift keying, pulse position modulation, phase modulation, and a host of other strategies.

It is easy to think of many ways to map a sequence of binary digits into a waveform. We shall
find that there is a simple geometric “signal-space” approach, based on the results of Chapter
4, for looking at these various combinations in an integrated way.

Because of the noise on the channel, the received waveform is different from the transmitted
waveform. A major function of the demodulator is that of detection. The detector attempts
to choose which possible input sequence is most likely to have given rise to the given received
waveform. Chapter 7 develops the background in random processes necessary to understand this
problem, and Chapter 8 uses the geometric signal-space approach to analyze and understand
the detection problem.

1.3.2 Error correction

Frequently the error probability incurred with simple modulation and demodulation techniques
is too high. One possible solution is to separate the channel encoder into two layers, first an
error-correcting code, and then a simple modulator.

As a very simple example, the bit rate into the channel encoder could be reduced by a factor
of 3, and then each binary input could be repeated 3 times before entering the modulator. If
at most one of the 3 binary digits coming out of the demodulator were incorrect, it could be
corrected by majority rule at the decoder, thus reducing the error probability of the system at
a considerable cost in data rate.

The scheme above (repetition encoding followed by majority-rule decoding) is a very simple
example of error-correction coding. Unfortunately, with this scheme, small error probabilities
are achieved only at the cost of very small transmission rates.

What Shannon showed was the very unintuitive fact that more sophisticated coding schemes can
achieve arbitrarily low error probability at any data rate above a value known as the channel
capacity. The channel capacity is a function of the probabilistic description of the output
conditional on each possible input. Conversely, it is not possible to achieve low error probability
at rates above the channel capacity. A brief proof of this channel coding theorem is given in
Chapter 8, but readers should refer to texts on Information Theory such as [6] or [4]) for detailed
coverage.

The channel capacity for a bandlimited additive white Gaussian noise channel is perhaps the
most famous result in information theory. If the input power is limited to P , the bandwidth
limited to W, and the noise power per unit bandwidth is N0, then the capacity (in bits per
second) is

C = W log2

(
1 +

P

N0W

)
.

Only in the past few years have channel coding schemes been developed that can closely approach
this channel capacity.



1.4. DIGITAL INTERFACE 11

Early uses of error-correcting codes were usually part of a two-layer system similar to that
above, where a digital error-correcting encoder is followed by a modulator. At the receiver,
the waveform is first demodulated into a noisy version of the encoded sequence, and then this
noisy version is decoded by the error-correcting decoder. Current practice frequently achieves
better performance by combining error correction coding and modulation together in coded
modulation schemes. Whether the error correction and traditional modulation are separate
layers or combined, the combination is generally referred to as a modulator and a device that
does this modulation on data in one direction and demodulation in the other direction is referred
to as a modem.

The subject of error correction has grown over the last 50 years to the point where complex and
lengthy textbooks are dedicated to this single topic (see, for example, [12] and [5].) This text
provides only an introduction to error-correcting codes.

The final topic of the text is channel encoding and decoding for wireless channels. Considerable
attention is paid here to modeling physical wireless media. Wireless channels are subject not
only to additive noise but also random fluctuations in the strength of multiple paths between
transmitter and receiver. The interaction of these paths causes fading, and we study how this
affects coding, signal selection, modulation, and detection. Wireless communication is also used
to discuss issues such as channel measurement, and how these measurements can be used at
input and output. Finally there is a brief case study of CDMA (code division multiple access),
which ties together many of the topics in the text.

1.4 Digital interface

The interface between the source coding layer and the channel coding layer is a sequence of bits.
However, this simple characterization does not tell the whole story. The major complicating
factors are as follows:

• Unequal rates: The rate at which bits leave the source encoder is often not perfectly matched
to the rate at which bits enter the channel encoder.

• Errors: Source decoders are usually designed to decode an exact replica of the encoded
sequence, but the channel decoder makes occasional errors.

• Networks: Encoded source outputs are often sent over networks, traveling serially over
several channels; each channel in the network typically also carries the output from a number
of different source encoders.

The first two factors above appear both in point-to-point communication systems and in net-
works. They are often treated in an ad hoc way in point-to-point systems, whereas they must
be treated in a standardized way in networks. The third factor, of course, must also be treated
in a standardized way in networks.

The usual approach to these problems in networks is to convert the superficially simple binary
interface above into multiple layers as illustrated in Figure 1.6

How the layers in Figure 1.6 operate and work together is a central topic in the study of networks
and is treated in detail in network texts such as [1]. These topics are not considered in detail
here, except for the very brief introduction to follow and a few comments as needed later.
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Figure 1.6: The replacement of the binary interface in Figure 1.6 with 3 layers in an
oversimplified view of the internet: There is a TCP (transport control protocol) module
associated with each source/destination pair; this is responsible for end-to-end error
recovery and for slowing down the source when the network becomes congested. There
is an IP (internet protocol) module associated with each node in the network; these
modules work together to route data through the network and to reduce congestion.
Finally there is a DLC (data link control) module associated with each channel; this
accomplishes rate matching and error recovery on the channel. In network terminology,
the channel, with its encoder and decoder, is called the physical layer.

1.4.1 Network aspects of the digital interface

The output of the source encoder is usually segmented into packets (and in many cases, such
as email and data files, is already segmented in this way). Each of the network layers then
adds some overhead to these packets, adding a header in the case of TCP (transmission control
protocol) and IP (internet protocol) and adding both a header and trailer in the case of DLC
(data link control). Thus what enters the channel encoder is a sequence of frames, where each
frame has the structure illustrated in Figure 1.7.

TCP
header

IP
header

DLC
header

DLC
trailer

Source encoded
packet

Figure 1.7: The structure of a data frame using the layers of Figure 1.6

.

These data frames, interspersed as needed by idle-fill, are strung together and the resulting bit
stream enters the channel encoder at its synchronous bit rate. The header and trailer supplied
by the DLC must contain the information needed for the receiving DLC to parse the received
bit stream into frames and eliminate the idle-fill.

The DLC also provides protection against decoding errors made by the channel decoder. Typi-
cally this is done by using a set of 16 or 32 parity checks in the frame trailer. Each parity check
specifies whether a given subset of bits in the frame contains an even or odd number of 1’s. Thus
if errors occur in transmission, it is highly likely that at least one of these parity checks will fail
in the receiving DLC. This type of DLC is used on channels that permit transmission in both
directions. Thus when an erroneous frame is detected, it is rejected and a frame in the opposite
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direction requests a retransmission of the erroneous frame. Thus the DLC header must contain
information about frames traveling in both directions. For details about such protocols, see, for
example, [1].

An obvious question at this point is why error correction is typically done both at the physical
layer and at the DLC layer. Also, why is feedback (i.e., error detection and retransmission) used
at the DLC layer and not at the physical layer? A partial answer is that using both schemes
together yields a smaller error probability than using either one separately. At the same time,
combining both procedures (with the same overall overhead) and using feedback at the physical
layer can result in much smaller error probabilities. The two layer approach is typically used in
practice because of standardization issues, but in very difficult communication situations, the
combined approach can be preferable. From a tutorial standpoint, however, it is preferable to
acquire a good understanding of channel encoding and decoding using transmission in only one
direction before considering the added complications of feedback.

When the receiving DLC accepts a frame, it strips off the DLC header and trailer and the
resulting packet enters the IP layer. In the IP layer, the address in the IP header is inspected
to determine whether the packet is at its destination or must be forwarded through another
channel. Thus the IP layer handles routing decisions, and also sometimes the decision to drop
a packet if the queues at that node are too long.

When the packet finally reaches its destination, the IP layer strips off the IP header and passes
the resulting packet with its TCP header to the TCP layer. The TCP module then goes through
another error recovery phase4 much like that in the DLC module and passes the accepted packets,
without the TCP header, on to the destination decoder. The TCP and IP layers are also jointly
responsible for congestion control, which ultimately requires the ability to either reduce the rate
from sources as required or to simply drop sources that cannot be handled (witness dropped
cell-phone calls).

In terms of sources and channels, these extra layers simply provide a sharper understanding of
the digital interface between source and channel. That is, source encoding still maps the source
output into a sequence of bits, and from the source viewpoint, all these layers can simply be
viewed as a channel to send that bit sequence reliably to the destination.

In a similar way, the input to a channel is a sequence of bits at the channel’s synchronous input
rate. The output is the same sequence, somewhat delayed and with occasional errors.

Thus both source and channel have digital interfaces, and the fact that these are slightly dif-
ferent because of the layering is in fact an advantage. The source encoding can focus solely on
minimizing the output bit rate (perhaps with distortion and delay constraints) but can ignore
the physical channel or channels to be used in transmission. Similarly the channel encoding can
ignore the source and focus solely on maximizing the transmission bit rate (perhaps with delay
and error rate constraints).

4Even after all these layered attempts to prevent errors, occasional errors are inevitable. Some are caught by
human intervention, many don’t make any real difference, and a final few have consequences. C’est la vie. The
purpose of communication engineers and network engineers is not to eliminate all errors, which is not possible,
but rather to reduce their probability as much as practically possible.
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1.5 Supplementary reading

An excellent text that treats much of the material here with more detailed coverage but less
depth is Proakis [17]. Another good general text is Wilson [28]. The classic work that introduced
the signal space point of view in digital communication is Wozencraft and Jacobs [29]. Good
undergraduate treatments are provided in [18], [?], and [?].

Readers who lack the necessary background in probability should consult [2] or [19]. More
advanced treatments of probability are given in [7] and [20]. Feller [?] still remains the classic
text on probability for the serious student.

Further material on Information theory can be found, for example, in [6] and [4]. The original
work by Shannon [23] is fascinating and surprisingly accessible.

The field of channel coding and decoding has become an important but specialized part of
most communication systems. We introduce coding and decoding in Chapter 8, but a separate
treatment is required to develop the subject in depth. At M.I.T., the text here is used for the
first of a two term sequence and the second term uses a polished set of notes by D. Forney
[5] available on the web. Alternatively, [12] is a good choice among many texts on coding and
decoding.

Wireless communication is probably the major research topic in current digital communication
work. Chapter 9 provides a substantial introduction to this topic, but a number of texts develop
wireless communcation in much greater depth. Tse and Viswanath [27] and Goldsmith [8] are
recommended and [?] is a good reference for spread spectrum techniques.



Chapter 2

Coding for Discrete Sources

2.1 Introduction

A general block diagram of a point-to-point digital communication system was given in Figure
1.1. The source encoder converts the sequence of symbols from the source to a sequence of
binary digits, preferably using as few binary digits per symbol as possible. The source decoder
performs the inverse operation. Initially, in the spirit of source/channel separation, we ignore
the possibility that errors are made in the channel decoder and assume that the source decoder
operates on the source encoder output.

We first distinguish between three important classes of sources:

• Discrete sources

The output of a discrete source is a sequence of symbols from a given discrete alphabet X .
This alphabet could be the alphanumeric characters, the characters on a computer keyboard,
English letters, Chinese characters, the symbols in sheet music (arranged in some systematic
fashion), binary digits, etc.

The discrete alphabets in this chapter are assumed to contain a finite set of symbols.1

It is often convenient to view the sequence of symbols as occurring at some fixed rate in
time, but there is no need to bring time into the picture (for example, the source sequence
might reside in a computer file and the encoding can be done off-line).

This chapter focuses on source coding and decoding for discrete sources.” Supplementary
references for source coding are Chapter 3 of [6] and Chapter 5 of [4]. A more elementary
partial treatment is in Sections 4.1-4.3 of [18].

• Analog waveform sources

The output of an analog source, in the simplest case, is an analog real waveform, repre-
senting, for example, a speech waveform. The word analog is used to emphasize that the
waveform can be arbitrary and is not restricted to taking on amplitudes from some discrete
set of values.

1A set is usually defined to be discrete if it includes either a finite or countably infinite number of members.
The countably infinite case does not extend the basic theory of source coding in any important way, but it is
occasionally useful in looking at limiting cases, which will be discussed as they arise.

15
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It is also useful to consider analog waveform sources with outputs that are complex functions
of time; both real and complex waveform sources are discussed later.

More generally, the output of an analog source might be an image (represented as an inten-
sity function of horizontal/vertical location) or video (represented as an intensity function
of horizontal/vertical location and time). For simplicity, we restrict our attention to analog
waveforms, mapping a single real variable, time, into a real or complex-valued intensity.

• Discrete-time sources with analog values (analog sequence sources)

These sources are halfway between discrete and analog sources. The source output is a
sequence of real numbers (or perhaps complex numbers). Encoding such a source is of
interest in its own right, but is of interest primarily as a subproblem in encoding analog
sources. That is, analog waveform sources are almost invariably encoded by first either
sampling the analog waveform or representing it by the coefficients in a series expansion.
Either way, the result is a sequence of numbers, which is then encoded.

There are many differences between discrete sources and the latter two types of analog sources.
The most important is that a discrete source can be, and almost always is, encoded in such a
way that the source output can be uniquely retrieved from the encoded string of binary digits.
Such codes are called uniquely decodable2. On the other hand, for analog sources, there is
usually no way to map the source values to a bit sequence such that the source values are
uniquely decodable. For example, an infinite number of binary digits is required for the exact
specification of an arbitrary real number between 0 and 1. Thus, some sort of quantization is
necessary for these analog values, and this introduces distortion. Source encoding for analog
sources thus involves a trade-off between the bit rate and the amount of distortion.

Analog sequence sources are almost invariably encoded by first quantizing each element of the
sequence (or more generally each successive n-tuple of sequence elements) into one of a finite
set of symbols. This symbol sequence is a discrete sequence which can then be encoded into a
binary sequence.

Figure 2.1 summarizes this layered view of analog and discrete source coding. As illustrated,
discrete source coding is both an important subject in its own right for encoding text-like sources,
but is also the inner layer in the encoding of analog sequences and waveforms.

The remainder of this chapter discusses source coding for discrete sources. The following chapter
treats source coding for analog sequences and the fourth chapter treats waveform sources.

2.2 Fixed-length codes for discrete sources

The simplest approach to encoding a discrete source into binary digits is to create a code C that
maps each symbol x of the alphabet X into a distinct codeword C(x), where C(x) is a block of
binary digits. Each such block is restricted to have the same block length L, which is why the
code is called a fixed-length code.

2Uniquely-decodable codes are sometimes called noiseless codes in elementary treatments. Uniquely decodable
captures both the intuition and the precise meaning far better than noiseless. Unique decodability is defined
shortly.
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Figure 2.1: Discrete sources require only the inner layer above, whereas the inner two
layers are used for analog sequences and all three layers are used for waveforms sources.

For example, if the alphabet X consists of the 7 symbols {a, b, c, d, e, f, g}, then the following
fixed-length code of block length L = 3 could be used.

C(a) = 000
C(b) = 001
C(c) = 010
C(d) = 011
C(e) = 100
C(f) = 101
C(g) = 110.

The source output, x1, x2, . . . , would then be encoded into the encoded output C(x1)C(x2) . . .
and thus the encoded output contains L bits per source symbol. For the above example the
source sequence bad . . . would be encoded into 001000011 . . . . Note that the output bits are
simply run together (or, more technically, concatenated).

There are 2L different combinations of values for a block of L bits. Thus, if the number of
symbols in the source alphabet, M = |X |, satisfies M ≤ 2L, then a different binary L-tuple
may be assigned to each symbol. Assuming that the decoder knows where the beginning of the
encoded sequence is, the decoder can segment the sequence into L bit blocks and then decode
each block into the corresponding source symbol.

In summary, if the source alphabet has size M , then this coding method requires L = �log2 M�
bits to encode each source symbol, where �w� denotes the smallest integer greater than or equal
to the real number w. Thus log2 M ≤ L < log2 M + 1. The lower bound, log2 M , can be
achieved with equality if and only if M is a power of 2.

A technique to be used repeatedly is that of first segmenting the sequence of source symbols
into successive blocks of n source symbols at a time. Given an alphabet X of M symbols, there
are Mn possible n-tuples. These Mn n-tuples are regarded as the elements of a super-alphabet.
Each n-tuple can be encoded rather than encoding the original symbols. Using fixed-length
source coding on these n-tuples, each source n-tuple can be encoded into L = �log2 Mn� bits.
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The rate L = L/n of encoded bits per original source symbol is then bounded by

L =
�log2 Mn�

n
≥ n log2 M

n
= log2 M ;

L =
�log2 Mn�

n
<

n(log2 M) + 1
n

= log2 M +
1
n

.

Thus log2 M ≤ L < log2 M + 1
n , and by letting n become sufficiently large, the average number

of coded bits per source symbol can be made arbitrarily close to log2 M , regardless of whether
M is a power of 2.

Some remarks:

• This simple scheme to make L arbitrarily close to log2 M is of greater theoretical interest
than practical interest. As shown later, log2 M is the minimum possible binary rate for
uniquely-decodable source coding if the source symbols are independent and equiprobable.
Thus this scheme asymptotically approaches this minimum.

• This result begins to hint at why measures of information are logarithmic in the alphabet
size.3 The logarithm is usually taken to the base 2 in discussions of binary codes. Henceforth
log n means “log2 n.”

• This method is nonprobabilistic; it takes no account of whether some symbols occur more
frequently than others, and it works robustly regardless of the symbol frequencies. But if
it is known that some symbols occur more frequently than others, then the rate L of coded
bits per source symbol can be reduced by assigning shorter bit sequences to more common
symbols in a variable-length source code. This will be our next topic.

2.3 Variable-length codes for discrete sources

The motivation for using variable-length encoding on discrete sources is the intuition that data
compression can be achieved by mapping more probable symbols into shorter bit sequences,
and less likely symbols into longer bit sequences. This intuition was used in the Morse code of
old-time telegraphy in which letters were mapped into strings of dots and dashes, using shorter
strings for common letters and longer strings for less common letters.

A variable-length code C maps each source symbol aj in a source alphabet X = {a1, . . . , aM} to
a binary string C(aj), called a codeword. The number of bits in C(aj) is called the length l(aj) of
C(aj). For example, a variable-length code for the alphabet X = {a, b, c} and its lengths might
be given by

C(a) = 0 l(a) = 1
C(b) = 10 l(b) = 2
C(c) = 11 l(c) = 2

Successive codewords of a variable-length code are assumed to be transmitted as a continuing
sequence of bits, with no demarcations of codeword boundaries (i.e., no commas or spaces). The

3The notion that information can be viewed as a logarithm of a number of possibilities was first suggested by
Hartley [10] in 1927.
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source decoder, given an original starting point, must determine where the codeword boundaries
are; this is called parsing.

A potential system issue with variable-length coding is the requirement for buffering. If source
symbols arrive at a fixed rate and the encoded bit sequence must be transmitted at a fixed bit
rate, then a buffer must be provided between input and output. This requires some sort of
recognizable ‘fill’ to be transmitted when the buffer is empty and the possibility of lost data
when the buffer is full. There are many similar system issues, including occasional errors on
the channel, initial synchronization, terminal synchronization, etc. Many of these issues are
discussed later, but they are more easily understood after the more fundamental issues are
discussed.

2.3.1 Unique decodability

The major property that is usually required from any variable-length code is that of unique
decodability. This essentially means that for any sequence of source symbols, that sequence can
be reconstructed unambiguously from the encoded bit sequence. Here initial synchronization is
assumed: the source decoder knows which is the first bit in the coded bit sequence. Note that
without initial synchronization, not even a fixed-length code can be uniquely decoded.

Clearly, unique decodability requires that C(aj) �= C(ai) for each i �= j. More than that, however,
it requires that strings4 of encoded symbols be distinguishable. The following definition says
this precisely:

Definition 2.3.1. A code C for a discrete source is uniquely decodable if, for any string
of source symbols, say x1, x2, . . . , xn, the concatenation5 of the corresponding codewords,
C(x1)C(x2) · · · C(xn), differs from the concatenation of the codewords C(x′

1)C(x′
2) · · · C(x′

m) for
any other string x′

1, x
′
2, . . . , x′

m of source symbols.

In other words, C is uniquely decodable if all concatenations of codewords are distinct.

Remember that there are no commas or spaces between codewords; the source decoder has
to determine the codeword boundaries from the received sequence of bits. (If commas were
inserted, the code would be ternary rather than binary.)

For example, the above code C for the alphabet X = {a, b, c} is soon shown to be uniquely
decodable. However, the code C′ defined by

C′(a) = 0
C′(b) = 1
C′(c) = 01

is not uniquely decodable, even though the codewords are all different. If the source decoder
observes 01, it cannot determine whether the source emitted (a b) or (c).

Note that the property of unique decodability depends only on the set of codewords and not
on the mapping from symbols to codewords. Thus we can refer interchangeably to uniquely-
decodable codes and uniquely-decodable codeword sets.

4A string of symbols is an n-tuple of symbols for any finite n. A sequence of symbols is an n-tuple in the limit
n → ∞, although the word sequence is also used when the length might be either finite or infinite.

5The concatenation of two strings, say u1 · · ·ul and v1 · · · vl′ is the combined string u1 · · · ul v1 · · · vl′ .
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2.3.2 Prefix-free codes for discrete sources

Decoding the output from a uniquely-decodable code, and even determining whether it is
uniquely decodable, can be quite complicated. However, there is a simple class of uniquely-
decodable codes called prefix-free codes. As shown later, these have the following advantages
over other uniquely-decodable codes:6

• If a uniquely-decodable code exists with a certain set of codeword lengths, then a prefix-free
code can easily be constructed with the same set of lengths.

• The decoder can decode each codeword of a prefix-free code immediately on the arrival of
the last bit in that codeword.

• Given a probability distribution on the source symbols, it is easy to construct a prefix-free
code of minimum expected length.

Definition 2.3.2. A prefix of a string y1 · · · yl is any initial substring y1 · · · yl′ , l′ ≤ l of that
string. The prefix is proper if l′ < l. A code is prefix-free if no codeword is a prefix of any other
codeword.

For example, the code C with codewords 0, 10, and 11 is prefix-free, but the code C′ with
codewords 0, 1, and 01 is not. Every fixed-length code with distinct codewords is prefix-free.

We will now show that every prefix-free code is uniquely decodable. The proof is constructive,
and shows how the decoder can uniquely determine the codeword boundaries.

Given a prefix-free code C, a corresponding binary code tree can be constructed which grows
from a root on the left to leaves on the right representing codewords. Each branch is labelled
0 or 1 and each node represents the binary string corresponding to the branch labels from the
root to that node. The tree is extended just enough to include each codeword. That is, each
node in the tree is either a codeword or proper prefix of a codeword (see Figure 2.2).
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a → 0
b → 11
c → 101

Figure 2.2: The binary code tree for a prefix-free code.

The prefix-free condition ensures that each codeword corresponds to a leaf node (i.e., a node
with no adjoining branches going to the right). Each intermediate node (i.e., nodes having one
or more adjoining branches going to the right) is a prefix of some codeword reached by traveling
right from the intermediate node.

6With all the advantages of prefix-free codes, it is difficult to understand why the more general class is even
discussed. This will become clearer much later.
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The tree of Figure 2.2 has an intermediate node, 10, with only one right-going branch. This shows
that the codeword for c could be shortened to 10 without destroying the prefix-free property.
This is shown in Figure 2.3.
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c → 10

Figure 2.3: A code with shorter lengths than that of Figure 2.2.

A prefix-free code will be called full if no new codeword can be added without destroying the
prefix-free property. As just seen, a prefix-free code is also full if no codeword can be shortened
without destroying the prefix-free property. Thus the code of Figure 2.2 is not full, but that of
Figure 2.3 is.

To see why the prefix-free condition guarantees unique decodability, consider the tree for the
concatenation of two codewords. This is illustrated in Figure 2.4 for the code of Figure 2.3.
This new tree has been formed simply by grafting a copy of the original tree onto each of the
leaves of the original tree. Each concatenation of two codewords thus lies on a different node
of the tree and also differs from each single codeword. One can imagine grafting further trees
onto the leaves of Figure 2.4 to obtain a tree representing still more codewords concatenated
together. Again all concatenations of code words lie on distinct nodes, and thus correspond to
distinct binary strings.
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aa → 00
ab → 011
ac → 010
ba → 110
bb → 1111
bc → 1110
ca → 100
cb → 1011
cc → 1010

Figure 2.4: Binary code tree for two codewords; upward branches represent 1’s.

An alternative way to see that prefix-free codes are uniquely decodable is to look at the codeword
parsing problem from the viewpoint of the source decoder. Given the encoded binary string for
any strong of source symbols, the source decoder can decode the first symbol simply by reading
the string from left to right and following the corresponding path in the code tree until it reaches
a leaf, which must correspond to the first codeword by the prefix-free property. After stripping
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off the first codeword, the remaining binary string is again a string of codewords, so the source
decoder can find the second codeword in the same way, and so on ad infinitum.

For example, suppose a source decoder for the code of Figure 2.3 decodes the sequence
1010011 · · · . Proceeding through the tree from the left, it finds that 1 is not a codeword,
but that 10 is the codeword for c. Thus c is decoded as the first symbol of the source output,
leaving the string 10011 · · · . Then c is decoded as the next symbol, leaving 011 · · · , which is
decoded into a and then b, and so forth.

This proof also shows that prefix-free codes can be decoded with no delay. As soon as the final bit
of a codeword is received at the decoder, the codeword can be recognized and decoded without
waiting for additional bits. For this reason, prefix-free codes are sometimes called instantaneous
codes.

It has been shown that all prefix-free codes are uniquely decodable. The converse is not true,
as shown by the following code:

C(a) = 0
C(b) = 01
C(c) = 011

An encoded sequence for this code can be uniquely parsed by recognizing 0 as the beginning of
each new code word. A different type of example is given in Exercise 2.6.

With variable-length codes, if there are errors in data transmission, then the source decoder
may lose codeword boundary synchronization and may make more than one symbol error. It is
therefore important to study the synchronization properties of variable-length codes. For exam-
ple, the prefix-free code {0, 10, 110, 1110, 11110} is instantaneously self-synchronizing, because
every 0 occurs at the end of a codeword. The shorter prefix-free code {0, 10, 110, 1110, 1111} is
probabilistically self-synchronizing; again, any observed 0 occurs at the end of a codeword, but
since there may be a sequence of 1111 codewords of unlimited length, the length of time before
resynchronization is a random variable. These questions are not pursued further here.

2.3.3 The Kraft inequality for prefix-free codes

The Kraft inequality [14] is a condition determining whether it is possible to construct a prefix-
free code for a given discrete source alphabet X = {a1, . . . , aM} with a given set of codeword
lengths {l(aj); 1 ≤ j ≤ M}.
Theorem 2.3.1 (Kraft inequality for prefix-free codes). Every prefix-free code for an al-
phabet X = {a1, . . . , aM} with codeword lengths {l(aj); 1 ≤ j ≤ M} satisfies

M∑
j=1

2−l(aj) ≤ 1. (2.1)

Conversely, if (2.1) is satisfied, then a prefix-free code with lengths {l(aj); 1 ≤ j ≤ M} exists.

Moreover, every full prefix-free code satisfies (2.1) with equality and every non-full prefix-free
code satisfies it with strict inequality.

For example, this theorem implies that there exists a full prefix-free code with codeword lengths
{1, 2, 2} (two such examples have already been given), but there exists no prefix-free code with
codeword lengths {1, 1, 2}.
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Before proving the theorem, we show how to represent codewords as base 2 expansions (the
base 2 analog of base 10 decimals) in the binary number system. After understanding this
representation, the theorem will be almost obvious. The base 2 expansion .y1y2 · · · yl represents
the rational number

∑l
m=1 ym2−m. For example, .011 represents 1/4 + 1/8.

Ordinary decimals with l digits are frequently used to indicate an approximation of a real number
to l places of accuracy. Here, in the same way, the base 2 expansion .y1y2 · · · yl is viewed as
‘covering’ the interval7 [

∑l
m=1 ym2−m,

∑l
m=1 ym2−m + 2−l). This interval has size 2−l and

includes all numbers whose base 2 expansions start with .y1 . . . yl.

In this way, any codeword C(aj) of length l is represented by a rational number in the interval
[0, 1) and covers an interval of size 2−l which includes all strings that contain C(aj) as a prefix
(see Figure 2.3). The proof of the theorem follows:
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00 −→ .00

01 −→ .01

1 −→ .1

1.0

Interval [0, 1/4)

Interval [1/4, 1/2)

Interval [1/2, 1)

Figure 2.5: Base 2 expansion numbers and intervals representing codewords. The
codewords represented above are (00, 01, and 1).

Proof: First, assume that C is a prefix-free code with codeword lengths {l(aj), 1 ≤ j ≤ M}.
For any distinct aj and ai in X , it was shown above that the base 2 expansion corresponding to
C(aj) cannot lie in the interval corresponding to C(ai) since C(ai) is not a prefix of C(aj). Thus
the lower end of the interval corresponding to any codeword C(aj) cannot lie in the interval
corresponding to any other codeword. Now, if two of these intervals intersect, then the lower
end of one of them must lie in the other, which is impossible. Thus the two intervals must be
disjoint and thus the set of all intervals associated with the codewords are disjoint. Since all
these intervals are contained in the interval [0, 1) and the size of the interval corresponding to
C(aj) is 2−l(aj), (2.1) is established.

Next note that if (2.1) is satisfied with strict inequality, then some interval exists in [0, 1) that
does not intersect any codeword interval; thus another codeword can be ‘placed’ in this interval
and the code is not full. If (2.1) is satisfied with equality, then the intervals fill up [0, 1). In this
case no additional code word can be added and the code is full.

Finally we show that a prefix-free code can be constructed from any desired set of codeword
lengths {l(aj), 1 ≤ j ≤ M} for which (2.1) is satisfied. Put the set of lengths in nondecreasing
order, l1 ≤ l2 ≤ · · · ≤ lM and let u1, . . . , uM be the real numbers corresponding to the codewords
in the construction to be described. The construction is quite simple: u1 = 0, and for all

7Brackets and parentheses, respectively, are used to indicate closed and open boundaries; thus the interval
[a, b) means the set of real numbers u such that a ≤ u < b.
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j, 1 < j ≤ M ,

uj =
j−1∑
i=1

2−li . (2.2)

Each term on the right is an integer multiple of 2−lj , so uj is also an integer multiple of 2−lj . From
(2.1), uj < 1, so uj can be represented by a base 2 expansion with lj places. The corresponding
codeword of length lj can be added to the code while preserving prefix-freedom (see Figure 2.6).
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Figure 2.6: Construction of codewords for the set of lengths {2, 2, 2, 3, 3}. C(i) is formed
from ui by representing ui to li places.

Some final remarks on the Kraft inequality:

• Just because a code has lengths that satisfy (2.1), it does not follow that the code is prefix-
free, or even uniquely decodable.

• Exercise 2.11 shows that Theorem 2.3.1 also holds for all uniquely-decodable codes— i.e.,
there exists a uniquely-decodable code with codeword lengths {l(aj), 1 ≤ j ≤ M} if and
only if (2.1) holds. This will imply that if a uniquely-decodable code exists with a certain
set of codeword lengths, then a prefix-free code exists with the same set of lengths. So why
use any code other than a prefix-free code?

2.4 Probability models for discrete sources

It was shown above that prefix-free codes exist for any set of codeword lengths satisfying the
Kraft inequality. When does it desirable to use one of these codes?– i.e., when is the expected
number of coded bits per source symbol less than log M and why is the expected number of
coded bits per source symbol the primary parameter of importance?

This question cannot be answered without a probabilistic model for the source. For example,
the M = 4 prefix-free set of codewords {0, 10, 110, 111} has an expected length of 2.25 >
2 = log M if the source symbols are equiprobable, but if the source symbol probabilities are
{1/2, 1/4, 1/8, 1/8}, then the expected length is 1.75 < 2.

The discrete sources that one meets in applications usually have very complex statistics. For
example, consider trying to compress email messages. In typical English text, some letters such
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as e and o occur far more frequently than q, x, and z. Moreover, the letters are not independent;
for example h is often preceded by t, and q is almost always followed by u. Next, some strings
of letters are words, while others are not; those that are not have probability near 0 (if in
fact the text is correct English). Over longer intervals, English has grammatical and semantic
constraints, and over still longer intervals, such as over multiple email messages, there are still
further constraints.

It should be clear therefore that trying to find an accurate probabilistic model of a real-world
discrete source is not going to be a productive use of our time. An alternative approach, which
has turned out to be very productive, is to start out by trying to understand the encoding of
“toy” sources with very simple probabilistic models. After studying such toy sources, it will
be shown how to generalize to source models with more and more general structure, until,
presto, real sources can be largely understood even without good stochastic models. This is a
good example of a problem where having the patience to look carefully at simple and perhaps
unrealistic models pays off handsomely in the end.

The type of toy source that will now be analyzed in some detail is called a discrete memoryless
source.

2.4.1 Discrete memoryless sources

A discrete memoryless source (DMS) is defined by the following properties:

• The source output is an unending sequence, X1, X2, X3, . . . , of randomly selected symbols
from a finite set X = {a1, a2, . . . , aM}, called the source alphabet.

• Each source output X1, X2, . . . is selected from X using the same probability mass function
(pmf) {pX(a1), . . . , pX(aM )}. Assume that pX(aj) > 0 for all j, 1 ≤ j ≤ M , since there is
no reason to assign a code word to a symbol of zero probability and no reason to model a
discrete source as containing impossible symbols.

• Each source output Xk is statistically independent of the previous outputs X1, . . . , Xk−1.

The randomly chosen symbols coming out of the source are called random symbols. They are
very much like random variables except that they may take on nonnumeric values. Thus, if
X denotes the result of a fair coin toss, then it can be modeled as a random symbol that
takes values in the set {Heads, Tails} with equal probability. Note that if X is a nonnumeric
random symbol, then it makes no sense to talk about its expected value. However, the notion
of statistical independence between random symbols is the same as that for random variables,
i.e., the event that Xi is any given element of X is independent of the events corresponding to
the values of the other random symbols.

The word memoryless in the definition refers to the statistical independence between different
random symbols, i.e., each variable is chosen with no memory of how the previous random
symbols were chosen. In other words, the source symbol sequence is independent and identically
distributed (iid).8

In summary, a DMS is a semi-infinite iid sequence of random symbols

X1, X2, X3, . . .

8Do not confuse this notion of memorylessness with any non-probabalistic notion in system theory.
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each drawn from the finite set X , each element of which has positive probability.

A sequence of independent tosses of a biased coin is one example of a DMS. The sequence of
symbols drawn (with replacement) in a ScrabbleTM game is another. The reason for studying
these sources is that they provide the tools for studying more realistic sources.

2.5 Minimum L for prefix-free codes

The Kraft inequality determines which sets of codeword lengths are possible for prefix-free codes.
Given a discrete memoryless source (DMS), we want to determine what set of codeword lengths
can be used to minimize the expected length of a prefix-free code for that DMS. That is, we
want to minimize the expected length subject to the Kraft inequality.

Suppose a set of lengths l(a1), . . . , l(aM ) (subject to the Kraft inequality) is chosen for encoding
each symbol into a prefix-free codeword. Define L(X) (or more briefly L) as a random variable
representing the codeword length for the randomly selected source symbol. The expected value
of L for the given code is then given by

L = E[L] =
M∑

j=1

l(aj)pX(aj).

We want to find Lmin, which is defined as the minimum value of L over all sets of codeword
lengths satisfying the Kraft inequality.

Before finding Lmin, we explain why this quantity is of interest. The number of bits resulting
from using the above code to encode a long block X = (X1, X2, . . . , Xn) of symbols is Sn =
L(X1) + L(X2) + · · · + L(Xn). This is a sum of n iid random variables (rv’s), and the law of
large numbers, which is discussed in Section 2.7.1, implies that Sn/n, the number of bits per
symbol in this long block, is very close to L with probability very close to 1. In other words, L
is essentially the rate (in bits per source symbol) at which bits come out of the source encoder.
This motivates the objective of finding Lmin and later of finding codes that achieve the minimum.

Before proceeding further, we simplify our notation. We have been carrying along a completely
arbitrary finite alphabet X = {a1, . . . , aM} of size M = |X |, but this problem (along with
most source coding problems) involves only the probabilities of the M symbols and not their
names. Thus define the source alphabet to be {1, 2, . . . , M}, denote the symbol probabilities by
p1, . . . , pM , and denote the corresponding codeword lengths by l1, . . . , lM . The expected length
of a code is then

L =
M∑

j=1

ljpj

Mathematically, the problem of finding Lmin is that of minimizing L over all sets of integer
lengths l1, . . . , lM subject to the Kraft inequality:

Lmin = min
l1,... ,lM :

∑
j 2−lj≤1


M∑

j=1

pjlj

 . (2.3)
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2.5.1 Lagrange multiplier solution for the minimum L

The minimization in (2.3) is over a function of M variables, l1, . . . , lM , subject to constraints
on those variables. Initially, consider a simpler problem where there are no integer constraint
on the lj . This simpler problem is then to minimize

∑
j pjlj over all real values of l1, . . . , lM

subject to
∑

j 2−lj ≤ 1. The resulting minimum is called Lmin(noninteger).

Since the allowed values for the lengths in this minimization include integer lengths, it is clear
that Lmin(noninteger) ≤ Lmin. This noninteger minimization will provide a number of important
insights about the problem, so its usefulness extends beyond just providing a lower bound on
Lmin.

Note first that the minimum of
∑

j ljpj subject to
∑

j 2−lj ≤ 1 must occur when the constraint
is satisfied with equality, for otherwise, one of the lj could be reduced, thus reducing

∑
j pjlj

without violating the constraint. Thus the problem is to minimize
∑

j pjlj subject to
∑

j 2−lj =
1.

Problems of this type are often solved by using a Lagrange multiplier. The idea is to replace the
minimization of one function, subject to a constraint on another function, by the minimization
of a linear combination of the two functions, in this case the minimization of∑

j

pjlj + λ
∑

j

2−lj . (2.4)

If the method works, the expression can be minimized for each choice of λ (called a Lagrange mul-
tiplier); λ can then be chosen so that the optimizing choice of l1, . . . , lM satisfies the constraint.
The minimizing value of (2.4) is then

∑
j pjlj + λ. This choice of l1, . . . , lM minimizes the orig-

inal constrained optimization, since for any l′1, . . . , l′M that satisfies the constraint
∑

j 2−l′j = 1,
the expression in (2.4) is

∑
j pjl

′
j + λ, which must be greater than or equal to

∑
j pjlj + λ.

We can attempt9 to minimize (2.4) simply by setting the derivitive with respect to each lj equal
to 0. This yields

pj − λ(ln 2)2−lj = 0; 1 ≤ j ≤ M. (2.5)

Thus 2−lj = pj/(λ ln 2). Since
∑

j pj = 1, λ must be equal to 1/ ln 2 in order to satisfy the
constraint

∑
j 2−lj = 1. Then 2−lj = pj , or equivalently lj = − log pj . It will be shown shortly

that this stationary point actually achieves a minimum. Substituting this solution into (2.3),

Lmin(noninteger) = −
M∑

j=1

pj log pj . (2.6)

The quantity on the right side of (2.6) is called the entropy10 of X, and denoted as H[X]. Thus

H[X] = −
∑

j

pj log pj .

9There are well-known rules for when the Lagrange multiplier method works and when it can be solved simply
by finding a stationary point. The present problem is so simple, however, that this machinery is unnecessary.

10Note that X is a random symbol and carries with it all of the accompanying baggage, including a pmf.
The entropy H[X] is a numerical function of the random symbol including that pmf; in the same way E[L] is a
numerical function of the rv L. Both H[X] and E[L] are expected values of particular rv’s. In distinction, L(X)
above is an rv in its own right; it is based on some function l(x) mapping X → R and takes the sample value l(x)
for all sample points such that X = x.



28 CHAPTER 2. CODING FOR DISCRETE SOURCES

In summary, the entropy H[X] is a lower bound to L for prefix-free codes and this lower bound is
achieved when lj = − log pj for each j. The bound was derived by ignoring the integer constraint,
and can be met only if − log pj is an integer for each j; i.e., if each pj is a power of 2.

2.5.2 Entropy bounds on L

We now return to the problem of minimizing L with an integer constraint on lengths. The
following theorem both establishes the correctness of the previous non-integer optimization and
provides an upper bound on Lmin.

Theorem 2.5.1 (Entropy bounds for prefix-free codes). Let X be a discrete random
symbol with symbol probabilities p1, . . . , pM . Let Lmin be the minimum expected codeword length
over all prefix-free codes for X. Then

H[X] ≤ Lmin < H[X] + 1 bit/symbol. (2.7)

Furthermore, Lmin = H[X] if and only if each probability pj is an integer power of 2.

Proof: It is first shown that H[X] ≤ L for all prefix-free codes. Let l1, . . . , lM be the codeword
lengths of an arbitrary prefix-free code. Then

H[X] − L =
M∑

j=1

pj log
1
pj

−
M∑

j=1

pjlj =
M∑

j=1

pj log
2−lj

pj
, (2.8)

where log 2−lj has been substituted for −lj .

We now use the very useful inequality lnu ≤ u− 1, or equivalently log u ≤ (log e)(u− 1), which
is illustrated in Figure 2.7. Note that equality holds only at the point u = 1.

�
�
�
�
�
�
�
�u−1

u1

lnu

Figure 2.7: The inequality lnu ≤ u − 1. The inequality is strict except at u = 1.

Substituting this inequality in (2.8),

H[X] − L ≤ (log e)
M∑

j=1

pj

(
2−lj

pj
− 1

)
= (log e)

 M∑
j=1

2−lj −
M∑

j=1

pj

 ≤ 0, (2.9)

where the Kraft inequality and
∑

j pj = 1 has been used. This establishes the left side of (2.7).
The inequality in (2.9) is strict unless 2−lj/pj = 1, or equivalently lj = − log pj , for all j. For
integer lj , this can be satisfied with equality if and only if pj is an integer power of 2 for all j. For



2.5. MINIMUM L FOR PREFIX-FREE CODES 29

arbitrary real values of lj , this proves that (2.5) minimizes (2.3) without the integer constraint,
thus verifying (2.6.)

To complete the proof, it will be shown that a prefix-free code exists with L < H[X]+1. Choose
the codeword lengths to be

lj = �− log pj� ,

where the ceiling notation �u� denotes the smallest integer less than or equal to u. With this
choice,

− log pj ≤ lj < − log pj + 1. (2.10)

Since the left side of (2.10) is equivalent to 2−lj ≤ pj , the Kraft inequality is satisfied:∑
j

2−lj ≤
∑

j

pj = 1.

Thus a prefix-free code exists with the above lengths. From the right side of (2.10), the expected
codeword length of this code is upperbounded by

L =
∑

j

pjlj <
∑

j

pj (− log pj + 1) = H[X] + 1.

Since Lmin ≤ L, Lmin < H[X] + 1, completing the proof.

Both the proof above and the noninteger minimization in (2.6) suggest that the optimal length
of a codeword for a source symbol of probability pj should be approximately − log pj . This is
not quite true, because, for example, if M = 2 and p1 = 2−20, p2 = 1−2−20, then − log p1 = 20,
but the optimal l1 is 1. However, the last part of the above proof shows that if each li is chosen
as an integer approximation to − log pi, then L is at worst within one bit of H[X].

For sources with a small number of symbols, the upper bound in the theorem appears to be too
loose to have any value. When these same arguments are applied later to long blocks of source
symbols, however, the theorem leads directly to the source coding theorem.

2.5.3 Huffman’s algorithm for optimal source codes

In the very early days of information theory, a number of heuristic algorithms were suggested
for choosing codeword lengths lj to approximate − log pj . Both Claude Shannon and Robert
Fano had suggested such heuristic algorithms by 1948. It was conjectured at that time that,
since this was an integer optimization problem, its optimal solution would be quite difficult.
It was quite a surprise therefore when David Huffman [11] came up with a very simple and
straightforward algorithm for constructing optimal (in the sense of minimal L) prefix-free codes.
Huffman developed the algorithm in 1950 as a term paper in Robert Fano’s information theory
class at MIT.

Huffman’s trick, in today’s jargon, was to “think outside the box.” He ignored the Kraft inequal-
ity, and looked at the binary code tree to establish properties that an optimal prefix-free code
should have. After discovering a few simple properties, he realized that they led to a simple
recursive procedure for constructing an optimal code.
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Figure 2.8: Some simple optimal codes.

The simple examples in Figure 2.8 illustrate some key properties of optimal codes. After stating
these properties precisely, the Huffman algorithm will be almost obvious.

The property of the length assignments in the three-word example above can be generalized as
follows: the longer the codeword, the less probable the corresponding symbol must be. More
precisely:

Lemma 2.5.1. Optimal codes have the property that if pi > pj, then li ≤ lj.

Proof: Assume to the contrary that a code has pi > pj and li > lj . The terms involving symbols
i and j in L are pili + pjlj . If the two code words are interchanged, thus interchanging li and lj ,
this sum decreases, i.e.,

(pili+pjlj) − (pilj+pjli) = (pi − pj)(li − lj) > 0.

Thus L decreases, so any code with pi > pj and li > lj is nonoptimal.

An even simpler property of an optimal code is as follows:

Lemma 2.5.2. Optimal prefix-free codes have the property that the associated code tree is full.

Proof: If the tree is not full, then a codeword length could be reduced (see Figures 2.2 and 2.3).

Define the sibling of a codeword as the binary string that differs from the codeword in only the
final digit. A sibling in a full code tree can be either a codeword or an intermediate node of the
tree.

Lemma 2.5.3. Optimal prefix-free codes have the property that, for each of the longest code-
words in the code, the sibling of that codeword is another longest codeword.

Proof: A sibling of a codeword of maximal length cannot be a prefix of a longer codeword. Since
it cannot be an intermediate node of the tree, it must be a codeword.

For notational convenience, assume that the M = |X | symbols in the alphabet are ordered so
that p1 ≥ p2 ≥ · · · ≥ pM .



2.5. MINIMUM L FOR PREFIX-FREE CODES 31

Lemma 2.5.4. Let X be a random symbol with a pmf satisfying p1 ≥ p2 ≥ · · · ≥ pM . There
is an optimal prefix-free code for X in which the codewords for M − 1 and M are siblings and
have maximal length within the code.

Proof: There are finitely many codes satisfying the Kraft inequality with equality,11 so consider
a particular one that is optimal. If pM < pj for each j < M , then, from Lemma 2.5.1, lM ≥ lj
for each and lM has maximal length. If pM = pj for one or more j < M , then lj must be
maximal for at least one such j. Then if lM is not maximal, C(j) and C(M) can be interchanged
with no loss of optimality, after which lM is maximal. Now if C(k) is the sibling of C(M) in this
optimal code, then lk also has maximal length. By the argument above, C(M − 1) can then be
exchanged with C(k) with no loss of optimality.

The Huffman algorithm chooses an optimal code tree by starting with the two least likely
symbols, specifically M −1 and M −2, and constraining them to be siblings in the yet unknown
code tree. It makes no difference which sibling ends in 1 and which in 0. How is the rest of the
tree to be chosen?

If the above pair of siblings is removed from the yet unknown tree, the rest of the tree must
contain M − 1 leaves, namely the M − 2 leaves for the original first M − 2 symbols, and the
parent node of the removed siblings. The probability p′M−1 associated with this new leaf is taken
as pM−1 + pM . This tree of M − 1 leaves is viewed as a code for a reduced random symbol X ′

with a reduced set of probabilities given as p1, . . . , pM−2 for the original first M − 2 symbols
and p′M−1 for the new symbol M − 1.

To complete the algorithm, an optimal code is constructed for X ′. It will be shown that an
optimal code for X can be generated by constructing an optimal code for X ′, and then grafting
siblings onto the leaf corresponding to symbol M − 1. Assuming this fact for the moment, the
problem of constructing an optimal M -ary code has been replaced with constructing an optimal
M−1-ary code. This can be further reduced by applying the same procedure to the M−1-ary
random symbol, and so forth down to a binary symbol for which the optimal code is obvious.

The following example in Figures 2.9 to 2.11 will make the entire procedure obvious. It starts
with a random symbol X with probabilities {0.4, 0.2, 0.15, 0.15, 0.1} and generates the reduced
random symbol X ′ in Figure 2.9. The subsequent reductions are shown in Figures 2.10 and 2.11.

pj

0.4

0.2

0.15

0.15

0.1

symbol
1

2

3

4

5���
��

(0.25) 1
0

The two least likely symbols, 4 and
5 have been combined as siblings.
The reduced set of probabilities
then becomes {0.4, 0.2, 0.15, 0.25}.

Figure 2.9: Step 1 of the Huffman algorithm; finding X ′ from X

.

Another example using a different set of probabilities and leading to a different set of codeword
lengths is given in Figure 2.12:

11Exercise 2.10 proves this for those who enjoy such things.
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Figure 2.10: Finding X ′′ from X ′.
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Figure 2.11: The completed Huffman code.

The only thing remaining to show that the Huffman algorithm constructs optimal codes is to
show that an optimal code for the reduced random symbol X ′ yields an optimal code for X.
Consider Figure 2.13, which shows the code tree for X ′ corresponding to X in Figure 2.12.

Note that Figures 2.12 and 2.13 differ in that C(4) and C(5), each of length 3 in Figure 2.12,
have been replaced by a single codeword of length 2 in Figure 2.13. The probability of that
single symbol is the sum of the two probabilities in Figure 2.12. Thus the expected codeword
length for Figure 2.12 is that for Figure 2.13, increased by p4 + p5. This accounts for the fact
that C(4) and C(5) have lengths one greater than their parent node.

In general, comparing the expected length L′ of any code for X ′ and the corresponding L of the
code generated by extending C′(M − 1) in the code for X ′ into two siblings for M − 1 and M ,
it is seen that

L = L ′ + pM−1 + pM .

This relationship holds for all codes for X in which C(M − 1) and C(M) are siblings (which
includes at least one optimal code). This proves that L is minimized by minimizing L

′, and
also shows that Lmin = L ′

min + pM−1 + pM . This completes the proof of the optimality of the
Huffman algorithm.

It is curious that neither the Huffman algorithm nor its proof of optimality give any indication
of the entropy bounds, H[X] ≤ Lmin < H[X] + 1. Similarly, the entropy bounds do not suggest
the Huffman algorithm. One is useful in finding an optimal code; the other provides insightful
performance bounds.
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Figure 2.12: Completed Huffman code for a different set of probabilities.
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Figure 2.13: Completed reduced Huffman code for Figure 2.12.

As an example of the extent to which the optimal lengths approximate − log pj , the source
probabilities in Figure 2.11 are {0.40, 0.20, 0.15, 0.15, 0.10}, so − log pj takes the set of values
{1.32, 2.32, 2.74, 2.74, 3.32} bits; this approximates the lengths {1, 3, 3, 3, 3} of the optimal code
quite well. Similarly, the entropy is H[X] = 2.15 bits/symbol and Lmin = 2.2 bits/symbol, quite
close to H[X]. However, it would be difficult to guess these optimal lengths, even in such a
simple case, without the algorithm.

For the example of Figure 2.12, the source probabilities are {0.35, 0.20, 0.20, 0.15, 0.10}, the
values of − log pi are {1.51, 2.32, 2.32, 2.74, 3.32}, and the entropy is H[X] = 2.20. This is not
very different from Figure 2.11. However, the Huffman code now has lengths {2, 2, 2, 3, 3} and
average length L = 2.25 bits/symbol. (The code of Figure 2.11 has average length L = 2.30 for
these source probabilities.) It would be hard to predict these perturbations without carrying
out the algorithm.

2.6 Entropy and fixed-to-variable-length codes

Entropy is now studied in more detail, both to better understand the entropy bounds and to
understand the entropy of n-tuples of successive source letters.

The entropy H[X] is a fundamental measure of the randomness of a random symbol X. It has
many important properties. The property of greatest interest here is that it is the smallest
expected number L of bits per source symbol required to map the sequence of source symbols
into a bit sequence in a uniquely decodable way. This will soon be demonstrated by generalizing
the variable-length codes of the last few sections to codes in which multiple source symbols are



34 CHAPTER 2. CODING FOR DISCRETE SOURCES

encoded together. First, however, several other properties of entropy are derived.

Definition: The entropy of a discrete random symbol12 X with alphabet X is

H[X] =
∑
x∈X

pX(x) log
1

pX(x)
= −

∑
x∈X

pX(x) log pX(x). (2.11)

Using logarithms to the base 2, the units of H[X] are bits/symbol. If the base of the logarithm
is e, then the units of H[X] are called nats/symbol. Conversion is easy; just remember that
log y = (ln y)/(ln 2) or ln y = (log y)/(log e), both of which follow from y = eln y = 2log y by
taking logarithms. Thus using another base for the logarithm just changes the numerical units
of entropy by a scale factor.

Note that the entropy H[X] of a discrete random symbol X depends on the probabilities of the
different outcomes of X, but not on the names of the outcomes. Thus, for example, the entropy
of a random symbol taking the values green, blue, and red with probabilities 0.2, 0.3, 0.5,
respectively, is the same as the entropy of a random symbol taking on the values Sunday,
Monday, Friday with the same probabilities 0.2, 0.3, 0.5.

The entropy H[X] is also called the uncertainty of X, meaning that it is a measure of the
randomness of X. Note that entropy is the expected value of the rv log(1/pX(X)). This
random variable is called the log pmf rv.13 Thus the entropy is the expected value of the log
pmf rv.

Some properties of entropy:

• For any discrete random symbol X, H[X] ≥ 0. This follows because pX(x) ≤ 1, so
log(1/pX(x)) ≥ 0. The result follows from (2.11).

• H[X] = 0 if and only if X is deterministic. This follows since pX(x) log(1/pX(x)) = 0 if and
only if pX(x) equals 0 or 1.

• The entropy of an equiprobable random symbol X with an alphabet X of size M is H[X] =
log M . This follows because, if pX(x) = 1/M for all x ∈ X , then

H[X] =
∑
x∈X

1
M

log M = log M.

In this case, the rv − log pX(X) has the constant value log M .

• More generally, the entropy H[X] of a random symbol X defined on an alphabet X of size
M satisfies H[X] ≤ log M , with equality only in the equiprobable case. To see this, note
that

H[X] − log M =
∑
x∈X

pX(x)
[
log

1
pX(x)

− log M

]
=

∑
x∈X

pX(x)
[
log

1
MpX(x)

]
≤ (log e)

∑
x∈X

pX(x)
[

1
MpX(x)

− 1
]

= 0,

12If one wishes to consider discrete random symbols with one or more symbols of zero probability, one can still
use this formula by recognizing that limp→0 p log(1/p) = 0 and then defining 0 log 1/0 as 0 in (2.11). Exercise 2.18
illustrates the effect of zero probability symbols in a variable-length prefix code.

13This rv is often called self information or surprise, or uncertainty. It bears some resemblance to the ordinary
meaning of these terms, but historically this has caused much more confusion than enlightenment. Log pmf, on
the other hand, emphasizes what is useful here
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This uses the inequality log u ≤ (log e)(u−1) (after omitting any terms for which pX(x) = 0).
For equality, it is necessary that pX(x) = 1/M for all x ∈ X .

In summary, of all random symbols X defined on a given finite alphabet X , the highest entropy
occurs in the equiprobable case, namely H[X] = log M , and the lowest occurs in the deterministic
case, namely H[X] = 0. This supports the intuition that the entropy of a random symbol X is
a measure of its randomness.

For any pair of discrete random symbols X and Y , XY is another random symbol. The sample
values of XY are the set of all pairs xy, x ∈ X , y ∈ Y and the probability of each sample value
xy is pXY (x, y). An important property of entropy is that if X and Y are independent discrete
random symbols, then H[XY ] = H[X] + H[Y ]. This follows from:

H[XY ] = −
∑
X×Y

pXY (x, y) log pXY (x, y)

= −
∑
X×Y

pX(x)pY (y) (log pX(x) + log pY (y)) = H[X] + H[Y ]. (2.12)

Extending this to n random symbols, the entropy of a random symbol X n corresponding to a
block of n iid outputs from a discrete memoryless source is H[X n] = nH[X]; i.e., each symbol
increments the entropy of the block by H[X] bits.

2.6.1 Fixed-to-variable-length codes

Recall that in Section 2.2 the sequence of symbols from the source was segmented into successive
blocks of n symbols which were then encoded. Each such block was a discrete random symbol
in its own right, and thus could be encoded as in the single-symbol case. It was seen that by
making n large, fixed-length codes could be constructed in which the number L of encoded bits
per source symbol approached log M as closely as desired.

The same approach is now taken for variable-length coding of discrete memoryless sources. A
block of n source symbols, X1, X2, . . . , Xn has entropy H[X n] = nH[X]. Such a block is a
random symbol in its own right and can be encoded using a variable-length prefix-free code.
This provides a fixed-to-variable-length code, mapping n-tuples of source symbols to variable-
length binary sequences. It will be shown that the expected number L of encoded bits per source
symbol can be made as close to H[X] as desired.

Surprisingly, this result is very simple. Let E[L(X n)] be the expected length of a variable-length
prefix-free code for X n. Denote the minimum expected length of any prefix-free code for X n

by E[L(X n)]min. Theorem 2.5.1 then applies. Using (2.7),

H[X n] ≤ E[L(X n)]min < H[X n] + 1. (2.13)

Define Lmin,n = E[L(Xn)]min

n ; i.e., Lmin,n is the minimum number of bits per source symbol over
all prefix-free codes for X n. From (2.13),

H[X] ≤ Lmin,n < H[X] +
1
n

. (2.14)

This simple result establishes the following important theorem:
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Theorem 2.6.1 (Prefix-free source coding theorem). For any discrete memoryless source
with entropy H[X], and any integer n ≥ 1, there exists a prefix-free encoding of source n-tuples for
which the expected codeword length per source symbol L is at most H[X]+1/n. Furthermore, no
prefix-free encoding of fixed-length source blocks of any length n results in an expected codeword
length L less than H[X].

This theorem gives considerable significance to the entropy H[X] of a discrete memoryless source:
H[X] is the minimum expected number L of bits per source symbol that can be achieved by
fixed-to-variable-length prefix-free codes.

There are two potential questions about the significance of the theorem. First, is it possible
to find uniquely-decodable codes other than prefix-free codes for which L is less than H[X]?
Second, is it possible to further reduce L by using variable-to-variable-length codes?

For example, if a binary source has p1 = 10−6 and p0 = 1 − 10−6, fixed-to-variable-length
codes must use remarkably long n-tuples of source symbols to approach the entropy bound.
Run-length coding, which is an example of variable-to-variable-length coding, is a more sensible
approach in this case: the source is first encoded into a sequence representing the number of
source 0’s between each 1, and then this sequence of integers is encoded. This coding technique
is further developed in Exercise 2.23.

The next section strengthens Theorem 2.6.1, showing that H[X] is indeed a lower bound to L
over all uniquely-decodable encoding techniques.

2.7 The AEP and the source coding theorems

We first review the weak14 law of large numbers (WLLN) for sequences of iid rv’s. Applying
the WLLN to a particular iid sequence, we will establish a form of the remarkable asymptotic
equipartition property (AEP).

Crudely, the AEP says that, given a very long string of n iid discrete random symbols
X1, . . . , Xn, there exists a “typical set” of sample strings (x1, . . . , xn) whose aggregate probabil-
ity is almost 1. There are roughly 2nH[X] typical strings of length n, and each has a probability
roughly equal to 2−nH[X]. We will have to be careful about what the words “almost” and
“roughly” mean here.

The AEP will give us a fundamental understanding not only of source coding for discrete memo-
ryless sources, but also of the probabilistic structure of such sources and the meaning of entropy.
The AEP will show us why general types of source encoders, such as variable-to-variable-length
encoders, cannot have a strictly smaller expected length per source symbol than the best fixed-
to-variable-length prefix-free codes for discrete memoryless sources.

14The word weak is something of a misnomer, since this is one of the most useful results in probability theory.
There is also a strong law of large numbers; the difference lies in the limiting behavior of an infinite sequence of
rv’s, but this difference is not relevant here. The weak law applies in some cases where the strong law does not,
but this also is not relevant here.
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2.7.1 The weak law of large numbers

Let Y1, Y2, . . . , be a sequence of iid rv’s. Let Y and σ2
Y be the mean and variance of each Yj .

Define the sample average An
Y of Y1, . . . , Yn as

An
Y =

Sn
Y

n
where Sn

Y = Y1 + · · · + Yn.

The sample average An
Y is itself an rv, whereas, of course, the mean Y is simply a real number.

Since the sum Sn
Y has mean nY and variance nσ2

Y , the sample average An
Y has mean E[An

Y ] = Y
and variance σ2

An
Y

= σ2
Sn

Y
/n2 = σ2

Y /n. It is important to understand that the variance of the sum
increases with n and the variance of the normalized sum (the sample average, An

Y ), decreases
with n.

The Chebyshev inequality states that if σ2
X < ∞ for an rv X, then, Pr{|X − X| ≥ ε} ≤ σ2

X/ε2

for any ε > 0 (see Exercise 2.3 or any text on probability such as [2] or [19]). Applying this
inequality to An

Y yields the simplest form of the WLLN: for any ε > 0,

Pr{|An
Y − Y | ≥ ε} ≤ σ2

Y

nε2
. (2.15)

This is illustrated in Figure 2.14.
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Figure 2.14: Sketch of the distribution function of the sample average for different n.
As n increases, the distribution function approaches a unit step at Y . The closeness to
a step within Y ± ε is upperbounded by (2.15).

Since the right side of (2.15) approaches 0 with increasing n for any fixed ε > 0,

lim
n→∞

Pr{|An
Y − Y | ≥ ε} = 0. (2.16)

For large n, (2.16) says that An
Y −Y is small with high probability. It does not say that An

Y = Y
with high probability (or even nonzero probability), and it does not say that Pr(|An

Y − Y | ≥
ε) = 0. As illustrated in Figure 2.14, both a nonzero ε and a nonzero probability are required
here, even though they can be made simultaneously as small as desired by increasing n.

In summary, the sample average An
Y is an rv whose mean Y is independent of n, but whose

standard deviation σY /
√

n approaches 0 as n → ∞. Therefore the distribution of the sample
average becomes concentrated near Y as n increases. The WLLN is simply this concentration
property, stated more precisely by either (2.15) or (2.16).
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The WLLN, in the form of (2.16), applies much more generally than the simple case of iid rv’s.
In fact, (2.16) provides the central link between probability models and the real phenomena
being modeled. One can observe the outcomes both for the model and reality, but probabilities
are assigned only for the model. The WLLN, applied to a sequence of rv’s in the model, and
the concentration property (if it exists), applied to the corresponding real phenomenon, provide
the basic check on whether the model corresponds reasonably to reality.

2.7.2 The asymptotic equipartition property

This section starts with a sequence of iid random symbols and defines a sequence of random
variables (rv’s) as functions of those symbols. The WLLN, applied to these rv’s, will permit
the classification of sample sequences of symbols as being ‘typical’ or not, and then lead to the
results alluded to earlier.

Let X1, X2, . . . be a sequence of iid discrete random symbols with a common pmf pX(x)>0, x∈X .
For each symbol x in the alphabet X , let w(x) = − log pX(x). For each Xk in the sequence,
define W (Xk) to be the rv that takes the value w(x) for Xk = x. Then W (X1), W (X2), . . . is a
sequence of iid discrete rv’s, each with mean

E[W (Xk)] = −
∑
x∈X

pX(x) log pX(x) = H[X], (2.17)

where H[X] is the entropy of the random symbol X.

The rv W (Xk) is called15 the log pmf of Xk and the entropy of Xk is the mean of W (Xk).

The most important property of the log pmf for iid random symbols comes from observing, for
example, that for the event X1 = x1, X2 = x2, the outcome for W (X1) + W (X2) is

w(x1) + w(x2) = − log pX(x1) − log pX(x2) = − log{pX1X2(x1x2)}. (2.18)

In other words, the joint pmf for independent random symbols is the product of the individual
pmf’s, and therefore the log of the joint pmf is the sum of the logs of the individual pmf’s.

We can generalize (2.18) to a string of n random symbols, X n = (X1, . . . , Xn). For an event
X n = xn where xn = (x1, . . . , xn), the outcome for the sum W (X1) + · · · + W (Xn) is∑n

k=1
w(xk) = −

∑n

k=1
log pX(xk) = − log pXn(xn). (2.19)

The WLLN can now be applied to the sample average of the log pmfs. Let

An
W =

W (X1) + · · · + W (Xn)
n

=
− log pXn(X n)

n
(2.20)

be the sample average of the log pmf.

From (2.15), it follows that

Pr
( ∣∣An

W − E[W (X)]
∣∣ ≥ ε

)
≤ σ2

W

nε2
. (2.21)

15It is also called self information and various other terms which often cause confusion.
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Substituting (2.17) and (2.20) into (2.21),

Pr
( ∣∣∣∣− log pXn(X n)

n
− H[X]

∣∣∣∣ ≥ ε

)
≤ σ2

W

nε2
. (2.22)

In order to interpret this result, define the typical set Tn
ε for any ε > 0 as

Tn
ε =

{
xn :

∣∣∣∣− log pXn(xn)
n

− H[X]
∣∣∣∣ < ε

}
. (2.23)

Thus Tn
ε is the set of source strings of length n for which the sample average of the log pmf is

within ε of its mean H[X]. Eq. (2.22) then states that the aggregrate probability of all strings
of length n not in Tn

ε is at most σ2
W /(nε2). Thus,

Pr(X n ∈ Tn
ε ) ≥ 1 − σ2

W

nε2
. (2.24)

As n increases, the aggregate probability of Tn
ε approaches 1 for any given ε > 0, so Tn

ε is
certainly a typical set of source strings. This is illustrated in Figure 2.15.
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Figure 2.15: Sketch of the distribution function of the sample average log pmf. As n
increases, the distribution function approaches a unit step at H. The typical set is the
set of sample strings of length n for which the sample average log pmf stays within ε
of H; as illustrated, its probability approaches 1 as n → ∞.

Rewrite (2.23) in the form

Tn
ε =

{
xn : n(H[X] − ε) < − log pXn(xn) < n(H[X] + ε)

}
.

Multiplying by −1 and exponentiating,

Tn
ε =

{
xn : 2−n(H[X]+ε) < pXn(xn) < 2−n(H[X]−ε)

}
. (2.25)

Eq. (2.25) has the intuitive connotation that the n-strings in Tn
ε are approximately equiprobable.

This is the same kind of approximation that one would use in saying that 10−1001 ≈ 10−1000;
these numbers differ by a factor of 10, but for such small numbers it makes sense to compare the
exponents rather than the numbers themselves. In the same way, the ratio of the upper to lower
bound in (2.25) is 22εn, which grows unboundedly with n for fixed ε. However, as seen in (2.23),
− 1

n log pXn(xn) is approximately equal to H[X] for all xn ∈ Tn
ε . This is the important notion,

and it does no harm to think of the n-strings in Tn
ε as being approximately equiprobable.
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The set of all n-strings of source symbols is thus separated into the typical set Tn
ε and the

complementary atypical set (Tn
ε )c. The atypical set has aggregate probability no greater than

σ2
W /(nε2), and the elements of the typical set are approximately equiprobable (in this peculiar

sense), each with probability about 2−nH[X].

The typical set Tn
ε depends on the choice of ε. As ε decreases, the equiprobable approximation

(2.25) becomes tighter, but the bound (2.24) on the probability of the typical set is further
from 1. As n increases, however, ε can be slowly decreased, thus bringing the probability of the
typical set closer to 1 and simultaneously tightening the bounds on equiprobable strings.

Let us now estimate the number of elements |Tn
ε | in the typical set. Since pXn(xn) > 2−n(H[X]+ε)

for each xn ∈ Tn
ε ,

1 ≥
∑

xn∈T n
ε

pXn(xn) > |Tn
ε | 2−n(H[X]+ε).

This implies that |Tn
ε | < 2n(H[X]+ε). In other words, since each xn ∈ Tn

ε contributes at least
2−n(H[X]+ε) to the probability of Tn

ε , the number of these contributions can be no greater than
2n(H[X]+ε).

Conversely, since Pr(Tn
ε ) ≥ 1 − σ2

W /(nε2), |Tn
ε | can be lower bounded by

1 − σ2
W

nε2
≤

∑
xn∈T n

ε

pXn(xn) < |Tn
ε |2−n(H[X]−ε),

which implies |Tn
ε | > [1 − σ2

W /(nε2)]2n(H[X]−ε). In summary,(
1 − σ2

W

nε2

)
2n(H[X]−ε) < |Tn

ε | < 2n(H[X]+ε). (2.26)

For large n, then, the typical set Tn
ε has aggregate probability approximately 1 and contains

approximately 2nH[X] elements, each of which has probability approximately 2−nH[X]. That is,
asymptotically for very large n, the random symbol X n resembles an equiprobable source with
alphabet size 2nH[X].

The quantity σ2
W /(nε2) in many of the equations above is simply a particular upper bound to

the probability of the atypical set. It becomes arbitrarily small as n increases for any fixed
ε > 0. Thus it is insightful to simply replace this quantity with a real number δ; for any such
δ > 0 and any ε > 0, σ2

W /(nε2) ≤ δ for large enough n.

This set of results, summarized in the following theorem, is known as the asymptotic equipartition
property (AEP).

Theorem 2.7.1 (Asymptotic equipartition property). Let Xn be a string of n iid discrete
random symbols {Xk; 1 ≤ k ≤ n} each with entropy H[X]. For all δ > 0 and all sufficiently large
n, Pr(Tn

ε ) ≥ 1 − δ and |Tn
ε | is bounded by

(1 − δ)2n(H[X]−ε) < |Tn
ε | < 2n(H[X]+ε). (2.27)

Finally, note that the total number of different strings of length n from a source with alphabet
size M is Mn. For non-equiprobable sources, namely sources with H[X] < log M , the ratio of
the number of typical strings to total strings is approximately 2−n(log M−H[X]), which approaches
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0 exponentially with n. Thus, for large n, the great majority of n-strings are atypical. It may
be somewhat surprising that this great majority counts for so little in probabilistic terms. As
shown in Exercise 2.26, the most probable of the individual sequences are also atypical. There
are too few of them, however, to have any significance.

We next consider source coding in the light of the AEP.

2.7.3 Source coding theorems

Motivated by the AEP, we can take the approach that an encoder operating on strings of n source
symbols need only provide a codeword for each string xn in the typical set Tn

ε . If a sequence
xn occurs that is not in Tn

ε , then a source coding failure is declared. Since the probability of
xn /∈ Tn

ε can be made arbitrarily small by choosing n large enough, this situation is tolerable.

In this approach, since there are less than 2n(H[X]+ε) strings of length n in Tn
ε , the number

of source codewords that need to be provided is fewer than 2n(H[X]+ε). Choosing fixed-length
codewords of length �n(H[X]+ε)� is more than sufficient and even allows for an extra codeword,
if desired, to indicate that a coding failure has occurred. In bits per source symbol, taking the
ceiling function into account, L ≤ H[X]+ε+1/n. Note that ε > 0 is arbitrary, and for any such
ε, Pr{failure} → 0 as n → ∞. This proves the following theorem:

Theorem 2.7.2 (Fixed-to-fixed-length source coding theorem). For any discrete mem-
oryless source with entropy H[X], any ε > 0, any δ > 0, and any sufficiently large n, there is a
fixed-to-fixed-length source code with Pr{failure} ≤ δ that maps blocks of n source symbols into
fixed-length codewords of length L ≤ H[X] + ε + 1/n bits per source symbol.

We saw in section 2.2 that the use of fixed-to-fixed-length source coding requires log M bits per
source symbol if unique decodability is required (i.e., no failures are allowed), and now we see
that this is reduced to arbitrarily little more than H[X] bits per source symbol if arbitrarily rare
failures are allowed. This is a good example of a situation where ‘arbitrarily small δ > 0’ and 0
behave very differently.

There is also a converse to this theorem following from the other side of the AEP theorem. This
says that the error probability approaches 1 for large n if strictly fewer than H[X] bits per source
symbol are provided.

Theorem 2.7.3 (Converse for fixed-to-fixed-length codes). Let Xn be a string of n iid
discrete random symbols {Xk; 1 ≤ k ≤ n}, with entropy H[X] each. For any ν > 0, let Xn be
encoded into fixed-length codewords of length �n(H[X] − ν) bits. For every δ > 0 and for all
sufficiently large n given δ,

Pr{failure} > 1 − δ − 2−νn/2. (2.28)

Proof: Apply the AEP, Theorem 2.7.1, with ε = ν/2. Codewords can be provided for at
most 2n(H[X]−ν) typical source n-sequences, and from (2.25) each of these has a probability at
most 2−n(H[X]−ν/2). Thus the aggregate probability of typical sequences for which codewords
are provided is at most 2−nν/2. From the AEP theorem, Pr{Tn

ε } ≥ 1 − δ is satisfied for large
enough n. Codewords16 can be provided for at most a subset of Tn

ε of probability 2−nν/2, and
the remaining elements of Tn

ε must all lead to errors, thus yielding (2.28).
16Note that the proof allows codewords to be provided for atypical sequences; it simply says that a large portion

of the typical set cannot be encoded.
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In going from fixed-length codes of slightly more than H[X] bits per source symbol to codes of
slightly less than H[X] bits per source symbol, the probability of failure goes from almost 0 to
almost 1, and as n increases, those limits are approached more and more closely.

2.7.4 The entropy bound for general classes of codes

We have seen that the expected number of encoded bits per source symbol is lower bounded
by H[X] for iid sources using either fixed-to-fixed-length or fixed-to-variable-length codes. The
details differ in the sense that very improbable sequences are simply dropped in fixed-length
schemes but have abnormally long encodings, leading to buffer overflows, in variable-length
schemes.

We now show that other types of codes, such as variable-to-fixed, variable-to-variable, and even
more general codes are also subject to the entropy limit. This will be done without describing
the highly varied possible nature of these source codes, but by just defining certain properties
that the associated decoders must have. By doing this, it is also shown that yet undiscovered
coding schemes must also be subject to the same limits. The fixed-to-fixed-length converse in
the last subsection is the key to this.

For any encoder, there must be a decoder that maps the encoded bit sequence back into the
source symbol sequence. For prefix-free codes on k-tuples of source symbols, the decoder waits
for each variable length codeword to arrive, maps it into the corresponding k-tuple of source
symbols, and then starts decoding for the next k-tuple. For fixed-to-fixed-length schemes, the
decoder waits for a block of code symbols and then decodes the corresponding block of source
symbols.

In general, the source produces a non-ending sequence X1, X2, . . . of source letters which are
encoded into a non-ending sequence of encoded binary digits. The decoder observes this encoded
sequence and decodes source symbol Xn when enough bits have arrived to make a decision on
it.

For any given coding and decoding scheme for a given iid source, define the rv Dn as the number
of received bits that permit a decision on X n = X1, . . . , Xn. This includes the possibility of
coders and decoders for which decoding is either incorrect or postponed indefinitely, and for
these failure instances, the sample value of Dn is taken to be infinite. It is assumed, however,
that all decisions are final in the sense that the decoder cannot decide on a particular xn after
observing an initial string of the encoded sequence and then change that decision after observing
more of the encoded sequence. What we would like is a scheme in which decoding is correct
with high probability and the sample value of the rate, Dn/n, is small with high probability.
What the following theorem shows is that for large n, the sample rate can be strictly below the
entropy only with vanishingly small probability. This then shows that the entropy lower bounds
the data rate in this strong sense.

Theorem 2.7.4 (Converse for general coders/decoders for iid sources). Let X∞ be a
sequence of discrete random symbols {Xk; 1 ≤ k ≤ ∞}. For each integer n ≥ 1, let Xn be the
first n of those symbols. For any given encoder and decoder, let Dn be the number of received
bits at which the decoder can correctly decode Xn. Then for any ν > 0 and δ > 0, and for any
sufficiently large n given ν and δ,

Pr{Dn ≤ n[H[X] − ν]} < δ + 2−νn/2. (2.29)
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Proof: For any sample value x∞ of the source sequence, let y∞ denote the encoded sequence.
For any given integer n ≥ 1, let m = �n[H[X]−ν]. Suppose that xn is decoded upon observation
of y j for some j ≤ m. Since decisions are final, there is only one source n-string, namely xn,
that can be decoded by time ym is observed. This means that out of the 2m possible initial
m-strings from the encoder, there can be at most17 2m n-strings from the source that be decoded
from the observation of the first m encoded outputs. The aggregate probability of any set of 2m

source n-strings is bounded in Theorem 2.7.3, and (2.29) simply repeats that bound.

2.8 Markov sources

The basic coding results for discrete memoryless sources have now been derived. Many of the
results, in particular the Kraft inequality, the entropy bounds on expected length for uniquely-
decodable codes, and the Huffman algorithm, do not depend on the independence of successive
source symbols.

In this section, these results are extended to sources defined in terms of finite-state Markov
chains. The state of the Markov chain18 is used to represent the “memory” of the source.
Labels on the transitions between states are used to represent the next symbol out of the source.
Thus, for example, the state could be the previous symbol from the source, or could be the
previous 300 symbols. It is possible to model as much memory as desired while staying in the
regime of finite-state Markov chains.

Example 2.8.1. Consider a binary source with outputs X1, X2, . . . . Assume that the symbol
probabilities for Xm are conditioned on Xk−2 and Xk−1 but are independent of all previous
symbols given these past 2 symbols. This pair of previous symbols is modeled by a state Sk−1.
The alphabet of possible states is then the set of binary pairs, S = {[00], [01], [10], [11]}. In
Figure 2.16, the states are represented as the nodes of the graph representing the Markov chain,
and the source outputs are labels on the graph transitions. Note, for example, that from the state
Sk−1 = [01] (representing Xk−2=0, Xk−1=1), the output Xk=1 causes a transition to Sk = [11]
(representing Xk−1=1, Xk=1). The chain is assumed to start at time 0 in a state S0 given by
some arbitrary pmf.

Note that this particular source is characterized by long strings of zeros and long strings of ones
interspersed with short transition regions. For example, starting in state 00, a representative
output would be

00000000101111111111111011111111010100000000 · · ·

Note that if sk = [xk−1xk] then the next state must be either sk+1 = [xk0] or sk+1 = [xk1]; i.e.,
each state has only two transitions coming out of it.

The above example is now generalized to an arbitrary discrete Markov source.
17There are two reasons why the number of decoded n-strings of source symbols by time m can be less than 2m.

The first is that the first n source symbols might not be decodable until after the mth encoded bit is received.
The second is that multiple m-strings of encoded bits might lead to decoded strings with the same first n source
symbols.

18The basic results about finite-state Markov chains, including those used here, are established in many texts
such as [7] and [20] . These results are important in the further study of digital communcation, but are not
essential here.
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Figure 2.16: Markov source: Each transition s′ → s is labeled by the corresponding
source output and the transition probability Pr{Sk = s|Sk−1 = s′}.

Definition 2.8.1. A finite-state Markov chain is a sequence S0, S1, . . . of discrete random sym-
bols from a finite alphabet, S. There is a pmf q0(s), s ∈ S on S0, and there is a conditional pmf
Q(s|s′) such that for all m ≥ 1, all s ∈ S, and all s′ ∈ S,

Pr(Sk=s|Sk−1=s′) = Pr(Sk=s|Sk−1=s′, . . . , S0=s0) = Q(s| s′). (2.30)

There is said to be a transition from s′ to s, denoted s′ → s, if Q(s| s′) > 0.

Note that (2.30) says, first, that the conditional probability of a state, given the past, depends
only on the previous state, and second, that these transition probabilities Q(s|s′) do not change
with time.

Definition 2.8.2. A Markov source is a sequence of discrete random symbols X1,X2, . . . with a
common alphabet X which is based on a finite-state Markov chain S0, S1, . . . . Each transition
(s′ → s) in the Markov chain is labeled with a symbol from X ; each symbol from X can appear
on at most one outgoing transition from each state.

Note that the state alphabet S and the source alphabet X are in general different. Since
each source symbol appears on at most one transition from each state, the initial state S0=s0,
combined with the source output, X1=x1, X2=x2, . . . , uniquely identifies the state sequence,
and, of course, the state sequence uniquely specifies the source output sequence. If x ∈ X labels
the transition s′ → s, then the conditional probability of that x is given by P (x| s′) = Q(s| s′).
Thus, for example, in the transition [00] → [0]1 in Figure 2.16, Q([01]| [00]) = P (1| [00]).

The reason for distinguishing the Markov chain alphabet from the source output alphabet is to
allow the state to represent an arbitrary combination of past events rather than just the previous
source output. It is this feature that permits Markov source models to reasonably model both
simple and complex forms of memory.

A state s is accessible from state s′ in a Markov chain if there is a path in the corresponding
graph from s′ → s, i.e., if Pr(Sk=s|S0=s′) > 0 for some k > 0. The period of a state s is
the greatest common divisor of the set of integers k ≥ 1 for which Pr(Sk=s|S0=s) > 0. A
finite-state Markov chain is ergodic if all states are accessible from all other states and if all
states are aperiodic, i.e., have period 1.

We will consider only Markov sources for which the Markov chain is ergodic. An important fact
about ergodic Markov chains is that the chain has steady-state probabilities q(s) for all s ∈ S,
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given by the unique solution to the linear equations

q(s) =
∑
s′∈S

q(s′)Q(s| s′); s ∈ S (2.31)∑
s∈S

q(s) = 1.

These steady-state probabilities are approached asymptotically from any starting state, i.e.,

lim
k→∞

Pr(Sk=s|S0=s′) = q(s) for all s, s′ ∈ S. (2.32)

2.8.1 Coding for Markov sources

The simplest approach to coding for Markov sources is that of using a separate prefix-free code
for each state in the underlying Markov chain. That is, for each s ∈ S, select a prefix-free
code whose lengths l(x, s) are appropriate for the conditional pmf P (x| s) > 0. The codeword
lengths for the code used in state s must of course satisfy the Kraft inequality

∑
x 2−l(x,s) ≤ 1.

The minimum expected length, Lmin(s) for each such code can be generated by the Huffman
algorithm and satisfies

H[X| s] ≤ Lmin(s) < H[X| s] + 1. (2.33)

where, for each s ∈ S, H[X| s] =
∑

x −P (x| s) log P (x| s).
If the initial state S0 is chosen according to the steady-state pmf {q(s); s ∈ S}, then, from (2.31),
the Markov chain remains in steady state and the overall expected codeword length is given by

H[X|S] ≤ Lmin < H[X|S] + 1, (2.34)

where

Lmin =
∑
s∈S

q(s)Lmin(s) and (2.35)

H[X|S] =
∑
s∈S

q(s)H[X| s]. (2.36)

Assume that the encoder transmits the initial state s0 at time 0. If M ′ is the number of elements
in the state space, then this can be done with �log M ′� bits, but this can be ignored since it is
done only at the beginning of transmission and does not affect the long term expected number
of bits per source symbol. The encoder then successively encodes each source symbol xk using
the code for the state at time m−1. The decoder, after decoding the initial state s0, can decode
x1 using the code based on state s0. The decoder can then determine the state s1, and from
that can decode x2 using the code based on s1. The decoder can continue decoding each source
symbol, and thus the overall code is uniquely decodable. We next must understand the meaning
of the conditional entropy in (2.36).

2.8.2 Conditional entropy

It turns out that the conditional entropy H[X|S] plays the same role in coding for Markov
sources as the ordinary entropy H[X] plays for the memoryless case. Rewriting (2.36),

H[X|S] =
∑
s∈S

∑
x∈X

q(s)P (x| s) log
1

P (x| s) .
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This is the expected value of the rv log[1/P (X|S)].

An important entropy relation, for arbitrary discrete rv’s, is

H[XS] = H[S] + H[X|S]. (2.37)

To see this,

H[XS] =
∑
s,x

q(s)P (x| s) log
1

q(s)P (x| s)

=
∑
s,x

q(s)P (x| s) log
1

q(s)
+

∑
s,x

q(s)P (x| s) log
1

P (x| s)
= H[S] + H[X|S].

Exercise 2.19 demonstrates that
H[XS] ≤ H[S] + H[X]

Comparing this and (2.37), it follows that

H[X|S] ≤ H[X]. (2.38)

This is an important inequality in information theory. If the entropy H[X] as a measure of mean
uncertainty, then the conditional entropy H[X|S] should be viewed as a measure of mean uncer-
tainty after the observation of the outcome of S. If X and S are not statistically independent,
then intuition suggests that the observation of S should reduce the mean uncertainty in X; this
equation indeed verifies this.

Example 2.8.2. Consider Figure 2.16 again. It is clear from symmetry that, in steady state,
pX(0) = pX(1) = 1/2. Thus H[X] = 1 bit. Conditional on S=00, X is binary with pmf {0.1,
0.9}, so H[X| [00]] = −0.1 log 0.1 − 0.9 log 0.9 = 0.47 bits. Similarly, H[X| [11]] = 0.47 bits,
and H[X| [01]] = H[X| [10]] = 1 bit. The solution to the steady-state equations in (2.31) is
q([00]) = q([11]) = 5/12 and q([01]) = q([10]) = 1/12. Thus, the conditional entropy, averaged
over the states, is H[X|S] = 0.558 bits.

For this example, it is particularly silly to use a different prefix-free code for the source output
for each prior state. The problem is that the source is binary, and thus the prefix-free code will
have length 1 for each symbol no matter what the state. As with the memoryless case, however,
the use of fixed-to-variable-length codes is a solution to these problems of small alphabet sizes
and integer constraints on codeword lengths.

Let E[L(X n)]min,s be the minimum expected length of a prefix-free code for X n conditional on
starting in state s. Then, applying (2.13) to the situation here,

H[X n | s] ≤ E[L(X n)]min,s < H[X n | s] + 1.

Assume as before that the Markov chain starts in steady state S0. Thus it remains in steady
state at each future time. Furthermore assume that the initial sample state is known at the
decoder. Then the sample state continues to be known at each future time. Using a minimum
expected length code for each initial sample state,

H[X n | S0] ≤ E[L(X n)]min,S0 < H[X n | S0] + 1. (2.39)
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Since the Markov source remains in steady state, the average entropy of each source symbol
given the state is H(X | S0), so intuition suggests (and Exercise 2.32 verifies) that

H[X n | S0] = nH[X|S0]. (2.40)

Defining Lmin,n = E[L(X n)]min,S0/n as the minimum expected codeword length per input symbol
when starting in steady state,

H[X|S0] ≤ Lmin,n < H[X|S0] + 1/n. (2.41)

The asymptotic equipartition property (AEP) also holds for Markov sources. Here, however,
there are19 approximately 2nH[X|S] typical strings of length n, each with probability approxi-
mately equal to 2−nH[X|S]. It follows as in the memoryless case that H[X|S] is the minimum
possible rate at which source symbols can be encoded subject either to unique decodability or to
fixed-to-fixed-length encoding with small probability of failure. The arguments are essentially
the same as in the memoryless case.

The analysis of Markov sources will not be carried further here, since the additional required
ideas are minor modifications of the memoryless case. Curiously, most of our insights and
understanding about souce coding come from memoryless sources. At the same time, however,
most sources of practical importance can be insightfully modeled as Markov and hardly any
can be reasonably modeled as memoryless. In dealing with practical sources, we combine the
insights from the memoryless case with modifications suggested by Markov memory.

The AEP can be generalized to a still more general class of discrete sources called ergodic
sources. These are essentially sources for which sample time averages converge in some proba-
bilistic sense to ensemble averages. We do not have the machinery to define ergodicity, and the
additional insight that would arise from studying the AEP for this class would consist primarily
of mathematical refinements.

2.9 Lempel-Ziv universal data compression

The Lempel-Ziv data compression algorithms differ from the source coding algorithms studied
in previous sections in the following ways:

• They use variable-to-variable-length codes in which both the number of source symbols
encoded and the number of encoded bits per codeword are variable. Moreover, the codes
are time-varying.

• They do not require prior knowledge of the source statistics, yet over time they adapt so
that the average codeword length L per source symbol is minimized in some sense to be
discussed later. Such algorithms are called universal.

• They have been widely used in practice; they provide a simple approach to understanding
universal data compression even though newer schemes now exist.

The Lempel-Ziv compression algorithms were developed in 1977-78. The first, LZ77 [31], uses
string-matching on a sliding window; the second, LZ78 [32], uses an adaptive dictionary. LZ78

19There are additional details here about whether the typical sequences include the initial state or not, but
these differences become unimportant as n becomes large.
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was implemented many years ago in the UNIX compress algorithm, and in many other places.
Implementations of LZ77 appeared somewhat later (Stac Stacker, Microsoft Windows) and is
still widely used.

In this section, the LZ77 algorithm is described. accompanied by a high-level description of why
it works. Finally, an approximate analysis of its performance on Markov sources is given, showing
that it is effectively optimal.20 In other words, although this algorithm operates in ignorance of
the source statistics, it compresses substantially as well as the best algorithm designed to work
with those statistics.

2.9.1 The LZ77 algorithm

The LZ77 algorithm compresses a sequence x = x1, x2, . . . from some given discrete alphabet X
of size M = |X |. At this point, no probabilistic model is assumed for the source, so x is simply
a sequence of symbols, not a sequence of random symbols. A subsequence (xm, xm+1, . . . , xn)
of x is represented by xn

m.

The algorithm keeps the w most recently encoded source symbols in memory. This is called a
sliding window of size w. The number w is large, and can be thought of as being in the range of
210 to 220, say. The parameter w is chosen to be a power of 2. Both complexity and, typically,
performance increase with w.

Briefly, the algorithm operates as follows. Suppose that at some time the source symbols xP
1

have been encoded. The encoder looks for the longest match, say of length n, between the
not-yet-encoded n-string xP+n

P+1 and a stored string xP+n−u
P+1−u starting in the window of length w.

The clever algorithmic idea in LZ77 is to encode this string of n symbols simply by encoding
the integers n and u; i.e., by pointing to the previous occurrence of this string in the sliding
window. If the decoder maintains an identical window, then it can look up the string xP+n−u

P+1−u ,
decode it, and keep up with the encoder.

More precisely, the LZ77 algorithm operates as follows:

(1) Encode the first w symbols in a fixed-length code without compression, using �log M� bits
per symbol. (Since w�log M� will be a vanishing fraction of the total number of encoded
bits, the efficiency of encoding this preamble is unimportant, at least in theory.)

(2) Set the pointer P = w. (This indicates that all symbols up to and including xP have been
encoded.)

(3) Find the largest n ≥ 2 such that xP+n
P+1 = xP+n−u

P+1−u for some u in the range 1 ≤ u ≤ w. (Find
the longest match between the not-yet-encoded symbols starting at P + 1 and a string of
symbols starting in the window; let n be the length of that longest match and u the distance
back into the window to the start of that match.) The string xP+n

P+1 is encoded by encoding
the integers n and u.)

Here are two examples of finding this longest match. In the first, the length of the match
is n = 3 and the match starts u = 7 symbols before the pointer. In the second, the length
of the match is 4 and it starts u = 2 symbols before the pointer. Tis illustrates that that
the string and its match can overlap.

20A proof of this optimality for discrete ergodic sources has been given by Wyner and Ziv [30].
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If no match exists for n ≥ 2, then, independently of whether a match exists for n = 1, set
n = 1 and directly encode the single source symbol xP+1 without compression.

(4) Encode the integer n into a codeword from the unary-binary code. In the unary-binary
code, a positive integer n is encoded into the binary representation of n, preceded by a
prefix of �log2 n zeroes; i.e.,

n prefix base 2 exp. codeword
1 1 1
2 0 10 010
3 0 11 011
4 00 100 00100
5 00 101 00101
6 00 110 00110
7 00 111 00111
8 000 1000 0001000

Thus the codewords starting with 0k1 correspond to the set of 2k integers in the range
2k ≤ n ≤ 2k+1 − 1. This code is prefix-free (picture the corresponding binary tree). It can
be seen that the codeword for integer n has length 2�log n + 1; it is seen later that this is
negligible compared with the length of the encoding for u.

(5) If n > 1, encode the positive integer u ≤ w using a fixed-length code of length log w bits.
(At this point the decoder knows n, and can simply count back by u in the previously
decoded string to find the appropriate n-tuple, even if there is overlap as above.)

(6) Set the pointer P to P + n and go to step (3). (Iterate forever.)

2.9.2 Why LZ77 works

The motivation behind LZ77 is information-theoretic. The underlying idea is that if the unknown
source happens to be, say, a Markov source of entropy H[X|S], then the AEP says that, for
any large n, there are roughly 2nH[X|S] typical source strings of length n. On the other hand,
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a window of size w contains w source strings of length n, counting duplications. This means
that if w � 2nH[X|S], then most typical sequences of length n cannot be found in the window,
suggesting that matches of length n are unlikely. Similarly, if w � 2nH[X|S], then it is reasonable
to suspect that most typical sequences will be in the window, suggesting that matches of length
n or more are likely.

The above argument, approximate and vague as it is, suggests that when n is large and w is
truly humongous, the typical size of match nt satisfies w ≈ 2ntH[X|S], which really means

nt ≈
log w

H[X|S]
; typical match size. (2.42)

The encoding for a match requires log w bits for the match location and 2�log nt + 1 for the
match size nt. Since nt is proportional to log w, log nt is negligible compared to log w for very
large w. Thus, for the typical case, about log w bits are used to encode about nt source symbols.
Thus, from (2.42), the required rate, in bits per source symbol, is about L ≈ H[X|S].

The above argument is very imprecise, but the conclusion is that, for very large window size,
L is reduced to the value required when the source is known and an optimal fixed-to-variable
prefix-free code is used.

The imprecision above involves more than simply ignoring the approximation factors in the
AEP. A more conceptual issue is that the strings of source symbols that must be encoded are
somewhat special since they start at the end of previous matches. The other conceptual difficulty
comes from ignoring the duplications of typical sequences within the window.

This argument has been made precise by Wyner and Ziv [30].

2.9.3 Discussion

Let us recapitulate the basic ideas behind the LZ77 algorithm:

(1) Let Nx be the number of occurrences of symbol x in a window of size w. The WLLN
asserts that the relative frequency Nx/w of appearances of x in the window will satisfy
Nx/w ≈ pX(x) with high probability. Similarly, let Nxn be the number of occurrences of
xn which start in the window. The relative frequency Nxn/w will then satisfy Nxn/w ≈
pXn(xn) with high probability for very large w. This association of relative frequencies with
probabilities is what makes LZ77 a universal algorithm which needs no prior knowledge of
source statistics.21

(2) Next, as explained in the previous section, the probability of a typical source string xn

for a Markov source is approximately 2−nH[X|S]. If w >> 2nH[X|S], then, according to
the previous item, Nxn ≈ wpXn(xn) should be large and xn should occur in the window
with high probability. Alternatively, if w << 2nH[X|S], then xn will probably not occur.
Consequently the match will usually occur for n ≈ (log w)/H[X|S] as w becomes very large.

(3) Finally, it takes about log w bits to point to the best match in the window. The unary-
binary code uses 2�log n + 1 bits to encode the length n of the match. For typical n, this
is on the order of 2 log(log w/H[X|S]) which is negigible for large enough w compared to
log w.

21As Yogi Berra said, “You can observe a whole lot just by watchin’.”
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Consequently, LZ77 requires about log w encoded bits for each group of about (log w)/H[X|S]
source symbols, so it nearly achieves the optimal efficiency of L = H[X|S] bits/symbol, as w
becomes very large.

Discrete sources, as they appear in practice, often can be viewed over different time scales. Over
very long time scales, or over the sequences presented to different physical encoders running
the same algorithm, there is often very little common structure, sometimes varying from one
language to another, or varying from text in a language to data from something else.

Over shorter time frames, corresponding to a single file or a single application type, there is
often more structure, such as that in similar types of documents from the same language. Here
it is more reasonable to view the source output as a finite length segment of, say, the output of
an ergodic Markov source.

What this means is that universal data compression algorithms must be tested in practice. The
fact that they behave optimally for unknown sources that can be modeled to satisfy the AEP is
an important guide, but not the whole story.

The above view of different time scales also indicates that a larger window need not always
improve the performance of the LZ77 algorithm. It suggests that long matches will be more
likely in recent portions of the window, so that fixed length encoding of the window position is
not the best approach. If shorter codewords are used for more recent matches, then it requires
a shorter time for efficient coding to start to occur when the source statistics abruptly change.
It also then makes sense to start coding from some arbitrary window known to both encoder
and decoder rather than filling the entire window with data before starting to use the LZ77
alogorithm.

2.10 Summary of discrete source coding

Discrete source coding is important both for discrete sources such as text and computer files and
also as an inner layer for discrete-time analog sequences and fully analog sources. It is essential
to focus on the range of possible outputs from the source rather than any one particular output.
It is also important to focus on probabilistic models so as to achieve the best compression for the
most common outputs with less care for very rare outputs. Even universal coding techniques,
such as LZ77, which are designed to work well in the absence of a probability model, require
probability models to understand and evaluate how they work.

Variable-length source coding is the simplest way to provide good compression for common
source outputs at the expense of rare outputs. The necessity to concatenate successive variable-
length codewords leads to the non-probabilistic concept of unique decodability. Prefix-free codes
provide a simple class of uniquely-decodable codes. Both prefix-free codes and the more general
class of uniquely-decodable codes satisfy the Kraft inequality on the number of possible code
words of each length. Moreover, for any set of lengths satisfying the Kraft inequality, there is
a simple procedure for constructing a prefix-free code with those lengths. Since the expected
length, and other important properties of codes, depend only on the codewords lengths (and
how they are assigned to source symbols), there is usually little reason to use variable-length
codes that are not also prefix free.

For a DMC with given probabilities on the symbols of a source code, the entropy is a lower
bound on the expected length of uniquely decodable codes. The Huffman algorithm provides a
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simple procedure for finding an optimal (in the sense of minimum expected codeword length)
variable-length prefix-free code. The Huffman algorithm is also useful for deriving properties
about optimal variable length source codes (see Exercises 2.12 to 2.18).

All the properties of variable-length codes extend immediately to fixed-to-variable-length codes
in which the source output sequence is segmented into blocks of n symbols which are then
encoded as a single symbol from the alphabet of source n-tuples. For a DMC the minimum
expected codeword length per source symbol then lies between H[U ] and H[U ] + 1/n. Thus
prefix-free fixed-to-variable-length codes can approach the entropy bound as closely as desired.

One of the disadvantages of fixed-to-variable-length codes is that bits leave the encoder at a
variable rate relative to incoming symbols. Thus if the incoming symbols have a fixed rate and
the bits must be fed into a channel at a fixed rate (perhaps with some idle periods), then the
encoded bits must be queued and there is a positive probability that any finite length queue will
overflow.

An alternative point of view is to consider fixed-length to fixed-length codes. Here, for a DMC,
the set of possible n-tuples of symbols from the source can be partitioned into a typical set and
an atypical set. For large n, the AEP says that there are essentially 2nH[U ] typical n-tuples with
an aggregate probability approaching 1 with increasing n. Encoding just the typical n-tuples
requires about H[U ] bits per symbol, thus approaching the entropy bound without the above
queueing problem, but, of course, with occasional errors.

As detailed in the text, the AEP can be used to look at the long-term behavior of arbitrary
source coding algorithms to show that the entropy bound cannot be exceeded without a failure
rate that approaches 1.

The above results for discrete memoryless sources extend easily to ergodic Markov sources.
The text does not carry out this analysis in detail since readers are not assumed to have the
requisite knowledge about Markov chains (see [6] for the detailed analysis). The important thing
here is to see that Markov sources can model n-gram statistics for any desired n and thus can
model fairly general sources (at the cost of very complex models). From a practical standpoint,
universal source codes, such as LZ77 are usually a more reasonable approach to complex and
partly unknown sources.
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2.E Exercises

2.1. Chapter 1 pointed out that voice waveforms could be converted to binary data by sampling
at 8000 times per second and quantizing to 8 bits per sample, yielding 64kb/s. It then
said that modern speech coders can yield telephone-quality speech at 6-16 kb/s. If your
objective were simply to reproduce the words in speech recognizably without concern for
speaker recognition, intonation, etc., make an estimate of how many kb/s would be required.
Explain your reasoning. (Note: There is clearly no “correct answer” here; the question is
too vague for that. The point of the question is to get used to questioning objectives and
approaches.)

2.2. Let V and W be discrete rv’s defined on some probability space with a joint pmf pV W (v, w).

(a) Prove that E[V + W ] = E[V ] + E[W ]. Do not assume independence.

(b) Prove that if V and W are independent rv’s, then E[V · W ] = E[V ] · E[W ].

c) Assume that V and W are not independent. Find an example where E[V ·W ] �= E[V ]·E[W ]
and another example where E[V · W ] = E[V ] · E[W ].

d) Assume that V and W are independent and let σ2
V and σ2

W be the variances of V and
W respectively. Show that the variance of V + W is given by σ2

V +W = σ2
V + σ2

W .

2.3. (a) For a nonnegative integer-valued rv N , show that E[N ] =
∑

n>0 Pr(N ≥ n).

(b) Show, with whatever mathematical care you feel comfortable with, that for an arbitrary
nonnegative rv X that E(X) =

∫ ∞
0 Pr(X ≥ a)da.

(c) Derive the Markov inequality, which says that for any nonnegative rv, Pr(X ≥ a) ≤ E[X]
a .

Hint: Sketch Pr(X > a) as a function of a and compare the area of the a by Pr(X ≥ a)
rectangle in your sketch with the area corresponding to E[X].

(d) Derive the Chebyshev inequality, which says that Pr(|Y − E[Y ]| ≥ b) ≤ σ2
Y

b2
for any rv

Y with finite mean E[Y ] and finite variance σ2
Y . Hint: Use part (c) with (Y − E[Y ])2 = X.

2.4. Let X1, X2, . . . , Xn, . . . be a sequence of independent identically distributed (iid) analog
rv’s with the common probability density function fX(x). Note that Pr{Xn=α} = 0 for all
α and that Pr{Xn=Xm} = 0 for m �= n.

(a) Find Pr{X1 ≤ X2}. [Give a numerical answer, not an expression; no computation is
required and a one or two line explanation should be adequate.]

(b) Find Pr{X1 ≤ X2;X1 ≤ X3} (in other words, find the probability that X1 is the smallest
of {X1, X2, X3}). [Again, think— don’t compute.]

(c) Let the rv N be the index of the first rv in the sequence to be less than X1; that is,
Pr{N=n} = Pr{X1 ≤ X2;X1 ≤ X3; · · · ;X1 ≤ Xn−1;X1 > Xn}. Find Pr{N ≥ n} as a
function of n. Hint: generalize part (b).

(d) Show that E[N ] = ∞. Hint: use part (a) of Exercise 2.3.

(e) Now assume that X1, X2 . . . is a sequence of iid rv’s each drawn from a finite set of
values. Explain why you can’t find Pr{X1 ≤ X2} without knowing the pmf. Explain why
E[N ] = ∞.
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2.5. Let X1, X2, . . . , Xn be a sequence of n binary iid rv’s. Assume that Pr{Xm=1} =
Pr{Xm=0} = 1

2 . Let Z be a parity check on X1, . . . , Xn; that is, Z = X1 ⊕ X2 ⊕ · · · ⊕ Xn

(where 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1).

(a) Is Z independent of X1? (Assume n > 1.)

(b) Are Z, X1, . . . , Xn−1 independent?

(c) Are Z, X1, . . . , Xn independent?

(d) Is Z independent of X1 if Pr{Xi=1} �= 1
2? You may take n = 2 here.

2.6. Define a suffix-free code as a code in which no codeword is a suffix of any other codeword.

(a) Show that suffix-free codes are uniquely decodable. Use the definition of unique decod-
ability in Section 2.3.1, rather than the intuitive but vague idea of decodability with initial
synchronization.

(b) Find an example of a suffix-free code with codeword lengths (1, 2, 2) that is not a
prefix-free code. Can a codeword be decoded as soon as its last bit arrives at the decoder?
Show that a decoder might have to wait for an arbitrarily long time before decoding (this
is why a careful definition of unique decodability is required).

(c) Is there a code wih codeword lengths (1, 2, 2) that is both prefix-free and suffix-free?
Explain.

2.7. The algorithm given in essence by (2.2) for constructing prefix-free codes from a set of
codeword lengths uses the assumption the lengths have been ordered first. Give an example
in which the algorithm fails if the lengths are not ordered first.

2.8. Suppose that, for some reason, you wish to encode a source into symbols from a D-ary
alphabet (where D is some integer greater than 2) rather than into a binary alphabet. The
development of Section 2.3 can be easily extended to the D-ary case, using D-ary trees
rather than binary trees to represent prefix-free codes. Generalize the Kraft inequality,
(2.1), to the D-ary case and outline why it is still valid.

2.9. Suppose a prefix-free code has symbol probabilities p1, p2, . . . , pM and lengths l1, . . . , lM .
Suppose also that the expected length L satisfies L = H[X].

(a) Explain why pi = 2−li for each i.

(b) Explain why the sequence of encoded binary digits is a sequence of iid equiprobable
binary digits. Hint: Use figure 2.4 to illustrate this phenomenon and explain in words why
the result is true in general. Do not attempt a general proof.

2.10. (a) Show that in a code of M codewords satisfying the Kraft inequality with equality, the
maximum length is at most M − 1. Explain why this ensures that the number of distinct
such codes is finite.

(b) Consider the number S(M) of distinct full code trees with M terminal nodes. Count
two trees as being different if the corresponding set of codewords is different. That is, ignore
the set of source symbols and the mapping between source symbols and codewords. Show
that S(2) = 1 and show that for M > 2, S(M) =

∑M−1
j=1 S(j)S(M − j) where S(1) = 1 by

convention.
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2.11. (Proof of the Kraft inequality for uniquely decodable codes) (a) Assume a uniquely de-
codable code has lengths l1, . . . , lM . In order to show that

∑
j 2−lj ≤ 1, demonstrate the

following identity for each integer n ≥ 1: M∑
j=1

2−lj

n

=
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn=1

2−(lj1+lj2+···+ljn )

(b) Show that there is one term on the right for each concatenation of n codewords (i.e.,
for the encoding of one n-tuple xn) where lj1 + lj2 + · · ·+ ljn is the aggregate length of that
concatenation.

(c) Let Ai be the number of concatenations which have overall length i and show that M∑
j=1

2−lj

n

=
nlmax∑
i=1

Ai 2−i

(d) Using the unique decodability, upper bound each Ai and show that M∑
j=1

2−lj

n

≤ nlmax

(e) By taking the nth root and letting n → ∞, demonstrate the Kraft inequality.

2.12. A source with an alphabet size of M = |X | = 4 has symbol probabilities {1/3, 1/3, 2/9, 1/9}.
(a) Use the Huffman algorithm to find an optimal prefix-free code for this source.

(b) Use the Huffman algorithm to find another optimal prefix-free code with a different set
of lengths.

(c) Find another prefix-free code that is optimal but cannot result from using the Huffman
algorithm.

2.13. An alphabet of M = 4 symbols has probabilities p1 ≥ p2 ≥ p3 ≥ p4 > 0.

(a) Show that if p1 = p3 +p4, then a Huffman code exists with all lengths equal and another
exists with a codeword of length 1, one of length 2, and two of length 3.

(b) Find the largest value of p1, say pmax, for which p1 = p3 + p4 is possible.

(c) Find the smallest value of p1, say pmin, for which p1 = p3 + p4 is possible.

(d) Show that if p1 > pmax, then every Huffman code has a length 1 codeword.

(e) Show that if p1 > pmax, then every optimal prefix-free code has a length 1 codeword.

(f) Show that if p1 < pmin, then all codewords have length 2 in every Huffman code.

(g) Suppose M > 4. Find the smallest value of p′max such that p1 > p′max guarantees that a
Huffman code will have a length 1 codeword.

2.14. Consider a source with M equiprobable symbols.

(a) Let k = �log M�. Show that, for a Huffman code, the only possible codeword lengths
are k and k − 1.
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(b) As a function of M , find how many codewords have length k = �log M�. What is the
expected codeword length L in bits per source symbol?

(c) Define y = M/2k. Express L − log M as a function of y. Find the maximum value of
this function over 1/2 < y ≤ 1. This illustrates that the entropy bound, L < H[X] + 1 is
rather loose in this equiprobable case.

2.15. Let a discrete memoryless source have M symbols with alphabet {1, 2, . . . , M} and ordered
probabilities p1 > p2 > · · · > pM > 0. Assume also that p1 < pM−1 + pM . Let l1, l2, . . . , lM
be the lengths of a prefix-free code of minimum expected length for such a source.

(a) Show that l1 ≤ l2 ≤ · · · ≤ lM .

(b) Show that if the Huffman algorithm is used to generate the above code, then lM ≤ l1+1.
Hint: Look only at the first step of the algorithm.

(c) Show that lM ≤ l1 + 1 whether or not the Huffman algorithm is used to generate a
minimum expected length prefix-free code.

(d) Suppose M = 2k for integer k. Determine l1, . . . , lM .

(e) Suppose 2k < M < 2k+1 for integer k. Determine l1, . . . , lM .

2.16. (a) Consider extending the Huffman procedure to codes with ternary symbols {0, 1, 2}.
Think in terms of codewords as leaves of ternary trees. Assume an alphabet with M = 4
symbols. Note that you cannot draw a full ternary tree with 4 leaves. By starting with a
tree of 3 leaves and extending the tree by converting leaves into intermediate nodes, show
for what values of M it is possible to have a complete ternary tree.

(b) Explain how to generalize the Huffman procedure to ternary symbols bearing in mind
your result in part (a).

(c) Use your algorithm for the set of probabilities {0.3, 0.2, 0.2, 0.1, 0.1, 0.1}.

2.17. Let X have M symbols, {1, 2, . . . , M} with ordered probabilities p1 ≥ p2 ≥ · · · ≥ pM > 0.
Let X ′ be the reduced source after the first step of the Huffman algorithm.

(a) Express the entropy H[X] for the original source in terms of the entropy H[X ′] of the
reduced source as

H[X] = H[X ′] + (pM + pM−1)H(γ), (2.43)

where H(γ) is the binary entropy function, H(γ) = −γ log γ − (1−γ) log(1−γ). Find the
required value of γ to satisfy (2.43).

(b) In the code tree generated by the Huffman algorithm, let v1 denote the intermediate node
that is the parent of the leaf nodes for symbols M and M−1. Let q1 = pM + pM−1 be the
probability of reaching v1 in the code tree. Similarly, let v2, v3, . . . , denote the subsequent
intermediate nodes generated by the Huffman algorithm. How many intermediate nodes
are there, including the root node of the entire tree?

(c) Let q1, q2, . . . , be the probabilities of reaching the intermediate nodes v1, v2, . . . , (note
that the probability of reaching the root node is 1). Show that L =

∑
i qi. Hint: Note that

L = L
′ + q1.

(d) Express H[X] as a sum over the intermediate nodes. The ith term in the sum should
involve qi and the binary entropy H(γi) for some γi to be determined. You may find it helpful
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to define αi as the probability of moving upward from intermediate node vi, conditional on
reaching vi. (Hint: look at part a).

(e) Find the conditions (in terms of the probabilities and binary entropies above) under
which L = H[X].

(f) Are the formulas for L and H[X] above specific to Huffman codes alone, or do they
apply (with the modified intermediate node probabilities and entropies) to arbitrary full
prefix-free codes?

2.18. Consider a discrete random symbol X with M+1 symbols for which p1 ≥ p2 ≥ · · · ≥ pM > 0
and pM+1 = 0. Suppose that a prefix-free code is generated for X and that for some reason,
this code contains a codeword for M+1 (suppose for example that pM+1 is actaully positive
but so small that it is approximated as 0).

(a) Find L for the Huffman code including symbol M+1 in terms of L for the Huffman code
omitting a codeword for symbol M+1.

(b) Suppose now that instead of one symbol of zero probability, there are n such symbols.
Repeat part (a) for this case.

2.19. In (2.12), it is shown that if X and Y are independent discrete random symbols, then the
entropy for the random symbol XY satisfies H[XY ] = H[X] + H[Y ]. Here we want to show
that, without the assumption of independence, we have H[XY ] ≤ H[X] + H[Y ].

(a) Show that

H[XY ] − H[X] − H[Y ] =
∑

x∈X ,y∈Y
pXY (x, y) log

pX(x)pY (y)
pX,Y (x, y)

.

(b) Show that H[XY ] − H[X] − H[Y ] ≤ 0, i.e., that H[XY ] ≤ H[X] + H[Y ].

(c) Let X1, X2, . . . , Xn be discrete random symbols, not necessarily independent. Use (b)
to show that

H[X1X2 · · ·Xn] ≤
n∑

j=1

H[Xj ].

2.20. Consider a random symbol X with the symbol alphabet {1, 2, . . . , M} and a pmf
{p1, p2, . . . , pM}. This exercise derives a relationship called Fano’s inequality between the
entropy H[X] and the probability p1 of the first symbol. This relationship is used to prove
the converse to the noisy channel coding theorem. Let Y be a random symbol that is 1 if
X = 1 and 0 otherwise. For parts (a) through (d), consider M and p1 to be fixed.

(a) Express H[Y ] in terms of the binary entropy function, Hb(α) = −α log(α)−(1−α) log(1−
α).

(b) What is the conditional entropy H[X | Y =1]?

(c) Show that H[X | Y =0] ≤ log(M −1) and show how this bound can be met with equality
by appropriate choice of p2, . . . , pM . Combine this with part (c) to upper bound H[X|Y ].

(d) Find the relationship between H[X] and H[XY ]

(e) Use H[Y ] and H[X|Y ] to upper bound H[X] and show that the bound can be met with
equality by appropriate choice of p2, . . . , pM .
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(f) For the same value of M as before, let p1, . . . , pM be arbitrary and let pmax be
max{p1, . . . , pM}. Is your upper bound in (d) still valid if you replace p1 by pmax? Explain.

2.21. A discrete memoryless source emits iid random symbols X1, X2, . . . . Each random symbol
X has the symbols {a, b, c} with probabilities {0.5, 0.4, 0.1}, respectively.

(a) Find the expected length Lmin of the best variable-length prefix-free code for X.

(b) Find the expected length Lmin,2, normalized to bits per symbol, of the best variable-
length prefix-free code for X2.

(c) Is it true that for any DMS, Lmin ≥ Lmin,2? Explain.

2.22. For a DMS X with alphabet X = {1, 2, . . . , M}, let Lmin,1, Lmin,2, and Lmin,3 be the
normalized average lengths, in bits per source symbol, for a Huffman code over X , X 2 and
X 3 respectively. Show that Lmin,3 ≤ 2

3Lmin,2 + 1
3Lmin,1.

2.23. (Run-Length Coding) Suppose X1, X2, . . . , is a sequence of binary random symbols with
pX(a) = 0.9 and pX(b) = 0.1. We encode this source by a variable-to-variable-length
encoding technique known as run-length coding. The source output is first mapped into
intermediate digits by counting the number of a’s between each b. Thus an intermediate
output occurs on each occurence of the symbol b. Since we don’t want the intermediate
digits to get too large, however, the intermediate digit 8 corresponds to 8 a’s in a row;
the counting restarts at this point. Thus, outputs appear on each b and on each 8 a’s. For
example, the first two lines below illustrate a string of source outputs and the corresponding
intermediate outputs.

b a a a b a a a a a a a a a a b b a a a a b

0 3 8 2 0 4
0000 0011 1 0010 0000 0100

The final stage of encoding assigns the codeword 1 to the intermediate integer 8, and assigns
a 4 bit codeword consisting of 0 followed by the three bit binary representation for each
integer 0 to 7. This is illustrated in the third line above.

(a) Show why the overall code is uniquely decodable.

(b) Find the expected total number of output bits corresponding to each occurrence of the
letter b. This total number includes the four bit encoding of the letter b and the one bit
encodings for each string of 8 letter a’s preceding that letter b.

(c) By considering a string of 1020 binary symbols into the encoder, show that the number
of b’s to occur per input symbol is, with very high probability, very close to 0.1.

(d) Combine parts (b) and (c) to find the L, the expected number of output bits per input
symbol.

2.24. (a) Suppose a DMS emits h and t with probability 1/2 each. For ε = 0.01, what is T 5
ε ?

(b) Find T 1
ε for Pr(h) = 0.1, Pr(t) = 0.9, and ε = 0.001.

2.25. Consider a DMS with a two symbol alphabet, {a, b} where pX(a) = 2/3 and pX(b) = 1/3.
Let X n = X1, . . . , Xn be a string of random symbols from the source with n = 100, 000.

(a) Let W (Xj) be the log pmf rv for the jth source output, i.e., W (Xj) = − log 2/3 for
Xj = a and − log 1/3 for Xj = b. Find the variance of W (Xj).
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(b) For ε = 0.01, evaluate the bound on the probability of the typical set in (2.24).

(c) Let Na be the number of a’s in the string X n = X1, . . . , Xn. The rv Na is the sum of
n iid rv’s. Show what these rv’s are.

(d) Express the rv W (X n) as a function of the rv Na. Note how this depends on n.

(e) Express the typical set in terms of bounds on Na (i.e., Tn
ε = {xn : α < Na < β} and

calculate α and β).

(f) Find the mean and variance of Na. Approximate Pr{Tn
ε } by the central limit theorem

approximation. The central limit theorem approximation is to evaluate Pr{Tn
ε } assuming

that Na is Gaussian with the mean and variance of the actual Na.

One point of this exercise is to illustrate that the Chebyshev inequality used in finding Pr(Tε)
in the text is very weak (although it is a strict bound, whereas the Gaussian approximation
here is relatively accurate but not a bound). Another point is to show that n must be very
large for the typical set to look typical.

2.26. For the rv’s in the previous exercise, find Pr{Na = i} for i = 0, 1, 2. Find the probability
of each individual string xn for those values of i. Find the particular string xn that has
maximum probability over all sample values of X n. What are the next most probable
n-strings? Give a brief discussion of why the most probable n-strings are not regarded as
typical strings.

2.27. Let X1, X2, . . . , be a sequence of iid symbols from a finite alphabet. For any block length
n and any small number ε > 0, define the good set of n-tuples xn as the set

Gn
ε =

{
xn : pXn(xn) > 2−n[H[X]+ε]

}
.

(a) Explain how Gn
ε differs from the typical set Tn

ε .

(b) Show that Pr(Gn
ε ) ≥ 1 − σ2

W
nε2 where W is the log pmf rv for X. Nothing elaborate is

expected here.

(c) Derive an upper bound on the number of elements in Gn
ε of the form |Gn

ε | < 2n(H[X]+α)

and determine the value of α. (You are expected to find the smallest such α that you can,
but not to prove that no smaller value can be used in an upper bound).

(d) Let Gn
ε − Tn

ε be the set of n-tuples xn that lie in Gn
ε but not in Tn

ε . Find an upper
bound to |Gn

ε − Tn
ε | of the form |Gn

ε − Tn
ε | ≤ 2n(H[X]+β). Again find the smallest β that you

can.

(e) Find the limit of |Gn
ε − Tn

ε |/|Tn
ε | as n → ∞.

2.28. The typical set Tn
ε defined in the text is often called a weakly typical set, in contrast to

another kind of typical set called a strongly typical set. Assume a discrete memoryless
source and let Nj(xn) be the number of symbols in an n string xn taking on the value j.
Then the strongly typical set Sn

ε is defined as

Sn
ε =

{
xn : pj(1 − ε) <

Nj(xn)
n

< pj(1 + ε); for all j ∈ X
}

.

(a) Show that pXn(xn) =
∏

j p
Nj(x

n)
j .
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(b) Show that every xn in Sn
ε has the property that

H[X](1 − ε) <
− log pXn(xn)

n
< H[X](1 + ε)

(c) Show that if xn ∈ Sn
ε , then xn ∈ Tn

ε′ with ε′ = H[X]ε, i.e., that Sn
ε ⊆ Tn

ε′ .

(d) Show that for any δ > 0 and all sufficiently large n,

Pr (X n /∈ Sn
ε ) ≤ δ

Hint:Taking each letter j separately, 1 ≤ j ≤ M , show that for all sufficiently large n,
Pr

(∣∣∣Nj

n − pj

∣∣∣ ≥ ε
)
≤ δ

M .

(e) Show that for all δ > 0 and all suffiently large n,

(1 − δ)2n(H[X]−ε) < |Sn
ε | < 2n(H[X]+ε). (2.44)

Note that parts (d) and (e) constitute the same theorem for the strongly typical set as
Theorem 2.7.1 establishes for the weakly typical set. Typically the n required for (2.44) to
hold (with the above correspondence between ε and ε) is considerably larger than than that
for (2.27) to hold. We will use strong typicality later in proving the noisy channel coding
theorem.

2.29. (a) The random variable Dn in Subsection 2.7.4 was defined as the initial string length of
encoded bits required to decode the first n symbols of the source input. For the run-length
coding example in Exercise 2.23, list the input strings and corresponding encoded output
strings that must be inspected to decode the first source letter and from this find the pmf
function of D1. Hint: As many as 8 source letters must be encoded before X1 can be
decoded.

(b)Find the pmf of D2. One point of this exercise is to convince you that Dn is a useful
rv for proving theorems, but not a rv that is useful for detailed computation. It also shows
clearly that Dn can depend on more than the first n source letters.

2.30. The Markov chain S0, S1, . . . below starts in steady state at time 0 and has 4 states, S =
{1, 2, 3, 4}. The corresponding Markov source X1, X2, . . . has a source alphabet X = {a, b, c}
of size 3.

���	
1

��� ���	
2

���	
4 ���	

3

�
�

�
�


 a; 1/2

b; 1/2

c; 1/2

c; 1

a; 1/2

a; 1

(a) Find the steady-state probabilities {q(s)} of the Markov chain.

(b) Find H[X1].

(c) Find H[X1|S0].
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(d) Describe a uniquely-decodable encoder for which L = H[X1|S0). Assume that the initial
state is known to the decoder. Explain why the decoder can track the state after time 0.

(e) Suppose you observe the source output without knowing the state. What is the maximum
number of source symbols you must observe before knowing the state?

2.31. Let X1, X2, . . . , Xn be discrete random symbols. Derive the following chain rule:

H[X1, . . . , Xn] = H[X1] +
n∑

k=2

H[Xk|X1, . . . , Xk−1]

Hint: Use the chain rule for n = 2 in (2.37) and ask yourself whether a k tuple of random
symbols is itself a random symbol.

2.32. Consider a discrete ergodic Markov chain S0, S1, . . . with an arbitrary initial state distribu-
tion.

(a) Show that H[S2|S1S0] = H[S2|S1] (use the basic definition of conditional entropy).

(b) Show with the help of Exercise 2.31 that for any n ≥ 2,

H[S1S2 · · ·Sn|S0] =
n∑

k=1

H[Sk|Sk−1].

(c) Simplify this for the case where S0 is in steady state.

(d) For a Markov source with outputs X1X2 · · · , explain why H[X1 · · ·Xn|S0] =
H[S1 · · ·Sn|S0]. You may restrict this to n = 2 if you desire.

(e) Verify (2.40).

2.33. Perform an LZ77 parsing of the string 000111010010101100. Assume a window of length
W = 8; the initial window is underlined above. You should parse the rest of the string using
the Lempel-Ziv algorithm.

2.34. Suppose that the LZ77 algorithm is used on the binary string x10,000
1 = 050001400001000.

This notation means 5000 repetitions of 0 followed by 4000 repetitions of 1 followed by 1000
repetitions of 0. Assume a window size w = 1024.

(a) Describe how the above string would be encoded. Give the encoded string and describe
its substrings.

(b) How long is the encoded string?

(c) Suppose that the window size is reduced to w = 8. How long would the encoded string
be in this case? (Note that such a small window size would only work well for really simple
examples like this one.)

(d) Create a Markov source model with 2 states that is a reasonably good model for this
source output. You are not expected to do anything very elaborate here; just use common
sense.

(e) Find the entropy in bits per source symbol for your source model.
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2.35. (a) Show that if an optimum (in the sense of minimum expected length) prefix-free code is
chosen for any given pmf (subject to the condition pi > pj for i < j), the code word lengths
satisfy li ≤ lj for all i < j. Use this to show that for all j ≥ 1

lj ≥ �log j + 1

(b) The asymptotic efficiency of a prefix-free code for the positive integers is defined to be
limj→∞

lj
log j . What is the asymptotic efficiency of the unary-binary code?

(c) Explain how to construct a prefix-free code for the positive integers where the asymptotic
efficiency is 1. Hint: Replace the unary code for the integers n = �log j + 1 in the unary-
binary code with a code whose length grows more slowly with increasing n.



Chapter 3

Quantization

3.1 Introduction to quantization

The previous chapter discussed coding and decoding for discrete sources. Discrete sources are a
subject of interest in their own right (for text, computer files, etc.) and also serve as the inner
layer for encoding analog source sequences and waveform sources (see Figure 3.1). This chapter
treats coding and decoding for a sequence of analog values. Source coding for analog values is
usually called quantization. Note that this is also the middle layer for waveform source/decoding.

waveform
input � sampler � quantizer � discrete

encoder
�

reliable
binary
channel

table
lookup

� discrete
decoderwaveform

output� analog
filter

� �

symbol
sequence

analog
sequence

Figure 3.1: Encoding and decoding of discrete sources, analog sequence sources, and
waveform sources. Quantization, the topic of this chapter, is the middle layer and
should be understood before trying to understand the outer layer, which deals with
waveform sources.

The input to the quantizer will be modeled as a sequence U1, U2, · · · , of analog random variables
(rv’s). The motivation for this is much the same as that for modeling the input to a discrete
source encoder as a sequence of random symbols. That is, the design of a quantizer should be
responsive to the set of possible inputs rather than being designed for only a single sequence of
numerical inputs. Also, it is desirable to treat very rare inputs differently from very common

63



64 CHAPTER 3. QUANTIZATION

inputs, and a probability density is an ideal approach for this. Initially, U1, U2, . . . will be taken
as independent identically distributed (iid) analog rv’s with some given probability density
function (pdf) fU (u).

A quantizer, by definition, maps the incoming sequence U1, U2, · · · , into a sequence of discrete
rv’s V1, V2, · · · , where the objective is that Vm, for each m in the sequence, should represent Um

with as little distortion as possible. Assuming that the discrete encoder/decoder at the inner
layer of Figure 3.1 is uniquely decodable, the sequence V1, V2, · · · will appear at the output of
the discrete encoder and will be passed through the middle layer (denoted ‘table lookup’) to
represent the input U1, U2, · · · . The output side of the quantizer layer is called a ‘table lookup’
because the alphabet for each discrete random variables Vm is a finite set of real numbers, and
these are usually mapped into another set of symbols such as the integers 1 to M for an M
symbol alphabet. Thus on the output side a look-up function is required to convert back to the
numerical value Vm.

As discussed in Section 2.1, the quantizer output Vm, if restricted to an alphabet of M possible
values, cannot represent the analog input Um perfectly. Increasing M , i.e., quantizing more
finely, typically reduces the distortion, but cannot eliminate it.

When an analog rv U is quantized into a discrete rv V , the mean-squared distortion is de-
fined to be E[(U−V )2]. Mean-squared distortion (often called mean-sqared error) is almost
invariably used in this text to measure distortion. When studying the conversion of waveforms
into sequences in the next chapter, it will be seen that mean-squared distortion is particularly
convenient for converting the distortion for the sequence into mean-squared distortion for the
waveform.

There are some disadvantages to measuring distortion only in a mean-squared sense. For ex-
ample, efficient speech coders are based on models of human speech. They make use of the fact
that human listeners are more sensitive to some kinds of reconstruction error than others, so as,
for example, to permit larger errors when the signal is loud than when it is soft. Speech coding
is a specialized topic which we do not have time to explore (see, for example, [9]. However,
understanding compression relative to a mean-squared distortion measure will develop many of
the underlying principles needed in such more specialized studies.

In what follows, scalar quantization is considered first. Here each analog rv in the sequence is
quantized independently of the other rv’s. Next vector quantization is considered. Here the
analog sequence is first segmented into blocks of n rv’s each; then each n-tuple is quantized as
a unit.

Our initial approach to both scalar and vector quantization will be to minimize mean-squared
distortion subject to a constraint on the size of the quantization alphabet. Later, we consider
minimizing mean-squared distortion subject to a constraint on the entropy of the quantized
output. This is the relevant approach to quantization if the quantized output sequence is to be
source-encoded in an efficient manner, i.e., to reduce the number of encoded bits per quantized
symbol to little more than the corresponding entropy.

3.2 Scalar quantization

A scalar quantizer partitions the set R of real numbers into M subsets R1, . . . ,RM , called
quantization regions. Assume that each quantization region is an interval; it will soon be seen
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why this assumption makes sense. Each region Rj is then represented by a representation point
aj ∈ R. When the source produces a number u ∈ Rj , that number is quantized into the point
aj . A scalar quantizer can be viewed as a function {v(u) : R → R} that maps analog real values
u into discrete real values v(u) where v(u) = aj for u ∈ Rj .

An analog sequence u1, u2, . . . of real-valued symbols is mapped by such a quantizer into the
discrete sequence v(u1), v(u2) . . . . Taking u1, u2 . . . , as sample values of a random sequence
U1, U2, . . . , the map v(u) generates an rv Vk for each Uk; Vk takes the value aj if Uk ∈ Rj . Thus
each quantized output Vk is a discrete rv with the alphabet {a1, . . . , aM}. The discrete random
sequence V1, V2, . . . , is encoded into binary digits, transmitted, and then decoded back into the
same discrete sequence. For now, assume that transmission is error-free.

We first investigate how to choose the quantization regions R1, . . . ,RM , and how to choose
the corresponding representation points. Initially assume that the regions are intervals, ordered
as in Figure 3.2, with R1 = (−∞, b1],R2 = (b1, b2], . . . ,RM = (bM−1,∞). Thus an M -level
quantizer is specified by M − 1 interval endpoints, b1, . . . , bM−1, and M representation points,
a1, . . . , aM .

��
b1 b2 b3 b4 b5

R1 R2 R3 R4 R5 R6� � � � � �� � � � ��

a1 a2 a3 a4 a5 a6

Figure 3.2: Quantization regions and representation points.

For a given value of M , how can the regions and representation points be chosen to minimize
mean-squared error? This question is explored in two ways:

• Given a set of representation points {aj}, how should the intervals {Rj} be chosen?

• Given a set of intervals {Rj}, how should the representation points {aj} be chosen?

3.2.1 Choice of intervals for given representation points

The choice of intervals for given representation points, {aj ; 1≤j≤M} is easy: given any u ∈ R,
the squared error to aj is (u − aj)2. This is minimized (over the fixed set of representation
points {aj}) by representing u by the closest representation point aj . This means, for example,
that if u is between aj and aj+1, then u is mapped into the closer of the two. Thus the
boundary bj between Rj and Rj+1 must lie halfway between the representation points aj and
aj+1, 1 ≤ j ≤ M − 1. That is, bj = aj+aj+1

2 . This specifies each quantization region, and also
shows why each region should be an interval. Note that this minimization of mean-squared
distortion does not depend on the probabilistic model for U1, U2, . . . .

3.2.2 Choice of representation points for given intervals

For the second question, the probabilistic model for U1, U2, . . . is important. For example, if
it is known that each Uk is discrete and has only one sample value in each interval, then the
representation points would be chosen as those sample value. Suppose now that the rv’s {Uk}
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are iid analog rv’s with the pdf fU (u). For a given set of points {aj}, V (U) maps each sample
value u ∈ Rj into aj . The mean-squared distortion (or mean-squared error MSE) is then

MSE = E[(U − V (U))2] =
∫ ∞

−∞
fU (u)(u − v(u))2 du =

M∑
j=1

∫
Rj

fU (u) (u − aj)
2 du. (3.1)

In order to minimize (3.1) over the set of aj , it is simply necessary to choose each aj to minimize
the corresponding integral (remember that the regions are considered fixed here). Let fj(u)
denote the conditional pdf of U given that {u ∈ Rj}; i.e.,

fj(u) =

{
fU (u)

Qj
, if u ∈ Rj ;

0, otherwise,
(3.2)

where Qj = Pr{U ∈ Rj}. Then, for the interval Rj ,∫
Rj

fU (u) (u − aj)
2 du = Qj

∫
Rj

fj(u) (u − aj)
2 du. (3.3)

Now (3.3) is minimized by choosing aj to be the mean of a random variable with the pdf fj(u).
To see this, note that for any rv Y and real number a,

(Y − a)2 = Y 2 − 2aY + a2,

which is minimized over a when a = Y .

This provides a set of conditions that the endpoints {bj} and the points {aj} must satisfy to
achieve the MSE — namely, each bj must be the midpoint between aj and aj+1 and each aj

must be the mean of an rv Uj with pdf fj(u). In other words, aj must be the conditional mean
of U conditional on U ∈ Rj .

These conditions are necessary to minimize the MSE for a given number M of representation
points. They are not sufficient, as shown by an example at the end of this section. Nonetheless,
these necessary conditions provide some insight into the minimization of the MSE.

3.2.3 The Lloyd-Max algorithm

The Lloyd-Max algorithm1 is an algorithm for finding the endpoints {bj} and the representation
points {aj} to meet the above necessary conditions. The algorithm is almost obvious given the
necessary conditions; the contribution of Lloyd and Max was to define the problem and develop
the necessary conditions. The algorithm simply alternates between the optimizations of the
previous subsections, namely optimizing the endpoints {bj} for a given set of {aj}, and then
optimizing the points {aj} for the new endpoints.

The Lloyd-Max algorithm is as follows. Assume that the number M of quantizer levels and the
pdf fU (u) are given.

1. Choose an arbitrary initial set of M representation points a1 < a2 < · · · < aM .
1This algorithm was developed independently by S. P. Lloyd in 1957 and J. Max in 1960. Lloyd’s work was

done in the Bell Laboratories research department and became widely circulated, although unpublished until 1982
[13]. Max’s work [15] was published in 1960.
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2. For each j; 1 ≤ j ≤ M−1, set bj = 1
2(aj+1 + aj).

3. For each j; 1 ≤ j ≤ M , set aj equal to the conditional mean of U given U ∈ (bj−1, bj ] (where
b0 and bM are taken to be −∞ and +∞ respectively).

4. Repeat steps (2) and (3) until further improvement in MSE is negligible; then stop.

The MSE decreases (or remains the same) for each execution of step (2) and step (3). Since the
MSE is nonnegative, it approaches some limit. Thus if the algorithm terminates when the MSE
improvement is less than some given ε > 0, then the algorithm must terminate after a finite
number of iterations.

Example 3.2.1. This example shows that the algorithm might reach a local minimum of MSE
instead of the global minimum. Consider a quantizer with M = 2 representation points, and an
rv U whose pdf fU (u) has three peaks, as shown in Figure 3.3.

��
b1

R1 R2

a1 a2

� ���

fU (u)

Figure 3.3: Example of regions and representaion points that satisfy Lloyd-Max condi-
tions without minimizing mean-squared distortion.

It can be seen that one region must cover two of the peaks, yielding quite a bit of distortion,
while the other will represent the remaining peak, yielding little distortion. In the figure, the
two rightmost peaks are both covered by R2, with the point a2 between them. Both the points
and the regions satisfy the necessary conditions and cannot be locally improved. However, it
can be seen in the figure that the rightmost peak is more probable than the other peaks. It
follows that the MSE would be lower if R1 covered the two leftmost peaks.

The Lloyd-Max algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of
values, these values are modified until reaching the top of a hill where no more local improvements
are possible.2 A reasonable approach in this sort of situation is to try many randomly chosen
starting points, perform the Lloyd-Max algorithm on each and then take the best solution. This
is somewhat unsatisfying since there is no general technique for determining when the optimal
solution has been found.

2It would be better to call this a valley-descending algorithm, both because a minimum is desired and also
because binoculars can not be used at the bottom of a valley to find a distant lower valley.
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3.3 Vector quantization

As with source coding of discrete sources, we next consider quantizing n source variables at a
time. This is called vector quantization, since an n-tuple of rv’s may be regarded as a vector
rv in an n-dimensional vector space. We will concentrate on the case n = 2 so that illustrative
pictures can be drawn.

One possible approach is to quantize each dimension independently with a scalar (one-
dimensional) quantizer. This results in a rectangular grid of quantization regions as shown
below. The MSE per dimension is the same as for the scalar quantizer using the same number
of bits per dimension. Thus the best 2D vector quantizer has an MSE per dimension at least as
small as that of the best scalar quantizer.



 

 





























Figure 3.4: 2D rectangular quantizer.

To search for the minimum-MSE 2D vector quantizer with a given number M of representation
points, the same approach is used as with scalar quantization.

Let (U, U ′) be the two rv’s being jointly quantized. Suppose a set of M 2D representation points
{(aj , a

′
j)}, 1 ≤ j ≤ M is chosen. For example, in the figure above, there are 16 representation

points, represented by small dots. Given a sample pair (u, u′) and given the M representation
points, which representation point should be chosen for the given (u, u′)? Again, the answer is
easy. Since mapping (u, u′) into (aj , a

′
j) generates a squared error equal to (u−aj)2 +(u′−a′j)

2,
the point (aj , a

′
j) which is closest to (u, u′) in Euclidean distance should be chosen.

Consequently, the region Rj must be the set of points (u, u′) that are closer to (aj , a
′
j) than

to any other representation point. Thus the regions {Rj} are minimum-distance regions; these
regions are called the Voronoi regions for the given representation points. The boundaries of
the Voronoi regions are perpendicular bisectors between neighboring representation points. The
minimum-distance regions are thus in general convex polygonal regions, as illustrated in the
figure below.

As in the scalar case, the MSE can be minimized for a given set of regions by choosing the
representation points to be the conditional means within those regions. Then, given this new
set of representation points, the MSE can be further reduced by using the Voronoi regions for
the new points. This gives us a 2D version of the Lloyd-Max algorithm, which must converge
to a local minimum of the MSE. This can be generalized straightforwardly to any dimension n.

As already seen, the Lloyd-Max algorithm only finds local minima to the MSE for scalar quan-
tizers. For vector quantizers, the problem of local minima becomes even worse. For example,
when U1, U2, · · · are iid, it is easy to see that the rectangular quantizer in Figure 3.4 satisfies
the Lloyd-Max conditions if the corresponding scalar quantizer does (see Exercise 3.10). It will
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Figure 3.5: Voronoi regions for given set of representation points.

soon be seen, however, that this is not necessarily the minimum MSE.

Vector quantization was a popular research topic for many years. The problem is that quantizing
complexity goes up exponentially with n, and the reduction in MSE with increasing n is quite
modest, unless the samples are statistically highly dependent.

3.4 Entropy-coded quantization

We must now ask if minimizing the MSE for a given number M of representation points is the
right problem. The minimum expected number of bits per symbol, Lmin, required to encode the
quantizer output was shown in Chapter 2 to be governed by the entropy H[V ] of the quantizer
output, not by the size M of the quantization alphabet. Therefore, anticipating efficient source
coding of the quantized outputs, we should really try to minimize the MSE for a given entropy
H[V ] rather than a given number of representation points.

This approach is called entropy-coded quantization and is almost implicit in the layered approach
to source coding represented in Figure 3.1. Discrete source coding close to the entropy bound
is similarly often called entropy coding. Thus entropy-coded quantization refers to quantization
techniques that are designed to be followed by entropy coding.

The entropy H[V ] of the quantizer output is determined only by the probabilities of the quantiza-
tion regions. Therefore, given a set of regions, choosing the representation points as conditional
means minimizes their distortion without changing the entropy. However, given a set of rep-
resentation points, the optimal regions are not necessarily Voronoi regions (e.g., in a scalar
quantizer, the point separating two adjacent regions is not necessarily equidistant from the two
represention points.)

For example, for a scalar quantizer with a constraint H[V ] ≤ 1
2 and a Gaussian pdf for U , a

reasonable choice is three regions, the center one having high probability 1 − 2p and the outer
ones having small, equal probability p, such that H[V ] = 1

2 .

Even for scalar quantizers, minimizing MSE subject to an entropy constraint is a rather messy
problem. Considerable insight into the problem can be obtained by looking at the case where
the target entropy is large— i.e., when a large number of points can be used to achieve small
MSE. Fortunately this is the case of greatest practical interest.

Example 3.4.1. For the following simple example, consider the minimum-MSE quantizer using
a constraint on the number of representation points M compared to that using a constraint on
the entropy H[V ].
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Figure 3.6: Comparison of constraint on M to constraint on H[U ].

The example shows a piecewise constant pdf fU (u) that takes on only two positive values, say
fU (u) = f1 over an interval of size L1, and fU (u) = f2 over a second interval of size L2. Assume
that fU (u) = 0 elsewhere. Because of the wide separation between the two intervals, they can
be quantized separately without providing any representation point in the region between the
intervals. Let M1 and M2 be the number of representation points in each interval. In the figure,
M1 = 9 and M2 = 7. Let ∆1 = L1/M1 and ∆2 = L2/M2 be the lengths of the quantization
regions in the two ranges (by symmetry, each quantization region in a given interval should have
the same length). The representation points are at the center of each quantization interval.
The MSE, conditional on being in a quantization region of length ∆i, is the MSE of a uniform
distribution over an interval of length ∆i, which is easily computed to be ∆2

i /12. The probability
of being in a given quantization region of size ∆i is fi∆i, so the overall MSE is given by

MSE = M1
∆2

1

12
f1∆1 + M2

∆2
2

12
f2∆2 =

1
12

∆2
1f1L1 +

1
12

∆2
2f2L2. (3.4)

This can be minimized over ∆1 and ∆2 subject to the constraint that M = M1 + M2 =
L1/∆1 + L2/∆2. Ignoring the constraint that M1 and M2 are integers (which makes sense
for M large), Exercise 3.4 shows that the minimum MSE occurs when ∆i is chosen inversely
proportional to the cube root of fi. In other words,

∆1

∆2
=

(
f2

f1

)1/3

. (3.5)

This says that the size of a quantization region decreases with increasing probability density.
This is reasonable, putting the greatest effort where there is the most probability. What is
perhaps surprising is that this effect is so small, proportional only to a cube root.

Perhaps even more surprisingly, if the MSE is minimized subject to a constraint on entropy for
this example, then Exercise 3.4 shows that the quantization intervals all have the same length! A
scalar quantizer in which all intervals have the same length is called a uniform scalar quantizer.
The following sections will show that uniform scalar quantizers have remarkable properties for
high-rate quantization.

3.5 High-rate entropy-coded quantization

This section focuses on high-rate quantizers where the quantization regions can be made suffi-
ciently small so that the probability density is approximately constant within each region. It will
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be shown that under these conditions the combination of a uniform scalar quantizer followed by
discrete entropy coding is nearly optimum (in terms of mean-squared distortion) within the class
of scalar quantizers. This means that a uniform quantizer can be used as a universal quantizer
with very little loss of optimality. The probability distribution of the rv’s to be quantized can
be explointed at the level of discrete source coding. Note however that this essential optimality
of uniform quantizers relies heavily on the assumption that mean-squared distortion is an ap-
propriate distortion measure. With voice coding, for example, a given distortion at low signal
levels is for more harmful than the same distortion at high signal levels.

In the following sections, it is assumed that the source output is a sequence U1, U2, . . . , of iid
real analog-valued rv’s, each with a probability density fU (u). It is further assumed that the
probability density function (pdf) fU (u) is smooth enough and the quantization fine enough
that fU (u) is almost constant over each quantization region.

The analogue of the entropy H[X] of a discrete rv is the differential entropy h[U ] of an analog
rv. After defining h[U ],the properties of H[U ] and h[U ] will be compared.

The performance of a uniform scalar quantizer followed by entropy coding will then be analyzed.
It will be seen that there is a tradeoff between the rate of the quantizer and the mean-squared
error (MSE) between source and quantized output. It is also shown that the uniform quantizer
is essentially optimum among scalar quantizers at high rate.

The performance of uniform vector quantizers followed by entropy coding will then be analyzed
and similar tradeoffs will be found. A major result is that vector quantizers can achieve a gain
over scalar quantizers (i.e., a reduction of MSE for given quantizer rate), but that the reduction
in MSE is at most a factor of πe/6 = 1.42.

The changes in MSE for different quantization methods, and similarly, changes in power levels on
channels, are invariably calculated by communication engineers in decibels (dB). The number of
decibels corresponding to a reduction of α in the mean squared error is defined to be 10 log10 α.
The use of a logarithmic measure allows the various components of mean squared error or power
gain to be added rather than multiplied.

The use of decibels rather than some other logarithmic measure such as natural logs or logs to
the base 2 is partly motivated by the ease of doing rough mental calculations. A factor of 2 is
10 log10 2 = 3.010 · · · dB, approximated as 3 dB. Thus 4 = 22 is 6 dB and 8 is 9 dB. Since 10
is 10 dB, we also see that 5 is 10/2 or 7 dB. We can just as easily see that 20 is 13 dB and so
forth. The limiting factor of 1.42 in MSE above is then a reduction of 1.53 dB.

As in the discrete case, generalizations to analog sources with memory are possible, but not
discussed here.

3.6 Differential entropy

The differential entropy h[U ] of an analog random variable (rv) U is analogous to the entropy
H[X] of a discrete random symbol X. It has many similarities, but also some important differ-
ences.

Definition The differential entropy of an analog real rv U with pdf fU (u) is

h[U ] =
∫ ∞

−∞
−fU (u) log fU (u) du.
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The integral may be restricted to the region where fU (u) > 0, since 0 log 0 is interpreted as 0.
Assume that fU (u) is smooth and that the integral exists with a finite value. Exercise 3.7 gives
an example where h(U) is infinite.

As before, the logarithms are base 2 and the units of h[U ] are bits per source symbol.

Like H[X], the differential entropy h[U ] is the expected value of the rv − log fU (U). The log of
the joint density of several independent rv’s is the sum of the logs of the individual pdf’s, and
this can be used to derive an AEP similar to the discrete case ([?]).

Unlike H[X], the differential entropy h[U ] can be negative and depends on the scaling of the
outcomes. This can be seen from the following two examples.

Example 3.6.1 (Uniform distributions). Let fU (u) be a uniform distribution over an inter-
val [a, a + ∆] of length ∆; i.e., fU (u) = 1/∆ for u ∈ [a, a + ∆], and fU (u) = 0 elsewhere. Then
− log fU (u) = log ∆ where fU (u) > 0 and

h[U ] = E[− log fU (U)] = log ∆.

Example 3.6.2 (Gaussian distribution). Let fU (u) be a Gaussian distribution with mean
m and variance σ2; i.e.,

fU (u) =

√
1

2πσ2
exp

{
−(u − m)2

2σ2

}
.

Then − log fU (u) = 1
2 log 2πσ2 + (log e)(u − m)2/(2σ2). Since E[(U − m)2] = σ2,

h[U ] = E[− log fU (U)] =
1
2

log(2πσ2) +
1
2

log e =
1
2

log(2πeσ2).

It can be seen from these expressions that by making ∆ or σ2 arbitrarily small, the differen-
tial entropy can be made arbitrarily negative, while by making ∆ or σ2 arbitrarily large, the
differential entropy can be made arbitrarily positive.

If the rv U is rescaled to αU for some scale factor α > 0, then the differential entropy is increased
by log α, both in these examples and in general. In other words, h[U ] is not invariant to scaling.
Note, however, that differential entropy is invariant to translation of the pdf, i.e., an rv and its
fluctuation around the mean have the same differential entropy.

One of the important properties of entropy is that it does not depend on the labeling of the
elements of the alphabet, i.e., it is invariant to invertible transformations. Differential entropy
is very different in this respect, and, as just illustrated, it is modified by even such a trivial
transformation as a change of scale. The reason for this is that the probability density is a
probability per unit length, and therefore depends on the measure of length. In fact, as seen
more clearly later, this fits in very well with the fact that source coding for analog sources also
depends on an error term per unit length.

Definition The differential entropy of an n-tuple of rv’s U n = (U1, · · · , Un) with joint pdf
fU n(un) is

h[U n] = E[− log fU n(U n)].

Like entropy, differential entropy has the property that if U and V are independent rv’s, then
the entropy of the joint variable UV with pdf fUV (u, v) = fU (u)fV (v) is h[UV ] = h[U ] + h[V ].
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Again, this follows from the fact that the log of the joint probability density of independent rv’s
is additive, i.e., − log fUV (u, v) = − log fU (u) − log fV (v).

Thus the differential entropy of a vector rv U n, corresponding to a string of n iid rv’s
U1, U2, . . . , Un, each with the density fU (u), is h[U n] = nh[U ].

3.7 Performance of uniform high-rate scalar quantizers

This section analyzes the performance of uniform scalar quantizers in the limit of high rate.
Appendix A continues the analysis for the nonuniform case and shows that uniform quantizers
are effectively optimal in the high-rate limit.

For a uniform scalar quantizer, every quantization interval Rj has the same length |Rj | = ∆.
In other words, R (or the portion of R over which fU (u) > 0), is partitioned into equal intervals,
each of length ∆.

�� R−1 R0 R1 R2 R3 R4� � � � � � �� � � � � � �

a−1 a0 a1 a2 a3 a4

�� ∆

· · ·
· · · · · ·

· · ·

Figure 3.7: Uniform scalar quantizer.

Assume there are enough quantization regions to cover the region where fU (u) > 0. For the
Gaussian distribution, for example, this requires an infinite number of representation points,
−∞ < j < ∞. Thus, in this example the quantized discrete rv V has a countably infinite
alphabet. Obviously, practical quantizers limit the number of points to a finite region R such
that

∫
R fU (u) du ≈ 1.

Assume that ∆ is small enough that the pdf fU (u) is approximately constant over any one
quantization interval. More precisely, define f(u) (see Figure 3.8) as the average value of fU (u)
over the quantization interval containing u,

f(u) =

∫
Rj

fU (u)du

∆
for u ∈ Rj . (3.6)

From (3.6) it is seen that ∆f(u) = Pr(Rj) for all integer j and all u ∈ Rj .

fU (u)f(u)

Figure 3.8: Average density over each Rj .

The high-rate assumption is that fU (u) ≈ f(u) for all u ∈ R. This means that fU (u) ≈ Pr(Rj)/∆
for u ∈ Rj . It also means that the conditional pdf fU |Rj

(u) of U conditional on u ∈ Rj is
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approximated by

fU |Rj
(u) ≈

{
1/∆, u ∈ Rj ;
0, u /∈ Rj .

Consequently the conditional mean aj is approximately in the center of the interval Rj , and the
mean-squared error is approximately given by

MSE ≈
∫ ∆/2

−∆/2

1
∆

u2du =
∆2

12
(3.7)

for each quantization interval Rj . Consequently this is also the overall MSE.

Next consider the entropy of the quantizer output V . The probability pj that V = aj is given
by both

pj =
∫
Rj

fU (u) du and, for all u ∈ Rj , pj = f(u)∆. (3.8)

Therefore the entropy of the discrete rv V is

H[V ] =
∑

j

−pj log pj =
∑

j

∫
Rj

−fU (u) log[f(u)∆] du

=
∫ ∞

−∞
−fU (u) log[f(u)∆] du (3.9)

=
∫ ∞

−∞
−fU (u) log[f(u)] du − log ∆, (3.10)

where the sum of disjoint integrals were combined into a single integral.

Finally, using the high-rate approximation3 fU (u) ≈ f(u), this becomes

H[V ] ≈
∫ ∞

−∞
−fU (u) log[fU (u)∆] du

= h[U ] − log ∆. (3.11)

Since the sequence U1, U2, . . . of inputs to the quantizer is memoryless (iid), the quantizer output
sequence V1, V2, . . . is an iid sequence of discrete random symbols representing quantization
points— i.e., a discrete memoryless source. A uniquely-decodable source code can therefore
be used to encode this output sequence into a bit sequence at an average rate of L ≈ H[V ] ≈
h[U ]− log ∆ bits/symbol. At the receiver, the mean-squared quantization error in reconstructing
the original sequence is approximately MSE ≈ ∆2/12.

The important conclusions from this analysis are illustrated in Figure 3.9 and are summarized
as follows:

• Under the high-rate assumption, the rate L for a uniform quantizer followed by discrete
entropy coding depends only on the differential entropy h[U ] of the source and the spacing
∆ of the quantizer. It does not depend on any other feature of the source pdf fU (u), nor on
any other feature of the quantizer, such as the number M of points, so long as the quantizer
intervals cover fU (u) sufficiently completely and finely.

3Exercise 3.6 provides some insight into the nature of the approximation here. In particular, the difference
between h[U ] − log ∆ and H[V ] is

∫
fU (u) log[f(u)/fU (u)] du. This quantity is always nonpositive and goes to

zero with ∆ as ∆2. Similarly, the approximation error on MSE goes to 0 as ∆4.
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• The rate L ≈ H[V ] and the MSE are parametrically related by ∆, i.e.,

L ≈ h(U) − log ∆; MSE ≈ ∆2

12
. (3.12)

Note that each reduction in ∆ by a factor of 2 will reduce the MSE by a factor of 4
and increase the required transmission rate L ≈ H[V ] by 1 bit/symbol. Communication
engineers express this by saying that each additional bit per symbol decreases the mean-
squared distortion4 by 6 dB. Figure 3.9 sketches MSE as a function of L.

L ≈ H[V ]

MSE

MSE≈ 22h[U ]−2L

12

Figure 3.9: MSE as a function of L for a scalar quantizer with the high-rate approxi-
mation. Note that changing the source entropy h(U) simply shifts the figure right or
left. Note also that log MSE is linear, with a slope of -2, as a function of L.

Conventional b-bit analog-to-digital (A/D) converters are uniform scalar 2b-level quantizers that
cover a certain range R with a quantizer spacing ∆ = 2−b|R|. The input samples must be scaled
so that the probability that u /∈ R (the “overflow probability”) is small. For a fixed scaling of
the input, the tradeoff is again that increasing b by 1 bit reduces the MSE by a factor of 4.

Conventional A/D converters are not usually directly followed by entropy coding. The more
conventional approach is to use A/D conversion to produce a very high rate digital signal that
can be further processed by digital signal processing (DSP). This digital signal is then later
compressed using algorithms specialized to the particular application (voice, images, etc.). In
other words, the clean layers of Figure 3.1 oversimplify what is done in practice. On the other
hand, it is often best to view compression in terms of the Figure 3.1 layers, and then use DSP
as a way of implementing the resulting algorithms.

The relation H[V ] ≈ h[u] − log ∆ provides an elegant interpretation of differential entropy.
It is obvious that there must be some kind of tradeoff between MSE and the entropy of the
representation, and the differential entropy specifies this tradeoff in a very simple way for high
rate uniform scalar quantizers. H[V ] is the entropy of a finely quantized version of U , and the
additional term log ∆ relates to the “uncertainty” within an individual quantized interval. It
shows explicitly how the scale used to measure U affects h[U ].

Appendix A considers nonuniform scalar quantizers under the high rate assumption and shows
that nothing is gained in the high-rate limit by the use of nonuniformity.

4A quantity x expressed in dB is given by 10 log10 x. This very useful and common logarithmic measure is
discussed in detail in Chapter 6.
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3.8 High-rate two-dimensional quantizers

The performance of uniform two-dimensional (2D) quantizers are now analyzed in the limit of
high rate. Appendix B considers the nonuniform case and shows that uniform quantizers are
again effectively optimal in the high-rate limit.

A 2D quantizer operates on 2 source samples u = (u1, u2) at a time; i.e., the source alphabet
is U = R2. Assuming iid source symbols, the joint pdf is then fU (u) = fU (u1)fU (u2), and the
joint differential entropy is h[U ] = 2h[U ].

Like a uniform scalar quantizer, a uniform 2D quantizer is based on a fundamental quantization
region R (“quantization cell”) whose translates tile5 the 2D plane. In the one-dimensional case,
there is really only one sensible choice for R, namely an interval of length ∆, but in higher
dimensions there are many possible choices. For two dimensions, the most important choices
are squares and hexagons, but in higher dimensions, many more choices are available.

Notice that if a region R tiles R2, then any scaled version αR of R will also tile R2, and so will
any rotation or translation of R.

Consider the performance of a uniform 2D quantizer with a basic cell R which is centered at the
origin 0 . The set of cells, which are assumed to tile the region, are denoted by6 {Rj ; j ∈ Z+}
where Rj = a j + R and a j is the center of the cell Rj . Let A(R) =

∫
R du be the area of the

basic cell. The average pdf in a cell Rj is given by Pr(Rj)/A(Rj). As before, define f(u) to be
the average pdf over the region Rj containing u . The high-rate assumption is again made, i.e.,
assume that the region R is small enough that fU (u) ≈ f(u) for all u .

The assumption fU (u) ≈ f(u) implies that the conditional pdf, conditional on u ∈ Rj is
approximated by

fU |Rj
(u) ≈

{
1/A(R), u ∈ Rj ;
0, u /∈ Rj .

(3.13)

The conditional mean is approximately equal to the center a j of the region Rj . The mean-
squared error per dimension for the basic quantization cell R centered on 0 is then approximately
equal to

MSE ≈ 1
2

∫
R
‖u‖2 1

A(R)
du . (3.14)

The right side of (3.14) is the MSE for the quantization area R using a pdf equal to a constant; it
will be denoted MSEc. The quantity ‖u‖ is the length of the vector u1, u2, so that ‖u‖2 = u2

1+u2
2.

Thus MSEc can be rewritten as

MSE ≈ MSEc =
1
2

∫
R

(u2
1 + u2

2)
1

A(R)
du1du2. (3.15)

MSEc is measured in units of squared length, just like A(R). Thus the ratio G(R) = MSEc/A(R)
is a dimensionless quantity called the normalized second moment. With a little effort, it can

5A region of the 2D plane is said to tile the plane if the region, plus translates and rotations of the region,
fill the plane without overlap. For example the square and the hexagon tile the plane. Also, rectangles tile the
plane, and equilateral triangles with rotations tile the plane.

6Z+ denotes the set of positive integers, so {Rj ; j ∈ Z+} denotes the set of regions in the tiling, numbered in
some arbitrary way of no particular interest here.
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be seen that G(R) is invariant to scaling, translation and rotation. G(R) does depend on the
shape of the region R, and, as seen below, it is G(R) that determines how well a given shape
performs as a quantization region. By expressing

MSEc = G(R)A(R),

it is seen that the MSE is the product of a shape term and an area term, and these can be
chosen independently.

As examples, G(R) is given below for some common shapes.

• Square: For a square ∆ on a side, A(R) = ∆2. Breaking (3.15) into two terms, we see that
each is identical to the scalar case and MSEc = ∆2/12. Thus G(Square) = 1/12.

• Hexagon: View the hexagon as the union of 6 equilateral triangles ∆ on a side. Then
A(R) = 3

√
3∆2/2 and MSEc = 5∆2/24. Thus G(hexagon) = 5/(36

√
3).

• Circle: For a circle of radius r, A(R) = πr2 and MSEc = r2/4 so G(circle) = 1/(4π).

The circle is not an allowable quantization region, since it does not tile the plane. On the other
hand, for a given area, this is the shape that minimizes MSEc. To see this, note that for any
other shape, differential areas further from the origin can be moved closer to the origin with a
reduction in MSEc. That is, the circle is the 2D shape that minimizes G(R). This also suggests
why G(Hexagon) < G(Square), since the hexagon is more concentrated around the origin than
the square.

Using the high rate approximation for any given tiling, each quantization cell Rj has the same
shape and area and has a conditional pdf which is approximately uniform. Thus MSEc approx-
imates the MSE for each quantization region and thus approximates the overall MSE.

Next consider the entropy of the quantizer output. The probability that U falls in the region
Rj is

pj =
∫
Rj

fU (u) du and, for all u ∈ Rj , pj = f(u)A(R).

The output of the quantizer is the discrete random symbol V with the pmf pj for each symbol
j. As before, the entropy of V is given by

H[V ] = −
∑

j

pj log pj

= −
∑

j

∫
Rj

fU (u) log[f(u)A(R)] du

= −
∫

fU (u) [log f(u) + log A(R)] du

≈ −
∫

fU (u) [log fU (u)] du + log A(R)]

= 2h[U ] − log A(R),

where the high rate approximation fU (u) ≈ f̄(u) was used. Note that, since U = U1U2 for iid
variables U1 and U2, the differential entropy of U is 2h[U ].
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Again, an efficient uniquely-decodable source code can be used to encode the quantizer output
sequence into a bit sequence at an average rate per source symbol of

L ≈ H[V ]
2

≈ h[U ] − 1
2

log A(R) bits/symbol. (3.16)

At the receiver, the mean-squared quantization error in reconstructing the original sequence will
be approximately equal to the MSE given in (3.14).

We have the following important conclusions for a uniform 2D quantizer under the high-rate
approximation:

• Under the high-rate assumption, the rate L depends only on the differential entropy h[U ] of
the source and the area A(R) of the basic quantization cell R. It does not depend on any
other feature of the source pdf fU (u), and does not depend on the shape of the quantizer
region, i.e., it does not depend on the normalized second moment G(R).

• There is a tradeoff between the rate L and MSE that is governed by the area A(R). From
(3.16), an increase of 1 bit/symbol in rate corresponds to a decrease in A(R) by a factor of
4. From (3.14), this decreases the MSE by a factor of 4, i.e., by 6 dB.

• The ratio G(Square)/G(Hexagon) is equal to 3
√

3/5 = 1.0392. This is called the quantizing
gain of the hexagon over the square. For a given A(R) (and thus a given L), the MSE for a
hexagonal quantizer is smaller than that for a square quantizer (and thus also for a scalar
quantizer) by a factor of 1.0392 (0.17 dB). This is a disappointingly small gain given the
added complexity of 2D and hexagonal regions and suggests that uniform scalar quantizers
are good choices at high rates.

3.9 Summary of quantization

Quantization is important both for digitizing a sequence of analog signals and as the middle
layer in digitizing analog waveform sources. Uniform scalar quantization is the simplest and
often most practical approach to quantization. Before reaching this conclusion, two approaches
to optimal scalar quantizers were taken. The first attempted to minimize the expected distortion
subject to a fixed number M of quantization regions, and the second attempted to minimize
the expected distortion subject to a fixed entropy of the quantized output. Each approach was
followed by the extension to vector quantization.

In both approaches, and for both scalar and vector quantization, the emphasis was on minimizing
mean square distortion or error (MSE), as opposed to some other distortion measure. As will
be seen later, MSE is the natural distortion measure in going from waveforms to sequences of
analog values. For specific sources, such as speech, however, MSE is not appropriate. For an
introduction to quantization, however, focusing on MSE seems appropriate in building intuition;
again, our approach is building understanding through the use of simple models.

The first approach, minimizing MSE with a fixed number of regions, leads to the Lloyd-Max
algorithm, which finds a local minimum of MSE. Unfortunately, the local minimum is not
necessarily a global minimum, as seen by several examples. For vector quantization, the problem
of local (but not global) minima arising from the Lloyd-Max algorithm appears to be the typical
case.
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The second approach, minimizing MSE with a constraint on the output entropy is also a diffi-
cult problem analytically. This is the appropriate approach in a two layer solution where the
quantizer is followed by discrete encoding. On the other hand, the first approach is more appro-
priate when vector quantization is to be used but cannot be followed by fixed-to-variable-length
discrete source coding.

High-rate scalar quantization, where the quantization regions can be made sufficiently small so
that the probability density in almost constant over each region, leads to a much simpler result
when followed by entropy coding. In the limit of high rate, a uniform scalar quantizer minimizes
MSE for a given entropy constraint. Moreover, the tradeoff between Minimum MSE and output
entropy is the simple univeral curve of Figure 3.9. The source is completely characterized by its
differential entropy in this tradeoff. The approximations in this result are analyzed in Exercise
3.6. Two-dimensional vector quantization under the high-rate approximation with entropy cod-
ing leads to a similar result. Using a square quantization region to tile the plane, the tradeoff
between MSE per symbol and entropy per symbol is the same as with scalar quantization. Using
a hexagonal quantization region to tile the plane reduces the MSE by a factor of 1.0392, which
seems hardly worth the trouble. It is possible that non-uniform two-dimensional quantizers
might achieve a smaller MSE than a hexagonal tiling, but this gain is still limited by the circu-
lar shaping gain, which is π/3 = 1.047 (0.2 dB). Using non-uniform quantization regions at high
rate leads to a lowerbound on MSE which is lower than that for the scalar uniform quantizer by
a factor of 1.0472, which, even if achievable, is scarcely worth the trouble.

The use of high-dimensional quantizers can achieve slightly higher gains over the uniform scalar
quantizer, but the gain is still limited by a fundamental information-theoretic result to πe/6 =
1.423 (1.53 dB).

3A Appendix A: Nonuniform scalar quantizers

This appendix shows that the approximate MSE for uniform high-rate scalar quantizers in Sec-
tion 3.7 provides an approximate lower bound on the MSE for any nonuniform scalar quantizer,
again using the high-rate approximation that the pdf of U is constant within each quantiza-
tion region. This shows that in the high-rate region, there is little reason to further consider
nonuniform scalar quantizers.

Consider an arbitrary scalar quantizer for an rv U with a pdf fU (u). Let ∆j be the width of the
jth quantization interval, i.e., ∆j = |Rj |. As before, let f(u) be the average pdf within each
quantization interval, i.e.,

f(u) =

∫
Rj

fU (u) du

∆j
for u ∈ Rj .

The high-rate approximation is that fU (u) is approximately constant over each quantization
region. Equivalently, fU (u) ≈ f(u) for all u. Thus, if region Rj has width ∆j , the conditional
mean aj of U over Rj is approximately the midpoint of the region, and the conditional mean-
squared error, MSEj , given U∈Rj , is approximately ∆2

j/12.

Let V be the quantizer output, i.e., the discrete rv such that V = aj whenever U ∈ Rj . The
probability pj that V =aj is pj =

∫
Rj

fU (u) du
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The unconditional mean-squared error, i.e.. E[(U − V )2] is then given by

MSE ≈
∑

j

pj

∆2
j

12
=

∑
j

∫
Rj

fU (u)
∆2

j

12
du. (3.17)

This can be simplified by defining ∆(u) = ∆j for u ∈ Rj . Since each u is in Rj for some j, this
defines ∆(u) for all u ∈ R. Substituting this in (3.17),

MSE ≈
∑

j

∫
Rj

fU (u)
∆(u)2

12
du (3.18)

=
∫ ∞

−∞
fU (u)

∆(u)2

12
du . (3.19)

Next consider the entropy of V . As in (3.8), the following relations are used for pj

pj =
∫
Rj

fU (u) du and, for all u ∈ Rj , pj = f(u)∆(u).

H[V ] =
∑

j

−pj log pj

=
∑

j

∫
Rj

−fU (u) log[ f(u)∆(u)] du (3.20)

=
∫ ∞

−∞
−fU (u) log[f(u)∆(u)] du, (3.21)

where the multiple integrals over disjoint regions have been combined into a single integral. The
high-rate approximation fU (u) ≈ f(u) is next substituted into (3.21).

H[V ] ≈
∫ ∞

−∞
−fU (u) log[fU (u)∆(u)] du

= h[U ] −
∫ ∞

−∞
fU (u) log ∆(u) du. (3.22)

Note the similarity of this to (3.11).

The next step is to minimize the mean-squared error subject to a constraint on the entropy
H[V ]. This is done approximately by minimizing the approximation to MSE in (3.22) subject
to the approximation to H[V ] in (3.19). Exercise 3.6 provides some insight into the accuracy of
these approximations and their effect on this minimization.

Consider using a Lagrange multiplier to perform the minimization. Since MSE decreases as
H[V ] increases, consider minimizing MSE + λH[V ]. As λ increases, MSE will increase and H[V ]
decrease in the minimizing solution.

In principle, the minimization should be constrained by the fact that ∆(u) is constrained to
represent the interval sizes for a realizable set of quantization regions. The minimum of MSE +
λH[V ] will be lower bounded by ignoring this constraint. The very nice thing that happens is that
this unconstrained lower bound occurs where ∆(u) is constant. This corresponds to a uniform
quantizer, which is clearly realizable. In other words, subject to the high-rate approximation,
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the lower bound on MSE over all scalar quantizers is equal to the MSE for the uniform scalar
quantizer. To see this, use (3.19) and (3.22),

MSE + λH[V ] ≈
∫ ∞

−∞
fU (u)

∆(u)2

12
du + λh[U ] − λ

∫ ∞

−∞
fU (u) log ∆(u) du

= λh[U ] +
∫ ∞

−∞
fU (u)

{
∆(u)2

12
− λ log ∆(u)

}
du. (3.23)

This is minimized over all choices of ∆(u) > 0 by simply minimizing the expression inside the
braces for each real value of u. That is, for each u, differentiate the quantity inside the braces
with respect to ∆(u), getting ∆(u)/6 − λ(log e)/∆(u). Setting the derivative equal to 0, it
is seen that ∆(u) =

√
λ(log e)/6. By taking the second derivative, it can be seen that this

solution actually minimizes the integrand for each u. The only important thing here is that the
minimizing ∆(u) is independent of u. This means that the approximation of MSE is minimized,
subject to a constraint on the approximation of H[V ], by the use of a uniform quantizer.

The next question is the meaning of minimizing an approximation to something subject to
a constraint which itself is an approximation. From Exercise 3.6, it is seen that both the
approximation to MSE and that to H[V ] are good approximations for small ∆, i.e., for high-
rate. For any given high-rate nonuniform quantizer then, consider plotting MSE and H[V ] on
Figure 3.9. The corresponding approximate values of MSE and H[V ] are then close to the plotted
value (with some small difference both in the ordinate and abscissa). These approximate values,
however, lie above the approximate values plotted in Figure 3.9 for the scalar quantizer. Thus,
in this sense, the performance curve of MSE versus H[V ] for the approximation to the scalar
quantizer either lies below or close to the points for any nonuniform quantizer.

In summary, it has been shown that for large H[V ] (i.e., high-rate quantization), a uniform
scalar quantizer approximately minimizes MSE subject to the entropy constraint. There is
little reason to use nonuniform scalar quantizers (except perhaps at low rate). Furthermore the
MSE performance at high-rate can be easily approximated and depends only on h[U ] and the
constraint on H[V ].

3B Appendix B: Nonuniform 2D quantizers

For completeness, the performance of nonuniform 2D quantizers is now analyzed; the analysis
is very similar to that of nonuniform scalar quantizers. Consider an arbitrary set of quantiza-
tion intervals {Rj}. Let A(Rj) and MSEj be the area and mean-squared error per dimension
respectively of Rj , i.e.,

A(Rj) =
∫
Rj

du ; MSEj =
1
2

∫
Rj

‖u − a j‖2

A(Rj)
du ,

where a j is the mean of Rj . For each region Rj and each u ∈ Rj , let f(u) = Pr(Rj)/A(Rj) be
the average pdf in Rj . Then

pj =
∫
Rj

fU (u) du = f(u)A(Rj).

The unconditioned mean-squared error is then

MSE =
∑

j

pj MSEj .
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Let A(u) = A(Rj) and MSE(u) = MSEj for u ∈ Aj . Then,

MSE =
∫

fU (u) MSE(u) du . (3.24)

Similarly,

H[V ] =
∑

j

−pj log pj

=
∫

−fU (u) log[f(u)A(u)] du

≈
∫

−fU (u) log[fU (u)A(u)] du (3.25)

= 2h[U ] −
∫

fU (u) log[A(u)] du . (3.26)

A Lagrange multiplier can again be used to solve for the optimum quantization regions under
the high-rate approximation. In particular, from (3.24) and (3.26),

MSE + λH[V ] ≈ λ2h[U ] +
∫

R2

fU (u) {MSE(u) − λ log A(u)} du. (3.27)

Since each quantization area can be different, the quantization regions need not have geometric
shapes whose translates tile the plane. As pointed out earlier, however, the shape that minimizes
MSEc for a given quantization area is a circle. Therefore the MSE can be lower bounded in the
Lagrange multiplier by using this shape. Replacing MSE(u) by A(u)/(4π) in (3.27),

MSE + λH[V ] ≈ 2λh[U ] +
∫

R2

fU (u)
{

A(u)
4π

− λ log A(u)
}

du. (3.28)

Optimizing for each u separately, A(u) = 4πλ log e. The optimum is achieved where the same
size circle is used for each point u (independent of the probability density). This is unrealizable,
but still provides a lower bound on the MSE for any given H[V ] in the high-rate region. The
reduction in MSE over the square region is π/3 = 1.0472 (0.2 dB). It appears that the uniform
quantizer with hexagonal shape is optimal, but this figure of π/3 provides a simple bound to
the possible gain with 2D quantizers. Either way, the improvement by going to two dimensions
is small.

The same sort of analysis can be carried out for n dimensional quantizers. In place of using a
circle as a lower bound, one now uses an n dimensional sphere. As n increases, the resulting
lower bound to MSE approaches a gain of πe/6 = 1.4233 (1.53 dB) over the scalar quantizer.
It is known from a fundamental result in information theory that this gain can be approached
arbitrarily closely as n → ∞.
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3.E Exercises

3.1. Let U be an analog rv (rv) uniformly distributed between −1 and 1.

(a) Find the three-bit (M = 8) quantizer that minimizes the mean-squared error.

(b) Argue that your quantizer satisfies the necessary conditions for optimality.

(c) Show that the quantizer is unique in the sense that no other 3-bit quantizer satisfies the
necessary conditions for optimality.

3.2. Consider a discrete-time, analog source with memory, i.e., U1, U2, . . . are dependent rv’s.
Assume that each Uk is uniformly distributed between 0 and 1 but that U2n = U2n−1 for
each n ≥ 1. Assume that {U2n}∞n=1 are independent.

(a) Find the one-bit (M = 2) scalar quantizer that minimizes the mean-squared error.

(b) Find the mean-squared error for the quantizer that you have found in (a).

(c) Find the one-bit-per-symbol (M = 4) two-dimensional vector quantizer that minimizes
the MSE.

(d) Plot the two-dimensional regions and representation points for both your scalar quantizer
in part (a) and your vector quantizer in part (c).

3.3. Consider a binary scalar quantizer that partitions the reals R into two subsets, (−∞, b] and
(b,∞) and then represents (−∞, b] by a1 ∈ R and (b,∞) by a2 ∈ R. This quantizer is used
on each letter Un of a sequence · · · , U−1, U0, U1, · · · of iid random variables, each having
the probability density f(u). Assume throughout this exercise that f(u) is symmetric, i.e.,
that f(u) = f(−u) for all u ≥ 0.

(a) Given the representation levels a1 and a2 > a1, how should b be chosen to minimize the
mean square distortion in the quantization? Assume that f(u) > 0 for a1 ≤ u ≤ a2 and
explain why this assumption is relevant.

(b) Given b ≥ 0, find the values of a1 and a2 that minimize the mean square distortion. Give
both answers in terms of the two functions Q(x) =

∫ ∞
x f(u) du and y(x) =

∫ ∞
x uf(u) du.

(c) Show that for b = 0, the minimizing values of a1 and a2 satisfy a1 = −a2.

(d) Show that the choice of b, a1, and a2 in part (c) satisfies the Lloyd-Max conditions for
minimum mean square distortion.

(e) Consider the particular symmetric density below

-1 0 1

�� �ε �� ε �� ε

1
3ε

1
3ε

1
3ε

f(u)

Find all sets of triples, {b, a1, a2} that satisfy the Lloyd-Max conditions and evaluate the
MSE for each. You are welcome in your calculation to replace each region of non-zero
probability density above with an impulse i.e., f(u) = 1

3 [δ(−1) + δ(0) + δ(1)], but you
should use the figure above to resolve the ambiguity about regions that occurs when b is -1,
0, or +1.
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(f) Give the MSE for each of your solutions above (in the limit of ε → 0). Which of your
solutions minimizes the MSE?

3.4. In Section 3.4, we partly analyzed a minimum-MSE quantizer for a pdf in which fU (u) = f1

over an interval of size L1, fU (u) = f2 over an interval of size L2 and fU (u) = 0 elsewhere.
Let M be the total number of representation points to be used, with M1 in the first interval
and M2 = M −M1 in the second. Assume (from symmetry) that the quantization intervals
are of equal size ∆1 = L1/M1 in interval 1 and of equal size ∆2 = L2/M2 in interval 2.
Assume that M is very large, so that we can approximately minimize the MSE over M1, M2

without an integer constraint on M1, M2 (that is, assume that M1, M2 can be arbitrary real
numbers).

(a) Show that the MSE is minimized if ∆1f
1/3
1 = ∆2f

1/3
2 , i.e., the quantization interval

sizes are inversely proportional to the cube root of the density. [Hint: Use a Lagrange
multiplier to perform the minimization. That is, to minimize a function MSE(∆1,∆2)
subject to a constraint M = f(∆1,∆2), first minimize MSE(∆1,∆2) + λf(∆1,∆2) without
the constraint, and, second, choose λ so that the solution meets the constraint.]

(b) Show that the minimum MSE under the above assumption is given by

MSE =

(
L1f

1/3
1 + L2f

1/3
2

)3

12M2
.

(c) Assume that the Lloyd-Max algorithm is started with 0 < M1 < M representation
points in the first interval and M2 = M − M1 points in the second interval. Explain where
the Lloyd-Max algorithm converges for this starting point. Assume from here on that the
distance between the two intervals is very large.

(d) Redo part (c) under the assumption that the Lloyd-Max algorithm is started with
0 < M1 ≤ M − 2 representation points in the first interval, one point between the two
intervals, and the remaining points in the second interval.

(e) Express the exact minimum MSE as a minimum over M − 1 possibilities, with one term
for each choice of 0 < M1 < M (assume there are no representation points between the two
intervals).

(f) Now consider an arbitrary choice of ∆1 and ∆2 (with no constraint on M). Show that
the entropy of the set of quantization points is

H(V ) = −f1L1 log(f1∆1) − f2L2 log(f2∆2).

(g) Show that if we minimize the MSE subject to a constraint on this entropy (ignoring the
integer constraint on quantization levels), then ∆1 = ∆2.

3.5. Assume that a continuous valued rv Z has a probability density that is 0 except over the
interval [−A, +A]. Show that the differential entropy h(Z) is upper bounded by 1+ log2 A.

(b) Show that h(Z) = 1 + log2 A if and only if Z is uniformly distributed between −A and
+A.

3.6. Let fU (u) = 1/2 + u for 0 < u ≤ 1 and fU (u) = 0 elsewhere.

(a) For ∆ < 1, consider a quantization region R = (x, x + ∆] for 0 < x ≤ 1 − ∆. Find the
conditional mean of U conditional on U ∈ R.
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(b) Find the conditional mean-squared error (MSE) of U conditional on U ∈ R. Show that,
as ∆ goes to 0, the difference between the MSE and the approximation ∆2/12 goes to 0 as
∆4.

(c) For any given ∆ such that 1/∆ = M , M a positive integer, let {Rj = ((j−1)∆, j∆]} be
the set of regions for a uniform scalar quantizer with M quantization intervals. Show that
the difference between h[U ] − log ∆ and H[V ] as given (3.10) is

h[U ] − log ∆ − H[V ] =
∫ 1

0
fU (u) log[f(u)/fU (u)] du.

(d) Show that the difference in (3.6) is nonnegative. Hint: use the inequality lnx ≤ x − 1.
Note that your argument does not depend on the particular choice of fU (u).

(e) Show that the difference h[U ] − log ∆ − H[V ] goes to 0 as ∆2 as ∆ → 0. Hint: Use the
approximation lnx ≈ (x−1)− (x−1)2/2, which is the second-order Taylor series expansion
of lnx around x = 1.

The major error in the high-rate approximation for small ∆ and smooth fU (u) is due to
the slope of fU (u). Your results here show that this linear term is insignificant for both
the approximation of MSE and for the approximation of H[V ]. More work is required to
validate the approximation in regions where fU (u) goes to 0.

3.7. (Example where h(U) is infinite.) Let fU (u) be given by

fU (u) =

{
1

u(ln u)2
for u ≥ e

0 for u < e,

(a) Show that fU (u) is non-negative and integrates to 1.

(b) Show that h(U) is infinite.

(c) Show that a uniform scalar quantizer for this source with any separation ∆ (0 < ∆ < ∞)
has infinite entropy. Hint: Use the approach in Exercise 3.6, parts (c, d.)

3.8. (Divergence and the extremal property of Gaussian entropy) The divergence between two
probability densities f(x) and g(x) is defined by

D(f‖g) =
∫ ∞

−∞
f(x) ln

f(x)
g(x)

dx

(a) Show that D(f‖g) ≥ 0. Hint: use the inequality ln y ≤ y − 1 for y ≥ 0 on −D(f‖g).
You may assume that g(x) > 0 where f(x) > 0.

(b) Let
∫ ∞
−∞ x2f(x) dx = σ2 and let g(x) = φ(x) where φ(x) is the density of the rv N (0, σ2).

Express D(f‖φ(x)) in terms of the differential entropy (in nats) of a rv with density f(x).

(c) Use (a) and (b) to show that the Gaussian rv N (0, σ2) has the largest differential entropy
of any rv with variance σ2 and that that differential entropy is 1

2 ln(2πeσ2).

3.9. Consider a discrete source U with a finite alphabet of N real numbers, r1 < r2 < · · · < rN

with the pmf p1 > 0, . . . , pN > 0. The set {r1, . . . , rN} is to be quantized into a smaller set
of M < N representation points a1 < a2 < · · · < aM .
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(a) Let R1,R2, . . . ,RM be a given set of quantization intervals with R1 = (−∞, b1],R2 =
(b1, b2], . . . ,RM = (bM−1,∞). Assume that at least one source value ri is in Rj for each
j, 1 ≤ j ≤ M and give a necessary condition on the representation points {aj} to achieve
minimum MSE.

(b) For a given set of representation points a1, . . . , aM assume that no symbol ri lies exactly
halfway between two neighboring ai, i.e., that ri �= aj+aj+1

2 for all i, j. For each ri, find
the interval Rj (and more specifically the representation point aj) that ri must be mapped
into to minimize MSE. Note that it is not necessary to place the boundary bj between Rj

and Rj+1 at bj = [aj + aj+1]/2 since there is no probability in the immediate vicinity of
[aj + aj+1]/2.

(c) For the given representation points, a1, . . . , aM , now assume that ri = aj+aj+1

2 for some
source symbol ri and some j. Show that the MSE is the same whether ri is mapped into
aj or into aj+1.

(d) For the assumption in part c), show that the set {aj} cannot possibly achieve minimum
MSE. Hint: Look at the optimal choice of aj and aj+1 for each of the two cases of part c).

3.10. Assume an iid discrete-time analog source U1, U2, · · · and consider a scalar quantizer that
satisfies the Lloyd-Max conditions. Show that the rectangular 2-dimensional quantizer based
on this scalar quantizer also satisfies the Lloyd-Max conditions.

3.11. (a) Consider a square two dimensional quantization region R defined by −∆
2 ≤ u1 ≤ ∆

2 and
−∆

2 ≤ u2 ≤ ∆
2 . Find MSEc as defined in (3.15) and show that it’s proportional to ∆2.

(b) Repeat part (a) with ∆ replaced by a∆. Show that MSEc/A(R) (where A(R) is now
the area of the scaled region) is unchanged.

(c) Explain why this invariance to scaling of MSEc/A(R) is valid for any two dimensional
region.



Chapter 4

Source and channel waveforms

4.1 Introduction

This chapter has a dual objective. The first is to understand analog data compression, i.e.,
the compression of sources such as voice for which the output is an arbitrarily varying real or
complex valued function of time; we denote such functions as waveforms. The second is to begin
studying the waveforms that are typically transmitted at the input and received at the output of
communication channels. The same set of mathematical tools are needed for the understanding
and representation of both source and channel waveforms; the development of these results is
the central topic in this chapter.

These results about waveforms are standard topics in mathematical courses on analysis, real
and complex variables, functional analysis, and linear algebra. They are stated here without the
precision or generality of a good mathematics text, but with considerably more precision and
interpretation than is found in most engineering texts.

4.1.1 Analog sources

The output of many analog sources (voice is the typical example) can be represented as a
waveform,1 {u(t) : R → R} or {u(t) : R → C}. Often, as with voice, we are interested only
in real waveforms, but the simple generalization to complex waveforms is essential for Fourier
analysis and for baseband modeling of communication channels. Since a real valued function
can be viewed as a special case of a complex valued function, the results for complex functions
are also useful for real functions.

We observed earlier that more complicated analog sources such as video can be viewed as
mappings from Rn to R, e.g., as mappings from horizontal/vertical position and time to real
analog values, but for simplicity we consider only waveform sources here.

Recall why it is desirable to convert analog sources into bits:

• The use of a standard binary interface separates the problem of compressing sources from
1The notation {u(t) : R → R} refers to a function that maps each real number t ∈ R into another real number

u(t) ∈ R. Similarly, {u(t) : R → C} maps each real number t ∈ R into a complex number u(t) ∈ C. These
functions of time, i.e., these waveforms, are usually viewed as dimensionless, thus allowing us to separate physical
scale factors in communication problems from the waveform shape.

87
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the problems of channel coding and modulation.

• The outputs from multiple sources can be easily multiplexed together. Multiplexers can
work by interleaving bits, 8-bit bytes, or longer packets from different sources.

• When a bit sequence travels serially through multiple links (as in a network), the noisy bit
sequence can be cleaned up (regenerated) at each intermediate node, whereas noise tends
to gradually accumulate with noisy analog transmission.

A common way of encoding a waveform into a bit sequence is as follows:

4.1. Approximate the analog waveform {u(t); t ∈ R} by its samples2 {u(mT );m ∈ Z} at regularly
spaced sample times, . . . ,−T, 0, T, 2T, . . . .

4.2. Quantize each sample (or n-tuple of samples) into a quantization region.

4.3. Encode each quantization region (or block of regions) into a string of bits.

These three layers of encoding are illustrated in Figure 4.1, with the three corresponding layers
of decoding.

waveform
input � sampler � quantizer � discrete

encoder
�

reliable
binary
channel

table
lookup

� discrete
decoderwaveform

output� analog
filter

� �

symbol
sequence

analog
sequence

Figure 4.1: Encoding and decoding a waveform source.

Example 4.1.1. In standard telephony, the voice is filtered to 4000 Hertz (4 kHz) and then
sampled at 8000 samples per second.3 Each sample is then quantized to one of 256 possible
levels, represented by 8 bits. Thus the voice signal is represented as a 64 kilobit/second (kb/s)
sequence. (Modern digital wireless systems use more sophisticated voice coding schemes that
reduce the data rate to about 8 kb/s with little loss of voice quality.)

The sampling above may be generalized in a variety of ways for converting waveforms into
sequences of real or complex numbers. For example, modern voice compression techniques first

2Z denotes the set of integers, −∞ < m < ∞, so {u(mT ); m ∈ Z} denotes the doubly infinite sequence of
samples with −∞ < m < ∞

3The sampling theorem, to be discussed in Section 4.6, essentially says that if a waveform is baseband-limited
to W Hz, then it can be represented perfectly by 2W samples per second. The highest note on a piano is about 4
kHz, which is considerably higher than most voice frequencies.
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segment the voice waveform into 20 msec. segments and then use the frequency structure of
each segment to generate a vector of numbers. The resulting vector can then be quantized and
encoded as discussed before.

An individual waveform from an analog source should be viewed as a sample waveform from a
random process. The resulting probabilistic structure on these sample waveforms then deter-
mines a probability assignment on the sequences representing these sample waveforms. This
random characterization will be studied in Chapter 7; for now, the focus is on ways to map de-
terministic waveforms to sequences and vice versa. These mappings are crucial both for source
coding and channel transmission.

4.1.2 Communication channels

Some examples of communication channels are as follows: a pair of antennas separated by open
space; a laser and an optical receiver separated by an optical fiber; and a microwave transmitter
and receiver separated by a wave guide. For the antenna example, a real waveform at the
input in the appropriate frequency band is converted by the input antenna into electromagnetic
radiation, part of which is received at the receiving antenna and converted back to a waveform.
For many purposes, these physical channels can be viewed as black boxes where the output
waveform can be described as a function of the input waveform and noise of various kinds.

Viewing these channels as black boxes is another example of layering. The optical or microwave
devices or antennas can be considered as an inner layer around the actual physical channel.
This layered view will be adopted here for the most part, since the physics of antennas, optics,
and microwave are largely separable from the digital communication issues developed here. One
exception to this is the description of physical channels for wireless communication in Chapter
9. As will be seen, describing a wireless channel as a black box requires some understanding of
the underlying physical phenomena.

The function of a channel encoder, i.e., a modulator, is to convert the incoming sequence of
binary digits into a waveform in such a way that the noise corrupted waveform at the receiver
can, with high probability, be converted back into the original binary digits. This is typically
done by first converting the binary sequence into a sequence of analog signals, which are then
converted to a waveform. This procession - bit sequence to analog sequence to waveform - is the
same procession as performed by a source decoder, and the opposite to that performed by the
source encoder. How these functions should be accomplished is very different in the source and
channel cases, but both involve converting between waveforms and analog sequences.

The waveforms of interest for channel transmission and reception should be viewed as sample
waveforms of random processes (in the same way that source waveforms should be viewed as
sample waveforms from a random process). This chapter, however, is concerned only about the
relationship between deterministic waveforms and analog sequences; the necessary results about
random processes will be postponed until Chapter 7. The reason why so much mathematical
precision is necessary here, however, is that these waveforms are a priori unknown. In other
words, one cannot use the conventional engineering approach of performing some computation
on a function and assuming it is correct if an answer emerges4.

4This is not to disparage the use of computational (either hand or computer) techniques to get a quick answer
without worrying about fine points. These techniques often provides insight and understanding, and the fine
points can be addressed later. For a random process, however, one doesn’t know a priori which sample functions
can provide computational insight.
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4.2 Fourier series

Perhaps the simplest example of an analog sequence that can represent a waveform comes from
the Fourier series. The Fourier series is also useful in understanding Fourier transforms and
discrete-time Fourier transforms (DTFTs). As will be explained later, our study of these topics
will be limited to finite-energy waveforms. Useful models for source and channel waveforms
almost invariably fall into the finite-energy class.

The Fourier series represents a waveform, either periodic or time-limited, as a weighted sum of
sinusoids. Each weight (coefficient) in the sum is determined by the function, and the function
is essentially determined by the sequence of weights. Thus the function and the sequence of
weights are essentially equivalent representations.

Our interest here is almost exclusively in time-limited rather than periodic waveforms5. Initially
the waveforms are assumed to be time-limited to some interval −T/2 ≤ t ≤ T/2 of an arbitrary
duration T > 0 around 0. This is then generalized to time-limited waveforms centered at some
arbitrary time. Finally, an arbitrary waveform is segmented into equal length segments each of
duration T ; each such segment is then represented by a Fourier series. This is closely related
to modern voice-compression techniques where voice waveforms are segmented into 20 msec
intervals, each of which are separately expanded into a Fourier-like series.

Consider a complex function {u(t) : R → C} that is nonzero only for −T/2 ≤ t ≤ T/2 (i.e.,
u(t) = 0 for t < −T/2 and t > T/2). Such a function is frequently indicated by {u(t) :
[−T/2, T/2] → C}. The Fourier series for such a time-limited function is given by6

u(t) =
{ ∑∞

k=−∞ ûk e2πikt/T for − T/2 ≤ t ≤ T/2
0 elsewhere,

(4.1)

where i denotes7
√
−1. The Fourier series coefficients ûk are in general complex (even if u(t) is

real), and are given by

ûk =
1
T

∫ T/2

−T/2
u(t)e−2πikt/T dt, −∞ < k < ∞. (4.2)

The standard rectangular function,

rect(t) =
{

1 for − 1/2 ≤ t ≤ 1/2
0 elsewhere,

can be used to simplify (4.1) as follows:

u(t) =
∞∑

k=−∞
ûk e2πikt/T rect(

t

T
). (4.3)

This expresses u(t) as a linear combination of truncated complex sinusoids,

u(t) =
∑
k∈Z

ûkθk(t) where θk(t) = e2πikt/T rect(
t

T
). (4.4)

5Periodic waveforms are not very interesting for carrying information; after observing one period, the rest of
the waveform carries nothing new.

6The conditions and the sense in which (4.1) holds are discussed later.
7The use of i for

√
−1 is standard in all scientific fields except electrical engineering. Electrical engineers

formerly reserved the symbol i for electrical current and thus often use j to denote
√
−1.
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Assuming that (4.4) holds for some set of coefficients {ûk; k ∈ Z}, the following simple and
instructive argument shows why (4.2) is satisifed for that set of coefficients. Two complex
waveforms, θk(t) and θm(t), are defined to be orthogonal if

∫ ∞
−∞ θk(t)θ∗m(t) dt = 0. The truncated

complex sinusoids in (4.4) are orthogonal since the interval [−T/2, T/2] contains an integral
number of cycles of each, i.e., for k �= m ∈ Z,∫ ∞

−∞
θk(t)θ∗m(t) dt =

∫ T/2

−T/2
e2πi(k−m)t/T dt = 0.

Thus the right side of (4.2) can be evaluated as

1
T

∫ T/2

−T/2
u(t)e−2πikt/T dt =

1
T

∫ ∞

−∞

∞∑
m=−∞

ûmθm(t)θ∗k(t) dt

=
ûk

T

∫ ∞

−∞
|θk(t)|2 dt

=
ûk

T

∫ T/2

−T/2
dt = ûk. (4.5)

An expansion such as that of (4.4) is called an orthogonal expansion. As shown later, the
argument in (4.5) can be used to find the coefficients in any orthogonal expansion. At that
point, more care will be taken in exchanging the order of integration and summation above.

Example 4.2.1. This and the following example illustrate why (4.4) need not be valid for all
values of t. Let u(t) = rect(2t) (see Figure 4.2). Consider representing u(t) by a Fourier series
over the interval −1/2 ≤ t ≤ 1/2. As illustrated, the series can be shown to converge to u(t) at
all t ∈ [−1/2, 1/2] except for the discontinuities at t = ±1/4. At t = ±1/4, the series converges
to the midpoint of the discontinuity and (4.4) is not valid8 at t = ±1/4. The next section will
show how to state (4.4) precisely so as to avoid these convergence issues.
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Figure 4.2: The Fourier series (over [−1/2, 1/2]) of a rectangular pulse. The second
figure depicts a partial sum with k = −1, 0, 1 and the third figure depicts a partial sum
with −3 ≤ k ≤ 3. The right figure illustrates that the series converges to u(t) except
at the points t = ±1/4, where it converges to 1/2.

Example 4.2.2. As a variation of the previous example, let v(t) be 1 for 0 ≤ t ≤ 1/2 and 0
elsewhere. Figure 4.3 shows the corresponding Fourier series over the interval −1/2 ≤ t ≤ 1/2.

8Most engineers, including the author, would say ‘so what, who cares what the Fourier series converges to
at a discontinuity of the waveform’. Unfortunately, this example is only the tip of an iceberg, especially when
time-sampling of waveforms and sample waveforms of random processes are considered.
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A peculiar feature of this example is the isolated discontinuity at t = −1/2, where the series
converges to 1/2. This happens because the untruncated Fourier series,

∑∞
k=−∞ v̂ke

2πikt, is
periodic with period 1 and thus must have the same value at both t = −1/2 and t = 1/2. More
generally, if an arbitrary function {v(t) : [−T/2, T/2] → C} has v(−T/2) �= v(T/2), then its
Fourier series over that interval cannot converge to v(t) at both those points.

− 1
2

0 1
2

v(t) = rect(2t − 1
4 )

− 1
2

1
2 + 2

π sin(2πt)
∑∞

k=−∞ vke
2πiktrect(t)

1
2

0 − 1
2

0 1
2

• ••

Figure 4.3: The Fourier series over [−1/2, 1/2] of the same rectangular pulse shifted
right by 1/4. The middle figure again depicts a partial expansion with k = −1, 0, 1.
The right figure shows that the series converges to v(t) except at the points t = −1/2, 0,
and 1/2, at each of which it converges to 1/2.

4.2.1 Finite-energy waveforms

The energy in a real or complex waveform u(t) is defined9 to be
∫ ∞
−∞ |u(t)|2 dt. The energy in

source waveforms plays a major role in determining how well the waveforms can be compressed
for a given level of distortion. As a preliminary explanation, consider the energy in a time-limited
waveform {u(t) : [−T/2, T/2] → R}. This energy is related to the Fourier series coefficients of
u(t) by the following energy equation which is derived in Exercise 4.2 by the same argument
used in (4.5): ∫ T/2

t=−T/2
|u(t)|2 dt = T

∞∑
k=−∞

|ûk|2. (4.6)

Suppose that u(t) is compressed by first generating its Fourier series coefficients, {ûk; k ∈ Z} and
then compressing those coefficients. Let {v̂k; k ∈ Z} be this sequence of compressed coefficients.
Using a squared distortion measure for the coefficients, the overall distortion is

∑
k |ûk − v̂k|2.

Suppose these compressed coefficients are now encoded, sent through a channel, reliably decoded,
and converted back to a waveform v(t) =

∑
k v̂ke

2πikt/T as in Figure 4.1. The difference between
the input waveform u(t) and the output v(t) is then u(t) − v(t), which has the Fourier series∑

k(ûk − v̂k)e2πikt/T . Substituting u(t)−v(t) into (4.6) results in the difference-energy equation,∫ T/2

t=−T/2
|u(t) − v(t)|2 dt = T

∑
k

|ûk − v̂k|2. (4.7)

Thus the energy in the difference between u(t) and its reconstruction v(t) is simply T times
the sum of the squared differences of the quantized coefficients. This means that reducing the
squared difference in the quantization of a coefficient leads directly to reducing the energy in
the waveform difference. The energy in the waveform difference is a common and reasonable

9Note that u2 = |u|2 if u is real, but for complex u, u2 can be negative or complex and |u|2 = uu∗ =
[�(u)]2 + [�(u)]2 is required to correspond to the intuitive notion of energy.
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measure of distortion, but the fact that it is directly related to mean-squared coefficient distortion
provides an important added reason for its widespread use.

There must be at least T units of delay involved in finding the Fourier coefficients for u(t) in
| −T/2, T/2] and then reconstituting v(t) from the quantized coefficients at the receiver. There
is additional processing and propagation delay in the channel. Thus the output waveform must
be a delayed approximation to the input. All of this delay is accounted for by timing recovery
processes at the receiver. This timing delay is set so that v(t) at the receiver, according to the
receiver timing, is the appropriate approximation to u(t) at the transmitter, according to the
transmitter timing. Timing recovery and delay are important problems, but they are largely
separable from the problems of current interest. Thus, after recognizing that receiver timing is
delayed from transmitter timing, delay can be otherwise ignored for now.

Next, visualize the Fourier coefficients ûk as sample values of independent random variables and
visualize u(t), as given by (4.3), as a sample value of the corresponding random process (this will
be explained carefully in Chapter 7). The expected energy in this random process is equal to T
times the sum of the mean-squared values of the coefficients. Similarly the expected energy in
the difference between u(t) and v(t) is equal to T times the sum of the mean-squared coefficient
distortions. It was seen by scaling in Chapter 3 that the the mean-squared quantization error
for an analog random variable is proportional to the variance of that random variable. It is thus
not surprising that the expected energy in a random waveform will have a similar relation to
the mean-squared distortion after compression.

There is an obvious practical problem with compressing a finite-duration waveform by quantizing
an infinite set of coefficients. One solution is equally obvious: compress only those coefficients
with a large mean-squared value. Since the expected value of

∑
k |ûk|2 is finite for finite-energy

functions, the mean-squared distortion from ignoring small coefficients can be made as small as
desired by choosing a sufficiently large finite set of coefficients. One then simply chooses v̂k = 0
in (4.7) for each ignored value of k.

The above argument will be developed carefully after developing the required tools. For now,
there are two important insights. First, the energy in a source waveform is an important param-
eter in data compression, and second, the source waveforms of interest will have finite energy
and can be compressed by compressing a finite number of coefficients.

Next consider the waveforms used for channel transmission. The energy used over any finite
interval T is limited both by regulatory agencies and by physical constraints on transmitters and
antennas. One could consider waveforms of finite power but infinite duration and energy (such
as the lowly sinusoid). On one hand, physical waveforms do not last forever (transmitters wear
out or become obsolete), but on the other hand, models of physical waveforms can have infinite
duration, modeling physical lifetimes that are much longer than any time scale of communication
interest. Nonetheless, for reasons that will gradually unfold, the channel waveforms in this text
will almost always be restricted to finite energy.

There is another important reason for concentrating on finite-energy waveforms. Not only are
they the appropriate models for source and channel waveforms, but they also have remarkably
simple and general properties. These properties rely on an additional constraint called mea-
surability which is explained in the following section. These finite-energy measurable functions
are called L2 functions. When time-constrained, they always have Fourier series, and without a
time constraint, they always have Fourier transforms. Perhaps more important, Chapter 5 will
show that these waveforms can be treated almost as if they are conventional vectors.
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One might question whether a limitation to finite-energy functions is too constraining. For
example, a sinusoid is often used to model the carrier in passband communication, and sinusoids
have infinite energy because of their infinite duration. As seen later, however, when a finite-
energy baseband waveform is modulated by that sinusoid up to passband, the resulting passband
waveform has finite energy.

As another example, the unit impulse (the Dirac delta function δ(t)) is a generalized function
used to model waveforms of unit area that are nonzero only in a narrow region around t = 0,
narrow relative to all other intervals of interest. The impulse response of a linear-time-invariant
filter is, of course, the response to a unit impulse; this response approximates the response to
a physical waveform that is sufficiently narrow and has unit area. The energy in that physical
waveform, however, grows wildly as the waveform becomes more narrow. A rectangular pulse
of width ε and height 1/ε, for example, has unit area for all ε > 0 but has energy 1/ε, which
approaches ∞ as ε → 0. One could view the energy in a unit impulse as being either undefined
or infinite, but in no way could view it as being finite.

To summarize, there are many useful waveforms outside the finite-energy class. Although they
are not physical waveforms, they are useful models of physical waveforms where energy is not
important. Energy is such an important aspect of source and channel waveforms, however, that
such waveforms can safely be limited to the finite-energy class.

4.3 L2 functions and Lebesgue integration over [−T/2, T/2]

A function {u(t) : R → C} is defined to be L2 if it is Lebesgue measurable and has a finite
Lebesgue integral

∫ ∞
−∞ |u(t)|2 dt. This section provides a basic and intuitive understanding of

what these terms mean. The appendix provides proofs of the results, additional examples, and
more depth of understanding. Still deeper understanding requires a good mathematics course
in real and complex variables. The appendix is not required for basic engineering understanding
of results in this and subsequent chapters, but it will provide deeper insight.

The basic idea of Lebesgue integration is no more complicated than the more common Rie-
mann integration taught in freshman college courses. Whenever the Riemann integral exists,
the Lebesgue integral also exists10 and has the same value. Thus all the familiar ways of calcu-
lating integrals, including tables and numerical procedures, hold without change. The Lebesgue
integral is more useful here, partly because it applies to a wider set of functions, but, more
importantly, because it greatly simplifies the main results.

This section considers only time-limited functions, {u(t) : [−T/2, T/2] → C}. These are the
functions of interest for Fourier series, and the restriction to a finite interval avoids some math-
ematical details better addressed later.

Figure 4.4 shows intuitively how Lebesgue and Riemann integration differ. Conventional Rie-
mann integration of a nonnegative real-valued function u(t) over an interval [−T/2, T/2] is
conceptually performed in Figure 4.4a by partitioning [−T/2, T/2] into, say, i0 intervals each
of width T/i0. The function is then approximated within the ith such interval by a single
value ui, such as the mid-point of values in the interval. The integral is then approximated as∑i0

i=1(T/i0)ui. If the function is sufficiently smooth, then this approximation has a limit, called
the Riemann integral, as i0 → ∞.

10There is a slight notional qualification to this which is discussed in the sinc function example of Section 4.5.1.
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−T/2 T/2∫ T/2
−T/2 u(t) dt ≈

∑i0
i=1 ui/i0

(a): Riemann
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∑
m mδ µm

(b): Lebesgue

Figure 4.4: Example of Riemann and Lebesgue integration

To integrate the same function by Lebesgue integration, the vertical axis is partitioned into
intervals each of height δ, as shown in Figure 4.4(b). For the mth such interval,11 [mδ, (m+1)δ ),
let Em be the set of values of t such that mδ ≤ u(t) < (m+1)δ. For example, the set E2 is
illustrated by arrows in Figure 4.4 and is given by

E2 = {t : 2δ ≤ u(t) < 3δ} = [t1, t2) ∪ (t3, t4].

As explained below, if Em is a finite union of separated12 intervals, its measure, µm is the sum
of the widths of those intervals; thus µ2 in the example above is given by

µ2 = µ(E2) = (t2 − t1) + (t4 − t3). (4.8)

Similarly, E1 = [−T
2 , t1) ∪ (t4, T

2 ] and µ1 = (t1 + T
2 ) + (T

2 − t4).

The Lebesque integral is approximated as
∑

m(mδ)µm. This approximation is indicated by the
vertically shaded area in the figure. The Lebesgue integral is essentially the limit as δ → 0.

In short, the Riemann approximation to the area under a curve splits the horizontal axis into
uniform segments and sums the corresponding rectangular areas. The Lebesgue approximation
splits the vertical axis into uniform segments and sums the height times width measure for each
segment. In both cases, a limiting operation is required to find the integral, and Section 4.3.3
gives an example where the limit exists in the Lebesgue but not the Riemann case.

4.3.1 Lebesgue measure for a union of intervals

In order to explain Lebesgue integration further, measure must be defined for a more general
class of sets.

The measure of an interval I from a to b, a ≤ b is defined to be µ(I) = b− a ≥ 0. For any finite
union of, say,  separated intervals, E =

⋃	
j=1 Ij , the measure µ(E) is defined as

µ(E) =
	∑

j=1

µ(Ij). (4.9)

11The notation [a, b) denotes the semiclosed interval a ≤ t < b. Similarly, (a, b] denotes the semiclosed interval
a < t ≤ b, (a, b) the open interval a < t < b, and [a, b] the closed interval a ≤ t ≤ b. In the special case where
a = b, the interval [a, a] consists of the single point a, whereas [a, a), (a, a], and (a, a) are empty.

12Two intervals are separated if they are both nonempty and there is at least one point between them that lies
in neither interval; i.e., (0, 1) and (1, 2) are separated. In contrast, two sets are disjoint if they have no points in
common. Thus (0, 1) and [1, 2] are disjoint but not separated.
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This definition of µ(E) was used in (4.8) and is necessary for the approximation in Figure 4.4b to
correspond to the area under the approximating curve. The fact that the measure of an interval
does not depend on inclusion of the end points corresponds to the basic notion of area under a
curve. Finally, since these separated intervals are all contained in [−T/2, T/2], it is seen that
the sum of their widths is at most T , i.e.,

0 ≤ µ(E) ≤ T. (4.10)

Any finite union of, say,  arbitrary intervals, E =
⋃	

j=1 Ij , can also be uniquely expressed as
a finite union of at most  separated intervals, say I ′1, . . . , I ′k, k ≤  (see Exercise 4.5), and its
measure is then given by

µ(E) =
k∑

j=1

µ(I ′j). (4.11)

The union of a countably infinite collection13 of separated intervals, say B =
⋃∞

j=1 Ij is also
defined to be measurable and has a measure given by

µ(B) = lim
	→∞

	∑
j=1

µ(Ij). (4.12)

The summation on the right is bounded between 0 and T for each . Since µ(Ij) ≥ 0, the sum is
nondecreasing in . Thus the limit exists and lies between 0 and T . Also the limit is independent
of the ordering of the Ij (see Exercise 4.4).

Example 4.3.1. Let Ij = (T2−2j , T2−2j+1) for all integer j ≥ 1. The jth interval then has
measure µ(Ij) = 2−2j . These intervals get smaller and closer to 0 as j increases. They are
easily seen to be separated. The union B =

⋃
j Ij then has measure µ(B) =

∑∞
j=1 T2−2j = T/3.

Visualize replacing the function in Figure 4.4 by one that oscillates faster and faster as t → 0;
B could then represent the set of points on the horizontal axis corresponding to a given vertical
slice.

Example 4.3.2. As a variation of the above example, suppose B =
⋃

j Ij where Ij =
[T2−2j , T2−2j ] for each j. Then interval Ij consists of the single point T2−2j so µ(Ij) = 0.
In this case,

∑	
j=1 µ(Ij) = 0 for each . The limit of this as  → ∞ is also 0, so µ(B) = 0 in this

case. By the same argument, the measure of any countably infinite set of points is 0.

Any countably infinite union of arbitrary (perhaps intersecting) intervals can be uniquely14

represented as a countable (i.e., either a countably infinite or finite) union of separated intervals
(see Exercise 4.6); its measure is defined by applying (4.12) to that representation.

4.3.2 Measure for more general sets

It might appear that the class of countable unions of intervals is broad enough to represent any
set of interest, but it turns out to be too narrow to allow the general kinds of statements that

13An elementary discussion of countability is given in Appendix 4A.1. Readers unfamiliar with ideas such as
the countability of the rational numbers are strongly encouraged to read this appendix.

14The collection of separated intervals and the limit in (4.12) is unique, but the ordering of the intervals is not.



4.3. L2 FUNCTIONS AND LEBESGUE INTEGRATION OVER [−T/2, T/2] 97

formed our motivation for discussing Lebesgue integration. One vital generalization is to require
that the complement B (relative to [−T/2, T/2]) of any measurable set B also be measurable.15

Since µ([−T/2, T/2]) = T and every point of [−T/2, T/2] lies in either B or B but not both, the
measure of B should be T − µ(B). The reason why this property is necessary in order for the
Lebesgue integral to correspond to the area under a curve is illustrated in Figure 4.5.

�� �� �� �� B

�� �� �� B

γB(t)

−T/2 T/2

Figure 4.5: Let f(t) have the value 1 on a set B and the value 0 elsewhere in [−T/2, T/2].
Then

∫
f(t) dt = µ(B). The complement B of B is also illustrated and it is seen that

1 − f(t) is 1 on the set B and 0 elsewhere. Thus
∫

[1 − f(t)] dt = µ(B), which must
equal T − µ(B) for integration to correspond to the area under a curve.

The subset inequality is another property that measure should have: this states that if A and
B are both measurable and A ⊆ B, then µ(A) ≤ µ(B). One can also visualize from Figure 4.5
why this subset inequality is necessary for integration to represent the area under a curve.

Before defining which sets in [−T/2, T/2] are measurable and which are not, a measure-like
function called outer measure is introduced that exists for all sets in [−T/2, T/2]. For an
arbitrary set A, the set B is said to cover A if A ⊆ B and B is a countable union of intervals.
The outer measure µo(A) is then defined as the largest value that preserves the subset inequality
relative to countable unions of intervals. In particular,16

µo(A) = inf
B:B coversA

µ(B). (4.13)

Not surprisingly, the outer measure of a countable union of intervals is equal to its measure as
already defined (see Appendix 4A.3).

Measurable sets and measure over the interval [−T/2, T/2] can now be defined as follows:

Definition: A set A (over [−T/2, T/2]) is measurable if µo(A)+µo(A) = T . If A is measurable,
then its measure, µ(A), is the outer measure µo(A).

Intuitively, then, a set is measurable if the set and its complement are sufficiently untangled
that each can be covered by countable unions of intervals which have arbitrarily little overlap.
The example at the end of Section 4A.4 constructs the simplest nonmeasurable set we are aware
of; it should be noted how bizarre it is and how tangled it is with its complement.

15Appendix 4A.1 uses the set of rationals in [−T/2, T/2] to illustrate that the complement B of a countable
union of intervals B need not be a countable union of intervals itself. In this case µ(B) = T − µ(B), which is
shown to be valid also when B is a countable union of intervals.

16The infimum (inf) of a set of real numbers is essentially the minimum of that set. The difference between the
minimum and the infimum can be seen in the example of the set of real numbers strictly greater than 1. This set
has no minimum, since for each number in the set, there is a smaller number still greater than 1. To avoid this
somewhat technical issue, the infimum is defined as the greatest lower bound of a set. In the example, all numbers
less than or equal to 1 are lower bounds for the set, and 1 is then greatest lower bound, i.e., the infimum. Every
nonempty set of real numbers has an infinum if one includes −∞ as a choice.
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The definition of measurability is a ‘mathematician’s definition’ in the sense that it is very
succinct and elegant, but doesn’t provide many immediate clues about determining whether a
set is measurable and, if so, what its measure is. This is now briefly discussd.

It is shown in Appendix 4A.3 that countable unions of intervals are measurable according to
this definition, and the measure can be found by breaking the set into separated intervals. Also,
by definition, the complement of every measurable set is also measurable, so the complements of
countable unions of intervals are measurable. Next, if A ⊆ A′, then any cover of A′ also covers
A so the subset inequality is satisfied. This often makes it possible to find the measure of a set
by using a limiting process on a sequence of measurable sets contained in or containing a set of
interest. Finally, the following theorem is proven in Section 4A.4 of the appendix.

Theorem 4.3.1. Let A1,A2, . . . , be any sequence of measurable sets. Then S =
⋃∞

j=1 Aj and
D =

⋂∞
j=1 Aj are measurable. If A1,A2, . . . are also disjoint, then µ(S) =

∑
j µ(Aj). If

µo(A) = 0, then A is measurable and has zero measure.

This theorem and definition say that the collection of measurable sets is closed under countable
unions, countable intersections, and complement. This partly explains why it is so hard to find
nonmeasurable sets and also why their existence can usually be ignored - they simply don’t arise
in the ordinary process of analysis.

Another consequence concerns sets of zero measure. It was shown earlier that any set containing
only countably many points has zero measure, but there are many other sets of zero measure.
The Cantor set example in Section 4A.4 illustrates a set of zero measure with uncountably many
elements. The theorem implies that a set A has zero measure if, for any ε > 0, A has a cover
B such that µ(B) ≤ ε. The definition of measurability shows that the complement of any set of
zero measure has measure T , i.e., [−T/2, T/2] is the cover of smallest measure. It will be seen
shortly that for most purposes, including integration, sets of zero measure can be ignored and
sets of measure T can be viewed as the entire interval [−T/2, T/2].

This concludes our study of measurable sets on [−T/2, T/2]. The bottom line is that not
all sets are measurable, but that non-measurable sets arise only from bizarre and artificial
constructions and can usually be ignored. The definitions of measure and measurability might
appear somewhat arbitrary, but in fact they arise simply through the natural requirement that
intervals and countable unions of intervals be measurable with the given measure17 and that
the subset inequality and complement property be satisfied. If we wanted additional sets to be
measurable, then at least one of the above properties would have to be sacrificed and integration
itself would become bizarre. The major result here, beyond basic familiarity and intuition, is
Theorem 4.3.1 which is used repeatedly in the following sections. The appendix fills in many
important details and proves the results here

4.3.3 Measurable functions and integration over [−T/2, T/2]

A function {u(t) : [−T/2, T/2] → R}, is said to be Lebesgue measurable (or more briefly mea-
surable) if the set of points {t : u(t) < β} is measurable for each β ∈ R. If u(t) is measurable,
then, as shown in Exercise 4.11, the sets {t : u(t) ≤ β}, {t : u(t) ≥ β}, {t : u(t) > β} and

17We have not distinguished between the condition of being measurable and the actual measure assigned a set,
which is natural for ordinary integration. The theory can be trivially generalized, however, to random variables
restricted to [−T/2, T/2]. In this case, the measure of an interval is redefined to be the probability of that interval.
Everything else remains the same except that some individual points might have non-zero probability.
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{t : α ≤ u(t) < β} are measurable for all α < β ∈ R. Thus, if a function is measurable, the
measure µm = µ({t : mδ ≤ u(t) < (m+1)δ}) associated with the mth horizontal slice in Figure
4.4 must exist for each δ > 0 and m.

For the Lebesgue integral to exist, it is also necessary that the Figure 4.4 approximation to
the Lebesgue integral has a limit as the vertical interval size δ goes to 0. Initially consider
only nonnegative functions, u(t) ≥ 0 for all t. For each integer n ≥ 1, define the nth order
approximation to the Lebesgue integal as that arising from partitioning the vertical axis into
intervals each of height δn = 2−n. Thus a unit increase in n corresponds to halving the vertical
interval size as illustrated below.

−T/2 T/2

δn

2δn

3δn

Figure 4.6: The improvement in the approximation to the Lebesgue integral by a unit
increase in n is indicated by the horizontal crosshatching.

Let µm,n be the measure of {t : m2−n ≤ u(t) < (m + 1)2−n}, i.e., the measure of the set of
t ∈ [−T/2, T/2] for which u(t) is in the mth vertical interval for the nth order approximation.
The approximation

∑
m m2−n µm,n might be infinite18 for all n, and in this case the Lebesgue

integral is said to be infinite. If the sum is finite for n = 1, however, the figure shows that the
change in going from the approximation of order n to n + 1 is nonnegative and upper bounded
by T2−n−1. Thus it is clear that the sequence of approximations has a finite limit which is
defined19 to be the Lebesgue integral of u(t). In summary, the Lebesgue integral of an arbitrary
measurable nonnegative function {u(t) : [−T/2, T/2] → R} is finite if any approximation is
finite and is then given by∫

u(t) dt = lim
n→∞

∞∑
m=0

m2−nµm,n where µm,n = µ(t : m2−n ≤ u(t) < (m + 1)2−n). (4.14)

Example 4.3.3. Consider a function that has the value 1 for each rational number in
[−T/2, T/2] and 0 for all irrational numbers. The set of rationals has zero measure, as shown
in Appendix 4A.1, so that each of the above approximations to the Lebesgue integral are 0 and
thus the limit is zero. This is a simple example of a function that has a Lebesgue integral but
no Riemann integral.

Next consider two non-negative measurable functions u(t) and v(t) on [−T/2, T/2] and assume
u(t) = v(t) except on a set of zero measure. Then each of the approximations in (4.14) are
identical for u(t) and v(t), and thus the two integrals are identical (either both infinite or both
the same number). This same property will be seen to carry over for functions that also take on

18For example, this sum is infinite if u(t) = 1/|t| for −T/2 ≤ t ≤ T/2. The situation here is essentially the
same for Riemann and Lebesgue integration.

19This limiting operation can be shown to be independent of how the quantization intervals approach 0.
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negative values and for complex valued functions. This property says that sets of zero measure
can be ignored in integration. This is one of the major simplifications afforded by Lebesgue
integration. Two functions that are the same except on a set of zero measure are said to be
equal almost everywhere, abbreviated a.e. For example, the rectangular pulse and its Fourier
series representation illustrated in Figure 4.2 are equal a.e.

For functions taking on both positive and negative values, the function u(t) can be separated
into a positive part u+(t) and a negative part u−(t). These are defined by

u+(t) =
{

u(t) for t : u(t) ≥ 0
0 for t : u(t) < 0

; u−(t) =
{

0 for t : u(t) ≥ 0
−u(t) for t : u(t) < 0.

For all t ∈ [−T/2, T/2] then,

u(t) = u+(t) − u−(t). (4.15)

If u(t) is measurable, then u+(t) and u−(t) are also.20 Since these are nonnegative, they can be
integrated as before, and each integral exists with either a finite or infinite value. If at most one
of these integrals is infinite, the Lebesgue integral of u(t) is defined as∫

u(t) =
∫

u+(t) −
∫

u−(t) dt. (4.16)

If both
∫

u+(t) dt and
∫

u−(t) dt are infinite, then the integral is undefined.

Finally, a complex function {u(t) : [−T/2 T/2] → C} is defined to be measurable if the real and
imaginary parts of u(t) are measurable. If the integrals of �(u(t)) and �(u(t)) are defined, then
the Lebesgue integral

∫
u(t) dt is defined by∫

u(t) dt =
∫

�(u(t)) dt + i

∫
�(u(t)) dt. (4.17)

The integral is undefined otherwise. Note that this implies that any integration property of
complex valued functions {u(t) : [−T/2 T/2] → C} is also shared by real valued functions
{u(t) : [−T/2 T/2] → R}.

4.3.4 Measurability of functions defined by other functions

The definitions of measurable functions and Lebesgue integration in the last subsection were
quite simple given the concept of measure. However, functions are often defined in terms of other
more elementary functions, so the question arises whether measurability of those elementary
functions implies that of the defined function. The bottom-line answer is almost invariably yes.
For this reason it is often assumed in the following sections that all functions of interest are
measurable. Several results are now given fortifying this bottom-line view.

First, if {u(t) : [−T/2, T/2] → R} is measurable, then −u(t), |u(t)|, u2(t), eu(t), and ln |u(t)| are
also measurable. These and similar results follow immediately from the definition of measurable
function and are derived in Exercise 4.12.

Next, if u(t) and v(t) are measurable, then u(t)+ v(t) and u(t)v(t) are measurable (see Exercise
4.13).

20To see this, note that for β > 0, {t : u+(t) < β} = {t : u(t) < β}. For β ≤ 0, {t : u+(t) < β} is the empty
set. A similar argument works for u−(t).
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Finally, if {uk(t) : [−T/2, T/2] → R} is a measurable function for each integer k ≥ 1, then
infk uk(t) is measurable. This can be seen by noting that {t : infk[uk(t)] ≤ α} =

⋃
k{t : uk(t) ≤

α}, which is measurable for each α. Using this result, Exercise 4.15, shows that limk uk(t) is
measurable if the limit exists for all t ∈ [−T/2, T/2].

4.3.5 L1 and L2 functions over [−T/2, T/2]

A function {u(t) : [−T/2, T/2] → C} is said to be L1, or in the class L1, if u(t) is measurable
and the Lebesgue integral of |u(t)| is finite.21

For the special case of a real function, {u(t) : [−T/2, T/2] → R}, the magnitude |u(t)| can be
expressed in terms of the positive and negative parts of u(t) as |u(t)| = u+(t) + u−(t). Thus
u(t) is L1 if and only if both u+(t) and u−(t) have finite integrals. In other words, u(t) is L1 if
and only if the Lebesgue integral of u(t) is defined and finite.

For a complex function {u(t) : [−T/2, T/2] → C}, it can be seen that u(t) is L1 if and only if
both �[u(t)] and �[u(t)] are L1. Thus u(t) is L1 if and only if

∫
u(t) dt is defined and finite.

A function {u(t) : [−T/2, T/2] → R} or {u(t) : [−T/2, T/2] → C} is said to be an L2 function,
or a finite-energy function, if u(t) is measurable and the Lebesgue integral of |u(t)|2 is finite.
All source and channel waveforms discussed in this text will be assumed to be L2. Although L2

functions are of primary interest here, the class of L1 functions is of almost equal importance
in understanding Fourier series and Fourier transforms. An important relation between L1 and
L2 is given in the following simple theorem, illustrated in Figure 4.7.

Theorem 4.3.2. If {u(t) : [−T/2, T/2] → C} is L2, then it is also L1.

Proof: Note that |u(t)| ≤ |u(t)|2 for all t such that |u(t)| ≥ 1. Thus |u(t)| ≤ |u(t)|2 + 1 for
all t, so that

∫
|u(t)| dt ≤

∫
|u(t)|2 dt + T . If the function u(t) is L2, then the right side of this

equation is finite, so the function is also L1.

�
�


�

�

�

�

�

�

�

�

�Measurable functions [−T/2, T/2] → C
L1 functions [−T/2, T/2] → C

L2 functions [−T/2, T/2] → C

Figure 4.7: Illustration showing that for functions from [−T/2, T/2] to C, the class
of L2 functions is contained in the class of L1 functions, which in turn is contained
in the class of measurable functions. The restriction here to a finite domain such as
[−T/2, T/2] is necessary, as seen later.

This completes our basic introduction to measure and Lebesgue integration over the finite in-
terval [−T/2, T/2]. The fact that the class of measurable sets is closed under complementation,
countable unions, and countable intersections underlies the results about the measurability of

21L1 functions are sometimes called integrable functions.
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functions being preserved over countable limits and sums. These in turn underlie the basic
results about Fourier series, Fourier integrals, and orthogonal expansions. Some of those re-
sults will be stated without proof, but an understanding of measurability will let us understand
what those results mean. Finally, ignoring sets of zero measure will simplify almost everything
involving integration.

4.4 The Fourier series for L2 waveforms

The most important results about Fourier series for L2 functions are as follows:

Theorem 4.4.1 (Fourier series). Let {u(t) : [−T/2, T/2] → C} be an L2 function. Then for
each k ∈ Z, the Lebesgue integral

ûk =
1
T

∫ T/2

−T/2
u(t)e−2πikt/T dt (4.18)

exists and satisfies |ûk| ≤ 1
T

∫
|u(t)| dt < ∞. Furthermore,

lim
	→∞

∫ T/2

−T/2

∣∣∣∣∣u(t) −
	∑

k=−	

ûke
2πikt/T

∣∣∣∣∣
2

dt = 0, (4.19)

where the limit is monotonic in . Also, the energy equation (4.6) is satisfied.

Conversely,, if {ûk; k ∈ Z} is a two-sided sequence of complex numbers satisfying
∑∞

k=−∞ |ûk|2 <
∞, then an L2 function {u(t) : [−T/2, T/2] → C} exists such that (4.6) and (4.19) are satisfied.

The first part of the theorem is simple. Since u(t) is measurable and e−2πikt/T is measur-
able for each k, the product u(t)e−2πikt/T is measurable. Also |u(t)e−2πikt/T | = |u(t)| so that
u(t)e−2πikt/T is L1 and the integral exists with the given upper bound (see Exercise 4.17). The
rest of the proof is in the next chapter, Section 5.3.4.

The integral in (4.19) is the energy in the difference between u(t) and the partial Fourier series
using only the terms − ≤ k ≤ . Thus (4.19) asserts that u(t) can be approximated arbitrarily
closely (in terms of difference energy) by finitely many terms in its Fourier series.

A series is defined to converge in L2 if (4.19) holds. The notation l.i.m. (limit in mean-square)
is used to denote L2 convergence, so (4.19) is often abbreviated by

u(t) = l.i.m.
∑

k

ûk e2πikt/T rect(
t

T
). (4.20)

The notation does not indicate that the sum in (4.20) converges pointwise to u(t) at each t; for
example, the Fourier series in Figure 4.2 converges to 1/2 rather than 1 at the values t = ±1/4.
In fact, any two L2 functions that are equal a.e. have the same Fourier series coefficients.
Thus the best to be hoped for is that

∑
k ûk e2πikt/T rect( t

T ) converges pointwise and yields a
‘canonical representative’ for all the L2 functions that have the given set of Fourier coefficients,
{ûk; k ∈ Z}.
Unfortunately, there are some rather bizarre L2 functions (see the everywhere discontinu-
ous example in Section 5A.1) for which

∑
k ûk e2πikt/T rect( t

T ) diverges for some values of t.
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There is an important theorem due to Carleson [3], however, stating that if u(t) is L2, then∑
k ûk e2πikt/T rect( t

T ) converges almost everywhere on [−T/2, T/2]. Thus for any L2 function
u(t), with Fourier coefficients {ûk : k ∈ Z}, there is a well-defined function,

ũ(t) =
{ ∑∞

k=−∞ ûk e2πikt/T rect( t
T ) if the sum converges

0 otherwise.
(4.21)

Since the sum above converges a.e., the Fourier coefficients of ũ(t) given by (4.18) agree with
those in (4.21). Thus ũ(t) can serve as a canonical representative for all the L2 functions with
the same Fourier coefficients {ûk; k ∈ Z}. From the difference-energy equation (4.7), it follows
that the difference between any two L2 functions with the same Fourier coefficients has zero
energy. Two L2 functions whose difference has zero energy are said to be L2 equivalent ; thus all
L2 functions with the same Fourier coefficients are L2 equivalent. Exercise 4.18 shows that two
L2 functions are L2 equivalent if and only if they are equal almost everywhere.

In summary, each L2 function {u(t) : [−T/2, T/2] → C} belongs to an equivalence class con-
sisting of all L2 functions with the same set of Fourier coefficients. Each pair of functions in
this equivalence class are L2 equivalent and equal a.e. The canonical representive in (4.21) is
determined solely by the Fourier coefficients and is uniquely defined for any given set of Fourier
coefficients satisfying

∑
k |ûk|2 < ∞; the corresponding equivalence class consists of the L2

functions that are equal to ũ(t) a.e.

From an engineering standpoint, the sequence of ever closer approximations in (4.19) is usu-
ally more relevant than the notion of an equivalence class of functions with the same Fourier
coefficients. In fact, for physical waveforms, there is no physical test that can distinguish wave-
forms that are L2 equivalent, since any such physical test requires an energy difference. At the
same time, if functions {u(t) : [−T/2, T/2] → C} are consistently represented by their Fourier
coefficients, then equivalence classes can usually be ignored.

For all but the most bizarre L2 functions, the Fourier series converges everywhere to some
function that is L2 equivalent to the original function, and thus, as with the points t = ±1/4
in the example of Figure 4.2, it is usually unimportant how one views the function at those
isolated points. Occasionally, however, particularly when discussing sampling and vector spaces,
the concept of equivalence classes becomes relevant.

4.4.1 The T-spaced truncated sinusoid expansion

There is nothing special about the choice of 0 as the center point of a time-limited function. For
a function {v(t) : [∆−T/2, ∆ + T/2] → C} centered around some arbitrary time ∆, the shifted
Fourier series over that interval is22

v(t) = l.i.m.
∑

k

v̂k e2πikt/T rect
(

t − ∆
T

)
, where (4.22)

v̂k =
1
T

∫ ∆+T/2

∆−T/2
v(t)e−2πikt/T dt, −∞ < k < ∞. (4.23)

To see this, let u(t) = v(t + ∆). Then u(0) = v(∆) and u(t) is centered around 0 and has a
Fourier series given by (4.20) and (4.18). Letting v̂k = ûke

−2πik∆/T yields (4.22) and (4.23).
22Note that the Fourier relationship between the function v(t) and the sequence {vk} depends implicitly on the

interval T and the shift ∆.
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The results about measure and integration are not changed by this shift in the time axis.

Next, suppose that some given function u(t) is either not time-limited or limited to some very
large interval. An important method for source coding is first to break such a function into
segments, say of duration T , and then to encode each segment23 separately. A segment can be
encoded by expanding it in a Fourier series and then encoding the Fourier series coefficients.

Most voice compression algorithms use such an approach, usually breaking the voice waveform
into 20 msec segments. Voice compression algorithms typically use the detailed structure of
voice rather than simply encoding the Fourier series coefficients, but the frequency structure of
voice is certainly important in this process. Thus understanding the Fourier series approach is
a good first step in understanding voice compression.

The implementation of voice compression (as well as most signal processing techniques) usually
starts with sampling at a much higher rate than the segment duration above. This sampling is
followed by high-rate quantization of the samples, which are then processed digitally. Concep-
tually, however, it is preferable to work directly with the waveform and with expansions such
as the Fourier series. The analog parts of the resulting algorithms can then be implemented by
the standard techniques of high-rate sampling and digital signal processing.

Suppose that an L2 waveform {u(t) : R → C} is segmented into segments um(t) of duration T .
Expressing u(t) as the sum of these segments,24

u(t) = l.i.m.
∑
m

um(t), where um(t) = u(t) rect
(

t

T
− m

)
. (4.24)

Expanding each segment um(t) by the shifted Fourier series of (4.22) and (4.23):

um(t) = l.i.m.
∑

k

ûk,m e2πikt/T rect
(

t

T
− m

)
, where (4.25)

ûk,m =
1
T

∫ mT+T/2

mT−T/2
um(t) e−2πikt/T dt

=
1
T

∫ ∞

−∞
u(t) e−2πikt/T rect

(
t

T
− m

)
dt. (4.26)

Combining (4.24) and (4.25),

u(t) = l.i.m.
∑
m

∑
k

ûk,m e2πikt/T rect
(

t

T
− m

)
.

This expands u(t) as a weighted sum25 the of doubly indexed functions

u(t) = l.i.m.
∑
m

∑
k

ûk,mθk,m(t) where θk,m(t) = e2πikt/T rect
(

t

T
− m

)
. (4.27)

23Any engineer, experienced or not, when asked to analyze a segment of a waveform, will automatically shift
the time axis to be centered at 0. The added complication here simply arises from looking at multiple segments
together so as to represent the entire waveform.

24This sum double-counts the points at the ends of the segments, but this makes no difference in terms of L2

convergence. Exercise 4.22 treats the convergence in (4.24) and (4.28) more carefully.
25Exercise 4.21 shows why (4.27) (and similar later expressions) are independent of the order of the limits.
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The functions θk,m(t) are orthogonal, since, for m �= m′, the functions θk,m(t) and θk′,m′(t) do
not overlap, and, for m = m′ and k �= k′, θk,m(t) and θk′,m(t) are orthogonal as before. These
functions, {θk,m(t); k, m ∈ Z}, are called the T -spaced truncated sinusoids and the expansion in
(4.27) is called the T -spaced truncated sinusoid expansion.

The coefficients ûk,m are indexed by k, m ∈ Z and thus form a countable set.26 This permits the
conversion of an arbitrary L2 waveform into a countably infinite sequence of complex numbers,
in the sense that the numbers can be found from the waveform, and the waveform can be
reconstructed from the sequence, at least up to L2 equivalence.

The l.i.m. notation in (4.27) denotes L2 convergence; i.e.,

lim
n,	→∞

∫ ∞

−∞

∣∣∣∣∣u(t) −
n∑

m=−n

	∑
k=−	

ûk,mθk,m(t)

∣∣∣∣∣
2

dt = 0. (4.28)

This shows that any given u(t) can be approximated arbitrarily closely by a finite set of co-
efficients. In particular, each segment can be approximated by a finite set of coefficients, and
a finite set of segments approximates the entire waveform (although the required number of
segments and coefficients per segment clearly depend on the particular waveform).

For data compression, a waveform u(t) represented by the coefficients {ûk,m; k, m ∈ Z} can
be compressed by quantizing each ûk,m into a representative v̂k,m. The energy equation (4.6)
and the difference-energy equation (4.7) generalize easily to the T -spaced truncated sinusoid
expansion as ∫ ∞

−∞
|u(t)|2 dt = T

∞∑
m=−∞

∞∑
k=−∞

|ûk,m|2, (4.29)

∫ ∞

−∞
|u(t) − v(t)|2 dt = T

∞∑
k=−∞

∞∑
m=−∞

|ûk,m − v̂k,m|2. (4.30)

As in Section 4.2.1, a finite set of coefficients should be chosen for compression and the remaining
coefficients should be set to 0. The problem of compression (given this expansion) is then to
decide how many coefficients to compress, and how many bits to use for each selected coefficient.
This of course requires a probabilistic model for the coefficients; this issue is discussed later.

There is a practical problem with the use of T -spaced truncated sinusoids as an expansion to be
used in data compression. The boundaries of the segments usually act like step discontinuities (as
in Figure 4.3) and this leads to slow convergence over the Fourier coefficients for each segment.
These discontinuities could be removed prior to taking a Fourier series, but the current objective
is simply to illustrate one general approach for converting arbitrary L2 waveforms to sequences
of numbers. Before considering other expansions, it is important to look at Fourier transforms.

4.5 Fourier transforms and L2 waveforms

The T -spaced truncated sinusoid expansion corresponds closely to our physical notion of fre-
quency. For example, musical notes correspond to particular frequencies (and their harmonics),

26Example 4A.2 in Section 4A.1 explains why the doubly indexed set above is countable.
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but these notes persist for finite durations and then change to notes at other frequencies. How-
ever, the parameter T in the T -spaced expansion is arbitrary, and quantizing frequencies in
increments of 1/T is awkward.

The Fourier transform avoids the need for segmentation into T -spaced intervals, but also removes
the capability of looking at frequencies that change in time. It maps a function of time, {u(t) :
R → C} into a function of frequency,27 {û(f) : R → C}. The inverse Fourier transform maps
û(f) back into u(t), essentially making û(f) an alternative representation of u(t).

The Fourier transform and its inverse are defined by

û(f) =
∫ ∞

−∞
u(t)e−2πift dt. (4.31)

u(t) =
∫ ∞

−∞
û(f)e2πift df. (4.32)

The time units are seconds and the frequency units Hertz (Hz), i.e., cycles per second.

For now we take the conventional engineering viewpoint that any respectable function u(t) has
a Fourier transform û(f) given by (4.31), and that u(t) can be retrieved from û(f) by (4.32).
This will shortly be done more carefully for L2 waveforms.

The following table reviews a few standard Fourier transform relations. In the table, u(t) and
û(f) denote a Fourier transform pair, written u(t) ↔ û(f) and similarly v(t) ↔ v̂(f).

au(t) + bv(t) ↔ aû(f) + bv̂(f) linearity (4.33)
u∗(−t) ↔ û∗(f) conjugation (4.34)

û(t) ↔ u(−f) time/frequency duality (4.35)
u(t − τ) ↔ e−2πifτ û(f) time shift (4.36)

u(t) e2πif0t ↔ û(f − f0) frequency shift (4.37)
u(t/T ) ↔ T û(fT ) scaling (for T > 0) (4.38)

du(t)/dt ↔ 2πifû(f) differentiation (4.39)∫ ∞

−∞
u(τ)v(t − τ) dτ ↔ û(f)v̂(f) convolution (4.40)∫ ∞

−∞
u(τ)v∗(τ − t) dτ ↔ û(f)v̂∗(f) correlation (4.41)

These relations will be used extensively in what follows. Time-frequency duality is particularly
important, since it permits the translation of results about Fourier transforms to inverse Fourier
transforms and vice versa.

Exercise 4.23 reviews the convolution relation (4.40). Equation (4.41) results from conjugating
v̂(f) in (4.40).

Two useful special cases of any Fourier transform pair are:

u(0) =
∫ ∞

−∞
û(f) df ; (4.42)

û(0) =
∫ ∞

−∞
u(t) dt. (4.43)

27The notation û(f), rather the more usual U(f), is used here since capitalization is used to distinguish random
variables from sample values. Later, {U(t) : R → C}will be used to denote a random process, where, for each t,
U(t) is a random variable.
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These are useful in checking multiplicative constants. Also Parseval’s theorem results from
applying (4.42) to (4.41): ∫ ∞

−∞
u(t)v∗(t) dt =

∫ ∞

−∞
û(f)v̂∗(f) df. (4.44)

As a corollary, replacing v(t) by u(t) in (4.44) results in the energy equation for Fourier trans-
forms, namely ∫ ∞

−∞
|u(t)|2 dt =

∫ ∞

−∞
|û(f)|2 df. (4.45)

The magnitude squared of the frequency function, |û(f)|2, is called the spectral density of u(t).
It is the energy per unit frequency (for positive and negative frequencies) in the waveform.
The energy equation then says that energy can be calculated by integrating over either time or
frequency.

As another corollary of (4.44), note that if u(t) and v(t) are orthogonal, then û(f) and v̂(f) are
orthogonal; i.e., ∫ ∞

−∞
u(t)v∗(t) dt = 0 if and only if

∫ ∞

−∞
û(f)v̂∗(f) df = 0. (4.46)

The following table gives a short set of useful and familiar transform pairs:

sinc(t) =
sin(πt)

πt
↔ rect(f) =

{
1 for |f | ≤ 1/2
0 for |f | > 1/2

(4.47)

e−πt2 ↔ e−πf2
(4.48)

e−at; t ≥ 0 ↔ 1
a + 2πif

for a > 0 (4.49)

e−a|t| ↔ 2a

a2 + (2πif)2
for a > 0 (4.50)

The above table, in conjunction with the relations above, yields a large set of transform pairs.
Much more extensive tables are widely available.

4.5.1 Measure and integration over R

A set A ⊆ R is defined to be measurable if A ∩ [−T/2, T/2] is measurable for all T > 0. The
definitions of measurability and measure in section 4.3.2 were given in terms of an overall interval
[−T/2, T/2], but Exercise 4.14 verifies that those definitions are in fact independent of T . That
is, if D ⊆ [−T/2, T/2], is measurable relative to [−T/2, T/2], then D is measurable relative to
[−T1/2, T1/2] for each T1 > T and µ(D) is the same relative to each of those intervals. Thus
measure is defined unambiguously for all sets of bounded duration.

For an arbitrary measurable set A ∈ R, the measure of A is defined to be

µ(A) = lim
T→∞

µ(A ∩ [−T/2, T/2]). (4.51)

Since A∩ [−T/2, T/2] is increasing in T , the subset inequality says that µ(A∩ [−T/2, T/2]) is
also increasing, so the limit in (4.51) must exist as either a finite or infinite value. For example,
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if A is taken to be R itself, then µ(R ∩ [−T/2, T/2]) = T and µ(R) = ∞. The possibility
for measurable sets to have infinite measure is the primary difference between measure over
[−T/2, T/2] and R.28

Theorem 4.3.1 carries over without change to sets defined over R. Thus the collection of measur-
able sets over R is closed under countable unions and intersections. The measure of a measurable
set might be infinite in this case, and if a set has finite measure, then its complement (over R)
must have infinite measure.

A real function {u(t) : R → R} is measurable if the set {t : u(t) ≤ β} is measurable for each
β ∈ R. Equivalently, {u(t) : R → R} is measurable if and only if u(t)rect(t/T ) is measurable for
all T > 0. A complex function {u(t) : R → C} is measurable if the real and imaginary parts of
u(t) are measurable.

If {u(t) : R → R} is measurable and nonnegative, there are two approaches to its Lebesgue
integral. The first is to use (4.14) directly and the other is to first evaluate the integral over
[−T/2, T/2] and then go to the limit T → ∞. Both approaches give the same result.29

For measurable real functions {u(t) : R → R} that take on both positive and negative values,
the same approach as in the finite duration case is successful. That is, let u+(t) and u−(t) be the
positive and negative parts of u(t) respectively. If at most one of these has an infinite integral,
the integral of u(t) is defined and has the value∫

u(t) dt =
∫

u+(t) dt −
∫

u−(t) dt.

Finally, a complex function {u(t) : R → C} is defined to be measurable if the real and imaginary
parts of u(t) are measurable. If the integral of �(u(t)) and that of �(u(t)) are defined, then∫

u(t) dt =
∫

�(u(t)) dt + i

∫
�(u(t)) dt. (4.52)

A function {u(t) : R → C} is said to be in the class L1 if u(t) is measurable and the Lebesgue
integral of |u(t)| is finite. As with integration over a finite interval, an L1 function has real and
imaginary parts whose integrals are both finite. Also the positive and negative parts of those
real and imaginary parts have finite integrals.

Example 4.5.1. The sinc function, sinc(t) = sin(πt)/πt is sketched below and provides an
interesting example of these definitions. Since sinc(t) approaches 0 with increasing t only as 1/t,
the Riemann integral of |sinc(t)| is infinite, and with a little thought it can be seen that the
Lebesgue integral is also infinite. Thus sinc(t) is not an L1 function. In a similar way, sinc+(t)
and sinc−(t) have infinite integrals and thus the Lebesgue integral of sinc(t) over (−∞,∞) is
undefined.

The Riemann integral in this case is said to be improper, but can still be calculated by integrating
from −A to +A and then taking the limit A → ∞. The result of this integration is 1, which
is most easily found through the Fourier relationship (4.47) combined with (4.43). Thus, in
a sense, the sinc function is an example where the Riemann integral exists but the Lebesgue
integral does not. In a deeper sense, however, the issue is simply one of definitions; one can

28In fact, it was the restriction to finite measure that permitted the simple definition of measurability in terms
of sets and their complements in Subsection 4.3.2.

29As explained shortly in the sinc function example, this is not necessarily true for functions taking on positive
and negative values.
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0 1 2 3−1−2

sinc(t)

1

Figure 4.8: The function sinc(t) goes to 0 as 1/t with increasing t

always use Lebesgue integration over [−A, A] and go to the limit A → ∞, getting the same
answer as the Riemann integral provides.

A function {u(t) : R → C} is said to be in the class L2 if u(t) is measurable and the Lebesgue
integral of |u(t)|2 is finite. All source and channel waveforms will be assumed to be L2. As
pointed out earlier, any L2 function of finite duration is also L1. L2 functions of infinite duration,
however, need not be L1; the sinc function is a good example. Since sinc(t) decays as 1/t, it is
not L1. However, |sinc(t)|2 decays as 1/t2 as t → ∞, so the integral is finite and sinc(t) is an
L2 function.

In summary, measure and integration over R can be treated in essentially the same way as over
[−T/2, T/2]. The point sets and functions of interest can be truncated to [−T/2, T/2] with a
subsequent passage to the limit T → ∞. As will be seen, however, this requires some care with
functions that are not L1.

4.5.2 Fourier transforms of L2 functions

The Fourier transform does not exist for all functions, and when the Fourier transform does exist,
there is not necessarily an inverse Fourier transform. This section first discusses L1 functions
and then L2 functions. A major result is that L1 functions always have well-defined Fourier
transforms, but the inverse transform does not always have very nice properties. L2 functions
also always have Fourier transforms, but only in the sense of L2 equivalence. Here however, the
inverse transform also exists in the sense of L2 equivalence. We are primarily interested in L2

functions, but the results about L1 functions will help in understanding the L2 transform.

Lemma 4.5.1. Let {u(t) : R → C} be L1. Then û(f) =
∫ ∞
−∞ u(t)e−2πift dt both exists and

satisfies |û(f)| ≤
∫
|u(t)| dt for each f ∈ R. Furthermore, {û(f) : R → C} is a continuous

function of f .

Proof: Note that |u(t)e−2πift| = |u(t)| for all t and f . Thus u(t)e−2πift is L1 for each f and the
integral exists and satisfies the given bound. This is the same as the argument about Fourier
series coefficients in Theorem 4.4.1. The continuity follows from a simple ε/δ argument (see
Exercise 4.24).

As an example, the function u(t) = rect(t) is L1 and its Fourier transform, defined at each f , is
the continuous function sinc(f). As discussed before, sinc(f) is not L1. The inverse transform
of sinc(f) exists at all t, equaling rect(t) except at t = ±1/2, where it has the value 1/2. Lemma
4.5.1 also applies to inverse transforms and verifies that sinc(f) can not be L1, since its inverse
transform is discontinuous.
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Next consider L2 functions. It will be seen that the pointwise Fourier transform
∫

u(t)e−2πift dt
does not necessarily exist at each f , but that it does exist as an L2 limit. In exchange for this
added complexity, however, the inverse transform exists in exactly the same sense. This result is
called Plancherel’s theorem and has a nice interpretation in terms of approximations over finite
time and frequency intervals.

For any L2 function {u(t) : R → C} and any positive number A, define ûA(f) as the Fourier
transform of the truncation of u(t) to [−A, A]; i.e.,

ûA(f) =
∫ A

−A
u(t)e−2πift dt. (4.53)

The function u(t)rect( t
2A) has finite duration and is thus L1. It follows that ûA(f) is continuous

and exists for all f by the above lemma. One would normally expect to take the limit in (4.53)
as A → ∞ to get the Fourier transform û(f), but this limit does not necessarily exist for each
f . Plancherel’s theorem, however, asserts that this limit exists in the L2 sense. This theorem is
proved in Section 5A.1.

Theorem 4.5.1 (Plancherel, part 1). For any L2 function {u(t) : R → C}, an L2 function
{û(f) : R → C} exists satisfying both

lim
A→∞

∫ ∞

−∞
|û(f) − ûA(f)|2 df = 0 (4.54)

and the energy equation, (4.45).

This not only guarantees the existence of a Fourier transform (up to L2 equivalence), but also
guarantees that it is arbitrarily closely approximated (in difference energy) by the continuous
Fourier transforms of the truncated versions of u(t). Intuitively what is happening here is that
L2 functions must have an arbitrarily large fraction of their energy within sufficiently large
truncated limits; the part of the function outside of these limits cannot significantly affect the
L2 convergence of the Fourier transform.

The inverse transform is treated very similarly. For any L2 function {û(f) : R → C} and any
B, 0<B<∞, define

uB(t) =
∫ B

−B
û(f)e2πift df. (4.55)

As before, uB(t) is a continuous L2 function for all B, 0<B<∞. The final part of Plancherel’s
theorem is then:

Theorem 4.5.2 (Plancherel, part 2). For any L2 function {u(t) : R → C} let {û(f) : R →
C} be the Fourier transform of Theorem 4.5.1 and let uB(t) satisfy (4.55). Then

lim
B→∞

∫ ∞

−∞
|u(t) − uB(t)|2 dt = 0. (4.56)

The interpretation is similar to the first part of the theorem. Specifically the inverse transforms
of finite frequency truncations of the transform are continuous and converge to an L2 limit as
B → ∞. It also says that this L2 limit is equivalent to the original function u(t).
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Using the limit in mean-square notation, both parts of the Plancherel theorem can be expressed
by stating that every L2 function u(t) has a Fourier transform û(f) satisfying

û(f) = l.i.m.
A→∞

∫ A

−A
u(t)e−2πift dt; u(t) = l.i.m.

B→∞

∫ B

−B
û(f)e2πift df ;

i.e., the inverse Fourier transform of û(f) is L2 equivalent to u(t). The first integral above
converges pointwise if u(t) is also L1, and in this case converges pointwise to a continuous
function û(f). If u(t) is not L1, then the first integral need not converge pointwise. The second
integral behaves in the analogous way.

It may help in understanding the Plancherel theorem to interpret it in terms of finding Fourier
transforms using Riemann integration. Riemann integration over an infinite region is defined as
a limit over finite regions. Thus the Riemann version of the Fourier transform is shorthand for

û(f) = lim
A→∞

∫ A

−A
u(t)e−2πift dt = lim

A→∞
ûA(f). (4.57)

Thus the Plancherel theorem can be viewed as replacing the Riemann integral with a Lebesgue
integral and replacing the pointwise limit (if it exists) in (4.57) with L2 convergence. The Fourier
transform over the finite limits −A to A is continuous and well-behaved, so the major difference
comes in using L2 convergence as A → ∞.

As an example of the Plancherel theorem, let u(t) = rect(t). Then ûA(f) = sinc(f) for all
A ≥ 1/2, so û(f) = sinc(f). For the inverse transform, uB(t) =

∫ B
−B sinc(f) df is messy to

compute but can be seen to approach rect(t) as B → ∞ except at t = ±1/2, where it equals
1/2. At t = ±1/2, the inverse transform is 1/2, whereas u(t) = 1.

As another example, consider the function u(t) where u(t) = 1 for rational values of t ∈ [0, 1] and
u(t) = 0 otherwise. Since this is 0 a.e, the Fourier transform û(f) is 0 for all f and the inverse
transform is 0, which is L2 equivalent to u(t). Finally, Example 5A.1 in Section 5A.1 illustrates
a bizarre L1 function g(t) that is everywhere discontinuous. Its transform ĝ(f) is bounded
and continuous by Lemma 4.5.1, but is not L1. The inverse transform is again discontinuous
everywhere in (0, 1) and unbounded over every subinterval. This example makes clear why the
inverse transform of a continuous function of frequency might be bizarre, thus reinforcing our
focus on L2 functions rather than a more conventional focus on notions such as continuity.

In what follows, L2 convergence, as in the Plancherel theorem, will be seen as increasingly
friendly and natural. Regarding two functions whose difference has 0 energy as being the same
(formally, as L2 equivalent) allows us to avoid many trivialities, such as how to define a discon-
tinuous function at its discontinuities. In this case, engineering common-sense and sophisticated
mathematics arrive at the same conclusion.

Finally, it can be shown that all the Fourier transform relations in (4.33) to (4.41) except
differentiation hold for all L2 functions (see Exercises 4.26 and 5.15). The derivative of an L2

function need not be L2, and need not have a well-defined Fourier transform.

4.6 The DTFT and the sampling theorem

The discrete-time Fourier transform (DTFT) is the time/frequency dual of the Fourier series.
It will be shown that the DTFT leads immediately to the sampling theorem.



112 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS

4.6.1 The discrete-time Fourier transform

Let û(f) be an L2 function of frequency, nonzero only for −W ≤ f ≤ W. The DTFT of û(f)
over [−W,W] is then defined by

û(f) = l.i.m.
∑

k

uke
−2πikf/(2W)rect

(
f

2W

)
, (4.58)

where the DTFT coefficients {uk; k ∈ Z} are given by

uk =
1

2W

∫ W

−W
û(f)e2πikf/(2W) df. (4.59)

These are the same as the Fourier series equations, replacing t by f , T by 2W, and e2πi··· by
e−2πi···. Note that û(f) has an inverse Fourier transform u(t) which is thus baseband-limited to
[−W,W]. As will be shown shortly, the sampling theorem relates the samples of this baseband
waveform to the coefficients in (4.59).

The Fourier series theorem (Theorem 4.4.1) clearly applies to (4.58)-(4.59) with the above no-
tational changes; it is repeated here for convenience.

Theorem 4.6.1 (DTFT). Let {û(f) : [−W,W] → C} be an L2 function. Then for each k ∈ Z,
the Lebesgue integral (4.59) exists and satisfies |uk| ≤ 1

2W

∫
|û(f)| df < ∞. Furthermore,

lim
	→∞

∫ W

−W

∣∣∣∣∣û(f) −
	∑

k=−	

uk e−2πikf/(2W)

∣∣∣∣∣
2

df = 0, and (4.60)

∫ W

−W
|û(f)|2 df = 2W

∞∑
k=−∞

|uk|2. (4.61)

Finally, if {uk, k∈Z} is a sequence of complex numbers satisfying
∑

k |uk|2 < ∞, then an L2

function {û(f) : [−W, W] → C} exists satisfying (4.60) and (4.61).

As before, (4.58) is shorthand for (4.60). Again, this says that any desired approximation
accuracy, in terms of energy, can be achieved by using enough terms in the series.

Both the Fourier series and the DTFT provide a one-to-one transformation (in the sense of L2

convergence) between a function and a sequence of complex numbers. In the case of the Fourier
series, one usually starts with a function u(t) and uses the sequence of coefficients to represent
the function (up to L2 equivalence). In the case of the DTFT, one often starts with the sequence
and uses the frequency function to represent the sequence. Since the transformation goes both
ways, however, one can view the function and the sequence as equally fundamental.

4.6.2 The sampling theorem

The DTFT is next used to establish the sampling theorem, which in turn will help interpret the
DTFT. The DTFT (4.58) expresses û(f) as a weighted sum of truncated sinusoids in frequency,

û(f) = l.i.m.
∑

k

ukφ̂k(f), where φ̂k(f) = e−2πikf/(2W)rect(
f

2W
). (4.62)
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Ignoring any questions of convergence for the time being, the inverse Fourier transform of û(f)
is then given by u(t) =

∑
k ukφk(t), where φk(t) is the inverse transform of φ̂k(f). Since the

inverse transform30 of rect( f
2W) is 2Wsinc(2Wt), the time-shift relation implies that the inverse

transform of φ̂k(f) is

φk(t) = 2Wsinc(2Wt − k) ↔ φ̂k(f) = e−2πikf/(2W)rect(
f

2W
). (4.63)

Thus u(t), the inverse transform of û(f), is given by

u(t) =
∞∑

k=−∞
ukφk(t) =

∞∑
k=−∞

2Wuk sinc(2Wt − k). (4.64)

Since the set of truncated sinusoids {φ̂k; k ∈ Z} are orthogonal, the sinc functions {φk; k ∈ Z}
are also orthogonal from (4.46).

0 1 2−1−2

sinc(t) sinc(t − 1)

1

Figure 4.9: Sketch of sinc(t) = sin(πt)
πt and sinc(t − 1). Note that these spaced sinc

functions are orthogonal to each other.

Note that sinc(t) equals 1 for t = 0 and 0 for all other integer t. Thus if (4.64) is evaluated for
t = k

2W , the result is that u( k
2W) = 2Wuk for all integer k. Substituting this into (4.64) results

in the equation known as the sampling equation,

u(t) =
∞∑

k=−∞
u(

k

2W
) sinc(2Wt − k).

This says that a baseband-limited function is specified by its samples at intervals T = 1/(2W).
In terms of this sample interval, the sampling equation is

u(t) =
∞∑

k=−∞
u (kT ) sinc(

t

T
− k). (4.65)

The following theorem makes this precise. See Section 5A.2 for an insightful proof.

Theorem 4.6.2 (Sampling theorem). Let {u(t) : R → C} be a continuous L2 function
baseband-limited to W. Then (4.65) specifies u(t) in terms of its T -spaced samples with
T = 1

2W . The sum in (4.65) converges to u(t) for each t ∈ R and u(t) is bounded at each t

by |u(t)| ≤
∫ W
−W |û(f)| df < ∞.

The following example illustrates why u(t) is assumed to be continuous above.

30This is the time/frequency dual of (4.48). û(f) = rect( f
2W

) is both L1 and L2; u(t) is continuous and L2 but
not L1. From the Plancherel theorem, the transform of u(t), in the L2 sense, is û(f).
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Example 4.6.1 (A discontinuous baseband function). Let u(t) be a continuous L2 base-
band function limited to |f | ≤ 1/2. Let v(t) satisfy v(t) = u(t) for all noninteger t and
v(t) = u(t) + 1 for all integer t. Then u(t) and v(t) are L2 equivalent, but their samples at
each integer time differ by 1. Their Fourier transforms are the same, say û(f), since the differ-
ences at isolated points have no effect on the transform. Since û(f) is nonzero only in [−W, W],
it is L1. According to the time/frequency dual of Lemma 4.5.1, the point-wise inverse Fourier
transform of û(f) is a continuous function, say u(t). Out of all the L2 equivalent waveforms that
have the transform û(f), only u(t) is continuous, and it is that u(t) that satisfies the sampling
theorem.

The function v(t) is equal to u(t) except for the isolated discontinuities at each integer point.
One could view u(t) as baseband-limited also, but is clearly not physically meaningful and is
not the continuous function of the theorem.

The above example illustrates an ambiguity about the meaning of baseband-limited functions.
One reasonable definition is that an L2 function u(t) is baseband-limited to W if û(f) is 0
for |f | > W. Another reasonable definition is that u(t) is baseband-limited to W if u(t) is
the pointwise inverse Fourier transform of a function û(f) that is 0 for |f | > W. For a given
û(f), there is a unique u(t) according to the second definition and it is continuous; all the
functions that are L2 equivalent to u(t) are bandlimited by the first definition, and all but u(t)
are discontinuous and potentially violate the sampling equation. Clearly the second definition
is preferable on both engineering and mathematical grounds.

Definition: An L2 function is baseband-limited to W if it is the pointwise inverse transform of
a function û(f) that is 0 for |f | > W. Equivalently, it is baseband-limited to W if it is continuous
and its Fourier transform is 0 for |f | > 0.

The DTFT can now be further interpreted. Any baseband-limited L2 function {û(f) :
[−W,W] → C} has both an inverse Fourier transform u(t) =

∫
û(f)e2πift df and a DTFT

sequence given by (4.58). The coefficients uk of the DTFT are the scaled samples, Tu(kT ), of
u(t), where T = 1

2W . Put in a slightly different way, the DTFT in (4.58) is the Fourier transform
of the sampling equation (4.65) with u(kT ) = uk/T .31

It is somewhat surprising that the sampling theorem holds with pointwise convergence, whereas
its transform, the DTFT, holds only in the L2 equivalence sense. The reason is that the function
û(f) in the DTFT is L1 but not necessarily continuous, whereas its inverse transform u(t) is
necessarily continuous but not necessarily L1.

The set of functions {φ̂k(f); k ∈ Z} in (4.63) is an orthogonal set, since the interval [−W,W]
contains an integer number of cycles from each sinusoid. Thus, from (4.46), the set of sinc
functions in the sampling equation is also orthogonal. Thus both the DTFT and the sampling
theorem expansion are orthogonal expansions. It follows (as will be shown carefully later) that
the energy equation, ∫ ∞

−∞
|u(t)|2 dt = T

∞∑
k=−∞

|u(kT )|2 , (4.66)

holds for any continuous L2 function u(t) baseband-limited to [−W, W] with T = 1
2W .

31Note that the DTFT is the time/frequency dual of the Fourier series but is the Fourier transform of the
sampling equation.
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In terms of source coding, the sampling theorem says that any L2 function u(t) that is baseband-
limited to W can be sampled at rate 2W (i.e., at intervals T = 1

2W) and the samples can later
be used to perfectly reconstruct the function. This is slightly different from the channel coding
situation where a sequence of signal values are mapped into a function from which the signals
can later be reconstructed. The sampling theorem shows that any L2 baseband-limited function
can be represented by its samples. The following theorem, proved in Section 5A.2, covers the
channel coding variation:

Theorem 4.6.3 (Sampling theorem for transmission). Let {ak; k∈Z} be an arbitrary se-
quence of complex numbers satisfying

∑
k |ak|2 < ∞. Then

∑
k ak sinc(2Wt − k) converges

pointwise to a continuous bounded L2 function {u(t) : R → C} that is baseband-limited to W
and satisfies ak = u( k

2W) for each k.

4.6.3 Source coding using sampled waveforms

The introduction and Figure 4.1 discuss the sampling of an analog waveform u(t) and quantizing
the samples as the first two steps in analog source coding. Section 4.2 discusses an alternative in
which successive segments {um(t)} of the source are each expanded in a Fourier series, and then
the Fourier series coefficients are quantized. In this latter case, the received segments {vm(t)}
are reconstructed from the quantized coefficients. The energy in um(t) − vm(t) is given in (4.7)
as a scaled version of the sum of the squared coefficient differences. This section treats the
analogous relationship when quantizing the samples of a baseband-limited waveform.

For a continuous function u(t), baseband-limited to W, the samples {u(kT ); k ∈ Z} at intervals
T = 1/(2W) specify the function. If u(kT ) is quantized to v(kT ) for each k, and u(t) is
reconstructed as v(t) =

∑
k v(kT ) sinc( t

T − k), then, from (4.66), the mean-squared error is
given by ∫ ∞

−∞
|u(t) − v(t)|2 dt = T

∞∑
k=−∞

|u(kT ) − v(kT )|2. (4.67)

Thus whatever quantization scheme is used to minimize the mean-squared error between a
sequence of samples, that same strategy serves to minimize the mean-squared error between the
corresponding waveforms.

The results in Chapter 3 regarding mean-squared distortion for uniform vector quantizers give
the distortion at any given bit rate per sample as a linear function of the mean-squared value of
the source samples. If any sample has an infinite mean-squared value, then either the quantiza-
tion rate is infinite or the mean-squared distortion is infinite. This same result then carries over
to waveforms. This starts to show why the restriction to L2 source waveforms is important. It
also starts to show why general results about L2 waveforms are important.

The sampling theorem tells the story for sampling baseband-limited waveforms. However, physi-
cal source waveforms are not perfectly limited to some frequency W; rather, their spectra usually
drop off rapidly above some nominal frequency W. For example, audio spectra start dropping
off well before the nominal cutoff frequency of 4 kHz, but often have small amounts of energy
up to 20 kHz. Then the samples at rate 2W do not quite specify the waveform, which leads to
an additional source of error, called aliasing. Aliasing will be discussed more fully in the next
two subsections.
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There is another unfortunate issue with the sampling theorem. The sinc function is nonzero
over all noninteger times. Recreating the waveform at the receiver32 from a set of samples
thus requires infinite delay. Practically, of course, sinc functions can be truncated, but the
sinc waveform decays to zero as 1/t, which is impractically slow. Thus the clean result of the
sampling theorem is not quite as practical as it first appears.

4.6.4 The sampling theorem for [∆ − W, ∆ + W]

Just as the Fourier series generalizes to time intervals centered at some arbitrary time ∆, the
DTFT generalizes to frequency intervals centered at some arbitrary frequency ∆.

Consider an L2 frequency function {v̂(f) : [∆−W, ∆+W] → C}. The shifted DTFT for v̂(f) is
then

v̂(f) =
∑

k

vke
−2πikf/(2W) rect

(
f−∆
2W

)
where (4.68)

vk =
1

2W

∫ ∆+W

∆−W
v̂(f)e2πikf/(2W) df. (4.69)

Equation (4.68) is an orthogonal expansion,

v̂(f) =
∑

k

vkθ̂k(f) where θ̂k(f) = e−2πikf/(2W) rect
(

f−∆
2W

)
.

The inverse Fourier transform of θ̂k(f) can be calculated by shifting and scaling to be

θk(t) = 2W sinc(2Wt − k) e2πi∆(t− k
2W

) ↔ θ̂k(f) = e−2πikf/(2W) rect
(

f−∆
2W

)
. (4.70)

Let v(t) be the inverse Fourier transform of v̂(f).

v(t) =
∑

k

vkθk(t) =
∑

k

2Wvk sinc(2Wt − k) e2πi∆(t− k
2W

).

For t = k
2W , only the kth term above is nonzero, and v( k

2W) = 2Wvk. This generalizes the
sampling equation to the frequency band [∆−W, ∆+W],

v(t) =
∑

k

v(
k

2W
) sinc(2Wt − k) e2πi∆(t− k

2W
).

Defining the sampling interval T = 1/(2W) as before, this becomes

v(t) =
∑

k

v(kT ) sinc(
t

T
− k) e2πi∆(t−kT ). (4.71)

Theorems 4.6.2 and 4.6.3 apply to this more general case. That is, with v(t) =∫ ∆+W
∆−W v̂(f)e2πift df , the function v(t) is bounded and continuous and the series in (4.71) con-

verges for all t. Similarly, if
∑

k |v(kT )|2 < ∞, there is a unique continuous L2 function
{v(t) : [∆−W, ∆+W] → C}, W = 1/(2T ) with those sample values.

32Recall that the receiver time reference is delayed from that at the source by some constant τ . Thus v(t),
the receiver estimate of the source waveform u(t) at source time t, is recreated at source time t + τ . With the
sampling equation, even if the sinc function is approximated, τ is impractically large.
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4.7 Aliasing and the sinc-weighted sinusoid expansion

In this section an orthogonal expansion for arbitrary L2 functions called the T -spaced sinc-
weighted sinusoid expansion is developed. This expansion is very similar to the T -spaced trun-
cated sinusoid expansion discussed earlier, except that its set of orthogonal waveforms consist of
time and frequency shifts of a sinc function rather than a rectangular function. This expansion
is then used to discuss the important concept of degrees of freedom. Finally this same expansion
is used to develop the concept of aliasing. This will help in understanding sampling for functions
that are only approximately frequency-limited.

4.7.1 The T -spaced sinc-weighted sinusoid expansion

Let u(t) ↔ û(f) be an arbitrary L2 transform pair, and segment û(f) into intervals33 of width
2W. Thus

û(f) = l.i.m.
∑
m

v̂m(f), where v̂m(f) = û(f) rect(
f

2W
− m).

Note that v̂0(f) is non-zero only in [−W,W] and thus corresponds to an L2 function v0(t)
baseband-limited to W. More generally, for arbitrary integer m, v̂m(f) is non-zero only in
[∆−W, ∆+W] for ∆ = 2Wm. From (4.71), the inverse transform with T = 1

2W satisfies

vm(t) =
∑

k

vm(kT ) sinc(
t

T
− k) e2πi(m

T
)(t−kT )

=
∑

k

vm(kT ) sinc(
t

T
− k) e2πimt/T . (4.72)

Combining all of these frequency segments,

u(t) = l.i.m.
∑
m

vm(t) = l.i.m.
∑
m,k

vm(kT ) sinc(
t

T
− k) e2πimt/T . (4.73)

This converges in L2, but does not not necessarily converge pointwise because of the infinite
summation over m. It expresses an arbitrary L2 function u(t) in terms of the samples of each
frequency slice, vm(t), of u(t).

This is an orthogonal expansion in the doubly indexed set of functions

{ψm,k(t) = sinc(
t

T
− k)e2πimt/T ; m, k ∈ Z}. (4.74)

These are the time and frequency shifts of the basic function ψ0,0(t) = sinc( t
T ). The time shifts

are in multiples of T and the frequency shifts are in multiples of 1/T . This set of orthogonal
functions is called the set of T -spaced sinc-weighted sinusoids.

The T -spaced sinc-weighted sinusoids and the T -spaced truncated sinusoids are quite similar.
Each function in the first set is a time and frequency translate of sinc( t

T ). Each function in
the second set is a time and frequency translate of rect( t

T ). Both sets are made up of functions
separated by multiples of T in time and 1/T in frequency.

33The boundary points between frequency segments can be ignored, as in the case for time segments.
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4.7.2 Degrees of freedom

An important rule of thumb used by communication engineers is that the class of real functions
that are approximately baseband-limited to W0 and approximately time-limited to [−T0/2, T0/2]
have about 2T0W0 real degrees of freedom if T0

W0 >> 1. This means that any function within that class can be specified approximately by
specifying about 2T0W0 real numbers as coefficients in an orthogonal expansion. The same rule
is valid for complex functions in terms of complex degrees of freedom.

This somewhat vague statement is difficult to state precisely, since time-limited functions cannot
be frequency-limited and vice-versa. However, the concept is too important to ignore simply
because of lack of precision. Thus several examples are given.

First, consider applying the sampling theorem to real (complex) functions u(t) that are strictly
baseband-limited to W0. Then u(t) is specified by its real (complex) samples at rate 2W0. If the
samples are nonzero only within the interval [−T0/2, T0/2], then there are about 2T0W0 nonzero
samples, and these specify u(t) within this class. Here a precise class of functions have been
specified, but functions that are zero outside of an interval have been replaced with functions
whose samples are zero outside of the interval.

Second, consider complex functions u(t) that are again strictly baseband-limited to W0, but now
apply the sinc-weighted sinusoid expansion with W = W0/(2n + 1) for some positive integer n.
That is, the band [−W0,W0] is split into 2n + 1 slices and each slice is expanded in a sampling-
theorem expansion. Each slice is specified by samples at rate 2W, so all slices are specified
collectively by samples at an aggregate rate 2W0 as before. If the samples are nonzero only
within [−T0/2, T0/2], then there are about34 2T0W0 nonzero complex samples that specify any
u(t) in this class.

If the functions in this class are further constrained to be real, then the coefficients for the
central frequency slice are real and the negative slices are specified by the positive slices. Thus
each real function in this class is specified by about 2T0W0 real numbers.

This class of functions is slightly different for each choice of n, since the detailed interpretation
of what “approximately time-limited” means is changing. From a more practical perspective,
however, all of these expansions express an approximately baseband-limited waveform by samples
at rate 2W0. As the overall duration T0 of the class of waveforms increases, the initial transient
due to the samples centered close to −T0/2 and the final transient due to samples centered close
to T0/2 should become unimportant relative to the rest of the waveform.

The same conclusion can be reached for functions that are strictly time-limited to [−T0/2, T0/2]
by using the truncated sinusoid expansion with coefficients outside of [−F0, F0] set to 0.

In summary, all the above expansions require roughly 2W0T0 numbers to approximately specify
a waveform essentially limited to time T0 and frequency W0 for T0W0 large.

It is possible to be more precise about the number of degrees of freedom in a given time and
frequency band by looking at the prolate spheroidal waveform expansion (see the Appendix,
Section 5A.3). The orthogonal waveforms in this expansion maximize the energy in the given
time/frequency region in a certain sense. It is perhaps simpler and better, however, to live with
the very approximate nature of the arguments based on the sinc-weighted sinusoid expansion
and the truncated sinusoid expansion.

34Calculating this number of samples carefully yields (2n + 1)
[
1 +

⌊
T0W0
2n+1

⌋]
.
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4.7.3 Aliasing — a time domain approach

Both the truncated sinusoid and the sinc-weighted sinusoid expansions are conceptually use-
ful for understanding waveforms that are approximately time- and bandwidth-limited, but in
practice, waveforms are usually sampled, perhaps at a rate much higher than twice the nominal
bandwidth, before digitally processing the waveforms. Thus it is important to understand the
error involved in such sampling.

Suppose an L2 function u(t) is sampled with T -spaced samples, {u(kT ); k ∈ Z}. Let s(t) denote
the approximation to u(t) that results from the sampling theorem expansion,

s(t) =
∑

k

u(kT ) sinc
(

t

T
− k

)
. (4.75)

If u(t) is baseband-limited to W = 1/(2T ), then s(t) = u(t), but here it is no longer assumed
that u(t) is baseband limited. The expansion of u(t) into individual frequency slices, repeated
below from (4.73), helps in understanding the difference between u(t) and s(t):

u(t) = l.i.m.
∑
m,k

vm(kT ) sinc
(

t

T
− k

)
e2πimt/T , where (4.76)

vm(t) =
∫

û(f) rect(fT − m)e2πift df. (4.77)

For an arbitrary L2 function u(t), the sample points u(kT ) might be at points of discontinu-
ity and thus be questionable. Also (4.75) need not converge, and (4.76) might not converge
pointwise. To avoid these problems, û(f) will later be restricted beyond simply being L2. First,
however, questions of convergence are disregarded and the relevant equations are derived without
questioning when they are correct.

From (4.75), the samples of s(t) are given by s(kT ) = u(kT ), and combining with (4.76),

s(kT ) = u(kT ) =
∑
m

vm(kT ). (4.78)

Thus the samples from different frequency slices get summed together in the samples of u(t).
This phenomenon is called aliasing. There is no way to tell, from the samples {u(kT ); k ∈ Z}
alone, how much contribution comes from each frequency slice and thus, as far as the samples
are concerned, every frequency band is an ‘alias’ for every other.

Although u(t) and s(t) agree at the sample times, they differ elsewhere (assuming that u(t) is
not strictly baseband-limited to 1/(2T )). Combining (4.78) and (4.75),

s(t) =
∑

k

∑
m

vm(kT ) sinc(
t

T
− k). (4.79)

The expresssions in (4.79) and (4.76) agree at m = 0, so the difference between u(t) and s(t) is

u(t) − s(t) =
∑

k

∑
m�=0

−vm(kT )sinc
(

t

T
− k

)
+

∑
k

∑
m�=0

vm(kT )e2πimt/T sinc
(

t

T
− k

)
.

The first term above is v0(t)−s(t), i.e., the difference in the nominal baseband [−W,W]. This is
the error caused by the aliased terms in s(t). The second term is the energy in the nonbaseband
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portion of u(t), which is orthogonal to the first error term. Since each term is an orthogonal
expansion in the sinc-weighted sinusoids of (4.74), the energy in the error is given by35∫ ∣∣∣u(t) − s(t)

∣∣∣2 dt = T
∑

k

∣∣∣ ∑
m�=0

vm(kT )
∣∣∣2 + T

∑
k

∑
m�=0

∣∣∣vm(kT )
∣∣∣2. (4.80)

Later, when the source waveform u(t) is viewed as a sample function of a random process U(t),
it will be seen that under reasonable conditions the expected value of each of these two error
terms is approximately equal. Thus, if u(t) is filtered by an ideal low-pass filter before sampling,
then s(t) becomes equal to v0(t) and only the second error term in (4.80) remains; this reduces
the expected mean-squared error roughly by a factor of 2. It is often easier, however, to simply
sample a little faster.

4.7.4 Aliasing — a frequency domain approach

Aliasing can be, and usually is, analyzed from a frequency domain standpoint. From (4.79), s(t)
can be separated into the contribution from each frequency band as

s(t) =
∑
m

sm(t), where sm(t) =
∑

k

vm(kT )sinc
(

t

T
− k

)
. (4.81)

Comparing sm(t) to vm(t) =
∑

k vm(kT ) sinc( t
T − k) e2πimt/T , it is seen that

vm(t) = sm(t)e2πimt/T .

From the Fourier frequency shift relation, v̂m(f) = ŝm(f − m
T ), so

ŝm(f) = v̂m(f +
m

T
). (4.82)

Finally, since v̂m(f) = û(f) rect(fT −m), one sees that v̂m(f + m
T ) = û(f + m

T ) rect(fT ). Thus,
summing (4.82) over m,

ŝ(f) =
∑
m

û(f +
m

T
) rect[fT ]. (4.83)

Each frequency slice v̂m(f) is shifted down to baseband in this equation, and then all these
shifted frequency slices are summed together, as illustrated in Figure 4.10. This establishes the
essence of the following aliasing theorem, which is proved in Section 5A.2.

Theorem 4.7.1 (Aliasing theorem). Let û(f) be L2, and let û(f) satisfy the condition
lim|f |→∞ û(f)|f |1+ε = 0 for some ε > 0. Then û(f) is L1, and the inverse Fourier transform
u(t) =

∫
û(f)e2πift df converges pointwise to a continuous bounded function. For any given

T > 0, the sampling approximation
∑

k u(kT ) sinc( t
T − k) converges pointwise to a continuous

bounded L2 function s(t). The Fourier transform of s(t) satisfies

ŝ(f) = l.i.m.
∑
m

û(f +
m

T
) rect[fT ]. (4.84)

35As shown by example in Exercise 4.38, s(t) need not be L2 unless the additional restrictions of Theorem 4.7.1
are applied to û(f). In these bizarre situations, the first sum in (4.80) is infinite and s(t) is a complete failure as
an approximation to u(t).
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Figure 4.10: The transform ŝ(f) of the baseband-sampled approximation s(t) to u(t) is
constructed by folding the transform û(f) into [−1/(2T ), 1/(2T )]. For example, using real
functions for pictorial clarity, the component a is mapped into a′, b into b′ and c into c′.
These folded components are added to obtain ŝ(f). If û(f) is complex, then both the real
and imaginary parts of û(f) must be folded in this way to get the real and imaginary parts
respectively of ŝ(f). The figure further clarifies the two terms on the right of (4.80). The first
term is the energy of û(f)− ŝ(f) caused by the folded components in part (ii) . The final term
is the energy in part (i) outside of [−T /2, T/2].

The condition that lim û(f)f1+ε = 0 implies that û(f) goes to 0 with increasing f at a faster
rate than 1/f . Exercise 4.37 gives an example in which the theorem fails in the absence of this
condition.

Without the mathematical convergence details, what the aliasing theorem says is that, corre-
sponding to a Fourier transform pair u(t) ↔ û(f), there is another Fourier transform pair s(t)
and ŝ(f); s(t) is a baseband sampling expansion using the T -spaced samples of u(t) and ŝ(f) is
the result of folding the transform û(f) into the band [−W,W] with W = 1/(2T ).

4.8 Summary

The theory of L2 (finite-energy) functions has been developed in this chapter. These are in many
ways the ideal waveforms to study, both because of the simplicity and generality of their math-
ematical properties and because of their appropriateness for modeling both source waveforms
and channel waveforms.

For encoding source waveforms, the general approach is

• expand the waveform into an orthogonal expansion

• quantize the coefficients in that expansion

• use discrete source coding on the quantizer output.

The distortion, measured as the energy in the difference between the source waveform and
the reconstructed waveform, is proportional to the squared quantization error in the quantized
coefficients.

For encoding waveforms to be transmitted over communication channels, the approach is

• map the incoming sequence of binary digits into a sequence of real or complex symbols

• use the symbols as coefficients in an orthogonal expansion.

Orthogonal expansions have been discussed in this chapter and will be further discussed in
Chapter 5. Chapter 6 will discuss the choice of symbol set, the mapping from binary digits, and
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the choice of orthogonal expansion.

This chapter showed that every L2 time-limited waveform has a Fourier series, where each
Fourier coefficient is given as a Lebesgue integral and the Fourier series converges in L2, i.e.,
as more and more Fourier terms are used in approximating the function, the energy difference
between the waveform and the approximation gets smaller and approaches 0 in the limit.

Also, by the Plancherel theorem, every L2 waveform u(t) (time-limited or not) has a Fourier
integral û(f). For each truncated approximation, uA(t) = u(t)rect( t

2A), the Fourier integral
ûA(f) exists with pointwise convergence and is continuous. The Fourier integral û(f) is then
the L2 limit of these approximation waveforms. The inverse transform exists in the same way.

These powerful L2 convergence results for Fourier series and integrals are not needed for com-
puting the Fourier transforms and series for the conventional waveforms appearing in exercises.
They become important both when the waveforms are sample functions of random processes
and when one wants to find limits on possible performance. In both of these situations, one
is dealing with a large class of potential waveforms, rather than a single waveform, and these
general results become important.

The DTFT is the frequency/time dual of the Fourier series, and the sampling theorem is simply
the Fourier transform of the DTFT, combined with a little care about convergence.

The T -spaced truncated sinusoid expansion and the T -spaced sinc-weighted sinusoid expansion
are two orthogonal expansions of an arbitrary L2 waveform. The first is formed by segmenting
the waveform into T -length segments and expanding each segment in a Fourier series. The
second is formed by segmenting the waveform in frequency and sampling each frequency band.
The orthogonal waveforms in each are the time/frequency translates of rect(t/T ) for the first
case and sinc(t/T ) for the second. Each expansion leads to the notion that waveforms roughly
limited to a time interval T0 and a baseband frequency interval F0 have approximately 2T0F0

degrees of freedom when T0F0 is large.

Aliasing is the ambiguity in a waveform that is represented by its T -spaced samples. If an
L2 waveform is baseband-limited to 1/(2T ), then its samples specify the waveform, but if the
waveform has components in other bands, these components are aliased with the baseband
components in the samples. The aliasing theorem says that the Fourier transform of the base-
band reconstruction from the samples is equal to the original Fourier transform folded into that
baseband.

4A Appendix: Supplementary material and proofs

The first part of the appendix is an introduction to countable sets. These results are used
throughout the chapter, and the material here can serve either as a first exposure or a review.
The following three parts of the appendix provide added insight and proofs about the results on
measurable sets.

4A.1 Countable sets

A collection of distinguishable objects is countably infinite if the objects can be put into one-to-
one correspondence with the positive integers. Stated more intuitively, the collection is countably
infinite if the set of elements can be arranged as a sequence a1, a2, . . . ,. A set is countable if it
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contains either a finite or countably infinite set of elements.

Example 4A.1 (The set of all integers). The integers can be arranged as the sequence 0,
-1, +1, -2, +2, -3, . . . , and thus the set is countably infinite. Note that each integer appears
once and only once in this sequence, and the one-to-one correspondence is (0 ↔ 1), (−1 ↔
2), (+1 ↔ 3), (−2 ↔ 4), etc. There are many other ways to list the integers as a sequence, such
as 0, -1, +1, +2, -2, +3, +4, -3, +5, . . . , but, for example, listing all the non-negative integers
first followed by all the negative integers is not a valid one-to-one correspondence since there
are no positive integers left over for the negative integers to map into.

Example 4A.2 (The set of 2-tuples of positive integers). Figure 4.11 shows that this set
is countably infinite by showing one way to list the elements in a sequence. Note that every
2-tuple is eventually reached in this list. In a weird sense, this means that there are as many
positive integers as there are pairs of positive integers, but what is happening is that the integers
in the 2-tuple advance much more slowly than the position in the list. For example, it can be
verified that (n, n) appears in position 2n(n − 1) + 1 of the list.
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(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2)

(1,3) (2,3) (3,3) (4,3)

(1,4) (2,4) (3,4) (4,4)

1 ↔ (1, 1)
2 ↔ (1, 2)
3 ↔ (2, 1)
4 ↔ (1, 3)
5 ↔ (2, 2)
6 ↔ (3, 1)
7 ↔ (1, 4)
and so forth

Figure 4.11: A one-to-one correspondence between positive integers and 2-tuples of
positive integers.

By combining the ideas in the previous two examples, it can be seen that the collection of all
integer 2-tuples is countably infinite. With a little more ingenuity, it can be seen that the set of
integer n-tuples is countably infinite for all positive integer n. Finally, it is straightforward to
verify that any subset of a countable set is also countable. Also a finite union of countable sets
is countable, and in fact a countable union of countable sets must be countable.

Example 4A.3. (The set of rational numbers] Each rational number can be represented by an
integer numerator and denominator, and can be uniquely represented by its irreducible numer-
ator and denominator. Thus the rational numbers can be put into one-to-one correspondence
with a subset of the collection of 2-tuples of integers, and are thus countable. The rational
numbers in the interval [−T/2, T/2] for any given T > 0 form a subset of all rational numbers,
and therefore are countable also.

As seen in Subsection 4.3.1, any countable set of numbers a1, a2, · · · can be expressed as a disjoint
countable union of zero-measure sets, [a1, a1], [a2, a2], · · · so the measure of any countable set
is zero. Consider a function that has the value 1 at each rational argument and 0 elsewhere.
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The Lebesgue integral of that function is 0. Since rational numbers exist in every positive-sized
interval of the real line, no matter how small, the Riemann integral of this function is undefined.
This function is not of great practical interest, but provides insight into why Lebesgue integration
is so general.

Example 4A.4 (The set of binary sequences). An example of an uncountable set of ele-
ments is the set of (unending) sequences of binary digits. It will be shown that this set contains
uncountably many elements by assuming the contrary and constructing a contradiction. Thus,
suppose we can list all binary sequences, a1,a2,a3, . . . . Each sequence, an, can be expressed
as an = (an,1, an,2, . . . ), resulting in a doubly infinite array of binary digits. We now construct
a new binary sequence b = b1, b2, . . . , in the following way. For each integer n > 0, choose
bn �= an,n; since bn is binary, this specifies bn for each n and thus specifies b. Now b differs from
each of the listed sequences in at least one binary digit, so that b is a binary sequence not on
the list. This is a contradiction, since by assumption the list contains each binary sequence.

This example clearly extends to ternary sequences and sequences from any alphabet with more
than one member.

Example 4A.5 (The set of real numbers in [0, 1)). This is another uncountable set, and
the proof is very similar to that of the last example. Any real number r ∈ [0, 1) can be represented
as a binary expansion 0.r1r2, · · · whose elements rk are chosen to satisfy r =

∑∞
k=1 rk2−k and

where each rk ∈ {0, 1}. For example, 1/2 can be represented as 0.1, 3/8 as 0.011, etc. This
expansion is unique except in the special cases where r can be represented by a finite binary
expansion, r =

∑m
k=1 rk; for example, 1/2 can also be represented as 0.0111 · · · . By convention,

for each such r (other than r = 0) choose m as small as possible; thus in the infinite expansion,
rm = 1 and rk = 0 for all k > m. Each such number can be alternatively represented with
rm = 0 and rk = 1 for all k > m.

By convention, map each such r into the expansion terminating with an infinite sequence of
zeros. The set of binary sequences is then the union of the representations of the reals in [0, 1)
and the set of binary sequences terminating in an infinite sequence of 1’s. This latter set is
countable because it is in one-to-one correspondence with the rational numbers of the form∑m

k=1 rk2−k with binary rk and finite m. Thus if the reals were countable, their union with this
latter set would be countable, contrary to the known uncountability of the binary sequences.

By scaling the interval [0,1), it can be seen that the set of real numbers in any interval of
non-zero size is uncountably infinite. Since the set of rational numbers in such an interval is
countable, the irrational numbers must be uncountable (otherwise the union of rational and
irrational numbers, i.e., the reals, would be countable).

The set of irrationals in [−T/2, T/2] is the complement of the rationals and thus has measure
T . Each pair of distinct irrationals is separated by rational numbers. Thus the irrationals can
be represented as a union of intervals only by using an uncountable union36 of intervals, each
containing a single element. The class of uncountable unions of intervals is not very interesting
since it includes all subsets of R.

36This might be a shock to one’s intuition. Each partial union
⋃k

j=1 [aj , aj ] of rationals has a complement
which is the union of k + 1 intervals of non-zero width; each unit increase in k simply causes one interval in the
complement to split into two smaller intervals (although maintaining the measure at T ). In the limit, however,
this becomes an uncountable set of separated points.
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4A.2 Finite unions of intervals over [−T/2, T/2]

Let Mf be the class of finite unions of intervals, i.e., the class of sets whose elements can each
be expressed as E =

⋃	
j=1 Ij where {I1, . . . , I	} are intervals and  ≥ 1 is an integer. Exercise

4.5 shows that each such E ∈ Mf can be uniquely expressed as a finite union of k ≤  separated
intervals, say E =

⋃k
j=1 I ′j . The measure of E was defined as µ(E) =

∑k
j=1 µ(I ′j). Exercise 4.7

shows that µ(E) ≤
∑	

j=1 µ(Ij) for the original intervals making up E and shows that this holds
with equality whenever I1, . . . , I	 are disjoint.37

The class Mf is closed under the union operation, since if E1 and E2 are each finite unions of
intervals, then E1 ∪ E2 is the union of both sets of intervals. It also follows from this that if E1

and E2 are disjoint then

µ(E1 ∪ E2) = µ(E1) + µ(E2). (4.85)

The class Mf is also closed under the intersection operation, since, if E1 =
⋃

j I1,j and E2 =⋃
	 I2,	, then E1 ∩E2 =

⋃
j,	(I1,j ∩ I2,	). Finally, Mf is closed under complementation. In fact, as

illustrated in Figure 4.5, the complement E of a finite separated union of intervals E is simply
the union of separated intervals lying between the intervals of E . Since E and its complement E
are disjoint and fill all of [−T/2, T/2], each E ∈ Mf satisfies the complement property,

T = µ(E) + µ(E). (4.86)

An important generalization of (4.85) is the following: for any E1, E2 ∈ Mf ,

µ(E1 ∪ E2) + µ(E1 ∩ E2) = µ(E1) + µ(E2). (4.87)

To see this intuitively, note that each interval in E1 ∩ E2 is counted twice on each side of (4.87),
whereas each interval in only E1 or only E2 is counted once on each side. More formally, E1∪E2 =
E1 ∪ (E2 ∩ E1). Since this is a disjoint union, (4.85) shows that µ(E1 ∪ E2) = µ(E1) + µ(E2 ∩ E1).
Similarly, µ(E2) = µ(E2 ∩ E1) + µ(E2 ∩ E1). Combining these equations results in (4.87).

4A.3 Countable unions and outer measure over [−T/2, T/2]

Let Mc be the class of countable unions of intervals, i.e., each set B ∈ Mc can be expressed as
B =

⋃
j Ij where {I1, I2 . . . } is either a finite or countably infinite collection of intervals. The

class Mc is closed under both the union operation and the intersection operation by the same
argument as used for Mf . Mc is also closed under countable unions (see Exercise 4.8) but not
closed under complements or countable intersections.38

Each B ∈ Mc can be uniquely39 expressed as a countable union of separated intervals, say
B =

⋃
j I ′j where {I ′1, I ′2, . . . } are separated (see Exercise 4.6). The measure of B is defined as

µ(B) =
∑

j

µ(I ′j). (4.88)

37Recall that intervals such as (0,1], (1,2] are disjoint but not separated. A set E ∈ Mf has many representations
as disjoint intervals but only one as separated intervals, which is why the definition refers to separated intervals.

38Appendix 4A.1 shows that the complement of the rationals, i.e., the set of irrationals, does not belong to
Mc. The irrationals can also be viewed as the intersection of the complements of the rationals, giving an example
where Mc is not closed under countable intersections.

39What is unique here is the collection of intervals, not the particular ordering ; this does not affect the infinite
sum in (4.88) (see Exercise 4.4).
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As shown in Subsection 4.3.1, the right side of (4.88) always converges to a number between
0 and T . For B =

⋃
j Ij where I1, I2, . . . , are arbitrary intervals, Exercise 4.7 establishes the

following union bound,

µ(B) ≤
∑

j

µ(Ij) with equality if I1, I2, . . . are disjoint. (4.89)

The outer measure µo(A) of an arbitary set A was defined in (4.13) as

µo(A) = inf
B∈Mc,A⊆B

µ(B). (4.90)

Note that [−T/2, T/2] is a cover of A for all A (recall that only sets in [−T/2, T/2] are being
considered). Thus µo(A) must lie between 0 and T for all A. Also, for any two sets A ⊆ A′,
any cover of A′ also covers A. This implies the subset inequality for outer measure,

µo(A) ≤ µo(A′) for A ⊆ A′. (4.91)

The following lemma develops another useful bound on outer measure called the union bound.
Its proof illustrates several techniques that will be used frequently.

Lemma 4A.1. Let S =
⋃

k Ak be a countable union of arbitrary sets in [−T/2, T/2]. Then

µo(S) ≤
∑

k

µo(Ak). (4.92)

Proof: The approach is to first establish an arbitrarily tight cover to each Ak and then show
that the union of these covers is a cover for S. Specifically, let ε be an arbitrarily small positive
number. For each k ≥ 1, the infimum in (4.90) implies that covers exist with measures arbitrarily
little greater than that infimum. Thus a cover Bk to Ak exists with

µ(Bk) ≤ ε2−k + µo(Ak).

For each k, let Bk =
⋃

j I ′j,k where I ′1,k, I
′
2,k, . . . represents Bk by separated intervals. Then

B =
⋃

k Bk =
⋃

k

⋃
j I ′j,k is a countable union of intervals, so from (4.89) and Exercise 4.4,

µ(B) ≤
∑

k

∑
j

µ(I ′j,k) =
∑

k

µ(Bk)

Since Bk covers Ak for each k, it follows that B covers S. Since µo(S) is the infimum of its
covers,

µo(S) ≤ µ(B) ≤
∑

k

µ(Bk) ≤
∑

k

(
ε2−k + µo(Ak)

)
= ε +

∑
k

µo(Ak).

Since ε > 0 is arbitrary, (4.92) follows.

An important special case is the union of any set A and its complement A. Since [−T/2, T/2] =
A ∪A,

T ≤ µo(A) + µo(A). (4.93)

The next subsection will define measurability and measure for arbitrary sets. Before that, the
following theorem shows both that countable unions of intervals are measurable and that their
measure, as defined in (4.88), is consistent with the general definition to be given later.
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Theorem 4A.1. Let B =
⋃

j Ij where {I1, I2, . . . } is a countable collection of intervals in
[−T/2, T/2] (i.e., B ∈ Mc). Then

µo(B) + µo(B) = T and (4.94)

µo(B) = µ(B). (4.95)

Proof: Let {I ′j ; j ≥ 1} be the collection of separated intervals representing B and let

Ek =
⋃k

j=1
I ′j ; then

µ(E1) ≤ µ(E2) ≤ µ(E3) ≤ · · · ≤ lim
k→∞

µ(Ek) = µ(B).

For any ε > 0, choose k large enough that

µ(Ek) ≥ µ(B) − ε. (4.96)

The idea of the proof is to approximate B by Ek, which, being in Mf , satisfies T = µ(Ek)+µ(Ek).
Thus,

µ(B) ≤ µ(Ek) + ε = T − µ(Ek) + ε ≤ T − µo(B) + ε, (4.97)

where the final inequality follows because Ek ⊆ B and thus B ⊆ Ek and µo(B) ≤ µ(Ek).

Next, since B ∈ Mc and B ⊆ B, B is a cover of itself and is a choice in the infimum defining
µo(B); thus µo(B) ≤ µ(B). Combining this with (4.97), µo(B) + µo(B) ≤ T + ε. Since ε > 0 is
arbitrary, this implies

µo(B) + µo(B) ≤ T. (4.98)

This combined with (4.93) establishes (4.94). Finally, substituting T ≤ µo(B) + µo(B) into
(4.97), µ(B) ≤ µo(B) + ε. Since µo(B) ≤ µ(B) and ε > 0 is arbitrary, this establishes (4.95).

Finally, before proceeding to arbitrary measurable sets, the joint union and intersection property,
(4.87), is extended to Mc.

Lemma 4A.2. Let B1 and B2 be arbitrary sets in Mc. Then

µ(B1 ∪ B2) + µ(B1 ∩ B2) = µ(B1) + µ(B2). (4.99)

Proof: Let B1 and B2 be represented respectively by separated intervals, B1 =
⋃

j I1,j and
B2 =

⋃
j I2,j . For  = 1, 2, let Ek

	 =
⋃k

j=1 I	,j and Dk
	 =

⋃∞
j=k+1 I	,j . Thus B	 = Ek

	 ∪Dk
	 for each

integer k ≥ 1 and  = 1, 2. The proof is based on using Ek
	 , which is in Mf and satisfies the joint

union and intersection property, as an approximation to B	. To see how this goes, note that

B1 ∩ B2 = (Ek
1 ∪ Dk

1) ∩ (Ek
2 ∪ Dk

2) = (Ek
1 ∩ Ek

2 ) ∪ (Ek
1 ∩ Dk

2) ∪ (Dk
1 ∩ B2).



128 CHAPTER 4. SOURCE AND CHANNEL WAVEFORMS

For any ε > 0 we can choose k large enough that µ(Ek
	 ) ≥ µ(B	) − ε and µ(Dk

	 ) ≤ ε for  = 1, 2.
Using the subset inequality and the union bound, we then have

µ(B1 ∩ B2) ≤ µ(Ek
1 ∩ Ek

2 ) + µ(Dk
2) + µ(Dk

1)
≤ µ(Ek

1 ∩ Ek
2 ) + 2ε.

By a similar but simpler argument,

µ(B1 ∪ B2) ≤ µ(Ek
1 ∪ Ek

2 ) + µ(Dk
1) + µ(Dk

2)
≤ µ(Ek

1 ∪ Ek
2 ) + 2ε.

Combining these inequalities and using (4.87) on Ek
1 ⊆ Mf and Ek

2 ⊆ Mf , we have

µ(B1 ∩ B2) + µ(B1 ∪ B2) ≤ µ(Ek
1 ∩ Ek

2 ) + µ(Ek
1 ∪ Ek

2 ) + 4ε

= µ(Ek
1 ) + µ(Ek

2 ) + 4ε

≤ µ(B1) + µ(B2) + 4ε.

where we have used the subset inequality in the final inequality.

For a bound in the opposite direction, we start with the subset inequality,

µ(B1 ∪ B2) + µ(B1 ∩ B2) ≥ µ(Ek
1 ∪ Ek

2 ) + µ(Ek
1 ∩ Ek

2 )
= µ(Ek

1 ) + µ(Ek
2 )

≥ µ(B1) + µ(B2) − 2ε.

Since ε is arbitrary, these two bounds establish (4.99).

4A.4 Arbitrary measurable sets over [−T/2, T/2]

An arbitrary set A ∈ [−T/2, T/2] was defined to be measurable if

T = µo(A) + µo(A). (4.100)

The measure of a measurable set was defined to be µ(A) = µo(A). The class of measurable sets
is denoted as M. Theorem 4A.1 shows that each set B ∈ Mc is measurable, i.e., B ∈ M and
thus Mf ⊆ Mc ⊆ M. The measure of B ∈ Mc is µ(B) =

∑
j µ(Ij) for any disjoint sequence of

intervals, I1, I2, . . . , whose union is B.

Although the complements of sets in Mc are not necessarily in Mc (as seen from the rational
number example), they must be in M; in fact, from (4.100), all sets in M have complements
in M, i.e., M is closed under complements. We next show that M is closed under, first, finite,
and then, countable, unions and intersections. The key to these results is to first show that the
joint union and intersection property is valid for outer measure.

Lemma 4A.3. For any measurable sets A1 and A2,

µo(A1 ∪ A2) + µo(A1 ∩ A2) = µo(A1) + µo(A2). (4.101)

Proof: The proof is very similar to that of lemma 4A.2, but here we use sets in Mc to approx-
imate those in M. For any ε > 0, let B1 and B2 be covers of A1 and A2 respectively such that



4A. APPENDIX: SUPPLEMENTARY MATERIAL AND PROOFS 129

µ(B	) ≤ µo(A	) + ε for  = 1, 2. Let D	 = B	 ∩A	 for  = 1, 2. Note that A	 and D	 are disjoint
and B	 = A	 ∪ D	.

B1 ∩ B2 = (A1 ∪ D1) ∩ (A2 ∪ D2) = (A1 ∩ A2) ∪ (D1 ∩ A2) ∪ (B1 ∩ D2).

Using the union bound and subset inequality for outer measure on this and the corresponding
expansion of B1 ∪ B2, we get

µ(B1 ∩ B2) ≤ µo(A1 ∩ A2) + µo(D1) + µo(D2) ≤ µo(A1 ∩ A2)+2ε

µ(B1 ∪ B2) ≤ µo(A1 ∪ A2)+µo(D1) + µo(D2) ≤ µo(A1 ∪ A2)+2ε,

where we have also used the fact (see Exercise 4.9) that µo(D	) ≤ ε for  = 1, 2. Summing these
inequalities and rearranging terms,

µo(A1 ∪ A2) + µo(A1 ∩ A2) ≥ µ(B1 ∩ B2) + µ(B1 ∪ B2) − 4ε

= µ(B1)+µ(B2) − 4ε

≥ µo(A1)+µo(A2) − 4ε,

where we have used (4.99) and then used A	 ⊆ B	 for  = 1, 2. Using the subset inequality and
(4.99) to bound in the opposite direction,

µ(B1) + µ(B2) = µ(B1 ∪ B2) + µ(B1 ∩ B2) ≥ µo(A1 ∪ A2)+µo(A1 ∩ A2).

Rearranging and using µ(B	) ≤ µo(A	) + ε,

µo(A1 ∪ A2)+µo(A1 ∩ A2) ≤ µo(A1) + µo(A2) + 2ε.

Siince ε is arbitrary, these bounds establish (4.101).

Theorem 4A.2. Assume A1,A2 ∈ M. Then A1 ∪ A2 ∈ M and A1 ∩ A2 ∈ M.

Proof: Apply (4.101) to A1 and A2, getting

µo(A1 ∪ A2) + µo(A1 ∩ A2) = µo(A1) + µo(A2).

Replacing A1 ∪ A2 by A1 ∩ A2 and A1 ∩ A2 by A1 ∪ A2 and adding this to (4.101),[
µo(A1 ∪ A2) + µo(A1 ∪ A2

]
+

[
µo(A1 ∩ A2) + µo(A1 ∩ A2)

]
= µo(A1) + µo(A2) + µo(A1) + µo(A2) = 2T, (4.102)

where we have used (4.100). Each of the bracketed terms above is at least T from (4.93), so
each term must be exactly T . Thus A1 ∪ A2 and A1 ∩ A2 are measurable.

Since A1 ∪ A2 and A1 ∩ A2 are measurable if A1 and A2 are, the joint union and intersection
property holds for measure as well as outer measure for all measurable functions, i.e.,

µ(A1 ∪ A2) + µ(A1 ∩ A2) = µ(A1) + µ(A2). (4.103)

If A1 and A2 are disjoint, then (4.103) simplifies to the additivity property

µ(A1 ∪ A2) = µ(A1) + µ(A2). (4.104)

Actually, (4.103) shows that (4.104) holds whenever µ(A1 ∩ A2) = 0. That is, A1 and A2 need
not be disjoint, but need only have an intersection of zero measure. This is another example in
which sets of zero measure can be ignored.

The following theorem shows that M is closed over disjoint countable unions and that M is
countably additive.
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Theorem 4A.3. Assume that Aj ∈ M for each integer j ≥ 1 and that µ(Aj ∩ A	) = 0 for all
j �= . Let A =

⋃
j Aj. Then A ∈ M and

µ(A) =
∑

j

µ(Aj). (4.105)

Proof: Let Ak =
⋃k

j=1 Aj for each integer k ≥ 1. Then Ak+1 = Ak ∪ Ak+1 and, by induction
on the previous theorem, Ak ∈ M. It also follows that

µ(Ak) =
k∑

j=1

µ(Aj).

The sum on the right is nondecreasing in k and bounded by T , so the limit as k → ∞ exists.
Applying the union bound to A,

µo(A) ≤
∑

j

µo(Aj) = lim
k→∞

µo(Ak) = lim
k→∞

µ(Ak). (4.106)

Since Ak ⊆ A, we see that A ⊆ Ak and µo(A) ≤ µ(Ak) = T − µ(Ak). Thus

µo(A) ≤ T − lim
k→∞

µ(Ak). (4.107)

Adding (4.106) and (4.107) shows that µo(A) + µo(A) ≤ T . Combining with (4.93), µo(A) +
µo(A) = T and (4.106) and (4.107) are satisfied with equality. Thus A ∈ M and countable
additivity, (4.105), is satisfied.

Next it is shown that M is closed under arbitrary countable unions and intersections.

Theorem 4A.4. Assume that Aj ∈ M for each integer j ≥ 1. Then A =
⋃

j Aj and D =
⋂

j Aj

are both in M.

Proof: Let A′
1 = A1 and, for each k ≥ 1, let Ak =

⋃k
j=1 Aj and let A′

k+1 = Ak+1 ∩ Ak.
By induction, the sets A′

1,A′
2, . . . , are disjoint and measurable and A =

⋃
j A′

j . Thus, from
Theorem 4A.3, A is measurable. Next suppose D = ∩Aj . Then D = ∪Aj . Thus, D ∈ M , so
D ∈ M also.

Proof of Theorem 4.3.1: The first two parts of Theorem 4.3.1 are Theorems 4A.4 and
4A.3. The third part, that A is measurable with zero measure if µo(A) = 0, follows from
T ≤ µo(A) + µo(A) = µo(A) and µo(A) ≤ T , i.e., that µo(A) = T .

Sets of zero measure are quite important in understanding Lebesgue integration, so it is impor-
tant to know whether there are also uncountable sets of points that have zero measure. The
answer is yes; a simple example follows.

Example 4A.6 (The Cantor set). Express each point in the interval (0,1) by a ternary ex-
pansion. Let B be the set of points in (0,1) for which that expansion contains only 0’s and 2’s
and is also nonterminating. Thus B excludes the interval [1/3, 2/3), since all these expansions
start with 1. Similarly, B excludes [1/9, 2/9) and [7/9, 8/9), since the second digit is 1 in these
expansions. The right end point for each of these intervals is also excluded since it has a ter-
minating expansion. Let Bn be the set of points with no 1 in the first n digits of the ternary
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expansion. Then µ(Bn) = (2/3)n. Since B is contained in Bn for each n ≥ 1, B is measurable
and µ(B) = 0.

The expansion for each point in B is a binary sequence (viewing 0 and 2 as the binary digits
here). There are uncountably many binary sequences (see Section 4A.1), and this remains true
when the countable number of terminating sequences are removed. Thus we have demonstrated
an uncountably infinite set of numbers with zero measure.

Not all point sets are Lebesgue measurable, and an example follows.

Example 4A.7 (A non-measurable set). Consider the interval [0, 1). We define a collection
of equivalence classes where two points in [0, 1) are in the same equivalence class if the difference
between them is rational. Thus one equivalence class consists of the rationals in [0,1). Each other
equivalence class consists of a countably infinite set of irrationals whose differences are rational.
This partitions [0, 1) into an uncountably infinite set of equivalence classes. Now consider a set
A that contains exactly one number chosen from each equivalence class. We will assume that A
is measurable and show that this leads to a contradiction.

For the given set A, let A + r, for r rational in (0, 1), denote the set that results from mapping
each t ∈ A into either t + r or t + r − 1, whichever lies in [0, 1). The set A+ r is thus the set A,
shifted by r, and then rotated to lie in [0, 1). By looking at outer measures, it is easy to see that
A + r is measurable if A is and that both then have the same measure. Finally, each t ∈ [0, 1)
lies in exactly one equivalence class, and if τ is the element of A in that equivalence class, then t
lies in A+r where r = t−τ or t−τ +1. In other words, [0, 1) =

⋃
r(A+r) and the sets A+r are

disjoint. Assuming that A is measurable, Theorem 4A.3 asserts that 1 =
∑

r µ(A+r). The sum
on the right, however, is 0 if µ(A) = 0 and infinite if µ(A) > 0, establishing the contradiction.
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4.E Exercises

4.1. (Fourier series) (a) Consider the function u(t) = rect(2t) of Figure 4.2. Give a general
expression for the Fourier series coefficients for the Fourier series over [−1/2, 1/2]. and
show that the series converges to 1/2 at each of the end points, -1/4 and 1/4. Hint: You
don’t need to know anything about convergence here.
(b) Represent the same function as a Fourier series over the interval [−1/4, 1/4]. What
does this series converge to at -1/4 and 1/4? Note from this exercise that the Fourier series
depends on the interval over which it is taken.

4.2. (Energy equation) Derive (4.6), the energy equation for Fourier series. Hint: Substitute the
Fourier series for u(t) into

∫
u(t)u∗(t) dt. Don’t worry about convergence or interchange of

limits here.

4.3. (Countability) As shown in Appendix 4A.1, many subsets of the real numbers, including
the integers and the rationals, are countable. Sometimes, however, it is necessary to give
up the ordinary numerical ordering in listing the elements of these subsets. This exercise
shows that this is sometimes inevitable.
(a) Show that every listing of the integers (such as 0,−1, 1,−2, . . . ) fails to preserve the
numerical ordering of the integers (hint: assume such a numerically ordered listing exists
and show that it can have no first element (i.e., no smallest element.)
(b) Show that the rational numbers in the interval (0, 1) cannot be listed in a way that
preserves their numerical ordering.
(c) Show that the rationals in [0,1] cannot be listed with a preservation of numerical ordering
(the first element is no problem, but what about the second?).

4.4. (Countable sums) Let a1, a2, . . . , be a countable set of non-negative numbers and assume
that sa(k) =

∑k
j=1 aj ≤ A for all k and some given A > 0.

(a) Show that the limit limk→∞ sa(k) exists with some value Sa between 0 and A. (Use
any level of mathematical care that you feel comfortable with.)
(b) Now let b1, b2, . . . , be another ordering of the numbers a1, a2, . . . ,. That is, let b1 =
aj(1), b2 = aj(2), . . . , b	 = aj(	), . . . , where j() is a permutation of the positive integers, i.e.,
a one-to-one function from Z+ to Z+. Let sb(k) =

∑k
	=1 b	. Show that limk→∞ sb(k) ≤ Sa.

Hint: Note that
k∑

	=1

b	 =
k∑

	=1

aj(	).

(c) Define Sb = limk→∞ sb(k) and show that Sb ≥ Sa. Hint: Consider the inverse permua-
tion, say −1(j), which for given j′ is that  for which j() = j′. Note that you have shown
that a countable sum of non-negative elements does not depend on the order of summation.
(d) Show that the above result is not necessarily true for a countable sum of numbers that
can be positive or negative. Hint: consider alternating series.

4.5. (Finite unions of intervals) Let E =
⋃	

j=1 Ij be the union of  ≥ 2 arbitrary nonempty
intervals. Let aj and bj denote the left and right end points respectively of Ij ; each end
point can be included or not. Assume the intervals are ordered so that a1 ≤ a2 ≤ · · · ≤ a	.
(a) For  = 2, show that either I1 and I2 are separated or that E is a single interval whose
left end point is a1.
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(b) For  > 2 and 2 ≤ k < , let Ek =
⋃k

j=1 Ij . Give an algorithm for constructing a union
of separated intervals for Ek+1 given a union of separated intervals for Ek.
(c) Note that using part (b) inductively yields a representation of E as a union of separated
intervals. Show that the left end point for each separated interval is drawn from a1, . . . , a	

and the right end point is drawn from b1, . . . , b	.
(d) Show that this representation is unique, i.e.., that E can not be represented as the
union of any other set of separated intervals. Note that this means that µ(E) is defined
unambiguously in (4.9).

4.6. (Countable unions of intervals) Let B =
⋃

j Ij be a countable union of arbitrary (perhaps
intersecting) intervals. For each k ≥ 1, let Bk =

⋃k
j=1 Ij and for each k ≥ j, let Ij,k be the

separated interval in Bk containing Ij (see Exercise 4.5).
(a) For each k ≥ j ≥ 1, show that Ij,k ⊆ Ij,k+1.
(b) Let

⋃∞
k=j Ij,k = I ′j . Explain why I ′j is an interval and show that I ′j ⊆ B.

(c) For any i, j, show that either I ′j = I ′i or I ′j and I ′i are separated intervals.
(d) Show that the sequence {I ′j ; 1 ≤ j < ∞} with repetitions removed is a countable
separated-interval representation of B.
(e) Show that the collection {I ′j ; j ≥ 1} with repetitions removed is unique; i.e., show that
if an arbitrary interval I is contained in B, then it is contained in one of the I ′j . Note
however that the ordering of the I ′j is not unique.

4.7. (Union bound for intervals) Prove the validity of the union bound for a countable collection
of intervals in (4.89). The following steps are suggested:
(a) Show that if B = I1

⋃
I2 for arbitrary I1, I2, then µ(B) ≤ µ(I1) + µ(I2) with equality

if I1 and I2 are disjoint. Note: this is true by definition if I1 and I2 are separated, so you
need only treat the cases where I1 and I2 intersect or are disjoint but not separated.
(b) Let Bk =

⋃k
j=1 Ij be represented as the union of say mk separated intervals (mk ≤ k),

so Bk =
⋃mk

j=1 I ′j . Show that µ(Bk
⋃

Ik+1) ≤ µ(Bk) + µ(Ik+1) with equality if Bk and Ik+1

are disjoint.
(c) Use finite induction to show that if B =

⋃k
j=1 Ij is a finite union of arbitrary intervals,

then µ(B) ≤
∑k

j=1 µ(Ij) with equality if the intervals are disjoint.
(d) Extend part (c) to a countably infinite union of intervals.

4.8. For each positive integer n, let Bn be a countable union of intervals. Show that B =
⋃∞

n=1 Bn

is also a countable union of intervals. Hint: Look at Example 4A.2 in Section 4A.1.

4.9. (Measure and covers) Let A be an arbitrary measurable set in [−T/2, T/2] and let B be
a cover of A. Using only results derived prior to Lemma 4A.3, show that µo(B ∩ A) =
µ(B) − µ(A). You may use the following steps if you wish.
(a) Show that µo(B ∩ A) ≥ µ(B) − µ(A).
(b) For any δ > 0, let B′ be a cover of A with µ(B′) ≤ µ(A) + δ. Use Lemma 4A.2 to show
that µ(B ∩ B′) = µ(B) + µ(B′) − T .
(c) Show that µo(B ∩ A) ≤ µ(B ∩ B′) ≤ µ(B) − µ(A) + δ.
(d) Show that µo(B ∩ A) = µ(B) − µ(A).

4.10. (Intersection of covers) Let A be an arbitrary set in [−T/2, T/2].
(a) Show that A has a sequence of covers, B1,B2, . . . such that µo(A) = µ(D) where
D =

⋂
n Bn.
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(b) Show that A ⊆ D.
(c) Show that if A is measurable, then µ(D ∩ A) = 0. Note that you have shown that an
arbitrary measurable set can be represented as a countable intersection of countable unions
of intervals, less a set of zero measure. Argue by example that if A is not measurable, then
µo(D ∩ A) need not be 0.

4.11. (Measurable functions) (a) For {u(t) : [−T/2, T/2] → R}, show that if {t : u(t) < β} is
measurable, then {t : u(t) ≥ β} is measurable.
(b) Show that if {t : u(t) < β} and {t : u(t) < α} are measurable, α < β, then {t : α ≤
u(t) < β} is measurable.
(c) Show that if {t : u(t) < β} is measurable for all β, then {t : u(t) ≤ β} is also measurable.
Hint: Express {t : u(t) ≤ β} as a countable intersection of measurable sets.
(d) Show that if {t : u(t) ≤ β} is measurable for all β, then {t : u(t) < β} is also measurable,
i.e., the definition of measurable function can use either strict or nonstrict inequality.

4.12. (Measurable functions) Assume throughout that {u(t) : [−T/2, T/2] → R} is measurable.
(a) Show that −u(t) and |u(t)| are measurable.
(b) Assume that {g(x) : R → R} is an increasing function (i.e., x1 < x2 =⇒ g(x1) <
g(x2)). Prove that v(t) = g(u(t)) is measurable Hint: This is a one liner. If the abstraction
confuses you, first show that exp(u(t)) is measurable and then prove the more general
result.
(c) Show that exp[u(t)], u2(t), and ln |u(t)| are all measurable.

4.13. (Measurable functions) (a) Show that if{u(t) : [−T/2, T/2] → R} and {v(t) : [−T/2, T/2] →
R} are measurable, then u(t)+v(t) is also measurable. Hint: Use a discrete approximation
to the sum and then go to the limit.
(b) Show that u(t)v(t) is also measurable.

4.14. (Measurable sets) Suppose A is a subset of [−T/2, T/2] and is measurable over [−T/2, T/2].
Show that A is also measurable, with the same measure, over [−T ′/2, T ′/2] for any T ′

satisfying T ′ > T . Hint: Let µ′(A) be the outer measure of A over [−T ′/2, T ′/2] and show
that µ′(A) = µo(A) where µo is the outer measure over [−T/2, T/2]. Then let A′ be the
complement of A over [−T ′/2, T ′/2] and show that µ′(A′) = µo(A) + T ′ − T .

4.15. (Measurable limits) (a) Assume that {un(t) : [−T/2, T/2] → R} is measurable for each
n ≥ 1. Show that lim infn un(t) is measurable ( lim infn un(t) means limm vm(t) where
vm(t) = inf∞n=m un(t) and infinite values are allowed).
(b) Show that limn un(t) exists for a given t if and only if lim infn un(t) = lim supn un(t).
(c) Show that the set of t for which limn un(t) exists is measurable. Show that a function
u(t) that is limn un(t) when the limit exists and is 0 otherwise is measurable.

4.16. (Lebesgue integration) For each integer n ≥ 1, define un(t) = 2n rect(2n t − 1). Sketch
the first few of these waveforms. Show that limn→∞ un(t) = 0 for all t. Show that∫

limn un(t) dt �= limn

∫
un(t) dt.

4.17. (L1 integrals)) (a) Assume that {u(t) : [−T/2, T/2] → R} is L1. Show that∣∣∣∣∫ u(t) dt

∣∣∣∣ =
∣∣∣∣∫ u+(t) dt −

∫
u−(t) dt

∣∣∣∣ ≤ ∫
|u(t)| dt.
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(b) Assume that {u(t) : [−T/2, T/2] → C} is L1. Show that∣∣∣∣∫ u(t) dt

∣∣∣∣ ≤ ∫
|u(t)| dt.

Hint: Choose α such that α
∫

u(t) dt is real and nonnegative and |α| = 1. Use part (a) on
αu(t).

4.18. (L2 equivalence) Assume that {u(t) : [−T/2, T/2] → C} and {v(t) : [−T/2, T/2] → C} are
L2 functions.
(a) Show that if u(t) and v(t) are equal a.e., then they are L2 equivalent.
(b) Show that if u(t) and v(t) are L2 equivalent, then for any ε > 0, the set {t : |u(t) −
v(t)|2 ≥ ε} has zero measure.
(c) Using (b), show that µ{t : |u(t) − v(t)| > 0} = 0 , i.e., that u(t) = v(t) a.e.

4.19. (Orthogonal expansions) Assume that {u(t) : R → C} is L2. Let {θk(t); 1 ≤ k < ∞} be a
set of orthogonal waveforms and assume that u(t) has the orthogonal expansion

u(t) =
∞∑

k=1

ukθk(t).

Assume the set of orthogonal waveforms satisfy∫ ∞

−∞
θk(t)θ∗j (t) dt =

{
0 for k �= j
Aj for k = j,

where {Aj} is an arbitrary set of positive numbers. Do not concern yourself with conver-
gence issues in this exercise.
(a) Show that each uk can be expressed in terms of

∫ ∞
−∞ u(t)θ∗k(t) dt and Ak.

(b) Find the energy
∫ ∞
−∞ |u(t)|2dt in terms of {uk}, and {Ak}.

(c) Suppose that v(t) =
∑

k vkθk(t) where v(t) also has finite energy. Express∫ ∞
−∞ u(t)v∗(t) dt as a function of {uk, vk, Ak; k ∈ Z}.

4.20. (Fourier series) (a) Verify that (4.22) and (4.23) follow from (4.20) and (4.18) using the
transformation u(t) = v(t + ∆).
(b) Consider the Fourier series in periodic form, w(t) =

∑
k ŵke

2πikt/T where ŵk =
(1/T )

∫ T/2
−T/2 w(t)e−2πikt/T dt. Show that for any real ∆, (1/T )

∫ T/2+∆
−T/2+∆ w(t)e−2πikt/T dt is

also equal to ŵk, providing an alternate derivation of (4.22) and (4.23).

4.21. Equation (4.27) claims that

lim
n→∞,	→∞

∫ ∣∣∣u(t) −
n∑

m=−n

	∑
k=−	

ûk,mθk,m(t)
∣∣∣2 dt = 0

(a) Show that the integral above is non-increasing in both  and n.
(b) Show that the limit is independent of how n and  approach ∞. Hint: See Exercise 4.4.
(c) More generally, show that the limit is the same if the pair (k, m), k ∈ Z, m ∈ Z is
ordered in an arbitrary way and the limit above is replaced by a limit on the partial sums
according to that ordering.
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4.22. (Truncated sinusoids) (a) Verify (4.24) for L2 waveforms, i.e., show that

lim
n→∞

∫ ∣∣∣u(t) −
n∑

m=−n

um(t)
∣∣∣2 dt = 0.

(b) Break the integral in (4.28) into separate integrals for |t| > (n+ 1
2)T and |t| ≤ (n+ 1

2)T .
Show that the first integral goes to 0 with increasing n.
(c) For given n, show that the second integral above goes to 0 with increasing .

4.23. (Convolution) The left side of (4.40) is a function of t. Express the Fourier transform of
this as a double integral over t and τ . For each t, make the substitution r = t − τ and
integrate over r. Then integrate over τ to get the right side of (4.40). Do not concern
yourself with convergence issues here.

4.24. (Continuity of L1 transform) Assume that {u(t) : R → C} is L1 and let û(f) be its Fourier
transform. Let ε be any given positive number.
(a) Show that for sufficiently large T ,

∫
|t|>T |u(t)e−2πift − u(t)e−2πi(f−δ)t| dt < ε/2 for all f

and all δ > 0.
(b) For the ε and T selected above, show that

∫
|t|≤T |u(t)e−2πift − u(t)e−2πi(f−δ)t| dt < ε/2

for all f and sufficiently small δ > 0. This shows that û(f) is continuous.

4.25. (Plancherel) The purpose of this exercise is to get some understanding of the Plancherel
theorem. Assume that u(t) is L2 and has a Fourier transform û(f).
(a) Show that û(f) − ûA(f) is the Fourier transform of the function xA(t) that is 0 from
−A to A and equal to u(t) elsewhere.
(b) Argue that since

∫ ∞
−∞ |u(t)|2dt is finite, the integral

∫ ∞
−∞ |xA(t)|2 dt must go to 0 as A →

∞. Use whatever level of mathematical care and common sense that you feel comfortable
with.
(c) Using the energy equation (4.45), argue that

lim
A→∞

∫ ∞

−∞
|û(f) − ûA(f)|2 dt = 0.

Note: This is only the easy part of the Plancherel theorem. The difficult part is to show
the existence of û(f). The limit as A → ∞ of the integral

∫ A
−A u(t)e−2πift dt need not exist

for all f , and the point of the Plancherel theorem is to forget about this limit for individual
f and focus instead on the energy in the difference between the hypothesized û(f) and the
approximations.

4.26. (Fourier transform for L2) Assume that {u(t) : R → C} and {v(t) : R → C} are L2 and
that a and b are complex numbers. Show that au(t) + bv(t) is L2. For T > 0, show that
u(t − T ) and u( t

T ) are L2 functions.

4.27. (Relation of Fourier series to Fourier integral) Assume that {u(t) : [−T/2, T/2] → C} is
L2. Without being very careful about the mathematics, the Fourier series expansion of
{u(t)} is given by

u(t) = lim
	→∞

u(	)(t) where u(	)(t) =
	∑

k=−	

ûke
2πikt/T rect(

t

T
)

ûk =
1
T

∫ T/2

−T/2
u(t)e−2πikt/T dt.
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(a) Does the above limit hold for all t ∈ [−T/2, T/2]? If not, what can you say about the
type of convergence?

(b) Does the Fourier transform û(f) =
∫ T/2
−T/2 u(t)e−2πift dt exist for all f? Explain.

(c) The Fourier transform of the finite sum u(	)(t) is û(	)(f) =
∑	

k=−	 ûkT sinc(fT − k). In
the limit  → ∞, û(f) = lim	→∞ û(	)(f), so

û(f) = lim
	→∞

	∑
k=−	

ûkT sinc(fT − k).

Give a brief explanation why this equation must hold with equality for all f ∈ R. Also show
that {û(f) : f ∈ R} is completely specified by its values, {û(k/T ) : k ∈ Z} at multiples of
1/T .

4.28. (sampling) One often approximates the value of an integral by a discrete sum; i.e.,∫ ∞

−∞
g(t) dt ≈ δ

∑
k

g(kδ).

(a) Show that if u(t) is a real finite-energy function, low-pass limited to W Hz, then the
above approximation is exact for g(t) = u2(t) if δ ≤ 1/(2W); i.e., show that∫ ∞

−∞
u2(t) dt = δ

∑
k

u2(kδ).

(b) Show that if g(t) is a real finite-energy function, low-pass limited to W Hz, then for
δ ≤ 1/(2W), ∫ ∞

−∞
g(t) dt = δ

∑
k

g(kδ).

(c) Show that if δ > 1/2W, then there exists no such relation in general.

4.29. (degrees of freedom) This exercise explores how much of the energy of a baseband-limited
function {u(t) : [−1/2, 1/2] → R} can reside outside the region where the sampling coeffi-
cients are nonzero. Let T = 1/(2W) = 1, let u(k) = 0 for k ≥ 0 and let

∑
k<0 |u(k)|2 = 1.

A good way to get lots of energy where t > 0 is to choose u(k) ≥ 0 for k even and
u(k) ≤ 0 for k odd. Then the tails of the sinc functions will all add constructively for
t > 0. Use a Lagrange multiplier to choose u(k) for all k < 0 to maximize u(1/2) subject
to

∑
k≤0 |u(k)|2 = 1. Use this to estimate the energy

∫
t>0 |u(t)|2 dt.

4.30. (sampling theorem for [∆ − W,∆ + W)]) (a) Verify the Fourier transform pair in (4.70).
Hint: Use the scaling and shifting rules on rect(f) ↔ sinc(t).
(b) Show that the functions making up that expansion are orthogonal. Hint: Show that
the corresponding Fourier transforms are orthogonal.
(c) Show that the functions in (4.74) are orthogonal.
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4.31. (Amplitude limited functions) Sometimes it is important to generate baseband waveforms
with bounded amplitude. This problem explores pulse shapes that can accomplish this
(a) Find the Fourier transform of g(t) = sinc2(Wt). Show that g(t) is bandlimited to
f ≤ W and sketch both g(t) and ĝ(f). (Hint: Recall that multiplication in the time
domain corresponds to convolution in the frequency domain.)
(b) Let u(t) be a continuous real L2 function baseband limited to f ≤ W (i.e., a function
such that u(t) =

∑
k u(kT )sinc (t/T −k) where T = 1/(2W). Let v(t) = u(t)∗g(t). Express

v(t) in terms of the samples {u(kT ); k ∈ Z} of u(t) and the shifts {g(t − kT ); k ∈ Z} of
g(t). Hint: Use your sketches in part (a) to evaluate g(t) ∗ sinc(t/T ).
(c) Show that if the T -spaced samples of u(t) are non-negative, then v(t) ≥ 0 for all t.
(d) Explain why

∑
k sinc(t/T − k) = 1 for all t.

(e) Using (d), show that
∑

k g(t − kT ) = c for all t and find the constant c. Hint: Use the
hint in (b) again.
(f) Now assume that u(t), as defined in part (b ), also satisfies u(kT ) ≤ 1 for all k ∈ Z.
Show that v(t) ≤ 1 for all t.
(g) Allow u(t) to be complex now, with |u(kT )| ≤ 1. Show that |v(t)| ≤ 1 for all t.

4.32. (Orthogonal sets) The function rect(t/T ) has the very special property that it, plus its time
and frequency shifts, by kT and j/T respectively, form an orthogonal set. The function
sinc(t/T ) has this same property. We explore other functions that are generalizations
of rect(t/T ) and which, as you will show in parts (a) to (d), have this same interesting
property. For simplicity, choose T = 1.
These functions take only the values 0 and 1 and are allowed to be non-zero only over [-1,
1] rather than [−1/2, 1/2] as with rect(t). Explicitly, the functions considered here satisfy
the following constraints:

p(t) = p2(t) for all t (0/1 property) (4.108)
p(t) = 0 for |t| > 1 (4.109)
p(t) = p(−t) for all t (symmetry) (4.110)
p(t) = 1 − p(t−1) for 0 ≤ t < 1/2. (4.111)

Note: Because of property (4.110), condition (4.111) also holds for 1/2 < t ≤ 1. Note also
that p(t) at the single points t = ±1/2 does not effect any orthogonality properties, so you
are free to ignore these points in your arguments.

−1/2 1/2

1

rect(t)

another choice
of p(t) that
satisfies (1) to (4).

−1 −1/2 0 1/2 1

(a) Show that p(t) is orthogonal to p(t−1). Hint: evaluate p(t)p(t−1) for each t ∈ [0, 1]
other than t = 1/2.
(b) Show that p(t) is orthogonal to p(t−k) for all integer k �= 0.
(c) Show that p(t) is orthogonal to p(t−k)ei2πmt for integer m �= 0 and k �= 0.
(d) Show that p(t) is orthogonal to p(t)e2πimt for integer m �= 0. Hint: Evaluate
p(t)e−2πimt + p(t−1)e−2πim(t−1).
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(e) Let h(t) = p̂(t) where p̂(f) is the Fourier transform of p(t). If p(t) satisfies properties
(1) to (4), does it follow that h(t) has the property that it is orthogonal to h(t − k)e2πimt

whenever either the integer k or m is non-zero?
Note: Almost no calculation is required in this problem.

4.33. (limits) Construct an example of a sequence of L2 functions v(m)(t), m ∈ Z, m > 0 such that
lim

m→∞
v(m)(t) = 0 for all t but for which l.i.m.

m→∞
v(m)(t) does not exist. In other words show

that pointwise convergence does not imply L2 convergence. Hint: Consider time shifts.

4.34. (aliasing) Find an example where û(f) is 0 for |f | > 3W and nonzero for W < |f | < 3W
but where, with T = 1/(2W), s(kT ) = v0(kT ) (as defined in (4.77)) for all k ∈ Z). Hint:
Note that it is equivalent to achieve equality between ŝ(f) and û(f) for |f | ≤ W. Look at
Figure 4.10.

4.35. (aliasing) The following exercise is designed to illustrate the sampling of an approximately
baseband waveform. To avoid messy computation, we look at a waveform baseband-limited
to 3/2 which is sampled at rate 1 (i.e., sampled at only 1/3 the rate that it should be
sampled at). In particular, let u(t) = sinc(3t).
(a) Sketch û(f). Sketch the function v̂m(f) = rect(f − m) for each integer m such that
vm(f) �= 0. Note that û(f) =

∑
m v̂m(f).

(b) Sketch the inverse transforms vm(t) (real and imaginary part if complex).
(c) Verify directly from the equations that u(t) =

∑
vm(t). Hint: this is easiest if you

express the sine part of the sinc function as a sum of complex exponentials.
(d) Verify the sinc-weighted sinusoid expansion, (4.73). (There are only 3 nonzero terms
in the expansion.)
(e) For the approximation s(t) = u(0)sinc(t), find the energy in the difference between u(t)
and s(t) and interpret the terms.

4.36. (aliasing) Let u(t) be the inverse Fourier transform of a function û(f) which is both L1 and
L2. Let vm(t) =

∫
û(f)rect(fT−m)e2πift df and let v(n)(t) =

∑n
−n vm(t).

(a) Show that |u(t) − v(n)(t)| ≤
∫
|f |≥(2n+1)/T |û(f)| df and thus that u(t) = limn→∞ v(n)(t)

for all t.
(b) Show that the sinc-weighted sinusoid expansion of (4.76) then converges pointwise for
all t. Hint: for any t and any ε > 0, choose n so that |u(t) − vn(t)| ≤ ε/2. Then for each
m, |m| ≤ n, expand vm(t) in a sampling expansion using enough terms to keep the error
less than ε

4n+2 .

4.37. (aliasing) (a) Show that ŝ(f) in (4.83) is L1 if û(f) is.
(b) Let û(f) =

∑
k �=0 rect[k2(f − k)]. Show that û(f) is L1 and L2. Let T = 1 for ŝ(f) and

show that ŝ(f) is not L2. Hint: Sketch û(f) and ŝ(f).
(c) Show that û(f) does not satisfy lim|f |→∞ û(f)|f |1+ε = 0.

4.38. (aliasing) Let u(t) =
∑

k �=0 rect[k2(t − k)] and show that u(t) is L2. Find s(t) =∑
k u(k)sinc(t − k) and show that it is neither L1 nor L2. Find

∑
k u2(k) and explain

why the sampling theorem energy equation (4.66) does not apply here.
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Chapter 5

Vector spaces and signal space

In the previous chapter, we showed that any L2 function u(t) can be expanded in various orthog-
onal expansions, using such sets of orthogonal functions as the T -spaced truncated sinusoids or
the sinc-weighted sinusoids. Thus u(t) may be specified (up to L2 equivalence) by a countably
infinite sequence such as {uk,m; −∞ < k, m < ∞} of coefficients in such an expansion.

In engineering, n-tuples of numbers are often referred to as vectors, and the use of vector notation
is very helpful in manipulating these n-tuples. The collection of n-tuples of real numbers is called
Rn and that of complex numbers Cn. It turns out that the most important properties of these
n-tuples also apply to countably infinite sequences of real or complex numbers. It should not
be surprising, after the results of the previous sections, that these properties also apply to L2

waveforms.

A vector space is essentially a collection of objects (such as the collection of real n-tuples) along
with a set of rules for manipulating those objects. There is a set of axioms describing precisely
how these objects and rules work. Any properties that follow from those axioms must then
apply to any vector space, i.e., any set of objects satisfying those axioms. Rn and Cn satisfy
these axioms, and we will see that countable sequences and L2 waveforms also satisfy them.

Fortunately, it is just as easy to develop the general properties of vector spaces from these
axioms as it is to develop specific properties for the special case of Rn or Cn (although we will
constantly use Rn and Cn as examples). Fortunately also, we can use the example of Rn (and
particularly R2) to develop geometric insight about general vector spaces.

The collection of L2 functions, viewed as a vector space, will be called signal space. The signal-
space viewpoint has been one of the foundations of modern digital communication theory since
its popularization in the classic text of Wozencraft and Jacobs[29].

The signal-space viewpoint has the following merits:

• Many insights about waveforms (signals) and signal sets do not depend on time and fre-
quency (as does the development up until now), but depend only on vector relationships.

• Orthogonal expansions are best viewed in vector space terms.

• Questions of limits and approximation are often easily treated in vector space terms. It is
for this reason that many of the results in Chapter 4 are proved here.
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5.1 The axioms and basic properties of vector spaces

A vector space V is a set of elements, v ∈ V, called vectors, along with a set of rules for operating
on both these vectors and a set of ancillary elements called scalars. For the treatment here, the
set of scalars1 will either be the set of real numbers R or the set of complex numbers C. A
vector space with real scalars is called a real vector space, and one with complex scalars is called
a complex vector space.

The most familiar example of a real vector space is Rn. Here the vectors are represented as
n-tuples of real numbers.2 R2 is represented geometrically by a plane, and the vectors in R2 by
points in the plane. Similarly, R3 is represented geometrically by three-dimensional Euclidean
space.

The most familiar example of a complex vector space is Cn, the set of n-tuples of complex
numbers.

The axioms of a vector space V are listed below; they apply to arbitrary vector spaces, and in
particular to the real and complex vector spaces of interest here.

5.1. Addition: For each v ∈ V and u ∈ V, there is a unique vector v + u ∈ V, called the sum
of v and u , satisfying
(a) Commutativity: v + u = u + v ,
(b) Associativity: v + (u + w) = (v + u) + w for each v ,u ,w ∈ V.
(c) Zero: There is a unique element 0 ∈ V satisfying v + 0 = v for all v ∈ V,
(d) Negation: For each v ∈ V, there is a unique −v ∈ V such that v + (−v) = 0.

5.2. Scalar multiplication: For each scalar3 α and each v ∈ V there is a unique vector αv ∈ V
called the scalar product of α and v satisfying
(a) Scalar associativity: α(βv) = (αβ)v for all scalars α, β, and all v ∈ V,
(b) Unit multiplication: for the unit scalar 1, 1v = v for all v ∈ V.

5.3. Distributive laws:
(a) For all scalars α and all v ,u ∈ V, α(v + u) = αv + αu ;
(b) For all scalars α, β and all v ∈ V, (α + β)v = αv + βv .

Example 5.1.1. For Rn, a vector v is an n-tuple (v1, . . . , vn) of real numbers. Addition is
defined by v + u = (v1+u1, . . . , vn+un). The zero vector is defined by 0 = (0, . . . , 0). The
scalars α are the real numbers, and αv is defined to be (αv1, . . . , αvn). This is illustrated
geometrically in Figure 5.1.1 for R2.

Example 5.1.2. The vector space Cn is the same as Rn except that v is an n-tuple of complex
numbers and the scalars are complex. Note that C2 can not be easily illustrated geometrically,
since a vector in C2 is specified by 4 real numbers. The reader should verify the axioms for both
Rn and Cn.

1More generally, vector spaces can be defined in which the scalars are elements of an arbitrary field. It is not
necessary here to understand the general notion of a field.

2Many people prefer to define Rn as the class of real vector spaces of dimension n, but almost everyone
visualizes Rn as the space of n-tuples. More importantly, the space of n-tuples will be constantly used as an
example and Rn is a convenient name for it.

3Addition, subtraction, multiplication, and division between scalars is done according to the familiar rules of
R or C and will not be restated here. Neither R nor C includes ∞.
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v1

αu
v

v2αv

αw

w = u−v

u Vectors are represented by
points or directed lines.

The scalar multiple αu and u

lie on the same line from 0.

The distributive law says
that triangles scale correctly.

Figure 5.1: Geometric interpretation of R2. The vector v = (v1, v2) is represented as a point
in the Euclidean plane with abscissa v1 and ordinate v2. It can also be viewed as the directed
line from 0 to the point v . Sometimes, as in the case of w = u − v , a vector is viewed as
a directed line from some nonzero point (v in this case) to another point u . This geometric
interpretation also suggests the concepts of length and angle, which are not included in the
axioms. This is discussed more fully later.

Example 5.1.3. There is a trivial vector space for which the only element is the zero vector
0. Both for real and complex scalars, α0 = 0. The vector spaces of interest here are non-trivial
spaces, i.e., spaces with more than one element, and this will usually be assumed without further
mention.

Because of the commutative and associative axioms, we see that a finite sum
∑

j αjv j , where
each αj is a scalar and v j a vector, is unambiguously defined without the need for parentheses.
This sum is called a linear combination of the vectors {v i}.
We next show that the set of finite-energy complex waveforms can be viewed as a complex vector
space.4 When we view a waveform v(t) as a vector, we denote it by v . There are two reasons for
this: first, it reminds us that we are viewing the waveform is a vector; second, v(t) sometimes
denotes a function and sometimes denotes the value of that function at a particular argument
t. Denoting the function as v avoids this ambiguity.

The vector sum v +u is defined in the obvious way as the waveform for which each t is mapped
into v(t) + u(t); the scalar product αv is defined as the waveform for which each t is mapped
into αv(t). The vector 0 is defined as the waveform that maps each t into 0.

The vector space axioms are not difficult to verify for this space of waveforms. To show that the
sum v + u of two finite energy waveforms v and u also has finite energy, recall first that the
sum of two measurable waveforms is also measurable. Next, recall that if v and u are complex
numbers, then |v + u|2 ≤ 2|v|2 + 2|u|2. Thus,∫ ∞

−∞
|v(t) + u(t)|2 dt ≤

∫ ∞

−∞
2|v(t)|2 dt +

∫ ∞

−∞
2|u(t)|2 dt < ∞. (5.1)

Similarly, if v has finite energy, then αv has |α|2 times the energy of v which is also finite. The
other axioms can be verified by inspection.

The above argument has shown that the set of finite-energy waveforms, along with the definitions
of addiition and complex scalar multiplication, form a complex vector space. The set of real

4There is a small but important technical difference between the vector space being defined here and what we
will later define to be the vector space L2. This difference centers on the notion of L2 equivalence, and will be
discussed later.



144 CHAPTER 5. VECTOR SPACES AND SIGNAL SPACE

finite-energy waveforms along with the analogous addition and real scalar multiplication form a
real vector space.

5.1.1 Finite-dimensional vector spaces

A set of vectors v1, . . . , vn ∈ V spans V (and is called a spanning set of V) if every vector
v ∈ V is a linear combination of v1, . . . , vn. For the Rn example, let e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . 0, 1) be the n unit vectors of Rn. The unit vectors span Rn

since every vector v ∈ Rn can be expressed as a linear combination of the unit vectors, i.e.,

v = (α1, . . . , αn) =
n∑

j=1

αjej .

A vector space V is finite-dimensional if a finite set of vectors u1, . . . ,un exist that span V. Thus
Rn is finite-dimensional since it is spanned by e1, . . . , en. Similarly, Cn is finite-dimensional. If
V is not finite-dimensional, then it is infinite-dimensional ; we will soon see that L2 is infinite-
dimensional.

A set of vectors, v1, . . . , vn ∈ V is linearly dependent if
∑n

j=1 αjv j = 0 for some set of scalars
not all equal to 0. This implies that each vector vk for which αk �= 0 is a linear combination of
the others, i.e.,

vk =
∑
j �=k

−αj

αk
v j .

A set of vectors v1, . . . , vn ∈ V is linearly independent if it is not linearly dependent, i.e., if∑n
j=1 αjv j = 0 implies that each αj is 0. For brevity we often omit the word “linear” when we

refer to independence or dependence.

It can be seen that the unit vectors e1, . . . , en, as elements of Rn, are linearly independent.
Similarly, they are linearly independent as elements of Cn,

A set of vectors v1, . . . , vn ∈ V is defined to be a basis for V if the set both spans V and is
linearly independent. Thus the unit vectors e1, . . . , en form a basis for Rn. Similarly, the unit
vectors, as elements of Cn, form a basis for Cn.

The following theorem is both important and simple; see Exercise 5.1 or any linear algebra text
for a proof.

Theorem 5.1.1 (Basis for finite-dimensional vector space). Let V be a non-trivial finite-
dimensional vector space.5 Then

• If v1, . . . , vm span V but are linearly dependent, then a subset of v1, . . . , vm forms a basis
for V with n < m vectors.

• If v1, . . . , vm are linearly independent but do not span V, then there exists a basis for V
with n > m vectors that includes v1, . . . , vm.

• Every basis of V contains the same number of vectors.
5The trivial vector space whose only element is 0 is conventionally called a zero-dimensional space and could

be viewed as having an empty basis.
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The dimension of a finite-dimensional vector space may now be defined as the number of vectors
in a basis. The theorem implicitly provides two conceptual algorithms for finding a basis. First,
start with any linearly independent set (such as a single nonzero vector) and successively add
independent vectors until reaching a spanning set. Second, start with any spanning set and
successively eliminate dependent vectors until reaching a linearly independent set.

Given any basis, v1, . . . , vn, for a finite-dimensional vector space V, any vector v ∈ V can be
represented as

v =
n∑

j=1

αjv j , where α1, . . . , αn are scalars. (5.2)

In terms of the given basis, each v ∈ V can be uniquely represented by the n-tuple of coefficients
(α1, . . . , αn) in (5.2). Thus any n-dimensional vector space V over R or C may be viewed
(relative to a given basis) as a version6 of Rn or Cn. This leads to the elementary vector/matrix
approach to linear algebra. What is gained by the axiomatic (“coordinate-free”) approach is the
ability to think about vectors without first specifying a basis. We see the value of this shortly
when we define subspaces and look at finite-dimensional subspaces of infinite-dimensional vector
spaces such as L2.

5.2 Inner product spaces

The vector space axioms above contain no inherent notion of length or angle, although such
geometric properties are clearly present in Figure 5.1.1 and in our intuitive view of Rn or Cn.
The missing ingredient is that of an inner product.

An inner product on a complex vector space V is a complex-valued function of two vectors,
v ,u ∈ V, denoted by 〈v ,u〉, that satisfies the following axioms:

(a) Hermitian symmetry: 〈v ,u〉 = 〈u , v〉∗;
(b) Hermitian bilinearity: 〈αv + βu ,w〉 = α〈v ,w〉 + β〈u ,w〉

(and consequently 〈v , αu + βw〉 = α∗〈v ,u〉 + β∗〈v ,w〉);
(c) Strict positivity: 〈v , v〉 ≥ 0, with equality if and only if v = 0.

A vector space with an inner product satisfying these axioms is called an inner product space.

The same definition applies to a real vector space, but the inner product is always real and the
complex conjugates can be omitted.

The norm or length ‖v‖ of a vector v in an inner product space is defined as

‖v‖ =
√
〈v , v〉.

Two vectors v and u are defined to be orthogonal if 〈v,u〉 = 0. Thus we see that the important
geometric notions of length and orthogonality are both defined in terms of the inner product.

6More precisely V and Rn (Cn) are isomorphic in the sense that that there is a one-to one correspondence
between vectors in V and n-tuples in Rn (Cn) that preserves the vector space operations. In plain English, solvable
problems concerning vectors in V can always be solved by first translating to n-tuples in a basis and then working
in Rn or Cn.
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5.2.1 The inner product spaces Rn and Cn

For the vector space Rn of real n-tuples, the inner product of vectors v = (v1, . . . vn) and
u = (u1, . . . , un) is usually defined (and is defined here) as

〈v ,u〉 =
n∑

j=1

vjuj .

You should verify that this definition satisfies the inner product axioms above.

The length ‖v‖ of a vector v is then
√∑

j v2
j , which agrees with Euclidean geometry. Recall

that the formula for the cosine between two arbitrary nonzero vectors in R2 is given by

cos(∠(v ,u)) =
v1u1 + v2u2√

v2
1 + v2

2

√
u2

1 + u2
1

=
〈v ,u〉
‖v‖ ‖u‖ , (5.3)

where the final equality also expresses this as an inner product. Thus the inner product de-
termines the angle between vectors in R2. This same inner product formula will soon be seen
to be valid in any real vector space, and the derivation is much simpler in the coordinate free
environment of general vector spaces than in the unit vector context of R2.

For the vector space Cn of complex n-tuples, the inner product is defined as

〈v ,u〉 =
n∑

j=1

vju
∗
j (5.4)

The norm, or length, of v is then
√∑

j |vj |2 =
√∑

j [�(vj)2 + �(vj)2]. Thus, as far as length is
concerned, a complex n-tuple u can be regarded as the real 2n-vector formed from the real and
imaginary parts of u . Warning: although a complex n-tuple can be viewed as a real 2n−tuple
for some purposes, such as length, many other operations on complex n-tuples are very different
from those operations on the corresponding real 2n-tuple. For example, scalar multiplication
and inner products in Cn are very different from those operations in R2n.

5.2.2 One-dimensional projections

An important problem in constructing orthogonal expansions is that of breaking a vector v
into two components relative to another vector u �= 0 in the same inner-product space. One
component, v⊥u , is to be orthogonal (i.e., perpendicular) to u and the other, v |u , is to be
collinear with u (two vectors v |u and u are collinear if v |u = αu for some scalar α). Figure 5.2
illustrates this decomposition for vectors in R2. We can view this geometrically as dropping a
perpendicular from v to u . From the geometry of Figure 5.2, ‖v |u‖ = ‖v‖ cos(∠(v ,u)). Using
(5.3), ‖v |u‖ = 〈v ,u〉/‖u‖. Since v |u is also collinear with u , it can be seen that

v |u =
〈v ,u〉
‖u‖2

u . (5.5)

The vector v |u is called the projection of v onto u .

Rather surprisingly, (5.5) is valid for any inner product space. The general proof that follows is
also simpler than the derivation of (5.3) and (5.5) using plane geometry.
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Figure 5.2: Two vectors, v = (v1, v2) and u = (u1, u2) in R2. Note that ‖u‖2 = 〈u ,u〉 =
u2

1 + u2
2 is the squared length of u . The vector v is also expressed as v = v |u + v⊥u where

v |u is collinear with u and v⊥u is perpendicular to u .

Theorem 5.2.1 (One-dimensional projection theorem). Let v and u be arbitrary vectors
with u �= 0 in a real or complex inner product space. Then there is a unique scalar α for which
〈v− αu,u〉 = 0. That α is given by α = 〈v,u〉/‖u‖2.

The theorem states that v − αu is perpendicular to u if and only if α = 〈v ,u〉/‖u‖2. Using
that value of α, v − αu is called the perpendicular to u and is denoted as v⊥u ; similarly αu is
called the projection of v on u and is denoted as u |u . Finally, v = v⊥u + v |u , so v has been
split into a perpendicular part and a collinear part.

Proof: Calculating 〈v − αu ,u〉 for an arbitrary scalar α, the conditions can be found under
which this inner product is zero:

〈v − αu ,u〉 = 〈v ,u〉 − α〈u ,u〉 = 〈v ,u〉 − α‖u‖2,

which is equal to zero if and only if α = 〈v ,u〉/‖u‖2.

The reason why ‖u‖2 is in the denominator of the projection formula can be understood by
rewriting (5.5) as

v |u = 〈v ,
u

‖u‖〉
u

‖u‖ .

In words, the projection of v on u is the same as the projection of v on the normalized version
of u . More generally, the value of v |u is invariant to scale changes in u , i.e.,

v |βu =
〈v , βu〉
‖βu‖2

βu =
〈v ,u〉
‖u‖2

u = v |u . (5.6)

This is clearly consistent with the geometric picture in Figure 5.2 for R2, but it is also valid for
complex vector spaces where such figures cannot be drawn.

In R2, the cosine formula can be rewritten as

cos(∠(u , v)) = 〈 u

‖u‖ ,
v

‖v‖〉. (5.7)

That is, the cosine of ∠(u , v) is the inner product of the normalized versions of u and v .

Another well known result in R2 that carries over to any inner product space is the Pythagorean
theorem: If v and u are orthogonal, then

‖v + u‖2 = ‖v‖2 + ‖u‖2. (5.8)
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To see this, note that

〈v + u , v + u〉 = 〈v , v〉 + 〈v ,u〉 + 〈u , v〉 + 〈u ,u〉.

The cross terms disappear by orthogonality, yielding (5.8).

Theorem 5.2.1 has an important corollary, called the Schwarz inequality :

Corollary 5.2.1 (Schwarz inequality). Let v and u be vectors in a real or complex inner
product space. Then

|〈v,u〉| ≤ ‖v‖ ‖u‖. (5.9)

Proof: Assume u �= 0 since (5.9) is obvious otherwise. Since v |u and v⊥u are orthogonal, (5.8)
shows that

‖v‖2 = ‖v |u‖2 + ‖v⊥u‖2.

Since ‖v⊥u‖2 is nonnegative, we have

‖v‖2 ≥ ‖v |u‖2 =
∣∣∣∣〈v ,u〉
‖u‖2

∣∣∣∣2 ‖u‖2 =
|〈v ,u〉|2
‖u‖2

,

which is equivalent to (5.9).

For v and u both nonzero, the Schwarz inequality may be rewritten in the form∣∣∣∣〈 v

‖v‖ ,
u

‖u‖〉
∣∣∣∣ ≤ 1.

In R2, the Schwarz inequality is thus equivalent to the familiar fact that the cosine function is
upperbounded by 1.

As shown in Exercise 5.6, the triangle inequality below is a simple consequence of the Schwarz
inequality.

‖v + u‖ ≤ ‖v‖ + ‖u‖. (5.10)

5.2.3 The inner product space of L2 functions

Consider the set of complex finite energy waveforms again. We attempt to define the inner
product of two vectors v and u in this set as

〈v ,u〉 =
∫ ∞

−∞
v(t)u∗(t)dt. (5.11)

It is shown in Exercise 5.8 that 〈v ,u〉 is always finite. The Schwarz inequality cannot be used
to prove this, since we have not yet shown that this satisfies the axioms of an inner product
space. However, the first two inner product axioms follow immediately from the existence and
finiteness of the inner product, i.e., the integral in (5.11). This existence and finiteness is a vital
and useful property of L2.

The final inner product axiom is that 〈v , v〉 ≥ 0, with equality if and only if v = 0. This axiom
does not hold for finite-energy waveforms, because as we have already seen, if a function v(t) is
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zero almost everywhere, then its energy is 0, even though the function is not the zero function.
This is a nit-picking issue at some level, but axioms cannot be ignored simply because they are
inconvenient.

The resolution of this problem is to define equality in an L2 inner product space as L2-equivalence
between L2 functions. What this means is that each element of an L2 inner product space is
the equivalence class of L2 functions that are equal almost everywhere. For example, the zero
equivalence class is the class of zero-energy functions, since each is L2 equivalent to the all-zero
function. With this modification, the inner product axioms all hold.

Viewing a vector as an equivalence class of L2 functions seems very abstract and strange at
first. From an engineering perspective, however, the notion that all zero-energy functions are
the same is more natural than the notion that two functions that differ in only a few isolated
points should be regarded as different.

From a more practical viewpoint, it will be seen later that L2 functions (in this equivlence
class sense) can be represented by the coefficients in any orthogonal expansion whose elements
span the L2 space. Two ordinary functions have the same coefficients in such an orthogonal
expansion if and only if they are L2 equivalent. Thus each element u of the L2 inner product
space is in one-to-one correspondence to a finite-energy sequence {uk; k ∈ Z} of coefficients in an
orthogonal expansion. Thus we can now avoid the awkwardness of having many L2 equivalent
ordinary functions map into a single sequence of coefficients and having no very good way of
going back from sequence to function. Once again engineering common sense and sophisticated
mathematics come together.

From now on we will simply view L2 as an inner product space, referring to the notion of L2

equivalence only when necessary. With this understanding, we can use all the machinery of
inner product spaces, including projections and the Schwarz inequality.

5.2.4 Subspaces of inner product spaces

A subspace S of a vector space V is a subset of the vectors in V which forms a vector space in
its own right (over the same set of scalars as used by V). An equivalent definition is that for all
v and u ∈ S, the linear combination αv + βu is in S for all scalars α and β. If V is an inner
product space, then it can be seen that S is also an inner product space using the same inner
product definition as V.

Example 5.2.1 (Subspaces of R3). Consider the real inner product space R3, namely the
inner product space of real 3-tuples v = (v1, v2, v3). Geometrically, we regard this as a space
in which there are three orthogonal coordinate directions, defined by the three unit vectors
e1, e2, e3. The 3-tuple v1, v2, v3 then specifies the length of v in each of those directions, so that
v = v1e1 + v2e2 + v3e3.

Let u = (1, 0, 1) and w = (0, 1, 1) be two fixed vectors, and consider the subspace of R3 composed
of all linear combinations, v = αu + βw , of u and w . Geometrically, this subspace is a plane
going through the points 0,u , and w . In this plane, as in the original vector space, u and w
each have length

√
2 and 〈u ,w〉 = 1.

Since neither u nor w is a scalar multiple of the other, they are linearly independent. They
span S by definition, so S is a two-dimensional subspace with a basis {u ,w}.
The projection of u on w is u |w = (0, 1/2, 1/2), and the perpendicular is u⊥w = (1,−1/2, 1/2).
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These vectors form an orthogonal basis for S. Using these vectors as an orthogonal basis, we
can view S, pictorially and geometrically, in just the same way as we view vectors in R2.

Example 5.2.2 (General 2D subspace). Let V be an arbitrary non-trivial real or complex
inner product space, and let u and w be arbitrary noncollinear vectors. Then the set S of linear
combinations of u and w is a two-dimensional subspace of V with basis {u ,w}. Again, u |w
and u⊥w forms an orthogonal basis of S. We will soon see that this procedure for generating
subspaces and orthogonal bases from two vectors in an arbitrary inner product space can be
generalized to orthogonal bases for subspaces of arbitrary dimension.

Example 5.2.3 (R2 is a subset but not a subspace of C2). Consider the complex vector
space C2. The set of real 2-tuples is a subset of C2, but this subset is not closed under multi-
plication by scalars in C. For example, the real 2-tuple u = (1, 2) is an element of C2 but the
scalar product iu is the vector (i, 2i), which is not a real 2-tuple. More generally, the notion of
linear combination (which is at the heart of both the use and theory of vector spaces) depends
on what the scalars are.

We cannot avoid dealing with both complex and real L2 waveforms without enormously compli-
cating the subject (as a simple example, consider using the sine and cosine forms of the Fourier
transform and series). We also cannot avoid inner product spaces without great complication.
Finally we cannot avoid going back and forth between complex and real L2 waveforms. The
price of this is frequent confusion between real and complex scalars. The reader is advised to
use considerable caution with linear combinations and to be very clear about whether real or
complex scalars are involved.

5.3 Orthonormal bases and the projection theorem

In an inner product space, a set of vectors φ1,φ2, . . . is orthonormal if

〈φj ,φk〉 =
{

0 for j �= k
1 for j = k.

(5.12)

In other words, an orthonormal set is a set of nonzero orthogonal vectors where each vector is
normalized to unit length. It can be seen that if a set of vectors u1,u2, . . . is orthogonal, then
the set

φj =
1

‖uj‖
uj

is orthonormal. Note that if two nonzero vectors are orthogonal, then any scaling (including
normalization) of each vector maintains orthogonality.

If a vector v is projected onto a normalized vector φ, then the one-dimensional projection
theorem states that the projection is given by the simple formula

v |φ = 〈v ,φ〉φ. (5.13)

Furthermore, the theorem asserts that v⊥φ = v −v |φ is orthogonal to φ. We now generalize the
Projection Theorem to the projection of a vector v ∈ V onto any finite dimensional subspace S
of V.
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5.3.1 Finite-dimensional projections

If S is a subspace of an inner product space V, and v ∈ V, then a projection of v on S is defined
to be a vector v |S ∈ S such that v −v |S is orthogonal to all vectors in S. The theorem to follow
shows that v |S always exists and has a unique value given in the theorem.

The earlier definition of projection is a special case of that here in which S is taken to be the
one dimensional subspace spanned by a vector u (the orthonormal basis is then φ = u/‖u‖).
Theorem 5.3.1 (Projection theorem). Let S be an n-dimensional subspace of an inner
product space V and assume that {φ1,φ2, . . . ,φn} is an orthonormal basis for S. Then for
any v ∈ V, there is a unique vector v|S ∈ S such that 〈v− v|S , s〉 = 0 for all s ∈ S. Further-
more, v|S is given by

v|S =
n∑

j=1

〈v,φj〉φj . (5.14)

Note that the theorem assumes that S has a set of orthonormal vectors as a basis. It will be
shown later that any non-trivial finite-dimensional inner product space has such an orthonormal
basis, so that the assumption does not restrict the generality of the theorem.

Proof: Let w =
∑n

j=1 αjφj be an arbitrary vector in S. First consider the conditions on w
under which v −w is orthogonal to all vectors s ∈ S. It can be seen that v −w is orthogonal
to all s ∈ S if and only if

〈v −w ,φj〉 = 0, for all j, 1 ≤ j ≤ n,

or equivalently if and only if

〈v ,φj〉 = 〈w ,φj〉, for all j, 1 ≤ j ≤ n. (5.15)

Since w =
∑n

	=1 α	φ	 ,

〈w ,φj〉 =
n∑

	=1

α	〈φ	,φj〉 = αj , for all j, 1 ≤ j ≤ n. (5.16)

Combining this with (5.15), v −w is orthogonal to all s ∈ S if and only if αj = 〈v ,φj〉 for each
j, i.e., if and only if w =

∑
j〈v ,φj〉φj . Thus v |S as given in (5.14) is the unique vector w ∈ S

for which v − v |S is orthogonal to all s ∈ S.

The vector v −v |S is denoted as v⊥S , the perpendicular from v to S. Since v |S ∈ S, we see that
v |S and v⊥S are orthogonal. The theorem then asserts that v can be uniquely split into two
orthogonal components, v = v |S + v⊥S where the projection v |S is in S and the perpendicular
v⊥S is orthogonal to all vectors s ∈ S.

5.3.2 Corollaries of the projection theorem

There are three important corollaries of the projection theorem that involve the norm of the
projection. First, for any scalars α1, . . . , αn, the squared norm of w =

∑
j αjφj is given by

‖w‖2 = 〈w ,

n∑
j=1

αjφj〉 =
n∑

j=1

α∗
j 〈w ,φj〉 =

n∑
j=1

|αj |2,
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where (5.16) has been used in the last step. For the projection v |S , αj = 〈v ,φj〉, so

‖v |S‖2 =
n∑

j=1

|〈v ,φj〉|2. (5.17)

Also, since v = v |S+v⊥S and v |S is orthogonal to v⊥S , It follows from the Pythagorean theorem
(5.8) that

‖v‖2 = ‖v |S‖2 + ‖v⊥S‖2. (5.18)

Since ‖v⊥S‖2 ≥ 0, the following corollary has been proven:

Corollary 5.3.1 (norm bound).

0 ≤ ‖v|S‖2 ≤ ‖v‖2, (5.19)

with equality on the right if and only if v ∈ S and equality on the left if and only if v is orthogonal
to all vectors in S.

Substituting (5.17) into (5.19), we get Bessel’s inequality, which is the key to understanding the
convergence of orthonormal expansions.

Corollary 5.3.2 (Bessel’s inequality). Let S ⊆ V be the subspace spanned by the set of or-
thonormal vectors {φ1, . . . ,φn}. For any v ∈ V

0 ≤
n∑

j=1

|〈v,φj〉|2 ≤ ‖v‖2,

with equality on the right if and only if v ∈ S and equality on the left if and only if v is orthogonal
to all vectors in S.

Another useful characterization of the projection v |S is that it is the vector in S that is closest
to v . In other words, using some s ∈ S as an approximation to v , the squared error is ‖v − s‖2.
The following corollary says that v |S is the choice for s that yields the least squared error (LS).

Corollary 5.3.3 (LS error property). The projection v|S is the unique closest vector in S
to v; i.e., for all s ∈ S,

‖v− v|S‖2 ≤ ‖v− s‖2,

with equality if and only if s = v|S .

Proof: Decomposing v into v |S + v⊥S , we have v − s = [v |S − s] + v⊥S . Since v |S and s are
in S, v |S − s is also in S, so by Pythagoras,

‖v − s‖2 = ‖v |S − s‖2 + ‖v⊥S‖2 ≥ ‖v⊥S‖2,

with equality if and only if ‖v |S − s‖2 = 0, i.e., if and only if s = v |S . Since v⊥S = v − v |S ,
this completes the proof.
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5.3.3 Gram-Schmidt orthonormalization

Theorem 5.3.1, the projection theorem, assumed an orthonormal basis {φ1, . . . ,φn} for any
given n-dimensional subspace S of V. The use of orthonormal bases simplifies almost everything
concerning inner product spaces, and for infinite-dimensional expansions, orthonormal bases are
even more useful.

This section presents the Gram-Schmidt procedure, which, starting from an arbitrary basis
{s1, . . . , sn} for an n-dimensional inner product subspace S, generates an orthonormal basis for
S. The procedure is useful in finding orthonormal bases, but is even more useful theoretically,
since it shows that such bases always exist. In particular, since every n-dimensional subspace
contains an orthonormal basis, the projection theorem holds for each such subspace.

The procedure is almost obvious in view of the previous subsections. First an orthonormal basis,
φ1 = s1/‖s1‖, is found for the one-dimensional subspace S1 spanned by s1. Projecting s2 onto
this one-dimensional subspace, a second orthonormal vector can be found. Iterating, a complete
orthonormal basis can be constructed.

In more detail, let (s2)|S1
be the projection of s2 onto S1. Since s2 and s1 are linearly indepen-

dent, (s2)⊥S1 = s2 − (s2)|S1
is nonzero. It is orthogonal to φ1 since φ1 ∈ S1. It is normalized

as φ2 = (s2)⊥S1/‖(s2)⊥S1‖. Then φ1 and φ2 span the space S2 spanned by s1 and s2.

Now, using induction, suppose that an orthonormal basis {φ1, . . . ,φk} has been constructed for
the subspace Sk spanned by {s1, . . . , sk}. The result of projecting sk+1 onto Sk is (sk+1)|Sk

=∑k
j=1〈sk+1,φj〉φj . The perpendicular, (sk+1)⊥Sk

= sk+1 − (sk+1)|Sk
is given by

(sk+1)⊥Sk
= sk+1 −

k∑
j=1

〈sk+1,φj〉φj . (5.20)

This is nonzero since sk+1 is not in Sk and thus not a linear combination of φ1, . . . ,φk. Nor-
malizing,

φk+1 =
(sk+1)⊥Sk

‖( sk+1)⊥Sk
‖ (5.21)

From (5.20) and (5.21), sk+1 is a linear combination of φ1, . . . ,φk+1 and s1, . . . , sk are linear
combinations of φ1, . . . ,φk, so φ1, . . . ,φk+1 is an orthonormal basis for the space Sk+1 spanned
by s1, . . . , sk+1.

In summary, given any n-dimensional subspace S with a basis {s1, . . . , sn}, the Gram-Schmidt
orthonormalization procedure produces an orthonormal basis {φ1, . . . ,φn} for S.

Note that if a set of vectors is not necessarily independent, then the procedure will automatically
find any vector sj that is a linear combination of previous vectors via the projection theorem. It
can then simply discard such a vector and proceed. Consequently it will still find an orthonormal
basis, possibly of reduced size, for the space generated by the original vector set.

5.3.4 Orthonormal expansions in L2

The background has now been developed to understand countable orthonormal expansions in
L2. We have already looked at a number of orthogonal expansions, such as those used in the
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sampling theorem, the Fourier series, and the T -spaced truncated or sinc-weighted sinusoids.
Turning these into orthonormal expansions involves only minor scaling changes.

The Fourier series will be used both to illustrate these changes and as an example of a general
orthonormal expansion. The vector space view will then allow us to understand the Fourier
series at a deeper level. Define θk(t) = e2πikt/T rect( t

T ) for k ∈ Z. The set {θk(t); k ∈ Z} of
functions is orthogonal with ‖θk‖2 = T . The corresponding orthonormal expansion is obtained
by scaling each θk by

√
1/T ; i.e.,

φk(t) =

√
1
T

e2πikt/T rect(
t

T
). (5.22)

The Fourier series of an L2 function {v(t) : [−T/2, T/2] → C} then becomes
∑

k αkφk(t) where
αk =

∫
v(t)φ∗

k(t) dt = 〈v ,φk〉. For any integer n > 0, let Sn be the (2n+1)-dimensional subspace
spanned by the vectors {φk,−n ≤ k ≤ n}. From the projection theorem, the projection v |Sn

of
v on Sn is

v |Sn
=

n∑
k=−n

〈v ,φk〉φk.

That is, the projection v |Sn
is simply the approximation to v resulting from truncating the

expansion to −n ≤ k ≤ n. The error in the approximation, v⊥Sn = v −v |Sn
, is orthogonal to all

vectors in Sn, and from the LS error property, v |Sn
is the closest point in Sn to v . As n increases,

the subspace Sn becomes larger and v |Sn
gets closer to v (i.e., ‖v − v |Sn

‖ is nonincreasing).

As the analysis above applies equally well to any orthonormal sequence of functions, the general
case can now be considered. The main result of interest is the following infinite-dimensional
generalization of the projection theorem.

Theorem 5.3.2 (Infinite-dimensional projection). Let {φm, 1≤m<∞} be a sequence of
orthonormal vectors in L2, and let v be an arbitrary L2 vector. Then there exists a unique7 L2

vector u such that v− u is orthogonal to each φm and

lim
n→∞

‖u−
n∑

m=1

αmφm‖ = 0 where αm = 〈v,φm〉 (5.23)

‖u‖2 =
∑

|αm|2. (5.24)

Conversely, for any complex sequence {αm; 1≤m≤∞} such that
∑

k |αk|2 < ∞, an L2 function
u exists satisfying (5.23) and (5.24)

This theorem says that the orthonormal expansion
∑

m αmφm converges in the L2 sense to an L2

function u , which we later interpret as the projection of v onto the infinite-dimensional subspace
S spanned by {φm, 1≤m<∞}. For example, in the Fourier series case, the orthonormal functions
span the subspace of L2 functions time-limited to [−T/2, T/2], and u is then v(t) rect( t

T ). The
difference v(t) − v(t) rect( t

T ) is then L2 equivalent to 0 over [−T/2, T/2] and thus orthogonal
to each φm.

7Recall that the vectors in the L2 class of functions are equivalence classes, so this uniqueness specifies only
the equivalence class and not an individual function within that class.
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Proof: Let Sn be the subspace spanned by {φ1, . . . ,φn}. From the finite-dimensional projection
theorem, the projection of v on Sn is then v |Sn

=
∑n

k=1 αkφk. From (5.17),

‖v |Sn
‖2 =

n∑
k=1

|αk|2 where αk = 〈v ,φk〉. (5.25)

This quantity is nondecreasing with n, and from Bessel’s inequality, it is upperbounded by ‖v‖2,
which is finite since v is L2. It follows that for any n and any m > n,

‖v |Sm
− v |Sn

‖2 =
∑

n<|k|≤m

|αk|2 ≤
∑
|k|>n

|αk|2 n→∞−→ 0. (5.26)

This says that the projections {v |Sn
;n ∈ Z+} approach each other as n → ∞ in terms of their

energy difference.

A sequence whose terms approach each other is called a Cauchy sequence. The Riesz-Fischer
theorem8 is a central theorem of analysis stating that any Cauchy sequence of L2 waveforms has
an L2 limit. Taking u to be this L2 limit, i.e., u = l.i.m.

n→∞ v |Sn
, we have (5.23) and (5.24).9

Essentially the same use of the Riesz-Fischer theorem establishes (5.23) and (5.24) starting with
the sequence α1, α2, . . . .

Let S be the space of functions (or, more precisely, of equivalence classes) that can be represented
as l.i.m.

∑
k αkφk(t) over all sequences α1, α2, . . . such that

∑
k |αk|2 < ∞. It can be seen that

this is an inner product space. It is the space spanned by the orthonormal sequence {φk; k ∈ Z}.
The following proof of the Fourier series theorem illustrates the use of the infinite dimensional
projection theorem and infinite dimensional spanning sets.

Proof of Theorem 4.4.1: Let {v(t) : [−T/2, T/2]] → C} be an arbitrary L2 function over
[−T/2, T/2]. We have already seen that v(t) is L1, that v̂k = 1

T

∫
v(t)e−2πikt/T dt exists and

that |v̂k| ≤
∫
|v(t)| dt for all k ∈ Z. From Theorem 5.3.2, there is an L2 function u(t) =

l.i.m.
∑

k v̂ke
2πikt/T rect(t/T ) such that v(t) − u(t) is orthogonal to θk(t) = e2πikt/T rect(t/T ) for

each k ∈ Z.

We now need an additional basic fact:10 the above set of orthogonal functions {θk(t) =
e2πikt/T rect(t/T ); k ∈ Z} span the space of L2 functions over [−T/2, T/2], i.e., there is no
function of positive energy over [−T/2, T/2] that is orthogonal to each θk(t). Using this fact,
v(t)− u(t) has zero energy and is equal to 0 a.e. Thus v(t) = l.i.m.

∑
k v̂ke

2πikt/T rect(t/T ). The
energy equation then follows from (5.24). The final part of the theorem follows from the final
part of Theorem 5.3.2.

As seen by the above proof, the infinite dimensional projection theorem can provide simple and
intuitive proofs and interpretations of limiting arguments and the approximations suggested by
those limits. The appendix uses this theorem to prove both parts of the Plancherel theorem,
the sampling theorem, and the aliasing theorem.

Another, more pragmatic, use of the theorem lies in providing a uniform way to treat all or-
thonormal expansions. As in the above Fourier series proof, though, the theorem doesn’t nec-

8See any text on real and complex analysis, such as Rudin[21].
9An inner product space in which all Cauchy sequences have limits is said to be complete, and is called a

Hilbert space. Thus the Riesz-Fischer theorem states that L2 is a Hilbert space.
10Again, see any basic text on real and complex analysis.
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essarily provide a simple characterization of the space spanned by the orthonormal set. Fortu-
nately, however, knowing that the truncated sinusoids span [−T/2, T/2] shows us, by duality,
that the T-spaced sinc functions span the space of baseband-limited L2 functions. Similarly,
both the T -spaced truncated and the sinc-weighted sinusoids span all of L2.

5.4 Summary

The theory of L2 waveforms, viewed as vectors in the inner product space known as signal space,
has been developed. The most important consequence of this viewpoint is that all orthonormal
expansions in L2 may be viewed in a common framework. The Fourier series is simply one
example.

Another important consequence is that, as additional terms are added to a partial orthonormal
expansion of an L2 waveform, the partial expansion changes by increasingly small amounts,
approaching a limit in L2. A major reason for restricting attention to finite-energy waveforms
(in addition to physical reality) is that as their energy gets used up in different degrees of freedom
(i.e., expansion coefficients), there is less energy available for other degrees of freedom, so that
some sort of convergence must result. The L2 limit above simply make this intuition precise.

Another consequence is the realization that if L2 functions are represented by orthonormal
expansions, or approximated by partial orthonormal expansions, then there is no further need
to deal with sophisticated mathematical issues such as L2 equivalence. Of course, how the
truncated expansions converge may be tricky mathematically, but the truncated expansions
themselves are very simple and friendly.

5A Appendix: Supplementary material and proofs

The first part of the appendix uses the inner-product results of this chapter to prove the theorems
about Fourier transforms in Chapter 4. The second part uses inner-products to prove the
theorems in Chapter 4 about sampling and aliasing. The final part discusses prolate spheroidal
waveforms; these provide additional insight about the degrees of freedom in a time/bandwidth
region.

5A.1 The Plancherel theorem

Proof of Theorem 4.5.1 (Plancherel 1): The idea of the proof is to expand the time-
waveform u into an orthonormal expansion for which the partial sums have known Fourier
transforms; the L2 limit of these transforms is then identified as the L2 transform û of u .

First expand an arbitrary L2 function u(t) in the T -spaced truncated sinusoid expansion, using
T = 1. This expansion spans L2 and the orthogonal functions e2πiktrect(t−m) are orthonormal
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since T = 1. Thus the infinite dimensional projection, as specified by Theorem 5.3.2, is11

u(t) = l.i.m.
n→∞

u(n)(t) where u(n)(t) =
n∑

m=−n

n∑
k=−n

ûk,mθk,m(t),

θk,m(t) = e2πiktrect(t − m) and ûk,m =
∫

u(t)θ∗k,m(t) dt.

Since u(n)(t) is time-limited, it is L1, and thus has a continuous Fourier transform which is
defined pointwise by

û(n)(f) =
n∑

m=−n

n∑
k=−n

ûk,mψk,m(f), (5.27)

where ψk,m(f) = e2πifmsinc(f − k) is the k, m term of the T -spaced sinc-weighted orthonormal
set with T = 1. By the final part of Theorem 5.3.2, the sequence of vectors û (n) converges to
an L2 vector û (equivalence class of functions) denoted as the Fourier transform of u(t) and
satisfying

lim
n→∞

‖û − û (n)‖ = 0. (5.28)

This must now be related to the functions uA(t) and ûA(f) in the theorem. First, for each
integer  > n define

û(n,	)(f) =
n∑

m=−n

	∑
k=−	

ûk,mψk,m(f), (5.29)

Since this is a more complete partial expansion than û(n)(f),

‖û − û (n)‖ ≥ ‖û − û (n,	)‖

In the limit  → ∞, û (n,	) is the Fourier transform ûA(f) of uA(t) for A = n + 1
2 . Combining

this with (5.28),

lim
n→∞

‖û − ûn+ 1
2
‖ = 0. (5.30)

Finally, taking the limit of the finite dimensional energy equation,

‖u (n)‖2 =
n∑

k=−n

n∑
m=−n

|ûk,m|2 = ‖û (n)‖2,

we get the L2 energy equation, ‖u‖2 = ‖û‖2. This also shows that ‖û − ûA‖ is monotonic in A
so that (5.30) can be replaced by

lim
A→∞

‖û − ûn+ 1
2
‖ = 0.

11Note that {θk,m; k, m ∈ Z} is a countable set of orthonormal vectors, and they have been arranged in an order
so that, for all n ∈ Z+, all terms with |k| ≤ n and |m| ≤ n come before all other terms.
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Proof of Theorem 4.5.2 (Plancherel 2): By time/frequency duality with Theorem 4.5.1,
we see that l.i.m.B→∞uB(t) exists and we denote this by F−1(û(f)). The only remaining thing
to prove is that this inverse transform is L2 equivalent to the original u(t). Note first that
the Fourier transform of θ0,0(t) = rect(t) is sinc(f) and that the inverse transform, defined as
above, is L2 equivalent to rect(t). By time and frequency shifts, we see that u(n)(t) is the inverse
transform, defined as above, of û(n)(f). It follows that limn→∞ ‖F−1(û) − u (n)‖ = 0, so we see
that ‖F−1(û) − u‖ = 0.

As an example of the Plancherel theorem, let h(t) be 1 on the rationals in (0, 1) and be zero
elsewhere. Then h is both L1 and L2 and has a Fourier transform ĥ(f) = 0 which is continuous,
L1, and L2. The inverse transform is also 0 and equal to h(t) a.e.

The function h(t) above is in some sense trivial since it is L2 equivalent to the zero function. The
next example to be discussed is L2, nonzero only on and L1, but all members of its equivalence
class are discontinuous everywhere and unbounded in every interval.

We now discuss an example of a real L2 function that is nonzero only on the interval (0, 1). This
function is L1, has a continuous Fourier transform, but all functions in its equivalence class are
discontinuous everywhere and unbounded over every open interval within (0, 1). This example
will illustrate how truly Bizarre functions can have nice Fourier transforms and vice versa. It
will also be used later to illustrate some properties of L2 functions.

Example 5A.1 (A Bizarre L2 and L1 function)). List the rationals in (0,1) by increasing
denominator, i.e., as a1=1/2, a2=1/3, a3=2/3, a4=1/4, a5=3/4, a6=1/5, · · · . Define

gn(t) =
{

1 for an ≤ t < an + 2−n−1

0 elsewhere,

g(t) =
∞∑

n=1

gn(t).

Thus g(t) is a sum of rectangular functions, one for each rational number, with the width of
the function going to zero rapidly with the index of the rational number (see Figure 5.3). The
integral of g(t) can be calculated as∫ 1

0
g(t) dt =

∞∑
n=1

∫
gn(t) dt =

∞∑
n=1

2−n−1 =
1
2
.

Thus g(t) is an L1 function as illustrated in Figure 5.3.
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g7

Figure 5.3: First 7 terms of
∑

i gi(t)

Consider the interval [23 , 2
3 + 1

8) corresponding to the rectangle g3 in the figure. Since the rationals
are dense over the real line, there is a rational, say aj , in the interior of this interval, and thus
a new interval starting at aj over which g1, g3, and gj all have value 1; thus g(t) ≥ 3 within this
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new interval. Moreover, this same argument can be repeated within this new interval, which
again contains a rational, say aj′ . Thus there is an interval starting at aj′ where g1, g3, gj , and
gj′ are 1 and thus g(t) ≥ 4.

Iterating this argument, we see that [23 , 2
3 + 1

8) contains subintervals within which g(t) takes on
arbitrarily large values. In fact, by taking the limit a1, a3, aj , aj′ , . . . , we find a limit point a for
which g(a) = ∞. Moreover, we can apply the same argument to any open interval within (0, 1)
to show that g(t) takes on infinite values within that interval.12 More explicitly, for every ε > 0
and every t ∈ (0, 1), there is a t′ such that |t − t′| < ε and g(t′) = ∞. This means that g(t) is
discontinuous and unbounded in each region of (0, 1).

The function g(t) is also in L2 as seen below:∫ 1

0
g2(t) dt =

∑
n,m

∫
gn(t)gm(t) dt (5.31)

=
∑

n

∫
g2
n(t) dt + 2

∑
n

∞∑
m=n+1

∫
gn(t) gm(t) dt (5.32)

≤ 1
2

+ 2
∑

n

∞∑
m=n+1

∫
gm(t) dt =

3
2
, (5.33)

where in (5.33) we have used the fact that g2
n(t) = gn(t) in the first term and gn(t) ≤ 1 in the

second term.

In conclusion, g(t) is both L1 and L2 but is discontinuous everywhere and takes on infinite values
at points in every interval. The transform ĝ(f) is continuous and L2 but not L1. The inverse
transform, gB(t) of ĝ(f)rect( f

2B ) is continuous, and converges in L2 to g(t) as B → ∞. For
B = 2k, the function gB(t) is roughly approximated by g1(t)+ · · ·+gk(t), all somewhat rounded
at the edges.

This is a nice example of a continuous function ĝ(f) which has a bizarre inverse Fourier transform.
Note that g(t) and the function h(t) that is 1 on the rationals in (0,1)and 0 elsewhere are both
discontinuous everywhere in (0,1). However, the function h(t) is 0 a.e., and thus is weird only in
an artificial sense. For most purposes, it is the same as the zero function. The function g(t) is
weird in a more fundamental sense. It cannot be made respectable by changing it on a countable
set of points.

One should not conclude from this example that intuition cannot be trusted, or that it is
necessary to take a few graduate math courses before feeling comfortable with functions. One can
conclude, however, that the simplicity of the results about Fourier transforms and orthonormal
expansions for L2 functions is truly extraordinary in view of the bizarre functions included in
the L2 class.

In summary, Plancherel’s theorem has taught us two things. First, Fourier transforms and
inverse transforms exist for all L2 functions. Second, finite-interval and finite-bandwidth ap-
proximations become arbitrarily good (in the sense of L2 convergence) as the interval or the
bandwidth becomes large.

12The careful reader will observe that g(t) is not really a function R → R, but rather a function from R to the
extended set of real values including ∞ and −∞. The set of t on which g(t) = ∞ has zero measure and this can
be ignored in Lebesgue integration. Do not confuse a function that takes on an infinite value at some isolated
point with a unit impulse at that point. The first integrates to 0 around the singularity, whereas the second is a
generalized function that by definition integrates to 1.
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5A.2 The sampling and aliasing theorems

This section contains proofs of the sampling and aliasing theorems. The proofs are important
and not available elsewhere in this form. However, they involve some careful mathematical
analysis that might be beyond the interest and/or background of many students.

Proof of Theorem 4.6.2: Let û(f) be an L2 function that is zero outside of [−W,W]. From
Theorem 4.3.2, û(f) is L1, so by Lemma 4.5.1,

u(t) =
∫ W

−W
û(f)e2πift df (5.34)

holds at each t ∈ R. We want to show that the sampling theorem expansion also holds at each
t. By the DTFT theorem,

û(f) = l.i.m.
	→∞

û(	)(f), where û(	)(f) =
	∑

k=−	

ukφ̂k(f) (5.35)

and where φ̂k(f) = e−2πikf/(2W)rect
(

f
2W

)
and

uk =
1

2W

∫ W

−W
û(f)e2πikf/(2W) df. (5.36)

Comparing (5.34) and (5.36), we see as before that 2Wuk = u( k
2W). The functions φ̂k(f) are in

L1, so the finite sum û(	)(f) is also in L1. Thus the inverse Fourier transform

u(	)(t) =
∫

û(	)(f) df =
	∑

k=−	

u(
k

2W
) sinc(2Wt − k)

is defined pointwise at each t. For each t ∈ R, the difference u(t) − u(	)(t) is then

u(t) − u(	)(t) =
∫ W

−W
[û(f) − û(	)(f)]e2πift df.

This integral can be viewed as the inner product of û(f) − û(	)(f) and e−2πiftrect[ f
2W ], so, by

the Schwarz inequality, we have

|u(t) − u(	)(t)| ≤
√

2W‖û − û (	)‖.

From the L2 convergence of the DTFT, the right side approaches 0 as  → ∞, so the left side
also approaches 0 for each t, establishing pointwise convergence.

Proof of Theorem 4.6.3 (Sampling theorem for transmission): For a given W, assume
that the sequence {u( k

2W); k ∈ Z} satisfies
∑

k |u( k
2W)|2 < ∞. Define uk = 1

2Wu( k
2W) for each

k ∈ Z. By the DTFT theorem, there is a frequency function û(f), nonzero only over [−W, W],
that satisfies (4.60) and (4.61). By the sampling theorem, the inverse transform u(t) of û(f) has
the desired properties.

Proof of Theorem 4.7.1 (Aliasing theorem): We start by separating û(f) into frequency
slices {v̂m(f);m ∈ Z},

û(f) =
∑
m

v̂m(f), where v̂m(f) = û(f)rect†(fT − m). (5.37)



5A. APPENDIX: SUPPLEMENTARY MATERIAL AND PROOFS 161

The function rect†(f) is defined to equal 1 for −1
2 < f ≤ 1

2 and 0 elsewhere. It is L2 equivalent
to rect(f), but gives us pointwise equality in (5.37). For each positive integer n, define v̂(n)(f)
as

v̂(n)(f) =
n∑

m=−n

v̂m(f) =
{

û(f) for 2n−1
2T < f ≤ 2n+1

2T
0 elsewhere.

(5.38)

It is shown in Exercise 5.16 that the given conditions on û(f) imply that û(f) is in L1. In
conjunction with (5.38), this implies that

lim
n→∞

∫ ∞

−∞
|û(f) − v̂(n)(f)| df = 0.

Since û(f) − v̂(n)(f) is in L1, the inverse transform at each t satisfies∣∣∣u(t) − v(n)(t)
∣∣∣ =

∣∣∣∣∫ ∞

−∞
[û(f) − v̂(n)(f)]e2πift df

∣∣∣∣
≤

∫ ∞

−∞

∣∣∣û(f) − v̂(n)(f)
∣∣∣ df =

∫
|f |≥(2n+1)/(2T )

|û(f)| df.

Since û(f) is in L1, the final integral above approaches 0 with increasing n. Thus, for each t,
we have

u(t) = lim
n→∞

v(n)(t). (5.39)

Next define ŝm(f) as the frequency slice v̂m(f) shifted down to baseband, i.e.,

ŝm(f) = v̂m(f − m

T
) = û(f − m

T
)rect†(fT ). (5.40)

Applying the sampling theorem to vm(t), we get

vm(t) =
∑

k

vm(kT ) sinc(
t

T
− k)e2πimt/T . (5.41)

Applying the frequency shift relation to (5.40), we see that sm(t) = vm(t)e−2πift, and thus

sm(t) =
∑

k

vm(kT ) sinc(
t

T
− k). (5.42)

Now define ŝ(n)(f) =
∑n

m=−n ŝm(f). From (5.40), we see that ŝ(n)(f) is the aliased version of
v̂(n)(f), as illustrated in Figure 4.10. The inverse transform is then

s(n)(t) =
∞∑

k=−∞

n∑
m=−n

vm(kT ) sinc(
t

T
− k). (5.43)

We have interchanged the order of summation, which is valid since the sum over m is finite.
Finally, define ŝ(f) to be the “folded” version of û(f) summing over all m, i.e.,

ŝ(f) = l.i.m.
n→∞

ŝ(n)(f). (5.44)
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Exercise 5.16 shows that this limit converges in the L2 sense to an L2 function ŝ(f). Exercise
4.38 provides an example where ŝ(f) is not in L2 if the condition lim|f |→∞ û(f)|f |1+ε = 0 is not
satisfied.

Since ŝ(f) is in L2 and is 0 outside [− 1
2T , 1

2T ], the sampling theorem shows that the inverse
transform s(t) satisfies

s(t) =
∑

k

s(kT )sinc(
t

T
− k). (5.45)

Combining this with (5.43),

s(t) − s(n)(t) =
∑

k

[
s(kT ) −

n∑
m=−n

vm(kT )

]
sinc(

t

T
− k). (5.46)

From (5.44), we see that limn→∞ ‖s − s(n)‖ = 0, and thus

lim
n→∞

∑
k

|s(kT ) − v(n)(kT )|2 = 0.

This implies that s(kT ) = limn→∞ v(n)(kT ) for each integer k. From (5.39), we also have
u(kT ) = limn→∞ v(n)(kT ), and thus s(kT ) = u(kT ) for each k ∈ Z.

s(t) =
∑

k

u(kT )sinc(
t

T
− k). (5.47)

This shows that (5.44) implies (5.47). Since s(t) is in L2, it follows that
∑

k |u(kT )|2 < ∞.
Conversely, (5.47) defines a unique L2 function, and thus its Fourier transform must be L2

equivalent to ŝ(f) as defined in (5.44).

5A.3 Prolate spheroidal waveforms

The prolate spheroidal waveforms are a set of orthonormal functions that provide a more pre-
cise way to view the degree-of-freedom arguments of Section 4.7.2. For each choice of base-
band bandwidth W and time interval [−T/2, T/2], these functions form an orthonormal set
{φ0(t),φ1(t), . . . , } of real L2 functions time-limited to [−T/2, T/2]. In a sense to be described,
these functions have the maximum possible energy in the frequency band (−W,W) subject to
their constraint to [−T/2, T/2].

To be more precise, for each n ≥ 0 let φ̂n(f) be the Fourier transform of φn(t), and define

θ̂n(f) =
{

φ̂n(f) for − W<t<W
0 elsewhere.

(5.48)

That is, θn(t) is φn(t) truncated in frequency to (−W,W); equivalently, θn(t) may be viewed as
the result of passing φn(t) through an ideal low-pass filter.

The function φ0(t) is chosen to be the normalized function φ0(t) : (−T/2, T/2) → R that
maximizes the energy in θ0(t). We will not show how to solve this optimization problem.
However, φ0(t) turns out to resemble

√
1/T rect( t

T ), except that it is rounded at the edges to
reduce the out-of-band energy.
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Similarly, for each n > 0, the function φn(t) is chosen to be the normalized function {φn(t) :
(−T/2, T/2) → R} that is orthonormal to φm(t) for each m < n and, subject to this constraint,
maximizes the energy in θn(t).

Finally, define λn = ‖θn‖2. It can be shown that 1 > λ0 > λ1 > · · · . We interpret λn as the
fraction of energy in φn that is baseband-limited to (−W,W). The number of degrees of freedom
in (−T/2, T/2), (−W,W) is then reasonably defined as the largest n for which λn is close to 1.

The values λn depend on the product TW, so they can be denoted by λn(TW). The main result
about prolate spheroidal wave functions, which we do not prove, is that for any ε > 0,

lim
TW→∞

λn(TW) =
{

1 for n < 2TW(1 − ε)
0 for n > 2TW(1 + ε).

This says that when TW is large, there are close to 2TW orthonormal functions for which most of
the energy in the time-limited function is also frequency-limited, but there are not significantly
more orthonormal functions with this property.

The prolate spheroidal wave functions φn(t) have many other remarkable properties, of which
we list a few:

• For each n, φn(t) is continuous and has n zero crossings.

• φn(t) is even for n even and odd for n odd.

• θn(t) is an orthogonal set of functions.

• In the interval (−T/2, T/2), θn(t) = λnφn(t).
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5.E Exercises

5.1. (basis) Prove Theorem 5.1.1 by first suggesting an algorithm that establishes the first item
and then an algorithm to establish the second item.

5.2. Show that the 0 vector can be part of a spanning set but cannot be part of a linearly
indepenendent set.

5.3. (basis) Prove that if a set of n vectors uniquely spans a vector space V, in the sense that
each v ∈ V has a unique representation as a linear combination of the n vectors, then those
n vectors are linearly independent and V is an n-dimensional space.

5.4. (R2) (a) Show that the vector space R2 with vectors {v = (v1, v2)} and inner product
〈v ,u〉 = v1u1 + v2u2 satisfies the axioms of an inner product space.
(b) Show that, in the Euclidean plane, the length of v (i.e., the distance from 0 to v is
‖v‖.
(c) Show that the distance from v to u is ‖v − u‖.
(d) Show that cos(∠(v ,u)) = 〈v ,u〉

‖v‖ ‖u‖ ; assume that ‖u‖ > 0 and ‖v‖ > 0.

(e) Suppose that the definition of the inner product is now changed to 〈v ,u〉 = v1u1+2v2u2.
Does this still satisfy the axioms of an inner product space? Does the length formula and
the angle formula still correspond to the usual Euclidean length and angle?

5.5. Consider Cn and define 〈v ,u〉 as
∑n

j=1 cjvju
∗
j where c1, . . . , cn are complex numbers. For

each of the following cases, determine whether Cn must be an inner product space and
explain why or why not.
(a) The cj are all equal to the same positive real number.
(b) The cj are all positive real numbers.
(c) The cj are all non-negative real numbers.
(d) The cj are all equal to the same nonzero complex number.
(e) The cj are all nonzero complex numbers.

5.6. (Triangle inequality) Prove the triangle inequality, (5.10). Hint: Expand ‖v +u‖2 into four
terms and use the Schwarz inequality on each of the two cross terms.

5.7. Let u and v be orthonormal vectors in Cn and let w = wuu + wvv and x = xuu + xvv be
two vectors in the subspace generated by u and v .
(a) Viewing w and x as vectors in the subspace C2, find 〈w ,x 〉.
(b) Now view w and x as vectors in Cn, e.g., w = (w1, . . . , wn) where wj = wuuj + wvvj

for 1 ≤ j ≤ n. Calculate 〈w ,x 〉 this way and show that the answer agrees with that in
part (a).

5.8. (L2 inner product) Consider the vector space of L2 functions {u(t) : R → C}. Let v and u
be two vectors in this space represented as v(t) and u(t). Let the inner product be defined
by

〈v ,u〉 =
∫ ∞

−∞
v(t)u∗(t) dt.

(a) Assume that u(t) =
∑

k,m ûk,mθk,m(t) where {θk,m(t)} is an orthogonal set of functions
each of energy T . Assume that v(t) can be expanded similarly. Show that

〈u , v〉 = T
∑
k,m

ûk,mv̂∗k,m.
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(b) Show that 〈u , v〉 is finite. Do not use the Schwarz inequality, because the purpose of
this exercise is to show that L2 is an inner product space, and the Schwarz inequality is
based on the assumption of an inner product space. Use the result in (a) along with the
properties of complex numbers (you can use the Schwarz inequality for the one dimensional
vector space C1 if you choose).
(c) Why is this result necessary in showing that L2 is an inner product space?

5.9. (L2 inner product) Given two waveforms u1,u2 ∈ L2, let V be the set of all waveforms v
that are equi-distant from u1 and u2. Thus

V =
{
v : ‖v − u1‖ = ‖v − u2‖

}
.

(a) Is V a vector sub-space of L2?
(b) Show that

V =
{
v : |〈v ,u2 − u1〉| =

‖u2‖2 − ‖u1‖2

2

}
.

(c) Show that (u1 + u2)/2 ∈ V
(d) Give a geometric interpretation for V.

5.10. (sampling) For any L2 function {u(t) : [−W,W] → C} and any t, let ak = u( k
2W) and let

bk = sinc(2Wt − k). Show that
∑

k |ak|2 < ∞ and
∑

k |bk|2 < ∞. Use this to show that∑
k |akbk| < ∞. Use this to show that the sum in the sampling equation (4.65) converges

for each t.

5.11. (projection) Consider the following set of functions {um(t)} for integer m ≥ 0:

u0(t) =
{

1, 0 ≤ t < 1;
0 otherwise.

...

um(t) =
{

1, 0 ≤ t < 2−m;
0 otherwise.

...

Consider these functions as vectors u0,u1 . . . , over real L2 vector space. Note that u0 is
normalized; we denote it as φ0 = u0.
(a) Find the projection (u1)|φ0

of u1 on φ0, find the perpendicular (u1)⊥φ0
, and find the

normalized form φ1 of (u1)⊥φ0
. Sketch each of these as functions of t.

(b) Express u1(t − 1/2) as a linear combination of φ0 and φ1. Express (in words) the
subspace of real L2 spanned by u1(t) and u1(t − 1/2). What is the subspace S1 of real L2

spanned by φ0 and φ1?
(c) Find the projection (u2)|S1

of u2 on S1, find the perpendicular (u2)⊥S1 , and find the
normalized form of (u2)⊥S1 . Denote this normalized form as φ2,0; it will be clear shortly
why a double subscript is used here. Sketch φ2,0 as a function of t.
(d) Find the projection of u2(t − 1/2) on S1 and find the perpendicular u2(t − 1/2)⊥S1 .
Denote the normalized form of this perpendicular by φ2,1. Sketch φ2,1 as a function of t
and explain why 〈φ2,0,φ2,1〉 = 0.
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(e) Express u2(t − 1/4) and u2(t − 3/4) as linear combinations of {φ0,φ1,φ2,0,φ2,1}. Let
S2 be the subspace of real L2 spanned by φ0,φ1,φ2,0, φ2,1 and describe this subspace in
words.
(f) Find the projection (u3)|S2

of u3 on S2, find the perpendicular (u2)⊥S1 , and find its
normalized form, φ3,0. Sketch φ3,0 as a function of t.
(g) For j = 1, 2, 3, find u3(t − j/4)⊥S2 and find its normalized form φ3,j . Describe the
subspace S3 spanned by φ0,φ1,φ2,0,φ2,1,φ3,0, . . . ,φ3,3.
(h) Consider iterating this process to form S4,S5, . . . . What is the dimension of Sm?
Describe this subspace. Describe the projection of an arbitrary real L2 function constrained
to the interval [0,1) on Sm.

5.12. (Orthogonal subspaces) For any subspace S of an inner product space V, define S⊥ as the
set of vectors v ∈ V that are orthogonal to all w ∈ S.
(a) Show that S⊥ is a subspace of V.
(b) Assuming that S is finite dimensional, show that any u ∈ V can be uniquely decomposed
into u = u |S + u⊥S where u |S ∈ S and u⊥S ∈ S⊥.
(c) Assuming that V is finite dimensional, show that V has an orthonormal basis where a
subset of the basis vectors form a basis for S and the remaining basis vectors form a basis
for S⊥.

5.13. (Orthonormal expansion) Expand the function sinc(3t/2) as an orthonormal expansion in
the set of functions {sinc(t − n) ; −∞ < n < ∞}.

5.14. (bizarre function) (a) Show that the pulses gn(t) in Example 5A.1 of Section 5A.1 overlap
each other either completely or not at all.
(b) Modify each pulse gn(t) to hn(t) as follows: Let hn(t) = gn(t) if

∑n−1
i=1 gi(t) is even and

let hn(t) = −gn(t) if
∑n−1

i=1 gi(t) is odd. Show that
∑n

i=1 hi(t) is bounded between 0 and 1
for each t ∈ (0, 1) and each n ≥ 1.
(c) Show that there are a countably infinite number of points t at which

∑
n hn(t) does not

converge.

5.15. (Parseval) Prove Parseval’s relation, (4.44) for L2 functions. Use the same argument as
used to establish the energy equation in the proof of Plancherel’s theorem.

5.16. (Aliasing theorem) Assume that û(f) is L2 and lim|f |→∞ û(f)|f |1+ε = 0 for some ε > 0.
(a) Show that for large enough A > 0, |û(f)| ≤ |f |−1−ε for |f | > A.
(b) Show that û(f) is L1. Hint: for the A above, split the integral

∫
|û(f)| df into one

integral for |f | > A and another for |f | ≤ A.
(c) Show that, for T = 1, ŝ(f) as defined in (5.44), satisfies

|ŝ(f)| ≤
√

(2A + 1)
∑

|m|≤A
|û(f + m)|2 +

∑
m≥A

m−1−ε.

(d) Show that ŝ(f) is L2 for T = 1. Use scaling to show that ŝ(f) is L2 for any T > 0.



Chapter 6

Channels, modulation, and
demodulation

6.1 Introduction

Digital modulation (or channel encoding) is the process of converting an input sequence of bits
into a waveform suitable for transmission over a communication channel. Demodulation (channel
decoding) is the corresponding process at the receiver of converting the received waveform into a
(perhaps noisy) replica of the input bit sequence. Chapter 1 discussed the reasons for using a bit
sequence as the interface between an arbitrary source and an arbitrary channel, and Chapters
2 and 3 discussed how to encode the source output into a bit sequence.

Chapters 4 and 5 developed the signal-space view of waveforms. As explained there, the source
and channel waveforms of interest can be represented as real or complex1 L2 vectors. Any such
vector can be viewed as a conventional function of time, x(t). Given an orthonormal basis
{φ1(t), φ2(t), . . . , } of L2, any such x(t) can be represented as

x(t) =
∑

j

xjφj(t). (6.1)

Each xj in (6.1) can be uniquely calculated from x(t), and the above series converges in L2 to
x(t). Moreover, starting from any sequence satisfying

∑
j |xj |2 < ∞ there is an L2 function x(t)

satisfying (6.1) with L2 convergence. This provides a simple and generic way of going back and
forth between functions of time and sequences of numbers. The basic parts of a modulator will
then turn out to be a procedure for mapping a sequence of binary digits into a sequence of real
or complex numbers, followed by the above approach for mapping a sequence of numbers into a
waveform.

In most cases of modulation, the set of waveforms φ1(t), φ2(t), . . . , in (6.1) will be chosen not
as a basis for L2 but as a basis for some subspace2 of L2 such as the set of functions that are
baseband limited to some frequency W or passband limited to some range of frequencies. In
some cases, it will also be desirable to use a sequence of waveforms that are not orthonormal.

1As explained later, the actual transmitted waveforms are real. However, they are usually bandpass real
waveforms that are conveniently represented as complex baseband waveforms.

2Equivalently, φ1(t), φ2(t), . . . , can be chosen as a basis of L2 but the set of indices for which xj is allowed to
be nonzero can be restricted.
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We can view the mapping from bits to numerical signals and the conversion of signals to a
waveform as separate layers. The demodulator then maps the received waveform to a sequence
of received signals, which is then mapped to a bit sequence, hopefully equal to the input bit
sequence. A major objective in designing the modulator and demodulator is to maximize the
rate at which bits enter the encoder, subject to the need to retrieve the original bit stream with
a suitably small error rate. Usually this must be done subject to constraints on the transmitted
power and bandwidth. In practice there are also constraints on delay, complexity, compatibility
with standards, etc., but these need not be a major focus here.

Example 6.1.1. As a particularly simple example, suppose a sequence of binary symbols enters
the encoder at T -spaced instants of time. These symbols can be mapped into real numbers using
the mapping 0 → +1 and 1 → −1. The resulting sequence u1, u2, . . . , of real numbers is then
mapped into the transmitted waveform

u(t) =
∑

k

uk sinc
(

t

T
− k

)
. (6.2)

At the receiver, in the absence of noise, attenuation, and other imperfections, the received
waveform is u(t). This can be sampled at times T1, T2, . . . , to retrieve u1, u2, . . . , which can be
decoded into the original binary symbols.

The above example contains rudimentary forms of the two layers discussed above. The first is
the mapping of binary symbols into numerical signals3 and the second is the conversion of the
sequence of signals into a waveform. In general, the set of T -spaced sinc functions in (6.2) can
be replaced by any other set of orthogonal functions (or even non-orthogonal functions). Also,
the mapping 0 → +1, 1 → −1 can be generalized by segmenting the binary stream into b-tuples
of binary symbols, which can then be mapped into n-tuples of real or complex numbers. The
set of 2b possible n-tuples resulting from this mapping is called a signal constellation.

Modulators usually include a third layer, which maps a baseband encoded waveform, such as u(t)
in (6.2), into a passband waveform x(t) = �{u(t)e2πifct} centered on a given carrier frequency
fc. At the decoder this passband waveform is mapped back to baseband before performing the
other components of decoding. This frequency conversion operation at encoder and decoder is
often referred to as modulation and demodulation, but it is more common today to use the
word modulation for the entire process of mapping bits to waveforms. Figure 6.1 illustrates
these three layers.

We have illustrated the channel above as a one way device going from source to destination.
Usually, however, communication goes both ways, so that a physical location can send data to
another location and also receive data from that remote location. A physical device that both
encodes data going out over a channel and also decodes oppositely directed data coming in from
the channel is called a modem (for modulator/demodulator). As described in Chapter 1, feedback
on the reverse channel can be used to request retransmissions on the forward channel, but in
practice, this is usually done as part of an automatic retransmission request (ARQ) strategy in
the data link control layer. Combining coding with more sophisticated feedback strategies than

3The word signal is often used in the communication literature to refer to symbols, vectors, waveforms, or
almost anything else. Here we use it only to refer to real or complex numbers (or n-tuples of numbers) in situations
where the numerical properties are important. For example, in (6.2) the signals (numerical values) u1, u2, . . .
determine the real valued waveform u(t), whereas the binary input symbols could be ‘Alice’ and ‘Bob’ as easily
as 0 and 1.
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Figure 6.1: The layers of a modulator (channel encoder) and demodulator (channel decoder).

ARQ has always been an active area of communication and information theoretic research, but
it will not be discussed here for the following reasons:

• It is important to understand communication in a single direction before addressing the
complexities of two directions.

• Feedback does not increase channel capacity for typical channels (see [24]).
• Simple error detection and retransmission is best viewed as a topic in data networks.

There is an interesting analogy between analog source coding and digital modulation. With
analog source coding, an analog waveform is first mapped into a sequence of real or complex
numbers (e.g., the coefficients in an orthogonal expansion). This sequence of signals is then
quantized into a sequence of symbols from a discrete alphabet, and finally the symbols are
encoded into a binary sequence. With modulation, a sequence of bits is encoded into a sequence
of signals from a signal constellation. The elements of this constellation are real or complex
points in one or several dimensions. This sequence of signal points is then mapped into a
waveform by the inverse of the process for converting waveforms into sequences.

6.2 Pulse amplitude modulation (PAM)

Pulse amplitude modulation4 (PAM) is probably the the simplest type of modulation. The
incoming binary symbols are first segmented into b-bit blocks. There is a mapping from the set
of M = 2b possible blocks into a signal constellation A = {a1, a2, . . . , aM} of real numbers. Let
R be the rate of incoming binary symbols in bits per second. Then the sequence of b-bit blocks,
and the corresponding sequence, u1, u2, . . . , of M -ary signals, has a rate of Rs = R/b signals
per second. The sequence of signals is then mapped into a waveform u(t) by the use of time
shifts of a basic pulse waveform p(t), i.e.,

u(t) =
∑

k

uk p(t − kT ), (6.3)

where T = 1/Rs is the interval between successive signals. The special case where b = 1 is
called binary PAM and the case b > 1 is called multilevel PAM. Example 6.1.1 is an example

4The terminology comes from analog amplitude modulation, where a baseband waveform is modulated up
to some passband for communication. For digital communication, the more interesting problem is turning a bit
stream into a waveform at baseband.
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of binary PAM where the basic pulse shape p(t) is a sinc function. Comparing (6.1) with (6.3),
we see that PAM is a special case of digital modulation in which the underlying set of functions
φ1(t), φ2(t), . . . , is replaced by functions that are T -spaced time shifts of a basic function p(t).

The following two subsections discuss the signal constellation (i.e., the outer layer in Figure
6.1) and the subsequent two discuss the choice of pulse waveform p(t) (i.e., the middle layer in
Figure 6.1). In most cases5, the pulse waveform p(t) is a baseband waveform and the resulting
modulated waveform u(t) is then modulated up to some passband (i.e., the inner layer in Figure
6.1). Section 6.4 discusses modulation from baseband to passband and back.

6.2.1 Signal constellations

A standard M -PAM signal constellation A (see Figure 6.2) consists of M = 2b d-spaced real
numbers located symmetrically about the origin; i.e.,

A = {−d(M−1)
2

, . . . ,
−d

2
,

d

2
, . . . ,

d(M−1)
2

}.

In other words, the signal points are the same as the representation points of a symmetric
M -point uniform scalar quantizer.

a1 a2 a3 a4 a5 a6 a7 a8

d �� 0

Figure 6.2: An 8-PAM signal set.

If the incoming bits are independent equiprobable random symbols (which is well approximated
by effective source coding), then each signal uk is a sample value of a random variable Uk that is
equiprobable over the constellation (alphabet) A. Also the sequence U1, U2, . . . , is independent
and identically distributed (iid). As derived in Exercise 6.1, the mean squared signal value, or
“energy per signal” Es = E[U2

k ] is then given by

Es =
d2(M2 − 1)

12
=

d2(22b − 1)
12

. (6.4)

For example, for M = 2, 4 and 8, we have Es = d2/4, 5d2/4 and 21d2/4, respectively.

For b greater than 2, 22b−1 is approximately 22b, so we see that each unit increase in b increases
Es by a factor of 4. Thus increasing the rate R by increasing b requires impractically large
energy for large b.

Before explaining why standard M -PAM is a good choice for PAM and what factors affect the
choice of constellation size M and distance d, a brief introduction to channel imperfections is
required.

5Ultra-wide-band modulation (UAW) is an interesting modulation technique where the transmitted waveform
is essentially a baseband PAM system over a ‘baseband’ of multiple gigahertz. This is discussed briefly in Chapter
9.
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6.2.2 Channel imperfections: a preliminary view

Physical waveform channels are always subject to propagation delay, attenuation, and noise.
Many wireline channels can be reasonably modeled using only these degradations, whereas
wireless channels are subject to other degrations discussed in Chapter 9. This subsection provides
a preliminary look at delay, then attenuation, and finally noise.

The time reference at a communication receiver is conventionally delayed relative to that at the
transmitter. A waveform u(t) at the transmitter is subject to propagation delay plus various
filter delays in the modulator and demodulator. Thus u(t), according to the transmitter clock,
appears as u(t−τ) at the receiver, where τ is the overall delay. By delaying the receiver clock by τ
from the transmitter clock, the received waveform, according to the receiver clock, is u(t). With
this convention, the channel can be modeled as having no delay, and all equations will be greatly
simplified. This explains why communication engineers often model filters in the modulator and
demodulator as being noncausal, since responses before time 0 can be added to the difference
between the two clocks. Estimating the above fixed delay at the receiver is a significant problem
called timing recovery, but is largely separable from the problem of recovering the transmitted
data.

The magnitude of delay in a communication system is often important. It is one of the param-
eters often referred to as quality of service in a communication system. Delay is important for
voice communication and often critically important when the communication is in the feedback
loop of a real time control system. In addition to the fixed delay in time reference between mod-
ulator and demodulator, there is also delay in source encoding and decoding. Coding for error
correction adds additional delay, which might or might not be counted as part of the modula-
tor/demodulator delay. Either way, the delays in the source coding and error-correction coding
are often much larger than that in the modulator/demodulator proper. Thus this latter delay
can be significant, but is usually not of primary significance. Also, as channel speeds increase,
the filtering delays in the modulator/demodulator become even less significant.

Amplitudes are usually measured on a different scale at transmitter and receiver. The actual
power attenuation suffered in transmission is a product of amplifier gain, antenna coupling
losses, antenna directional gain, propagation losses, etc. The process of finding all these gains
and losses (and perhaps changing them) is called “the link budget.” Such gains and losses are
invariably calculated in decibels (dB). The number of decibels corresponding to a power gain
α is defined to be 10 log10 α. Thus power losses correspond to negative dB and power gains to
positive dB. The use of a logarithmic measure of gain allows the various components of gain to
be added rather than multiplied.

The use of decibels rather than some other logarithmic measure such as natural logs or logs to
the base 2 is partly motivated by the ease of doing rough mental calculations. A factor of 2 is
10 log10 2 = 3.010 · · · dB, approximated as 3 dB. Thus 4 = 22 is 6 dB and 8 is 9 dB. Since 10
is 10 dB, we also see that 5 is 10/2 or 7 dB. We can just as easily see that 20 is 13 dB and so
forth.

It is important to remember that the gains expressed in dB are power gains. Thus if there is a
multiplicative gain of g in a signal, this corresponds to a gain g2 in power, which corresponds
to 20 log10 g dB.

The link budget in a communication system is largely separable from other issues, so the am-
plitude scale at the transmitter is usually normalized to that at the receiver.
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By treating attenuation and delay as issues largely separable from modulation, we obtain a model
of the channel in which a baseband waveform u(t) is converted to passband and transmitted. At
the receiver, after conversion back to baseband, a waveform v(t) = u(t) + z(t) is received where
z(t) is noise. This noise is a fundamental limitation to communication and arises from a variety
of causes, including thermal effects and unwanted radiation impinging on the receiver. Chapter
7 is largely devoted to understanding noise waveforms by modeling them as sample values of
random processes. Chapter 8 then explains how best to decode signals in the presence of noise.
These issues are briefly summarized here to see how they affect the choice of signal constellation.

If p(t) is orthogonal to all its shifts by multiples of T , then, in the absence of noise, the transmit-
ted signals u1, u2, . . . , can be retrieved from the baseband waveform u(t) by the inner product
operation,

uk =
∫

u(t) p(t − kT ) dt.

In the presence of noise, this same operation can be performed, yielding

vk =
∫

v(t) p(t − kT ) dt = uk + zk, (6.5)

where zk =
∫

z(t) p(t − kT ) dt is the projection of z(t) on the shifted pulse p(t − kT ).

The most common (and often the most appropriate) model for noise on channels is called the
additive white Gaussian noise model. As shown in Chapters 7 and 8, the above coefficients
{zk; k ∈ Z} in this model are the sample values of zero-mean, iid Gaussian random variables
{Zk; k ∈ Z}. This is true no matter how the orthonormal functions {p(t−kT ); k ∈ Z} are chosen,
and these random variables are also independent of the signal random variables {Uk; k ∈ Z}.
Chapter 8 also shows that the operation in (6.5) is the appropriate operation to go from waveform
to signal sequence in the layered demodulator of Figure 6.1.

Now consider the effect of the noise on the choice of M and d in a PAM modulator. Since the
transmitted signal reappears at the receiver with a zero-mean Gaussian random variable added
to it, any attempt to directly retrieve Uk from Vk with reasonably small probability of error6

will require d to exceed several standard deviations of the noise. Thus the noise determines how
large d must be, and this, combined with the power constraint, determines M .

The relation between error probability and signal-point spacing also helps explain why multi-
level PAM systems almost invariably use a standard M -PAM signal set. Because the Gaussian
density drops off so fast with increasing distance, the error probability due to confusion of
nearest neighbors drops off equally fast. Thus error probability is dominated by the points in
the constellation that are closest together. If the signal points are constrained to have some
minimum distance d between points, it can be seen that the minimum energy Es for a given
number of points M is achieved by the standard M -PAM set.7

To be more specific about the relationship between M, d and the variance σ2 of the noise Zk,
suppose that d is selected to be ασ, where α is chosen to make the detection sufficiently reliable.
Then with M = 2b, where b is the number of bits encoded into each PAM signal, (6.4) becomes

Es =
α2σ2(22b − 1)

12
; b =

1
2

log
(

1 +
12Es

α2σ2

)
. (6.6)

6If error-correction coding is used with PAM, then d can be smaller, but for any given error-correction code,
d still depends on the standard deviation of Zk.

7On the other hand, if we choose a set of M signal points to minimize Es for a given error probability, then
the standard M -PAM signal set is not quite optimal (see Exercise 6.3).
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This expression looks strikingly similar to Shannon’s capacity formula for additive white Gaus-
sian noise, which says that for the appropriate PAM bandwidth, the capacity per signal is
C = 1

2 log(1 + Es
σ2 ). The important difference is that in (6.6), α must be increased, thus de-

creasing b, in order to decrease error probability. Shannon’s result, on the other hand, says
that error probability can be made arbitrarily small for any number of bits per signal less than
C. Both equations, however, show the same basic form of relationship between bits per signal
and the signal to noise ratio Es/σ2. Both equations also say that if there is no noise (σ2 = 0,
then the the number of transmitted bits per signal can be infinitely large (i.e., the distance d
between signal points can be made infinitesimally small). Thus both equations say that noise is
a fundamental limitation on communication.

6.2.3 Choice of the modulation pulse

As defined in (6.3), the baseband transmitted waveform, u(t) =
∑

k uk p(t − kT ), for a PAM
modulator is determined by the signal constellation A, the signal interval T and the real L2

modulation pulse p(t).

It may be helpful to visualize p(t) as the impulse response of a linear time-invariant filter. Then
u(t) is the response of that filter to a sequence of T -spaced impulses {ukδ(t−kT )}. The problem
of choosing p(t) for a given T turns out to be largely separable from that of choosing A. The
choice of p(t) is also the more challenging and interesting problem.

The following objectives contribute to the choice of p(t).

• p(t) must be 0 for t < −τ for some finite τ . To see this, assume that the kth input signal
at the modulator is generated at time Tk − τ . The contribution of uk to the transmitted
waveform u(t) cannot start until kT − τ , which implies p(t) = 0 for t < −τ as stated. This
rules out sinc(t/T ) as a choice for p(t) (although sinc(t/T ) could be truncated at t = −τ
to satisfy the condition).

• In most situations, p̂(f) should be essentially baseband limited to some bandwidth Bb

slightly larger than 1
2T . We will see shortly that it cannot be baseband limited to less than

1
2T . There is usually an upper limit on Bb because of regulatory constraints at bandpass
or to allow for other transmission channels in neighboring bands. If this limit were much
larger than 1

2T , then T could be increased, increasing the rate of transmission.

• The retrieval of the sequence {uk; k ∈ Z} from the noisy received waveform should be simple
and relatively reliable. In the absence of noise, {uk; k ∈ Z} should be uniquely specified by
the received waveform.

The first condition above makes it somewhat tricky to satisfy the second condition. In particular,
the Paley-Wiener theorem [22] states that a necessary and sufficient condition for a nonzero L2

function p(t) to be zero for all t < 0 is that its Fourier transform satisfy∫ ∞

−∞

|ln |p̂(f)||
1 + f2

df < ∞. (6.7)

Combining this with the shift condition for Fourier transforms, it says that any L2 function
that is 0 for all t < −τ for any finite delay τ must also satisfy (6.7). This is a particularly
strong statement of the fact that functions cannot be both time and frequency limited. One
consequence of (6.7) is that if p(t) = 0 for t < −τ , then p̂(f) must be nonzero except on a set of
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measure 0. Another consequence is that p̂(f) must go to 0 with increasing f more slowly than
exponentially.

The Paley-Wiener condition turns out to be useless as a tool for choosing p(t). First, it distin-
guishes whether the above delay τ is finite or infinite, but gives no indication of its value when
finite. Second, if an L2 function p(t) is chosen with no concern for (6.7), it can then be trun-
cated to be 0 for t < −τ . The resulting L2 error caused by truncation can be made arbitrarily
small by choosing τ sufficiently large. The tradeoff between truncation error and delay is clearly
improved by choosing p(t) to approach 0 rapidly as t → −∞.

In summary, we will replace the first objective above with the objective of choosing p(t) to
approach 0 rapidly as t → −∞. The resulting p(t) will then be truncated to satisfy the original
objective. Thus p(t) ↔ p̂(f) will be an approximation to the transmit pulse in what follows.
This also means that ĝ(f) can be strictly bandlimited to a frequency slightly larger than 1

2T .

We next turn to the third objective, particularly that of easily retrieving the sequence u1, u2, . . . ,
from u(t) in the absence of noise. This problem was first analyzed in 1928 in a classic paper
by Harry Nyquist [16]. Before looking at Nyquist’s results, however, we must consider the
demodulator.

6.2.4 PAM demodulation

For the time being, ignore the channel noise. Assume that the time reference and the amplitude
scaling at the receiver have been selected so that the received baseband waveform is the same as
the transmitted baseband waveform u(t). This also assumes that no noise has been introduced
by the channel.

The problem at the demodulator is then to retrieve the transmitted signals u1, u2, . . . from the
received waveform u(t) =

∑
k ukp(t−kT ). The middle layer of a PAM demodulator is defined by

a signal interval T (the same as at the modulator) and a real L2 waveform q(t). The demodulator
first filters the received waveform using a filter with impulse response q(t). It then samples the
output at T -spaced sample times. That is, the received filtered waveform is

r(t) =
∫ ∞

−∞
u(τ)q(t − τ) dτ, (6.8)

and the received samples are r(T ), r(2T ), . . . , .

Our objective is to choose p(t) and q(t) so that r(kT ) = uk for each k. If this objective is met
for all choices of u1, u2, . . . , then the PAM system involving p(t) and q(t) is said to have no
intersymbol interference. Otherwise, intersymbol interference is said to exist. The reader should
verify that p(t) = q(t) = 1√

T
sinc( t

T ) is one solution.

This problem of choosing filters to avoid intersymbol interference at first appears to be somewhat
artificial. First, the form of the receiver is restricted to be a filter followed by a sampler. Exercise
6.4 shows that if the detection of each signal is restricted to a linear operation on the received
waveform, then there is no real loss of generality in further restricting the operation to be a
filter followed by a T -spaced sampler. This does not explain the restriction to linear operations,
however.

The second artificiality is neglecting the noise, thus neglecting the fundamental limitation on
the bit rate. The reason for posing this artificial problem is, first, that avoiding intersymbol
interference is significant in choosing p(t), and, second, that there is a simple and elegant solution
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to this problem. This solution also provides part of the solution when noise is brought into the
picture.

Recall that u(t) =
∑

k ukp(t − kT ); thus from (6.8)

r(t) =
∫ ∞

−∞

∑
k

ukp(τ − kT )q(t − τ) dτ. (6.9)

Let g(t) be the convolution g(t) = p(t) ∗ q(t) =
∫

p(τ)q(t − τ) dτ and assume8 that g(t) is L2.
We can then simplify (6.9) to

r(t) =
∑

k

ukg(t − kT ). (6.10)

This should not be surprising. The filters p(t) and q(t) are in cascade with each other. Thus r(t)
does not depend on which part of the filtering is done in one and which in the other; it is only
the convolution g(t) that determines r(t). Later, when channel noise is added, the individual
choice of p(t) and q(t) will become important.

There is no intersymbol interference if r(kT ) = uk for each integer k, and from (6.10) this is
satisfied if g(0) = 1 and g(kT ) = 0 for each nonzero integer k. Waveforms with this property
are said to be ideal Nyquist or, more precisely, ideal Nyquist with interval T .

Even though the clock at the receiver is delayed by some finite amount relative to that at the
transmitter, and each signal uk can be generated at the transmitter at some finite time before
kT , g(t) must still have the property that g(t) = 0 for t < −τ for some finite τ . As before with
the transmit pulse p(t), this finite delay constraint will be replaced with the objective that g(t)
should approach 0 rapidly as |t| → ∞. Thus the function sinc( t

T ) is ideal Nyquist with interval
T , but is unsuitable because of the slow approach to 0 as |t| → ∞.

As another simple example, the function rect(t/T ) is ideal Nyquist with interval T and can be
generated with finite delay, but is not remotely close to being baseband limited.

In summary, we want to find functions g(t) that are ideal Nyquist but are approximately base-
band limited and approximately time limited. The Nyquist criterion, discussed in the next
section, provides a useful frequency characterization of functions that are ideal Nyquist. This
characterization will then be used to study ideal Nyquist functions that are approximately base-
band limited and approximately time limited.

6.3 The Nyquist criterion

The ideal Nyquist property is determined solely by the T -spaced samples of the waveform g(t).
This suggests that the results about aliasing should be relevant. Let s(t) be the baseband-limited
waveform generated by the samples of g(t), i.e.,

s(t) =
∑

k

g(kT ) sinc(
t

T
− k). (6.11)

8By looking at the frequency domain, it is not difficult to construct a g(t) of infinite energy from L2 functions
p(t) and q(t). When we study noise, however, we find that there is no point in constructing such a g(t), so we
ignore the possibility.
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If g(t) is ideal Nyquist, then all the above terms except k = 0 disappear and s(t) = sinc( t
T ).

Conversely, if s(t) = sinc( t
T ), then g(t) must be ideal Nyquist. Taking the Fourier transform of

(6.11) shows that g(t) is ideal Nyquist if and only if

ŝ(f) = T rect(fT ). (6.12)

From the aliasing theorem,

ŝ(f) = l.i.m.
∑
m

ĝ(f +
m

T
) rect(fT ). (6.13)

The result of combining (6.12) and (6.13) is the Nyquist criterion:

Theorem 6.3.1 (Nyquist criterion). Let ĝ(f) be L2 and satisfy the condition
lim|f |→∞ ĝ(f)|f |1+ε = 0 for some ε > 0. Then the inverse transform, g(t), of ĝ(f) is
ideal Nyquist with interval T if and only if ĝ(f) satisfies the Nyquist criterion for T , defined as9

l.i.m.
∑
m

ĝ(f + m/T ) rect(fT ) = T rect(fT ). (6.14)

Proof: From the aliasing theorem, the baseband approximation s(t) in (6.11) converges point-
wise and is L2. Similarly, the Fourier transform ŝ(f) satisfies (6.13). If g(t) is ideal Nyquist,
then s(t) = sinc( t

T ). This implies that ŝ(f) is L2 equivalent to T rect(fT ), which in turn implies
(6.14). Conversely, satisfaction of the Nyquist criterion (6.14) implies that ŝ(f) = T rect(fT ).
This implies s(t) = sinc( t

T ) implying that g(t) is ideal Nyquist.

There are many choices for ĝ(f) that satisfy (6.14), but the ones of major interest are those that
are approximately both bandlimited and time limited. We look specifically at cases where ĝ(f) is
strictly bandlimited, which, as we have seen, means that g(t) is not strictly time limited. Before
these filters can be used, of course, they must be truncated to be strictly time limited. It is
strange to look for strictly bandlimited and approximately time-limited functions when it is the
opposite that is required, but the reason is that the frequency constraint is the more important.
The time constraint is usually more flexible and can be imposed as an approximation.

6.3.1 Band-edge symmetry

The nominal or Nyquist band associated with a PAM pulse g(t) with signal interval T is defined
to be Wb = 1/(2T ). The actual baseband bandwidth10 Bb is defined as the smallest number Bb

such that ĝ(f) = 0 for |f | > Bb. Note that if ĝ(f) = 0 for |f | > Wb, then the left side of (6.14)
is zero except for m = 0, so ĝ(f) = T rect(fT ). This means that Bb ≥ Wb and equality holds if
and only if g(t) = sinc(t/T ).

As discussed above, if Wb is much smaller than Bb, then Wb can be increased, thus increasing
the rate Rs at which signals can be transmitted. Thus g(t) should be chosen in such a way that

9It can be seen that
∑

m ĝ(f + m/T ) is periodic and thus the rect(fT ) could be essentially omitted from both
sides of (6.14). Doing this, however, would make the limit in the mean meaningless and would also complicate
the intuitive understanding of the theorem.

10It might be better to call this the design bandwidth, since after the truncation necessary for finite delay,
the resulting frequency function is nonzero almost everywhere. However, if the delay is large enough, the energy
outside of Bb is negligible. On the other hand, Exercise 6.9 shows that these approximations must be handled
with great care.
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Bb exceeds Wb by a relatively small amount. In particular, we now focus on the case where
Wb ≤ Bb < 2Wb.

The assumption Bb < 2Wb means that ĝ(f) = 0 for |f | ≥ 2Wb. Thus for 0 ≤ f ≤ Wb,
ĝ(f + 2mWb) can be nonzero only for m = 0 and m = −1. Thus the Nyquist criterion (6.14) in
this positive frequency interval becomes

ĝ(f) + ĝ(f − 2Wb) = T for 0 ≤ f ≤ Wb. (6.15)

Since p(t) and q(t) are real, g(t) is also real, so ĝ(f−2Wb) = ĝ∗(2Wb−f). Substituting this in
(6.15) and letting ∆ = f−Wb, (6.15) becomes

T − ĝ(Wb+∆) = ĝ∗(Wb−∆). (6.16)

This is sketched and interpreted in Figure 6.3. The figure assumes the typical situation in which
ĝ(f) is real. In the general case, the figure illustrates the real part of ĝ(f) and the imaginary
part satisfies �{ĝ(Wb+∆)} = �{ĝ(Wb−∆)}.

ĝ(Wb+∆)

���
T − ĝ(Wb−∆)

ĝ(f)

�� 

0 Wb Bb

T

f

Figure 6.3: Band edge symmetry illustrated for real ĝ(f): For each ∆, 0≤∆≤Wb,
ĝ(Wb+∆) = T − ĝ(Wb−∆). The portion of the curve for f ≥ Wb, rotated by 180o

around the point (Wb, T/2), is equal to the portion of the curve for f ≤ Wb.

Figure 6.3 makes it particularly clear that Bb must satisfy Bb ≥ Wb to avoid intersymbol
interference. We then see that the choice of ĝ(f) involves a tradeoff between making ĝ(f)
smooth, so as to avoid a slow time decay in g(t), and reducing the excess of Bb over the Nyquist
bandwidth Wb. This excess is expressed as a rolloff factor11, defined to be (Bb/Wb)− 1, usually
expressed as a percentage. Thus ĝ(f) in the figure has about a 30% rolloff.

PAM filters in practice often have raised cosine transforms. The raised cosine frequency function,
for any given rolloff α between 0 and 1, is defined by

ĝα(f) =


T, 0 ≤ |f | ≤ 1−α

2T ;

T cos2
[

πT
2α (|f | − 1−α

2T )
]
, 1−α

2T ≤ |f | ≤ 1+α
2T ;

0, |f | ≥ 1+α
2T .

(6.17)

11The requirement for a small rolloff actually arises from a requirement on the transmitted pulse p(t), i.e., on
the actual bandwidth of the transmitted channel waveform, rather than on the cascade g(t) = p(t) ∗ q(t). The
tacit assumption here is that p̂(f) = 0 when ĝ(f) = 0. One reason for this is that it is silly to transmit energy in
a part of the spectrum that is going to be completely filtered out at the receiver. We see later that p̂(f) and q̂(f)
are usually chosen to have the same magnitude, ensuring that p̂(f) and ĝ(f) have the same rolloff.
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The inverse transform of ĝα(f) can be shown to be (see Exercise 6.8)

gα(t) = sinc(
t

T
)

cos(παt/T )
1 − 4α2t2/T 2

, (6.18)

which decays asymptotically as 1/t3, compared to 1/t for sinc( t
T ). In particular, for a rolloff

α = 1, ĝα(f) is nonzero from −2Wb = −1/T to 2Wb = 1/T and gα(t) has most of its energy
between −T and T . Rolloffs as sharp as 5–10% are used in current practice. The resulting gα(t)
goes to 0 with increasing |t| much faster than sinc(t/T ), but the ratio of gα(t) to sinc(t/T ) is a
function of αt/T and reaches its first zero at t = 1.5T/α. In other words, the required filtering
delay is proportional to 1/α.

The motivation for the raised cosine shape is that ĝ(f) should be smooth in order for g(t) to
decay quickly in time, but ĝ(f) must decrease from T at Wb(1 − α) to 0 at Wb(1 + α); as seen
in Figure 6.3, the raised cosine function simply rounds off the step discontinuity in rect( f

2Wb
) in

such a way as to maintain the Nyquist criterion while making ĝ(f) continuous with a continuous
derivitive, thus guaranteeing that g(t) decays asympototically with 1/t3.

6.3.2 Choosing {p(t−kT ); k ∈ Z} as an orthonormal set

The above subsection describes the choice of ĝ(f) as a compromise between rolloff and smooth-
ness, subject to band edge symmetry. As illustrated in figure 6.3, it is not a serious additional
constraint to restrict ĝ(f) to be real and nonnegative (why let ĝ(f) go negative or imaginary
in making a smooth transition from T to 0?). After choosing ĝ(f) ≥ 0, however, the question
remains of choosing the transmit filter p(t) and the receive filter q(t) subject to p̂(f)q̂(f) = ĝ(f).
When studying white Gaussian noise later, we will find that q̂(f) should be chosen to equal
p̂∗(f). Thus12,

|p̂(f)| = |q̂(f)| =
√

ĝ(f) . (6.19)

The phase of p̂(f) can be chosen in an arbitrary way, but this determines the phase of q̂(f) =
p̂∗(f). The requirement that p̂(f)q̂(f) = ĝ(f) ≥ 0 means that q̂(f) = p̂∗(f). In addition, if p(t)
is real then p̂(−f) = p̂∗(f), which determines the phase for negative f in terms of an arbitrary
phase for f > 0. It is convenient here, however, to be slightly more general and allow p(t) to be
complex. We will prove the following important theorem:

Theorem 6.3.2 (Orthonormal shifts). Let p(t) be an L2 function such that ĝ(f) = |p̂(f)|2
satisfies the Nyquist criterion for T . Then {p(t−kT ); k ∈ Z} is a set of orthonormal functions.
Conversely, if {p(t−kT ); k ∈ Z} is a set of orthonormal functions, then |p̂(f)|2 satisfies the
Nyquist criterion.

Proof: Let q(t) = p∗(−t). Then g(t) = p(t) ∗ q(t) so that

g(kT ) =
∫ ∞

−∞
p(τ)q(kT − τ) dτ =

∫ ∞

−∞
p(τ)p∗(τ − kT ) dτ. (6.20)

If ĝ(f) satisfies the Nyquist criterion, then g(t) is ideal Nyquist and (6.20) has the value 0 for
each integer k �= 0 and has the value 1 for k = 0. By shifting the variable of integration by

12A function p(t) satisfying (6.19) is often called square root of Nyquist, although it is the magnitude of the
transform that is the square root of the transform of an ideal Nyquist pulse.
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jT for any integer j in (6.20), we see also that
∫

p(τ − jT )p∗(τ − (k + j)T ) dτ = 0 for k �= 0
and 1 for k = 0. Thus {p(t − kT ; k ∈ Z} is an orthonormal set. Conversely, assume that
{p(t − kT ); k ∈ Z} is an orthonormal set. Then (6.20) has the value 0 for integer k �= 0 and 1
for k = 0. Thus g(t) is ideal Nyquist and ĝ(f) satisfies the Nyquist criterion.

Given this orthonormal shift property for p(t), the PAM transmitted waveform u(t) =∑
k ukp(t−kT ) is simply an orthonormal expansion. Retrieving the coefficient uk then cor-

responds to projecting u(t) onto the one dimensional subspace spanned by pk. Note that this
projection is accomplished by filtering u(t) by q(t) and then sampling at time kT . The filter
q(t) is called the matched filter to p(t). We discuss these filters later when noise is introduced
into the picture.

Note that we have restricted the pulse p(t) to have unit energy. There is no loss of generality
here, since the input signals {uk} can be scaled arbitrarily and there is no point in having an
arbitrary scale factor in both places.

For |p̂(f)|2 = ĝ(f), the actual bandwidth of p̂(f), q̂(f), and ĝ(f) are the same, say Bb. Thus if
Bb < ∞, we see that p(t) and q(t) can be realized only with infinite delay, which means that
both must be truncated. Since q(t) = p∗(−t), they must be truncated for both positive and
negative t. We assume that they are truncated at such a large value of delay that the truncation
error is negligible. Note that the delay generated by both the transmitter and receiver filter
(i.e., from the time that ukp(t − kT ) starts to be formed at the transmitter to the time when
uk is sampled at the receiver) is twice the duration of p(t).

6.3.3 Relation between PAM and analog source coding

The main emphasis in PAM modulation has been that of converting a sequence of T -spaced
signals into a waveform. Similarly, the first part of analog source coding is often to convert
a waveform into a T -spaced sequence of samples. The major difference is that with PAM
modulation, we have control over the PAM pulse p(t) and thus some control over the class of
waveforms. With source coding, we are stuck with whatever class of waveforms describes the
source of interest.

For both systems the nominal bandwidth is Wb = 1/(2T ) and Bb can be defined as the actual
baseband bandwidth of the waveforms. In the case of source coding, Bb ≤ Wb is a necessary
condition for the sampling appoximation

∑
k u(kT ) sinc( t

T −k) to perfectly recreate the waveform
u(t). The aliasing theorem and the T -spaced sinc weighted sinusoid expansion were used to
analyze the squared error if Bb > Wb.

For PAM, on the other hand, the necessary condition for the PAM demodulator to recreate the
initial PAM sequence is Bb ≥ Wb. With Bb > Wb, aliasing can be used to advantage, creating
an aggregate pulse g(t) that is ideal Nyquist. There is considerable choice in such a pulse, and
it is chosen by using contributions from both f < Wb and f > Wb. Finally we saw that the
transmission pulse p(t) for PAM can be chosen so that its T -spaced shifts form an orthonormal
set. The sinc functions have this property, but many other waveforms with slightly greater
bandwidth have the same property but decay much faster with t.
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6.4 Modulation: baseband to passband and back

The discussion of PAM in the previous 2 sections focussed on converting a T -spaced sequence
of real signals into a real waveform of bandwidth Bb slightly larger than the Nyquist bandwidth
Wb = 1

2T . This section focuses on converting that baseband waveform into a passband waveform
appropriate for the physical medium, regulatory constraints, and avoiding other transmission
bands.

6.4.1 Double-sideband amplitude modulation

The objective of modulating a baseband PAM waveform u(t) to some high frequency passband
around some carrier fc is to simply shift û(f) up in frequency to û(f)e2πifct. Thus if û(f) is zero
except for −Bb ≤ f ≤ Bb, then the shifted version would be zero except for fc−Bb ≤ f ≤ fc+Bb.
This does not quite work since it results in a complex waveform, whereas only real waveforms
can actually be transmitted. Thus u(t) is also multiplied by the complex conjugate of e2πifct,
i.e., e−2πifct, resulting in the following passband waveform:

x(t) = u(t)[e2πifct + e−2πifct] = 2u(t) cos(2πfct), (6.21)
x̂(f) = û(f − fc) + û(f + fc). (6.22)

As illustrated in Figure 6.4, u(t) is both translated up in frequency by fc and also translated down
by fc. Since x(t) must be real, x̂(f) = x̂∗(−f), and the negative frequencies cannot be avoided.
Note that the entire set of frequencies in [−Bb, Bb] is both translated up to [−Bb + fc, Bb + fc]
and down to [−Bb − fc, Bb − fc]. Thus (assuming fc > Bb) the range of nonzero frequencies
occupied by x(t) is twice as large as that occupied by u(t).
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Figure 6.4: Frequency domain representation of a baseband waveform u(t) shifted up to
a passband around the carrier fc. Note that the baseband bandwidth Bb of u(t) has been
doubled to the passband bandwidth B = 2Bb of x(t).

In the communication field, the bandwidth of a system is universally defined as the range of
positive frequencies used in transmission. Since transmitted waveforms are real, the negative
frequency part of those waveforms is determined by the positive part and is not counted. This is
consistent with our earlier baseband usage, where Bb is the bandwidth of the baseband waveform
u(t) in Figure 6.4, and with our new usage for passband waveforms where B = 2Bb is the
bandwidth of x̂(f).

The passband modulation scheme described by (6.21) is called double-sideband amplitude mod-
ulation. The terminology comes not from the negative frequency band around −fc and the
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positive band around fc, but rather from viewing [fc−Bb, fc+Bb] as two sidebands, the upper,
[fc, fc+Bb], coming from the positive frequency components of u(t) and the lower, [fc−Bb, fc]
from its negative components. Since u(t) is real, these two bands are redundant and either could
be reconstructed from the other.

Double-sideband modulation is quite wasteful of bandwidth since half of the band is redundant.
Redundancy is often useful for added protection against noise, but such redundancy is usually
better achieved through digital coding.

The simplest and most widely employed solution for using this wasted bandwidth13 is quadra-
ture amplitude modulation (QAM), which is described in the next section. PAM at passband
is appropriately viewed as a special case of QAM, and thus the demodulation of PAM from
passband to baseband is discussed at the same time as the demodulation of QAM.

6.5 Quadrature amplitude modulation (QAM)

QAM is very similar to PAM except that with QAM the baseband waveform u(t) is chosen to
be complex. The complex QAM waveform u(t) is then shifted up to passband as u(t)e2πifct.
This waveform is complex and is converted into a real waveform for transmission by adding its
complex conjugate. The resulting real passband waveform is then

x(t) = u(t)e2πifct + u∗(t)e−2πifct . (6.23)

Note that the passband waveform for PAM in (6.21) is a special case of this in which u(t) is real.
The passband waveform x(t) in (6.23) can also be written in the following equivalent ways:

x(t) = 2�{u(t)e2πifct} (6.24)
= 2�{u(t)} cos(2πfct) − 2�{u(t)} sin(2πfct) . (6.25)

The factor of 2 in (6.24) and (6.25) is an arbitrary scale factor. Some authors leave it out, (thus
requiring a factor of 1/2 in (6.23)) and others replace it by

√
2 (requiring a factor of 1/

√
2 in

(6.23)). This scale factor (however chosen) causes additional confusion when we look at the
energy in the waveforms. With the scaling here, ‖x‖2 = 2‖u‖2. Using the scale factor

√
2

solves this problem, but introduces many other problems, not least of which is an extraordinary
number of

√
2’s in equations. At one level, scaling is a trivial matter, but although the literature

is inconsistent, we have tried to be consistent here. One intuitive advantage of the convention
here, as illustrated in Figure 6.4 is that the positive frequency part of x(t) is simply u(t) shifted
up by fc.

The remainder of this section provides a more detailed explanation of QAM, and thus also
of a number of issues about PAM. A QAM modulator (see figure 6.5) has the same 3 layers
as a PAM modulator, i.e., first mapping a sequence of bits to a sequence of complex signals,
then mapping the complex sequence to a complex baseband waveform, and finally mapping the
complex baseband waveform to a real passband waveform.

The demodulator, not surprisingly, performs the inverse of these operations in reverse order,
first mapping the received bandpass waveform into a baseband waveform, then recovering the

13An alternate approach is single-sideband modulation. Here either the positive or negative sideband of a
double-sideband waveform is filtered out, thus reducing the transmitted bandwidth by a factor of 2. This used to
be quite popular for analog communication but is harder to implement for digital communication than QAM.
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sequence of signals, and finally recovering the binary digits. Each of these layers is discussed in
turn.

Input
Binary� Signal

encoder
� Baseband

modulator
�Baseband to

passband

�

Channel

Baseband
Demodulator

� Passband to
basebandOutput

Binary� Signal
decoder

� �

Figure 6.5: QAM modulator and demodulator.

6.5.1 QAM signal set

The input bit sequence arrives at a rate of R b/s and is converted, b bits at a time, into a
sequence of complex signals uk chosen from a signal set (alphabet, constellation) A of size
M = |A| = 2b. The signal rate is thus Rs = R/b signals per second, and the signal interval is
T = 1/Rs = b/R sec.

In the case of QAM, the transmitted signals uk are complex numbers uk ∈ C, rather than real
numbers. Alternatively, we may think of each signal as a real 2-tuple in R2.

A standard (M ′ × M ′)-QAM signal set, where M = (M ′)2 is the Cartesian product of two
M ′-PAM sets; i.e.,

A = {(a′ + ia′′) | a′ ∈ A′, a′′ ∈ A′},

where

A′ = {−d(M ′ − 1)/2, . . . ,−d/2, d/2, . . . , d(M ′ − 1)/2}.

The signal set A thus consists of a square array of M = (M ′)2 = 2b signal points located
symmetrically about the origin, as illustrated below for M = 16.

� � � �
� � � �
� � � �
� � � �

d��

The minimum distance between the two-dimensional points is denoted by d. Also the average
energy per two-dimensional signal, which is denoted Es, is simply twice the average energy per
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dimension:

Es =
d2[(M ′)2 − 1]

6
=

d2[M − 1]
6

.

In the case of QAM there are clearly many ways to arrange the signal points other than on a
square grid as above. For example, in an M -PSK (phase-shift keyed) signal set, the signal points
consist of M equally spaced points on a circle centered on the origin. Thus 4-PSK = 4-QAM.
For large M it can be seen that the signal points become very close to each other on a circle so
that PSK is rarely used for large M . On the other hand, PSK has some practical advantages
because of the uniform signal magnitudes.

As with PAM, the probability of decoding error is primarily a function of the minimum distance
d. Not surprisingly, Es is linear in the signal power of the passband waveform. In wireless
systems the signal power is limited both to conserve battery power and to meet regulatory
requirements. In wired systems, the power is limited both to avoid crosstalk between adjacent
wires and frequency channels, and also to avoid nonlinear effects.

For all of these reasons, it is desirable to choose signal constellations that approximately minimize
Es for a given d and M . One simple result here is that a hexagonal grid of signal points achieves
smaller Es than a square grid for very large M and fixed minimum distance. Unfortunately,
finding the optimal signal set to minimize Es for practical values of M is a messy and ugly
problem, and the minima have few interesting properties or symmetries. We will not spend
further time on this other than a few exercises and will usually simply assume a standard
(M ′ × M ′)-QAM signal set, which is almost universally used in practice.

The standard (M ′ × M ′)-QAM signal set is almost universally used in practice and will be
assumed in what follows.

6.5.2 QAM baseband modulation and demodulation

A QAM baseband modulator is determined by the signal interval T and a complex L2 waveform
p(t). The discrete-time complex sequence {uk} of signal points modulates the amplitudes of a
sequence of time shifts {p(t−kT )} of the basic pulse p(t) to create a complex transmitted signal
u(t) as follows:

u(t) =
∑
k∈Z

ukp(t−kT ). (6.26)

As in the PAM case, we could choose p(t) to be sinc( t
T ), but for the same reasons as before, p(t)

should decay with increasing |t| faster than the sinc function. This means that p̂(f) should be
a continuous function that goes to zero rapidly but not instantaneously as f increases beyond
1/(2T ). As with PAM, we define Wb = 1

2T to be the nominal baseband bandwidth of the QAM
modulator and Bb to be the actual design bandwidth.

Assume for the moment that the process of conversion to passband, channel transmission, and
conversion back to baseband, is ideal, recreating the baseband modulator output u(t) at the
input to the baseband demodulator. The baseband demodulator is determined by the interval
T (the same as at the modulator) and an L2 waveform q(t). The demodulator filters u(t) by
q(t) and samples the output at T -spaced sample times. Denoting the filtered output by

r(t) =
∫ ∞

−∞
u(τ)q(t − τ) dτ,
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we see that the received samples are r(T ), r(2T ), . . . . Note that this is the same as the PAM
demodulator except that real signals have been replaced by complex signals. As before, the
output r(t) can be represented as

r(t) =
∑

k

ukg(t − kT ),

where g(t) is the convolution of p(t) and q(t). As before, r(kT ) = uk if g(t) is ideal Nyquist,
namely if g(0) = 1 and g(kT ) = 0 for all nonzero integer k.

The proof of the Nyquist criterion, Theorem 6.3.1, is valid whether or not g(t) is real. For the
reasons explained earlier, however, ĝ(f) is usually real and symmetric (as with the raised cosine
functions) and this implies that g(t) is also real and symmetric.

Finally, as discussed with PAM, p̂(f) is usually chosen to satisfy |p̂(f)| =
√

ĝ(f). Choosing
p̂(f) in this way does not specify the phase of p̂(f), and thus p̂(f) might be real or complex.
However p̂(f) is chosen, subject to |ĝ(f)|2 satisfying the Nyquist criterion, the set of time shifts
{p(t−kT )} form an orthonormal set of functions. With this choice also, the baseband bandwidth
of u(t), p(t), and g(t) are all the same. Each has a nominal baseband bandwidth given by 1

2T
and each has an actual baseband bandwidth that exceeds 1

2T by some small rolloff factor. As
with PAM, p(t) and q(t) must be truncated in time to allow finite delay. The resulting filters
are then not quite bandlimited, but is viewed as a negligible implementation error.

In summary, QAM baseband modulation is virtually the same as PAM baseband modulation.
The signal set for QAM is of course complex, and the modulating pulse p(t) can be complex,
but the Nyquist results about avoiding intersymbol interference are unchanged.

6.5.3 QAM: baseband to passband and back

Next we discuss modulating the complex QAM baseband waveform u(t) to the passband wave-
form x(t). Alternative expressions for x(t) are given by (6.23), (6.24). and (6.25) and the
frequency representation is illustrated in Figure 6.4.

As with PAM, u(t) has a nominal baseband bandwidth Wb = 1
2T . The actual baseband band-

width Bb exceeds Wb by some small rolloff factor. The corresponding passband waveform x(t)
has a nominal passband bandwidth W = 2Wb = 1

T and an actual passband bandwidth B = 2Bb.
We will assume in everything to follow that B/2 < fc. Recall that u(t) and x(t) are idealized
approximations of the true baseband and transmitted waveforms. These true baseband and
transmitted waveforms must have finite delay and thus infinite bandwidth, but it is assumed
that the delay is large enough that the approximation error is negligible. The assumption14

B/2 < fc implies that u(t)e2πifct is constrained to positive frequencies and u(t)e−2πifct to nega-
tive frequencies. Thus the Fourier transform û(f−fc) does not overlap with û(f+fc).

As with PAM, the modulation from baseband to passband is viewed as a two step process.
First u(t) is translated up in frequency by an amount fc, resulting in a complex passband
waveform x+(t) = u(t)e2πifct. Next x+(t) is converted to the real passband waveform x(t) =
[x+(t)]∗ + x+(t).

14Exercise 6.11 shows that when this assumption is violated, u(t) can not be perfectly retrieved from x(t), even
in the absence of noise. The negligible frequency components of the truncated version of u(t) outside of B/2 are
assumed to cause negligible error in demodulation.
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Assume for now that x(t) is transmitted to the receiver with no noise and no delay. In principle,
the received x(t) can be modulated back down to baseband by the reverse of the two steps used
in going from baseband to passband. That is, x(t) must first be converted back to the complex
positive passband waveform x+(t), and then x+(t) must be shifted down in frequency by fc.

Mathematically, x+(t) can be retrieved from x(t) simply by filtering x(t) by a complex filter
h(t) such that ĥ(f) = 0 for f < 0 and ĥ(f) = 1 for f > 0. This filter is called a Hilbert filter.
Note that h(t) is not an L2 function, but it can be converted to L2 by making ĥ(f) have the
value 0 except in the positive passband [−B

2 +fc,
B
2 +fc] where it has the value 1. We can then

easily retrieve u(t) from x+(t) simply by a frequency shift. Figure 6.6 illustrates the sequence
of operations from u(t) to x(t) and back again.

u(t)� ����
e2πifct

�x+(t)
2�{ } �x(t) Hilbert

filter
�x+(t) ����

e−2πifct

�u(t)

︸ ︷︷ ︸
transmitter

︸ ︷︷ ︸
receiver

Figure 6.6: Baseband to passband and back.

6.5.4 Implementation of QAM

From an implementation standpoint, the baseband waveform u(t) is usually implemented as
two real waveforms, �{u(t)} and �{u(t)}. These are then modulated up to passband using
multiplication by in-phase and out-of-phase carriers as in (6.25), i.e.,

x(t) = 2�{u(t)} cos(2πfct) − 2�{u(t)} sin(2πfct).

There are many other possible implementations, however, such as starting with u(t) given as
magnitude and phase. The positive frequency expression x+(t) = u(t)e2πifct is a complex multi-
plication of complex waveforms which requires 4 real multiplications rather than the two above
used to form x(t) directly. Thus going from u(t) to x+(t) to x(t) provides insight but not ease
of implementation.

The baseband waveforms �{u(t)} and �{u(t)} are easier to generate and visualize if the modulat-
ing pulse p(t) is also real. From the discussion of the Nyquist criterion, this is not a fundamental
limitation, and there are few reasons for desiring a complex p(t). For real p(t),

�{u(t)} =
∑

k

�{uk} p(
t

T
−k),

�{u(t)} =
∑

k

�{uk} p(
t

T
−k).

Letting u′
k = �{uk} and u′′

k = �{uk}, the transmitted passband waveform becomes

x(t) = 2 cos(2πfct)

(∑
k

u′
kp(t−kT )

)
− 2 sin(2πfct)

(∑
k

u′′
kp(t−kT )

)
. (6.27)

If the QAM signal set is a standard QAM set, then
∑

k u′
kp(t−kT ) and

∑
k u′′

kp(t−kT ) are
parallel baseband PAM systems. They are modulated to passband using “double-sideband”
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modulation by “quadrature carriers” cos 2πfct and − sin 2πfct. These are then summed (with
the usual factor of 2), as shown in Figure 6.7. This realization of QAM is called double-sideband
quadrature-carrier (DSB-QC) modulation15.

{u′′
k}�

∑
k

u′′
kδ(t−kT ) � filter

p(t)
�

∑
k u′′

kp(t−kT ) ����
− sin 2πfct 


{u′
k}�

∑
k

u′
kδ(t−kT ) � filter

p(t)
�

∑
k u′

kp(t−kT ) ����
cos 2πfct

��+ �x(t)

Figure 6.7: DSB-QC modulation

We have seen that u(t) can be recovered from x(t) by a Hilbert filter followed by shifting down
in frequency. A more easily implemented but equivalent procedure starts by multiplying x(t)
both by cos(2πfct) and by − sin(2πfct).

Using the trigonometric identities 2 cos2(α) = 1 + cos(2α), 2 sin(α) cos(α) = sin(2α), and
2 sin2(α) = 1 − cos(2α), these terms can be written as

x(t) cos(2πfct) = �{u(t)} + �{u(t)} cos(4πfct) + �{u(t)} sin(4πfct), (6.28)
−x(t) sin(2πfct) = �{u(t)} − �{u(t)} sin(4πfct) + �{u(t)} cos(4πfct). (6.29)

To interpret this, note that multiplying by cos(2πfct) = 1
2e2πifct + 1

2e−2πifct both shifts x(t) up16

and down in frequency by fc. Thus the positive frequency part of x(t) gives rise to a baseband
term and a term around 2fc, and the negative frequency part gives rise to a baseband term and a
term at −2fc. Filtering out the double frequency terms then yields �{u(t)}. The interpretation
of the sine multiplication is similar.

As another interpretation, recall that x(t) is real and consists of one band of frquencies around
fc and another around −fc. Note also that (6.28) and (6.29) are the real and imaginary parts
of x(t)e−2πifct, which shifts the positive frequency part of x(t) down to baseband and shifts the
negative frequency part down to a band around −2fc. In the Hilbert filter approach, the lower
band is filtered out before the frequency shift, and in the approach here, it is filtered out after
the frequency shift. Clearly the two are equivalent.

It has been assumed throughout that fc is greater than the baseband bandwidth of u(t). If this
is not true, then, as shown in Exercise 6.11, u(t) can not be retrieved from x(t) by any approach.

Now assume that the baseband modulation filter p(t) is real and a standard QAM signal set is
used. Then �{u(t)} =

∑
u′

kp(t−kT ) and �{u(t)} =
∑

u′′
kp(t−kT ) are parallel baseband PAM

15The terminology comes from analog modulation where two real analog waveforms are modulated respectively
onto cosine and sine carriers. For analog modulation, it is customary to transmit an additional component of
carrier from which timing and phase can be recovered. As we see shortly, no such additional carrier is necessary
here.

16This shift up in frequency is a little confusing, since x(t)e−2πifct = x(t) cos(2πfct)− ix(t) sin(2πfct) is only a
shift down in frequency. What is happening is that x(t) cos(2πfct) is the real part of x(t)e−2πifct and thus needs
positive frequency terms to balance the negative frequency terms.
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modulations. Assume also that a receiver filter q(t) is chosen so that ĝ(f) = p̂(f)q̂(f) satisfies
the Nyquist criterion and all the filters have the common bandwidth Bb < fc. Then, from
(6.28), if x(t) cos(2πfct) is filtered by q(t), it can be seen that q(t) will filter out the component
around 2fc. The output from the remaining component, �{u(t)} can then be sampled to retrieve
the real signal sequence u′

1, u
′
2, . . . . This plus the corresponding analysis of −x(t) sin(2πfct) is

illustrated in the DSB-QC receiver in Figure 6.8. Note that the use of the filter q(t) eliminates
the need for either filtering out the double frequency terms or using a Hilbert filter.

{u′′
k}�T spaced

sampler
�receive filter

q(t)
�����

− sin 2πfct

�

{u′
k}�T spaced

sampler
�receive filter

q(t)
�����

cos 2πfct

�

�x(t)

Figure 6.8: DSB-QC demodulation

The above description of demodulation ignores the noise. As explained in Section 6.3.2, however,
if p(t) is chosen so that {p(t−kT ); k ∈ Z} is an orthonormal set (i.e., so that |p̂(f)|2 satisfies
the Nyquist criterion), then the receiver filter should satisfy q(t) = p(−t). It will be shown later
that in the presence of white Gaussian noise, this is the optimal thing to do (in a sense to be
described later).

6.6 Signal space and degrees of freedom

Using PAM, real signals can be generated at T -spaced intervals and transmitted in a baseband
bandwidth arbitrarily little more than Wb = 1

2T . Thus, over an asymptotically long interval T0,
and in a baseband bandwidth asymptotically close to Wb, 2WbT0 real signals can be transmitted
using PAM.

Using QAM, complex signals can be generated at T -spaced intervals and transmitted in a pass-
band bandwidth arbitrarily little more than W = 1

T . Thus, over an asymptotically long interval
T0, and in a passband bandwidth asymptotically close to W, WT0 complex signals, and thus
2WT0 real signals can be transmitted using QAM.

The above description described PAM at baseband and QAM at passband. To get a better com-
parison of the two, consider an overall large baseband bandwidth W0 broken into m passbands
each of bandwidth W0/m. Using QAM in each band, we can asymptotically transmit 2W0T0 real
signals in a long interval T0. With PAM used over the entire band W0, we again asyptotically
send 2W0T0 real signals in a duration T0. We see that in principle, QAM and baseband PAM
are equivalent in terms of the number of degrees of freedom that can be used to transmit real
signals. As pointed out earlier, however, PAM when modulated up to passband uses only half
the available degrees of freedom. Also, QAM offers considerably more flexibility since it can be
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used over an arbitrary selection of frequency bands.

Recall that when we were looking at T -spaced truncated sinusoids and T -spaced sinc weighted
sinusoids, we argued that the class of real waveforms occupying a time interval (−T0/2, T0/2)
and a frequency interval (−W0,W0) has about 2T0W0 degrees of freedom for large W0, T0. What
we see now is that baseband PAM and passband QAM each employ about 2T0W0 degrees of
freedom. In other words, these simple techniques essentially use all the degrees of freedom
available in the given bands.

The use of Nyquist theory here has added to our understanding of waveforms that are “essen-
tially” time and frequency limited. That is, we can start with a family of functions that are
bandlimited within a rolloff factor and then look at asymptotically small rolloffs. The discussion
of noise in the next two chapters will provide a still better understanding of degrees of freedom
subject to essential time and frequency limits.

6.6.1 Distance and orthogonality

Previous sections have shown how to modulate a complex QAM baseband waveform u(t) up to
a real passband waveform x(t) and how to retrieve u(t) from x(t) at the receiver. They have also
discussed signal constellations that minimize energy for given minimum distance. Finally, the
use of a modulation waveform p(t) with orthonormal shifts, has connected the energy difference
between two baseband signal waveforms, say u(t) =

∑
ukp(t − kT ) and v(t) =

∑
k vkp(t − kt)

and the energy difference in the signal points by

‖u − v‖2 =
∑

k

|uk − vk|2.

Now consider this energy difference at passband. The energy ‖x‖2 in the passband waveform
x(t) is twice that in the corresponding baseband waveform u(t). Next suppose that x(t) and
y(t) are the passband waveforms arising from the baseband waveforms u(t) and v(t) respectively.
Then

x(t) − y(t) = 2�{u(t)e2πifct} − 2�{v(t)e2πifct} = 2�{[u(t)−v(t)]e2πifct}.

Thus x(t) − y(t) is the passband waveform corresponding to u(t) − v(t), so

‖x(t) − y(t)‖2 = 2‖u(t) − v(t)‖2 .

This says that for QAM and PAM, distances between waveforms are preserved (aside from the
scale factor of 2 in energy or

√
2 in distance) in going from baseband to passband. Thus distances

are preserved in going from signals to baseband waveforms to passband waveforms and back.
We will see later that the error probability caused by noise is essentially determined by the
distances between the set of passband source waveforms. This error probability is then simply
related to the choice of signal constellation and the discrete coding that precedes the mapping
of data into signals.

This preservation of distance through the modulation to passband and back is a crucial aspect
of the signal space viewpoint of digital communication. It provides a practical focus to viewing
waveforms at baseband and passband as elements of related L2 inner product spaces.

There is unfortunately a mathematical problem in this very nice story. The set of baseband
waveforms forms a complex inner product space whereas the set of passband waveforms consti-
tutes a real inner product space. The transformation x(t) = �{u(t)e2πifct} is not linear, since,
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for example, iu(t) does not map into ix(t) for u(t) �= 0). In fact, the notion of a linear trans-
formation does not make much sense, since the transformation goes from complex L2 to real L2

and the scalars are different in the two spaces.

Example 6.6.1. As an important example, suppose the QAM modulation pulse is a real wave-
form p(t) with orthonormal T -spaced shifts. The set of complex baseband waveforms spanned by
the orthonormal set {p(t−kT ); k ∈ Z} has the form

∑
k ukp(t − kT ) where each uk is complex.

As in (6.27), this is transformed at passband to∑
k

ukp(t − kT ) →
∑

k

2�{uk}p(t − kT ) cos(2πft) − 2
∑

k

�{uk}p(t − kT ) sin(2πft).

Each baseband function p(t−kT ) is modulated to the passband waveform is 2p(t−kT ) cos(2πfct).
The set of functions {p(t−kT ) cos(2πfct); k ∈ Z} is not enough to span the space of modulated
waveforms, however. It is necessary to add the additional set {p(t−kT ) sin(2πfct); k ∈ Z}. As
shown in Exercise 6.15, This combined set of waveforms is an orthogonal set, each of energy 2.

Another way to look at this example is to observe that modulating the baseband function
u(t) into the positive passband function x+(t) = u(t)e2πifct is somewhat easier to under-
stand in that the orthonormal set {p(t−kT ); k ∈ Z} is modulated to the orthonormal set
{p(t−kT )e2πifct; k ∈ Z}, which can be seen to span the space of complex positive frequency pass-
band source waveforms. The additional set of orthonormal waveforms {p(t−kT )e−2πifct; k ∈ Z}
is then needed to span the real passband source waveforms. We then see that the sine, cosine
series is simply another way to express this. In the sine, cosine formulation all the coefficients in
the series are real, whereas in the complex exponential formulation, there is a real and complex
coefficient for each term, but they are pairwise dependent. It will be easier to understand the
effects of noise in the sine, cosine formulation.

In the above example, we have seen that each orthonormal function at baseband gives rise to
two real orthonormal functions at passband. It can be seen from a degrees of freedom argument
that this is inevitable no matter what set of orthonormal functions are used at baseband. For a
nominal passband bandwidth W, there are 2W real degrees of freedom per second in the baseband
complex source waveform, which means there 2 real degrees of freedom for each orthonormal
baseband waveform. At passband, we have the same 2W degrees of freedom per second, but
with a real orthonormal expansion, there is only one real degree of freedom for each orthonormal
waveform. Thus there must be two passband real orthonormal waveforms for each baseband
complex orthonormal waveform.

The sine, cosine expansion above generalizes in a nice way to an arbitrary set of complex or-
thonormal baseband functions. Each complex function in this baseband set generates two real
functions in an orthogonal passband set. This is expressed precisely in the following theorem
which is proven in Exercise 6.16.

Theorem 6.6.1. Let {θk(t) : k ∈ Z} be an orthonormal set limited to the frequency band
[−B/2, B/2]. Let fc be greater than B/2 and for each k ∈ Z let

ψk,1(t) = �
{

2θk(t) e2πifct
}

,

ψk,2(t) = �
{
−2θk(t) e2πifct

}
.

The set {ψk,i; k ∈ Z, i ∈ {1, 2}} is an orthogonal set of functions, each of energy 2. Furthermore,
if u(t) =

∑
k ukθk(t), then the corresponding passband function x(t) = 2�{u(t)e2πifct} is given
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by

x(t) =
∑

k

�{uk}ψk,1(t) + �{uk}ψk,2(t).

This gives us a very general way to map any orthonormal set at baseband into a related or-
thonormal set at passband, with two real orthonormal functions at passband corresponding to
each orthonormal function at baseband. It is not limited to any particular type of modulation,
and thus will allow us to make general statements about signal space at baseband and passband.

6.7 Carrier and phase recovery in QAM systems

Consider a QAM receiver and visualize the passband-to-baseband conversion as multiplying the
positive frequency passband by the complex sinusoid e−2πifct. If the receiver has a phase error
φ(t) in its estimate of the phase of the transmitted carrier, then it will instead multiply the
incoming waveform by e−2πifct+iφ(t). We assume in this analysis that the time reference at the
receiver is perfectly known, so that the sampling of the filtered output is done at the correct
time. Thus the assumption is that the oscillator at the receiver is not quite in phase with the
oscillator at the transmitter. Note that the carrier frequency is usually orders of magnitude
higher than the baseband bandwidth, and thus a small error in timing is significant in terms
of carrier phase but not in terms of sampling. The carrier phase error will rotate the correct
complex baseband signal u(t) by φ(t); i.e., the actual received baseband signal r(t) will be

r(t) = eiφ(t)u(t).

If φ(t) is slowly time-varying relative to the response q(t) of the receiver filter, then the samples
{r(kT )} of the filter output will be

r(kT ) ≈ eiφ(kT )uk,

as illustrated in Figure 6.9. The phase error φ(t) is said to come through coherently. This phase
coherence makes carrier recovery easy in QAM systems.

� � � �
� � � �
� � � �
� � � ��# �$

%&
'(

')
%*

�+ ��

Figure 6.9: Rotation of constellation points by phase error

As can be seen from the figure, if the phase error is small enough, and the set of points in the
constellation are well enough separated, then the phase error can be simply corrected by moving
to the closest signal point and adjusting the phase of the demodulating carrier accordingly.

There are two complicating factors here. The first is that we have not taken noise into account
yet. When the received signal y(t) is x(t)+n(t), then the output of the T spaced sampler is not
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the original signals {uk}, but rather a noise corrupted version of them. The second problem is
that if a large phase error ever occurs, it can not be corrected. For example, in Figure 6.9, if
φ(t) = π/2, then even in the absence of noise, the received samples always line up with signals
from the constellation (but of course not the transmitted signals).

6.7.1 Tracking phase in the presence of noise

The problem of deciding on or detecting the signals {uk} from the received samples {r(kT )}
in the presence of noise is a major topic of Chapter 8. Here, however, we have the added
complication of both detecting the transmitted signals and also tracking and eliminating the
phase error.

Fortunately, the problem of decision making and that of phase tracking are largely separable.
The oscillators used to generate the modulating and demodulating carriers are relatively stable
and have phases which change quite slowly relative to each other. Thus the phase error with
any kind of reasonable tracking will be quite small, and thus the data signals can be detected
from the received samples almost as if the phase error were zero. The difference between the
received sample and the detected data signal will still be nonzero, mostly due to noise but partly
due to phase error. However, the noise has zero mean (as we understand later) and thus tends
to average out over many sample times. Thus the general approach is to make decisions on the
data signals as if the phase error is zero, and then to make slow changes to the phase based on
averaging over many sample times. This approach is called decision directed carrier recovery.
Note that if we track the phase as phase errors occur, we are also tracking the carrier, in both
frequency and phase.

In a decision directed scheme, assume that the received sample r(kT ) is used to make a decision
dk on the transmitted signal point uk. Also assume that dk = uk with very high probability.
The apparent phase error for the kth sample is then the difference between the phase of r(kT )
and the phase of dk. Any method for feeding back the apparent phase error to the generator of
the sinusoid e−2πifct+iφ(t) in such a way as to slowly reduce the apparent phase error will tend
to produce a robust carrier recovery system.

In one popular method, the feedback signal is taken as the imaginary part of r(kT )d∗k. If the
phase angle from dk to r(kT ) is φk, then

r(kT )d∗k = |r(kT )||dk| eiφk ,

so the imaginary part is |r(kT )||dk| sinφk ≈ |r(kT )||dk|φk, when φk is small. Decision-directed
carrier recovery based on such a feedback signal can be extremely robust even in the presence
of substantial distortion and large initial phase errors. With a second-order phase-locked carrier
recovery loop, it turns out that the carrier frequency fc can be recovered as well.

6.7.2 Large phase errors

A problem with decision-directed carrier recovery and with many other approaches is that the
recovered phase may settle into any value for which the received eye pattern (i.e., the pattern of
a long string of received samples as viewed on a scope) “looks OK.” With (M ×M)-QAM signal
sets, as in Figure 6.9, the signal set has four-fold symmetry, and phase errors of 90◦, 180◦, or 270◦

are not detectable. Simple differential coding methods that transmit the “phase” (quadrantal)
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part of the signal information as a change of phase from the previous signal rather than as an
absolute phase can easily overcome this problem. Another approach is to resynchronize the
system frequently by sending some known pattern of signals. This latter approach is frequently
used in wireless systems where fading sometimes causes a loss of phase synchronization.
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6.E Exercises

6.1. (PAM) Consider standard M -PAM and assume that the signals are used with equal prob-
ability. Show that the average energy per signal Es = U2

k is equal to the average energy
U2 = d2M2/12 of a uniform continuous distribution over the interval [−dM/2, dM/2], mi-
nus the average energy (U − Uk)2 = d2/12 of a uniform continuous distribution over the
interval [−d/2, d/2]:

Es =
d2(M2 − 1)

12
.

This establishes (6.4). Verify the formula for M = 4 and M = 8.

6.2. (PAM) A discrete memoryless source emits binary equiprobable symbols at a rate of 1000
symbols per second. The symbols from a one second interval are grouped into pairs and
sent over a bandlimited channel using a standard 4-PAM signal set. The modulation uses
a signal interval 0.002 and pulse p(t) = sinc(t/T ).
(a) Suppose that a sample sequence u1, . . . , u500 of transmitted signals includes 115 ap-
pearances of 3d/2, 130 appearances of d/2, 120 appearances of −d/2, and 135 appear-
ances of −3d/2. Find the energy in the corresponding transmitted waveform u(t) =∑500

k=1 uk sinc( t
T −k) as a function of d.

(b) What is the bandwidth of the waveform u(t) in part (a)?
(c) Find E

[∫
U2(t) dt

]
where U(t) is the random waveform

∑500
k=1 Uk sinc( t

T −k).
(d) Now suppose that the binary source is not memoryless, but is instead generated by a
Markov chain where

Pr(Xi=1 | Xi−1=1) = Pr(Xi=0 | Xi−1=0) = 0.9.

Assume the Markov chain starts in steady state with Pr(X1=1) = 1/2. Using the mapping
(00 → a1), (01 → a2), (10 → a3), (11 → a4), find E[A2

k] for 1 ≤ k ≤ 500.
(e) Find E

[∫
U2(t) dt

]
for this new source.

(f) For the above Markov chain, explain how we could change the above mapping to reduce
the expected energy without changing the separation between signal points.

6.3. (a) Assume that the received signal in a 4-PAM system is Vk = Uk + Zk where Uk is the
transmitted 4-PAM signal at time k. Let Zk be independent of Uk and Gaussian with

density fZ(z) =
√

1
2π exp

{
− z2

2

}
. Assume that the receiver chooses the signal Ũk closest

to Zk. (It is shown in Chapter 8 that this detection rule minimizes Pe for equiprobable
signals.) Find the probability Pe (in terms of Gaussian integrals) that Uk �= Ũk.
(b) Evaluate the partial derivitive of Pe with respect to the third signal point a3 (i.e., the
positive inner signal point) at the point where a3 is equal to its value d/2 in standard
4-PAM and all other signal points are kept at their 4-PAM values. Hint: This doesn’t
require any calculation.
(c) Evaluate the partial derivitive of the signal energy Es with respect to a3.
(d) Argue from this that the minimum error probability signal constellation for 4 equiprob-
able signal points is not 4-PAM, but rather a constellation where the distance between the
inner points is smaller than the distance from inner point to outer point on either side.
(This is quite surprising intuitively to the author.)
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6.4. (Nyquist) Suppose that the PAM modulated baseband waveform u(t) =
∑∞

k=−∞ ukp(t−kT )
is received. That is, u(t) is known, T is known, and p(t) is known. We want to determine
the signals {uk} from u(t). We assume we must use only linear operations. That is, we
wish to find some waveform dk(t) for each integer k such that

∫ ∞
−∞ u(t)dk(t) dt = uk.

(a) What properites must be satisfied by dk(t) such that the above equation is satisfied no
matter what values are taken by the other signals, . . . , uk−2, uk−1, uk+1, uk+2, . . . ? These
properties should take the form of constraints on the inner products 〈p(t − kT ), dj(t)〉. Do
not worry about convergence, interchange of limits, etc.
(b) Suppose you find a function d0(t) that satisfies these constraints for k = 0. Show that
for each k, a function dk(t) satisfying these constraints can be found simply in terms of
d0(t).
(c) What is the relationship between d0(t) and a function q(t) that avoids intersymbol
interference in the approach taken in Section 6.3 (i.e., a function q(t) such that p(t) ∗ q(t)
is ideal Nyquist).
You have shown that the filter/sample approach in Section 6.3 is no less general than the
arbitrary linear operation approach here. Note that, in the absence of noise and with a
known signal constellation, it might be possible to retrieve the signals from the waveform
using nonlinear operations even in the presence of intersymbol interference.

6.5. (Nyquist) Let v(t) be a continuous L2 waveform with v(0) = 1 and define g(t) =
v(t) sinc( t

T ).
(a) Show that g(t) is ideal Nyquist with interval T .
(b) Find ĝ(f) as a function of v̂(f).
(c) Give a direct demonstration that ĝ(f) satisfies the Nyquist criterion.
(d) If v(t) is baseband limited to Bb, what is g(t) baseband limited to?
Note: The usual form of the Nyquist criterion helps in choosing waveforms that avoid
intersymbol interference with prescribed rolloff properties in frequency. The approach
above show how to avoid intersymbol interference with prescribed attenuation in time
and in frequency.

6.6. (Nyquist) Consider a PAM baseband system in which the modulator is defined by a signal
interval T and a wveform p(t), the channel is defined by a filter h(t), and the receiver is
defined by a filter q(t) which is sampled at T -spaced intervals. The received waveform, after
the receive filter q(t), is then given by r(t) =

∑
k ukg(t−kT ) where g(t) = p(t) ∗h(t) ∗ q(t).

(a) What property must g(t) have so that r(kT ) = uk for all k and for all choices of input
{uk}? What is the Nyquist criterion for ĝ(f)?
(b) Now assume that T = 1/2 and that p(t), h(t), q(t) and all their Fourier transforms are
restricted to be real. Assume further that p̂(f) and ĥ(f) are given by

p̂(f) =


1, |f | ≤ 0.5;
1.5 − t, 0.5 < |f | ≤ 1.5
0, |f | > 1.5

ĥ(f) =


1, |f | ≤ 0.75;
0, 0.75 < |f | ≤ 1
1, 1 < |f | ≤ 1.25
0, |f | > 1.25

0 1
2

3
2

p̂(f)1

0 3
4

5
4

ĥ(f)1
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Is it possible to choose a receive filter transform q̂(f) so that there is no intersymbol
interference? If so, give such a q̂(f) and indicate the regions in which your solution is
nonunique.
(c) Redo part (b) with the modification that now ĥ(f) = 1 for |f | ≤ 0.75 and ĥ(f) = 0 for
|f | > 0.75.
(d) Explain the conditions on p̂(f)ĥ(f) under which intersymbol interference can be avoided
by proper choice of q̂(f) (you may assume, as above, that p̂(f), ĥ(f), p(t), and h(t) are all
real).

6.7. (Nyquist) Recall that the rect(t/T ) function has the very special property that it, plus its
time and frequency shifts by kT and j/T respectively, form an orthogonal set of functions.
The function sinc(t/T ) has this same property. This problem is about some other functions
that are generalizations of rect(t/T ) and which, as you will show in parts (a) to (d), have
this same interesting property. For simplicity, choose T to be 1.
These functions take only the values 0 and 1 and are allowed to be nonzero only over [-1,
1] rather than [−1/2, 1/2] as with rect(t). Explicitly, the functions considered here satisfy
the following constraints:

p(t) = p2(t) for all t (0/1 property) (6.30)
p(t) = 0 for |t| > 1 (6.31)
p(t) = p(−t) for all t (symmetry) (6.32)
p(t) = 1 − p(t−1) for 0 ≤ t < 1/2. (6.33)

Note: Because of property (6.32), condition (6.33) also holds for 1/2 < t ≤ 1. Note also
that p(t) at the single points t = ±1/2 does not effect any orthogonality properties, so you
are free to ignore these points in your arguments.

−1/2 1/2

1

rect(t)

another choice
of p(t) that
satisfies (1) to (4).

−1 −1/2 0 1/2 1

(a) Show that p(t) is orthogonal to p(t−1). Hint: evaluate p(t)p(t−1) for each t ∈ [0, 1]
other than t = 1/2.
(b) Show that p(t) is orthogonal to p(t−k) for all integer k �= 0.
(c) Show that p(t) is orthogonal to p(t−k)e2πimt for integer m �= 0 and k �= 0.
(d) Show that p(t) is orthogonal to p(t)e2πimt for integer m �= 0. Hint: Evaluate
p(t)e−2πimt + p(t−1)e−2πim(t−1).
(e) Let h(t) = p̂(t) where p̂(f) is the Fourier transform of p(t). If p(t) satisfies properties
(1) to (4), does it follow that h(t) has the property that it is orthogonal to h(t − k)e2πimt

whenever either the integer k or m is nonzero?
Note: Almost no calculation is required in this exercise.

6.8. (Nyquist) (a) For the special case α = 1, T = 1, verify the formula in (6.18) for ĝ1(f) given
g1(t) in (6.17). Hint: As an intermediate step, verify that g1(t) = sinc(2t)+ 1

2 sinc(2t+1)+
1
2 sinc(2t − 1). Sketch g1(t), in particular showing its value at mT/2 for each m ≥ 0.
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(b) For the general case 0 < α < 1, T = 1, show that ĝα(f) is the convolution of rect t with
a single cycle of cos παt.
(c) Verify (6.18) for 0 < α < 1, T = 1 and then verify for arbitrary T > 0.

6.9. (Approximate Nyquist)This exercise shows that approximations to the Nyquist criterion
must be treated with great care. Define ĝk(f), for integer k ≥ 0 as in the diagram below
for k = 2. For arbitrary k, there are k small pulses on each side of the main pulse, each of
height 1

k .
1

1
2

−1 − 3
4

−2 − 7
4

− 1
4

0 1
4

3
4

1 7
4

2

(a) Show that ĝk(f) satisfies the Nyquist criterion for T = 1 and for each k ≥ 1.
(b) Show that l.i.m.

k→∞ ĝk(f) is simply the central pulse above. That is, this L2 limit
satisfies the Nyquist criterion for T = 1

2 . To put it another way, ĝk(f), for large k, satisfies
the Nyquist criterion for T = 1 using ‘approximately’ the bandwidth 1

4 rather than the
necessary bandwidth 1

2 . The problem is that the L2 notion of approximation (done carefully
here as a limit in the mean of a sequence of approximations) is not always appropriate, and
it is often inappropriate with sampling issues.

6.10. (Nyquist) (a) Assume that p̂(f) = q̂∗(f) and ĝ(f) = p̂(f)q̂(f). Show that if p(t) is real,
then ĝ(f) = ĝ(−f) for all f .
(b) Under the same assumptions, find an example where p(t) is not real but ĝ(f) �= ĝ(−f)
and ĝ(f) satisifes the Nyquist criterion. Hint: Show that ĝ(f) = 1 for 0 ≤ f ≤ 1 and
ĝ(f) = 0 elsewhere satisfies the Nyquist criterion for T = 1 and find the corresponding
p(t).

6.11. (Passband) (a) Let uk(t) = exp(2πifkt) for k = 1, 2 and let xk(t) = 2�{uk(t) exp(2πifct)}.
Assume f1 > −fc and find the f2 �= f1 such that x1(t) = x2(t).
(b) Explain that what you have done is to show that, without the assumption that the
bandwidth of u(t) is less than fc, it is impossible to always retrieve u(t) from x(t), even in
the absence of noise.
(c) Let y(t) be a real L2 function. Show that the result in part (a) remains valid if
uk(t) = y(t) exp(2πifkt) (i.e., show that the result in part (a) is valid with a restriction to
L2 functions.
(d) Show that if u(t) is restricted to be real, then u(t) can be retrieved almost everywhere
from x(t) = 2�{u(t) exp(2πifct)}. Hint: express x(t) in terms of cos(2πfct).
(e) Show that if the bandwidth of u(t) exceeds fc, then neither Figure 6.6 nor Figure 6.8
work correctly, even when u(t) is real.

6.12. (QAM) (a) Let θ1(t) and θ2(t) be orthonormal complex waveforms. Let φj(t) = θj(t)e2πifct

for j = 1, 2. Show that φ1(t) and φ2(t) are orthonormal for any fc.
(b) Suppose that θ2(t) = θ1(t−T ). Show that φ2(t) = φ1(t−T ) if fc is an integer multiple
of 1/T .

6.13. (QAM) (a) Assume B/2 < fc. Let u(t) be a real function and v(t) be an imaginary
function, both baseband limited to B/2. Show that the corresponding passband functions,
�{u(t)e2πifct} and �{v(t)e2πifct} are orthogonal.
(b) Give an example where the functions in part (a) are not orthogonal if B/2 > fc.
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6.14. (a) Derive (6.28) and (6.29) using trigonometric identities.
(b) View the left side of (6.28) and (6.29) as the real and imaginary part respectively of
x(t)e−2πifct. Rederive (6.28) and (6.29) using complex exponentials. (Note how much easier
this is than part (a).

6.15. (Passband expansions) Assume that {p(t−kT ) : k∈Z} is a set of orthonormal functions.
Assume that p̂(f) = 0 for |f | ≥ fc).
(a) Show that {

√
2p(t−kT ) cos(2πfct); k∈Z} is an orthonormal set.

(b) Show that {
√

2p(t−kT ) sin(2πfct); k∈Z} is an orthonormal set and that each function
in it is orthonormal to the cosine set in part (a).

6.16. (Passband expansions) Prove Theorem 6.6.1. Hint: First show that the set of functions
{ψ̂k,1(f)} and {ψ̂k,2(f)} are orthogonal with energy 2 by comparing the integral over neg-
ative frequencies with that over positive frequencies. Indicate explicitly why you need
fc > B/2.

6.17. (Phase and envelope modulation) This exercise shows that any real passband waveform
can be viewed as a combination of phase and amplitude modulation. Let x(t) be an L2

real passband waveform of bandwidth B around a carrier frequency fc > B/2. Let x+(t)
be the positive frequency part of x(t) and let u(t) = x+(t) exp{−2πifct}.
(a) Express x(t) in terms of �{u(t)},�{u(t)}, cos[2πfct], and sin[2πfct].

(b) Define φ(t) implicitly by eiφ(t) = u(t)
|u(t)| . Show that x(t) can be expressed as x(t) =

2|u(t)| cos[2πfct + φ(t)]. Draw a sketch illustrating that 2|u(t)| is a baseband waveform
upper-bounding x(t) and touching x(t) roughly once per cycle. Either by sketch or words,
illustrate that φ(t) is a phase modulation on the carrier.
(c) Define the envelope of a passband waveform x(t) as twice the magnitude of its positive
frequency part, i.e., as 2|x+(t)|. Without changing the waveform x(t) (or x+(t)) from that
before, change the carrier frequency from fc to some other frequency f ′

c. Thus u′(t) =
x+(t) exp{−2πif ′

ct}. Show that |x+(t)| = |u(t)| = |u′(t)|. Note that you have shown that
the envelope does not depend on the assumed carrier frequency, but has the interpretation
of part (b).
(d) Show the relationship of the phase φ′(t) for the carrier f ′

c to that for the carrier fc.
(e) Let p(t) = |x(t)|2 be the power in x(t). Show that if p(t) is lowpass filtered to bandwidth
B, the result is 2|u(t)|2. Interpret this filtering as a short term average over |x(t)|2 to
interpret why the envelope squared is twice the short term average power (and thus why
the envelope is

√
2 times short term root mean squared amplitude).

6.18. (Carrierless amplitude-phase modulation (CAP)) We have seen how to modulate a base-
band QAM waveform up to passband and then demodulate it by shifting down to baseband,
followed by filtering and sampling. This exercise explores the interesting concept of elim-
inating the baseband operations by modulating and demodulating directly at passband.
This approach is used in one of the North American standards for Asymmetrical Digital
Subscriber Loop (ADSL)
(a) Let {uk} be a complex data sequence and let u(t) =

∑
k uk p(t−kT ) be the correspond-

ing modulated output. Let p̂(f) be equal to
√

T over f ∈ [3/(2T ), 5/(2T )] and be equal to
0 elsewhere. At the receiver, u(t) is filtered using p(t) and the output y(t) is then T-space
sampled at time instants kT . Show that y(kT ) = uk for all k ∈ Z. Don’t worry about the
fact that the transmitted waveform u(t) is complex.
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(b) Now suppose that p̂(f) =
√

T rect(T (f−fc)] for some arbitrary fc rather than fc = 2/T
as in part (a). For what values of fc does the scheme still work?
(c) Suppose that �{u(t)} is now sent over a communication channel. Suppose that the
received waveform is filtered by a Hilbert filter before going through the demodulation
procedure above. Does the scheme still work?



Chapter 7

Random processes and noise

7.1 Introduction

Chapter 6 discussed modulation and demodulation, but replaced any detailed discussion of the
noise by the assumption that a minimal separation is required between each pair of signal points.
This chapter develops the underlying principles needed to understand noise, and the next chapter
shows how to use these principles in detecting signals in the presence of noise.

Noise is usually the fundamental limitation for communication over physical channels. This
can be seen intuitively by accepting for the moment that different possible transmitted wave-
forms must have a difference of some minimum energy to overcome the noise. This difference
reflects back to a required distance between signal points, which along with a transmitted power
constraint, limits the number of bits per signal that can be transmitted.

The transmission rate in bits per second is then limited by the product of the number of bits per
signal times the number of signals per second, i.e., the number of degrees of freedom per second
that signals can occupy. This intuitive view is substantially correct, but must be understood at
a deeper level which will come from a probabilistic model of the noise.

This chapter and the next will adopt the assumption that the channel output waveform has the
form y(t) = x(t) + z(t) where x(t) is the channel input and z(t) is the noise. The channel input
x(t) depends on the random choice of binary source digits, and thus x(t) has to be viewed as a
particular selection out of an ensemble of possible channel inputs. Similarly, z(t) is a particular
selection out of an ensemble of possible noise waveforms.

The assumption that y(t) = x(t) + z(t) implies that the channel attenuation is known and
removed by scaling the received signal and noise. It also implies that the input is not filtered or
distorted by the channel. Finally it implies that the delay and carrier phase between input and
output is known and removed at the receiver.

The noise should be modeled probabilistically. This is partly because the noise is a priori
unknown, but can be expected to behave in statistically predictable ways. It is also because
encoders and decoders are designed to operate successfully on a variety of different channels, all
of which are subject to different noise waveforms. The noise is usually modeled as zero mean,
since a mean can be trivially removed.

Modeling the waveforms x(t) and z(t) probabilistically will take considerable care. If x(t) and
z(t) were defined only at discrete values of time, such as {t = kT ; k ∈ Z}, then they could

199
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be modeled as sample values of sequences of random variables (rv’s). These sequences of rv’s
could then be denoted as X(t) = {X(kT ); k ∈ Z} and Z(t) = {Z(kT ); k ∈ Z}. The case of
interest here, however, is where x(t) and z(t) are defined over the continuum of values of t, and
thus a continuum of rv’s is required. Such a probabilistic model is known as a random process
or, synonomously, a stochastic process. These models behave somewhat similarly to random
sequences, but they behave differently in a myriad of small but important ways.

7.2 Random processes

A random process {Z(t); t ∈ R} is a collection1 of rv’s, one for each t ∈ R. The parameter t
usually models time, and any given instant in time is often referred to as an epoch. Thus there
is one rv for each epoch. Sometimes the range of t is restricted to some finite interval, [a, b],
and then the process is denoted as {Z(t); t ∈ [a, b]}.
There must be an underlying sample space Ω over which these rv’s are defined. That is, for
each epoch t ∈ R (or t ∈ [a, b]), the rv Z(t) is a function {Z(t, ω); ω∈Ω} mapping sample points
ω ∈ Ω to real numbers.

A given sample point ω ∈ Ω within the underlying sample space determines the sample values
of Z(t) for each epoch t. The collection of all these sample values for a given sample point ω,
i.e., {Z(t, ω); t ∈ R} is called a sample function {z(t); R → R} of the process.

Thus Z(t, ω) can be viewed as a function of ω for fixed t, in which case it is the rv Z(t),
or it can be viewed as a function of t for fixed ω, in which case it is the sample function
{z(t); R → R} = {Z(t, ω); t ∈ R} corresponding to the given ω. Viewed as a function of both
t and ω, {Z(t, ω); t ∈ R, ω ∈ Ω} is the random process itself; the sample point ω is usually
suppressed, denoting the process as {Z(t); t ∈ R}
Suppose a random process {Z(t); t ∈ R} models the channel noise and {z(t) : R → R} is a sample
function of this process. At first this seems inconsistent with the traditional elementary view
that a random process or set of rv’s models an experimental situation a priori (before performing
the experiment) and the sample function models the result a posteriori (after performing the
experiment). The trouble here is that the experiment might run from t = −∞ to t = ∞, so
there can be no “before” for the experiment and “after” for the result.

There are two ways out of this perceived inconsistency. First, the notion of ‘before and after’
in the elementary view is inessential; the only important thing is the view that a multiplicity of
sample functions might occur, but only one actually occurs. This point of view is appropriate in
designing a cellular telephone for manufacture. Each individual phone that is sold experiences
its own noise waveform, but the device must be manufactured to work over the multiplicity of
such waveforms.

Second, whether we view a function of time as going from −∞ to +∞ or going from some
large negative to large positive time is a matter of mathematical convenience. We often model
waveforms as persisting from −∞ to +∞, but this simply indicates a situation in which the
starting time and ending time are sufficiently distant to be irrelevant.

1Since a random variable is a mapping from Ω to R, the sample values of a rv are real and thus the sample
functions of a random process are real. It is often important to define objects called complex random variables
that map Ω to C. One can then define a complex random process as a process that maps each t ∈ R into a
complex random variable. These complex random processes will be important in studying noise waveforms at
baseband.
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In order to specify a random process {Z(t); t ∈ R}, some kind of rule is required from which joint
distribution functions can, at least in principle, be calculated. That is, for all positive integers
n, and all choices of n epochs t1, t2, . . . , tn, it must be possible (in principle) to find the joint
distribution function,

FZ(t1),... ,Z(tn)(z1, . . . , zn) = Pr{Z(t1) ≤ z1, . . . , Z(tn) ≤ zn}, (7.1)

for all choices of the real numbers z1, . . . , zn. Equivalently, if densities exist, it must be possible
(in principle) to find the joint density,

fZ(t1),... ,Z(tn)(z1, . . . , zn) =
∂nFZ(t1),... ,Z(tn)(z1, . . . , zn)

∂z1 · · · ∂zn
, (7.2)

for all real z1, . . . , zn. Since n can be arbitrarily large in (7.1) and (7.2), it might seem difficult
for a simple rule to specify all these quantities, but a number of simple rules are given in the
following examples that specify all these quantities.

7.2.1 Examples of random processes

The following generic example will turn out to be both useful and quite general. We saw earlier
that we could specify waveforms by the sequence of coefficients in an orthonormal expansion.
In the following example, a random process is similarly specified by a sequence of rv’s used as
coefficients in an orthonormal expansion.

Example 7.2.1. Let Z1, Z2, . . . , be a sequence of rv’s defined on some sample space Ω and
let {φ1(t)}, {φ2(t)}, . . . , be a sequence of orthogonal (or orthonormal) real functions. For each
t ∈ R, let the rv Z(t) be defined as Z(t) =

∑
k Zkφk(t). The corresponding random process

is then {Z(t); t ∈ R}. For each t, Z(t) is simply a sum of rv’s, so we could, in principle, find
its distribution function. Similarly, for each n-tuple, t1, . . . , tn of epochs, Z(t1), . . . , Z(tn) is an
n-tuple of rv’s whose joint distribution could in principle be found. Since Z(t) is a countably
infinite sum of rv’s,

∑∞
k=1 Zkφk(t), there might be some mathematical intricacies in finding, or

even defining, its distribution function. Fortunately, as will be seen, such intricacies do not arise
in the processes of most interest here.

It is clear that random processes can be defined as in the above example, but it is less clear
that this will provide a mechanism for constructing reasonable models of actual physical noise
processes. For the case of Gaussian processes, which will be defined shortly, this class of models
will be shown to be broad enough to provide a flexible set of noise models.

The next few examples specialize the above example in various ways.

Example 7.2.2. Consider binary PAM, but view the input signals as independent identically
distributed (iid) rv’s U1, U2, . . . , which take on the values ±1 with probability 1/2 each. Assume
that the modulation pulse is sinc( t

T ) so the baseband random process is

U(t) =
∑

k

Uk sinc
(

t − kT

T

)
.

At each sampling epoch kT , the rv U(kT ) is simply the binary rv Uk. At epochs between the
sampling epochs, however, U(t) is a countably infinite sum of binary rv’s whose variance will
later be shown to be 1, but whose distribution function is quite ugly and not of great interest.
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Example 7.2.3. A random variable is said to be zero-mean Gaussian if it has the probability
density

fZ(z) =
1√

2πσ2
exp[

−z2

2σ2
], (7.3)

where σ2 is the variance of Z. A common model for a noise process {Z(t); t ∈ R} arises by
letting

Z(t) =
∑

k

Zk sinc
(

t − kT

T

)
, (7.4)

where . . . , Z−1, Z0, Z1, . . . , is a sequence of iid zero-mean Gaussian rv’s of variance σ2. At
each sampling epoch kT , the rv Z(kT ) is the zero-mean Gaussian rv Zk. At epochs between
the sampling epochs, Z(t) is a countably infinite sum of independent zero-mean Gaussian rv’s,
which turns out to be itself zero-mean Gaussian of variance σ2. The next section considers sums
of Gaussian rv’s and their inter-relations in detail. The sample functions of this random process
are simply sinc expansions and are limited to the baseband [−1/(2T ), 1/(2T )]. This example, as
well as the previous example, brings out the following mathematical issue: the expected energy
in {Z(t); t ∈ R} turns out to be infinite. As discussed later, this energy can be made finite either
by truncating Z(t) to some finite interval much larger than any time of interest or by similarly
truncating the sequence {Zk; k ∈ Z}.
Another slightly disturbing aspect of this example is that this process cannot be ‘generated’
by a sequence of Gaussian rv’s entering a generating device that multiplies them by T -spaced
sinc functions and adds them. The problem is the same as the problem with sinc functions in
the previous chapter - they extend forever and thus the process cannot be generated with finite
delay. This is not of concern here, since we are not trying to generate random processes, only to
show that interesting processes can be defined. The approach here will be to define and analyze
a wide variety of random processes, and then to see which are useful in modeling physical noise
processes.

Example 7.2.4. Let {Z(t); t ∈ [−1, 1]} be defined by Z(t) = tZ for all t ∈ [−1, 1] where Z
is a zero-mean Gaussian rv of variance 1. This example shows that random processes can be
very degenerate; a sample function of this process is fully specified by the sample value z(t) at
t = 1. The sample functions are simply straight lines through the origin with random slope.
This illustrates that the sample functions of a random process do not necessarily “look” random.

7.2.2 The mean and covariance of a random process

Often the first thing of interest about a random process is the mean at each epoch t and
the covariance between any two epochs t, τ . The mean, E[Z(t)] = Z(t) is simply a real valued
function of t and can be found directly from the distribution function FZ(t)(z) or density fZ(t)(z).
It can be verified that Z(t) is 0 for all t for Examples 7.2.2, 7.2.3, and 7.2.4 above. For Example
7.2.1, the mean can not be specified without specifying more about the random sequence and
the orthogonal functions.

The covariance2 is a real-valued function of the epochs t and τ . It is denoted by KZ(t, τ) and
2This is often called the autocovariance to distinguish it from the covariance between two processes; we will

not need to refer to this latter type of covariance.
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defined by

KZ(t, τ) = E
[
[Z(t) − Z(t)][Z(τ) − Z(τ)]

]
. (7.5)

This can be calculated (in principle) from the joint distribution function FZ(t),Z(τ)(z1, z2) or from
the density fZ(t),Z(τ)(z1, z2). To make the covariance function look a little simpler, we usually
split each random variable Z(t) into its mean, Z(t), and its fluctuation, Z̃(t) = Z(t)−Z(t). The
covariance function is then

KZ(t, τ) = E
[
Z̃(t)Z̃(τ)

]
. (7.6)

The random processes of most interest to us are used to model noise waveforms and usually
have zero mean, in which case Z(t) = Z̃(t). In other cases, it often aids intuition to separate
the process into its mean (which is simply an ordinary function) and its fluctuation, which is by
definition zero mean.

The covariance function for the generic random process in Example 7.2.1 above can be written
as

KZ(t, τ) = E

[∑
k

Z̃kφk(t)
∑
m

Z̃mφm(τ)

]
. (7.7)

If we assume that the rv’s Z1, Z2, . . . are iid with variance σ2, then E[Z̃kZ̃m] = 0 for k �= m and
E[Z̃kZ̃m] = σ2 for k = m. Thus, ignoring convergence questions, (7.7) simplifies to

KZ(t, τ) = σ2
∑

k

φk(t)φk(τ). (7.8)

For the sampling expansion, where φk(t) = sinc( t
T − k), it can be shown (see (7.48)) that the

sum in (7.8) is simply sinc( t−τ
T ). Thus for Examples 7.2.2 and 7.2.3, the covariance is given by

KZ(t, τ) = σ2sinc
(

t − τ

T

)
where σ2 = 1 for the binary PAM case of Example 7.2.2. Note that this covariance depends
only on t − τ and not on the relationship between t or τ and the sampling points kT . These
sampling processes are considered in more detail later.

7.2.3 Additive noise channels

The communication channels of greatest interest to us are known as additive noise channels.
Both the channel input and the noise are modeled as random processes, {X(t); t ∈ R} and
{Z(t); t ∈ R}, both on the same underlying sample space Ω. The channel output is another
random process {Y (t); t ∈ R} and Y (t) = X(t) + Z(t). This means that for each epoch t the
random variable Y (t) is equal to X(t) + Z(t).

Note that one could always define the noise on a channel as the difference Y (t)−X(t) between
output and input. The notion of additive noise inherently also includes the assumption that the
processes {X(t); t ∈ R} and {Z(t); t ∈ R} are statistically independent.3

3More specifically, this means that for all k > 0, all epochs t1, . . . , tk, and all epochs τ1, . . . , τk, the rvs
X(t1), . . . , X(tk) are statistically independent of Z(τ1), . . . , Z(τk).



204 CHAPTER 7. RANDOM PROCESSES AND NOISE

As discussed earlier, the additive noise model Y (t) = X(t) + Z(t) implicitly assumes that the
channel attenuation, propagation delay, and carrier frequency and phase are perfectly known and
compensated for. It also assumes that the input waveform is not changed by any disturbances
other than the noise, Z(t).

Additive noise is most frequently modeled as a Gaussian process, as discussed in the next section.
Even when the noise is not modeled as Gaussian, it is often modeled as some modification of
a Gaussian process. Many rules of thumb in engineering and statistics about noise are stated
without any mention of Gaussian processes, but are often valid only for Gaussian processes.

7.3 Gaussian random variables, vectors, and processes

This section first defines Gaussian random variables (rv’s), then jointly-Gaussian random vec-
tors (rv’s), and finally Gaussian random processes. The covariance function and joint density
function for Gaussian random vectors are then derived. Finally several equivalent conditions for
rv’s to be jointly Gaussian are derived.

A rv W is a normalized Gaussian rv, or more briefly a normal4 rv, if it has the probability
density

fW (w) =
1√
2π

exp
[−w2

2

]
.

This density is symmetric around 0 and thus the mean of W is zero. The variance is 1, which is
probably familiar from elementary probability and is demonstrated in Exercise 7.1. A random
variable Z is a Gaussian rv if it is a scaled and shifted version of a normal rv, i.e., if Z = σW +Z̄
for a normal rv W . It can be seen that Z̄ is the mean of Z and σ2 is the variance5. The density
of Z (for σ2 > 0) is

fZ (z) =
1√

2πσ2
exp

[−(z−Z̄)2

(2σ2)

]
. (7.9)

A Gaussian rv Z of mean Z̄ and variance σ2 is denoted as Z ∼ N (Z̄, σ2). The Gaussian rv’s
used to represent noise are almost invariably zero-mean. Such rv’s have the density fZ(z) =

1√
2πσ2

exp[−z2

2σ2 ] and are denoted by Z ∼ N (0, σ2).

Zero-mean Gaussian rv’s are important in modeling noise and other random phenomena for the
following reasons:

• They serve as good approximations to the sum of many independent zero-mean rv’s (recall
the central limit theorem).

• They have a number of extremal properties; as discussed later, they are, in several senses,
the most random rv’s for a given variance.

• They are easy to manipulate analytically, given a few simple properties.

• They serve as common channel noise models, and in fact the literature often assumes that
noise is modeled by zero-mean Gaussian rv’s without explicitly stating it.

4Some people use normal rv as a synonym for Gaussian rv.
5It is convenient to denote Z as Gaussian even in the deterministic case where σ = 0, but (7.9) is invalid then.
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Definition 7.3.1. A set of n of random variables, Z1, . . . , Zn is zero-mean jointly Gaussian if
there is a set of iid normal rv’s W1, . . . , W	 such that each Zk, 1 ≤ k ≤ n, can be expressed as

Zk =
	∑

m=1

akmWm; 1 ≤ k ≤ n, (7.10)

where {akm; 1≤k≤n, 1≤m≤} is an array of real numbers. Z ′
1, . . . , Z ′

n is jointly Gaussian if
Z ′

k = Zk + Z̄ ′
k where the set Z1, . . . , Zn is zero-mean jointly Gaussian and Z̄ ′

1, . . . , Z̄ ′
n is a set of

real numbers.

It is convenient notationally to refer to a set of n random variables, Z1, . . . , Zn as a ran-
dom vector6 (rv) Z = (Z1, . . . , Zn)T. Letting A be the n by  real matrix with elements
{akm; 1≤k≤n, 1≤m≤}, (7.10) can then be represented more compactly as

Z = AW . (7.11)

Similarly the jointly-Gaussian random vector Z ′ above can be represented as Z ′ = AZ + Z̄
′

where Z̄
′ is an n-vector of real numbers.

In the remainder of this chapter, all random variables, random vectors, and random processes
are assumed to be zero-mean unless explicitly designated otherwise. Viewed differently, only the
fluctuations are analyzed with the means added at the end7.

It is shown in Exercise 7.2 that any sum
∑

m akmWm of iid normal rv’s W1, . . . , Wn is a Gaussian
rv, so that each Zk in (7.10) is Gaussian. Jointly Gaussian means much more than this, however.
The random variables Z1, . . . , Zn must also be related as linear combinations of the same set of
iid normal variables. Exercises 7.3 and 7.4 illustrate some examples of pairs of random variables
which are individually Gaussian but not jointly Gaussian. These examples are slightly artificial,
but illustrate clearly that the joint density of jointly-Gaussian rv’s is much more constrained
than the possible joint densities arising from constraining marginal distributions to be Gaussian.

The above definition of jointly Gaussian looks a little contrived at first, but is in fact very natural.
Gaussian rv’s often make excellent models for physical noise processes because noise is often the
summation of many small effects. The central limit theorem is a mathematically precise way of
saying that the sum of a very large number of independent small zero-mean random variables
is approximately zero-mean Gaussian. Even when different sums are statistically dependent on
each other, they are different linear combinations of a common set of independent small random
variables. Thus the jointly-Gaussian assumption is closely linked to the assumption that the
noise is the sum of a large number of small, essentially independent, random disturbances.
Assuming that the underlying variables are Gaussian simply makes the model analytically clean
and tractable.

An important property of any jointly-Gaussian n-dimensional rv Z is the following: for any real
m by n real matrix B, the rv Y = BZ is also jointly Gaussian. To see this, let Z = AW where
W is a normal rv. Then

Y = BZ = B(AW ) = (BA)W . (7.12)

6The class of random vectors for a given n over a given sample space satisfies the axioms of a vector space,
but here the vector notation is used simpy as a notational convenience.

7When studying estimation and conditional probabilities, means become an integral part of many arguments,
but these arguments will not be central here.
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Since BA is a real matrix, Y is jointly Gaussian. A useful application of this property arises
when A is diagonal, so Z has arbitrary independent Gaussian components. This implies that
Y = BZ is jointly Gaussian whenever a rv Z has independent Gaussian components.

Another important application is where B is a 1 by n matrix and Y is a random variable. Thus
every linear combination

∑n
k=1 bkZk of a jointly-Gaussian rv Z = (Z1, . . . , Zn)T is Gaussian. It

will be shown later in this section that this is an if and only if property; that is, if every linear
combination of a rv Z is Gaussian, then Z is jointly Gaussian.

We now have the machinery to define zero-mean Gaussian processes.

Definition 7.3.2. {Z(t); t ∈ R} is a zero-mean Gaussian process if, for all positive integers n
and all finite sets of epochs t1, . . . , tn, the set of random variables Z(t1), . . . , Z(tn) is a (zero-
mean) jointly-Gaussian set of random variables.

If the covariance, KZ(t, τ) = E[Z(t)Z(τ)], is known for each pair of epochs t, τ , then for any
finite set of epochs t1, . . . , tn, E [Z(tk)Z(tm)] is known for each pair (tk, tm) in that set. The
next two subsections will show that the joint probability density for any such set of (zero-mean)
jointly-Gaussian rv’s depends only on the covariances of those variables. This will show that a
zero-mean Gaussian process is specified by its covariance function. A nonzero-mean Gaussian
process is similarly specified by its covariance function and its mean.

7.3.1 The covariance matrix of a jointly-Gaussian random vector

Let an n-tuple of (zero-mean) random variables (rv’s) Z1, . . . , Zn be represented as a random
vector (rv) Z = (Z1, . . . , Zn)T. As defined in the previous section, Z is jointly Gaussian if
Z = AW where W = (W1, W2, . . . , W	)T is a vector of iid normal rv’s and A is an n by  real
matrix. Each rv Zk, and all linear combinations of Z1, . . . , Zn, are Gaussian.

The covariance of two (zero-mean) rv’s Z1, Z2 is E[Z1Z2]. For a rv Z = (Z1, . . . Zn)T the
covariance between all pairs of random variables is very conveniently represented by the n by n
covariance matrix,

KZ = E[ZZ T].

Appendix 7A.1 develops a number of properties of covariance matrices (including the fact that
they are identical to the class of nonnegative definite matrices). For a vector W = W1, . . . , W	

of independent normalized Gaussian rv’s, E[WjWm] = 0 for j �= m and 1 for j = m. Thus

KW = E[WW T] = I	,

where I	 is the  by  identity matrix. For a zero-mean jointly-Gaussian vector Z = AW , the
covariance matrix is thus

KZ = E[AWW TAT] = AE[WW T]AT = AAT. (7.13)

The probability density, fZ (z ), of a rv Z = (Z1, Z2, . . . , Zn)T is the joint probability density
of the components Z1, . . . , Zn. An important example is the iid rv W where the components
Wk, 1 ≤ k ≤ n, are iid and normal, Wk ∼ N (0, 1). By taking the product of the n densities of
the individual random variables, the density of W = (W1, W2, . . . , Wn)T is

fW (w) =
1

(2π)n/2
exp

(−w2
1 − w2

2 − · · · − w2
n

2

)
=

1
(2π)n/2

exp
(−‖w‖2

2

)
. (7.14)
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This shows that the density of W at a sample value w depends only on the squared distance
‖w‖2 of the sample value from the origin. That is, fW (w) is spherically symmetric around the
origin, and points of equal probability density lie on concentric spheres around the origin.

7.3.2 The probability density of a jointly-Gaussian random vector

Consider the transformation Z = AW where Z and W each have n components and A is n by n.
If we let a1,a2, . . . ,an be the n columns of A, then this means that Z =

∑
m amWm. That is,

for any sample values w1, . . . wn for W , the corresponding sample value for Z is z =
∑

m amwm.
Similarly, if we let b1, . . . , bn be the rows of A, then Zk = bkW .

Let Bδ be a cube, δ on a side, of the sample values of W defined by Bδ = {w : 0≤wk≤δ; 1≤k≤n}
(see Figure 7.1). The set B′

δ of vectors z = Aw for w ∈ Bδ is a parallepiped whose sides are the
vectors δa1, . . . , δan. The determinant, det(A), of A has the remarkable geometric property that
its magnitude, |det(A)|, is equal to the volume of the parallelepiped with sides ak; 1 ≤ k ≤ n.
Thus the unit cube Bδ above, with volume δn, is mapped by A into a parallelepiped of volume
|detA|δn.

0δ

δ

w1

w2

z1

z2

��,
���

δa1 δa2
���

���
�����,

Figure 7.1: Example illustrating how Z = AW maps cubes into parallelepipeds. Let
Z1 = −W1 + 2W2 and Z2 = W1 + W2. The figure shows the set of sample pairs z1, z2

corresponding to 0 ≤ w1 ≤ δ and 0 ≤ w2 ≤ δ. It also shows a translation of the same
cube mapping into a translation of the same parallelepiped.

Assume that the columns a1, . . . ,an are linearly independent. This means that the columns
must form a basis for Rn, and thus that every vector z is some linear combination of these
columns, i.e., that z = Aw for some vector w . The matrix A must then be invertible, i.e., there
is a matrix A−1 such that AA−1 = A−1A = In where In is the n by n identity matrix. The matrix
A maps the unit vectors of Rn into the vectors a1, . . . ,an and the matrix A−1 maps a1, . . . ,an

back into the unit vectors.

If the columns of A are not linearly independent, i.e., A is not invertible, then A maps the unit
cube in Rn into a subspace of dimension less than n. In terms of Fig. 7.1, the unit cube would
be mapped into a straight line segment. The area, in 2 dimensional space, of a straight line
segment is 0, and more generally, the volume in n-space of a lower dimensional set of points is
0. In terms of the determinant, detA = 0 for any noninvertible matrix A.

Assuming again that A is invertible, let z be a sample value of Z , and let w = A−1z be the
corresponding sample value of W . Consider the incremental cube w +Bδ cornered at w . For δ
very small, the probability Pδ(w) that W lies in this cube is fW (w)δn plus terms that go to zero
faster than δn as δ → 0. This cube around w maps into a parallelepiped of volume δn|det(A)|
around z , and no other sample value of W maps into this parallelepiped. Thus Pδ(w) is also
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equal to fZ (z )δn|det(A)| plus negligible terms. Going to the limit δ → 0, we have

fZ (z )|det(A)| = lim
δ→0

Pδ(w)
δn

= fW (w). (7.15)

Since w = A−1z , we get the explicit formula

fZ (z ) =
fW (A−1z )
|det(A)| . (7.16)

This formula is valid for any random vector W with a density, but we are interested in the
vector W of iid Gaussian random variables, N (0, 1). Substituting (7.14) into (7.16),

fZ (z ) =
1

(2π)n/2|det(A)| exp
(−‖A−1z‖2

2

)
(7.17)

=
1

(2π)n/2|det(A)| exp
[
−1

2
z T(A−1)TA−1z

]
(7.18)

We can simplify this somewhat by recalling from (7.13) that the covariance matrix of Z is given
by KZ = AAT. Thus K−1

Z = (A−1)TA−1.

Substituting this into (7.18) and noting that det(KZ ) = |det(A)|2,

fZ (z ) =
1

(2π)n/2
√

det(KZ )
exp

[
−1

2
z TK−1

Z z

]
. (7.19)

Note that this probability density depends only on the covariance matrix of Z and not directly
on the matrix A.

The above density relies on A being nonsingular. If A is singular, then at least one of its rows
is a linear combination of the other rows, and thus, for some m, 1 ≤ m ≤ n, Zm is a linear
combination of the other Zk. The random vector Z is still jointly Gaussian, but the joint
probability density does not exist (unless one wishes to view the density of Zm as a unit impulse
at a point specified by the sample values of the other variables). It is possible to write out
the distribution function for this case, using step functions for the dependent rv’s, but it is not
worth the notational mess. It is more straightforward to face the problem and find the density
of a maximal set of linearly independent rv’s, and specify the others as deterministic linear
combinations.

It is important to understand that there is a large difference between rv’s being statistically
dependent and linearly dependent. If they are linearly dependent, then one or more are deter-
ministic functions of the others, whereas statistical dependence simply implies a probabilistic
relationship.

These results are summarized in the following theorem:

Theorem 7.3.1 (Density for jointly-Gaussian rv’s). Let Z be a (zero-mean) jointly-
Gaussian rv with a nonsingular covariance matrix KZ. Then the probability density fZ(z) is
given by (7.19). If KZ is singular, then fZ(z) does not exist but the density in (7.19) can be
applied to any set of linearly independent rv’s out of Z1, . . . , Zn.

For a zero-mean Gaussian process Z(t), the covariance function KZ(t, τ) specifies E [Z(tk)Z(tm)]
for arbitrary epochs tk and tm and thus specifies the covariance matrix for any finite set of epochs
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t1, . . . , tn. From the above theorem, this also specifies the joint probability distribution for that
set of epochs. Thus the covariance function specifies all joint probability distributions for all
finite sets of epochs, and thus specifies the process in the sense8 of Section 7.2. In summary, we
have the following important theorem.

Theorem 7.3.2 (Gaussian process). A zero-mean Gaussian process is specified by its covari-
ance function K(t, τ).

7.3.3 Special case of a 2-dimensional zero-mean Gaussian random vector

The probability density in (7.19) is now written out in detail for the 2-dimensional case. Let
E[Z2

1 ] = σ2
1, E[Z2

2 ] = σ2
2 and E[Z1Z2] = κ12. Thus

KZ =
[

σ2
1 κ12

κ12 σ2
2

]
.

Let ρ be the normalized covariance ρ = κ12/(σ1σ2). Then det(KZ ) = σ2
1σ

2
2 −κ2

12 = σ2
1σ

2
2(1−ρ2).

Note that ρ must satisfy |ρ| ≤ 1, and |ρ| < 1 for KZ to be nonsingular.

K−1
Z =

1
σ2

1σ
2
2 − κ2

12

[
σ2

2 −κ12

−κ12 σ2
1

]
=

1
1 − ρ2

[
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2) 1/σ2

2

]
.

fZ (z ) =
1

2π
√

σ2
1σ

2
2 − κ2

12

exp
(−z2

1σ
2
2 + 2z1z2κ12 − z2

2σ
2
1

2(σ2
1σ

2
2 − κ2

12)

)
=

1

2πσ1σ2

√
1 − ρ2

exp
(−(z1/σ1)2 + 2ρ(z1/σ1)(z2/σ2) − (z2/σ2)2

2(1 − ρ2)

)
. (7.20)

Curves of equal probability density in the plane correspond to points where the argument of
the exponential function in (7.20) is constant. This argument is quadratic and thus points of
equal probability density form an ellipse centered on the origin. The ellipses corresponding to
different values of probability density are concentric, with larger ellipses corresponding to smaller
densities.

If the normalized covariance ρ is 0, the axes of the ellipse are the horizontal and vertical axes of
the plane; if σ1 = σ2, the ellipse reduces to a circle, and otherwise the ellipse is elongated in the
direction of the larger standard deviation. If ρ > 0, the density in the first and third quadrants
is increased at the expense of the second and fourth, and thus the ellipses are elongated in the
first and third quadrants. This is reversed, of course, for ρ < 0.

The main point to be learned from this example, however, is that the detailed expression for
2 dimensions in (7.20) is messy. The messiness gets far worse in higher dimensions. Vector
notation is almost essential. One should reason directly from the vector equations and use
standard computer programs for calculations.

8As will be discussed later, focusing on the pointwise behavior of a random process at all finite sets of epochs
has some of the same problems as specifying a function pointwise rather than in terms of L2 equivalence. This
can be ignored for the present.
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7.3.4 Z = AW where A is orthogonal

An n by n real matrix A for which AAT = In is called an orthogonal matrix or orthonormal
matrix (orthonormal is more appropriate, but orthogonal is more common). For Z = AW ,
where W is iid normal and A is orthogonal, KZ = AAT = In. Thus K−1

Z = In also and (7.19)
becomes

fZ (z ) =
exp

[
−1

2z
Tz

]
(2π)n/2

=
n∏

k=1

exp[−z2
k/2]√

2π
. (7.21)

This means that A transforms W into a random vector Z with the same probability density,
and thus the components of Z are still normal and iid. To understand this better, note that
AAT = In means that AT is the inverse of A and thus that ATA = In. Letting am be the mth

column of A, the equation ATA = In means that aT
ma j = δmj for each m, j, 1≤m, j≤n, i.e., that

the columns of A are orthonormal. Thus, for the two dimensional example, the unit vectors
e1, e2 are mapped into orthonormal vectors a1,a2, so that the transformation simply rotates
the points in the plane. Although it is difficult to visualize such a transformation in higher
dimensional space, it is still called a rotation, and has the property that ||Aw ||2 = wTATAw ,
which is just wTw = ||w ||2. Thus, each point w maps into a point Aw at the same distance
from the origin as itself.

Not only the columns of an orthogonal matrix are orthonormal, but the rows, say {bk; 1≤k≤n}
are also orthonormal (as is seen directly from AAT = In). Since Zk = bkW , this means that, for
any set of orthonormal vectors b1, . . . , bn, the random variables Zk = bkW are normal and iid
for 1 ≤ k ≤ n.

7.3.5 Probability density for Gaussian vectors in terms of principal axes

This subsection describes what is often a more convenient representation for the probability
density of an n-dimensional (zero-mean) Gaussian rv Z with a nonsingular covariance matrix
KZ . As shown in Appendix 7A.1, the matrix KZ has n real orthonormal eigenvectors, q1, . . . , qn,
with corresponding nonnegative (but not necessarily distinct9) real eigenvalues, λ1, . . . , λn. Also,
for any vector z , it is shown that z TK−1

Z z can be expressed as
∑

k λ−1
k |〈z , qk〉|2. Substituting

this in (7.19), we have

fZ (z ) =
1

(2π)n/2
√

det(KZ )
exp

[
−

∑
k

|〈z , qk〉|2
2λk

]
. (7.22)

Note that 〈z , qk〉 is the projection of z on the kth of n orthonormal directions. The determinant
of an n by n real matrix can be expressed in terms of the n eigenvalues (see Appendix 7A.1) as
det(KZ ) =

∏n
k=1 λk. Thus (7.22) becomes

fZ (z ) =
n∏

k=1

1√
2πλk

exp
[−|〈z , qk〉|2

2λk

]
. (7.23)

9If an eigenvalue λ has multiplicity m, it means that there is an m dimensional subspace of vectors q satisfying
KZq = λq ; in this case any orthonormal set of m such vectors can be chosen as the m eigenvectors corresponding
to that eigenvalue.
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This is the product of n Gaussian densities. It can be interpreted as saying that the Gaussian
random variables {〈Z , qk〉; 1 ≤ k ≤ n} are statistically independent with variances {λk; 1 ≤ k ≤
n}. In other words, if we represent the rv Z using q1, . . . , qn as a basis, then the components of
Z in that coordinate system are independent random variables. The orthonormal eigenvectors
are called principal axes for Z .

This result can be viewed in terms of the contours of equal probability density for Z (see Figure
7.2). Each such contour satisfies

c =
∑

k

|〈z , qk〉|2
2λk

where c is proportional to the log probability density for that contour. This is the equation of
an ellipsoid centered on the origin, where qk is the kth axis of the ellipsoid and

√
2cλk is the

length of that axis.

�
�
�
�
�
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�
��

-
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λ1q1√

λ2q2
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q2

Figure 7.2: Contours of equal probability density. Points z on the q1 axis are points
for which 〈z , q2〉 = 0 and points on the q2 axis satisfy 〈z , q1〉 = 0. Points on the
illustrated ellipse satisfy z TK−1

Z z = 1.
The probability density formulas in (7.19) and (7.23) suggest that for every covariance matrix
K, there is a jointly Gaussian rv that has that covariance, and thus has that probability density.
This is in fact true, but to verify it, we must demonstrate that for every covariance matrix
K, there is a matrix A (and thus a rv Z = AW ) such that K = AAT. There are many such
matrices for any given K, but a particularly convenient one is given in (7.84). As a function
of the eigenvectors and eigenvalues of K, it is A =

∑
k

√
λkqkq

T
k. Thus, for every nonsingular

covariance matrix, K, there is a jointly Gaussian rv whose density satisfies (7.19) and (7.23)

7.3.6 Fourier transforms for joint densities

As suggested in Exercise 7.2, Fourier transforms of probability densities are useful for finding
the probability density of sums of independent random variables. More generally, for an n-
dimensional rv, Z , we can define the n-dimensional Fourier transform of fZ (z ) as

f̂Z (s) =
∫

· · ·
∫

fZ (z ) exp(−2πisTz ) dz1 · · · dzn = E[exp(−2πisTZ )]. (7.24)

If Z is jointly Gaussian, this is easy to calculate. For any given s �= 0 , let X = sTZ =
∑

k skZk.
Thus X is Gaussian with variance E[sTZZ Ts] = sTKZs. From Exercise 7.2,

f̂X(θ) = E[exp(−2πiθsTZ )] = exp
[
−(2πθ)2sTKZs

2

]
. (7.25)
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Comparing (7.25) for θ = 1 with (7.24), we see that

f̂Z (s) = exp
[
−(2π)2sTKZs

2

]
. (7.26)

The above derivation also demonstrates that f̂Z (s) is determined by the Fourier transform
of each linear combination of the elements of Z . In other words, if an arbitrary rv Z has
covariance KZ and has the property that all linear combinations of Z are Gaussian, then the
Fourier transform of its density is given by (7.26). Thus, assuming that the Fourier transform of
the density uniquely specifies the density, Z must be jointly Gaussian if all linear combinations
of Z are Gaussian.

A number of equivalent conditions have now been derived under which a (zero-mean) random
vector Z is jointly Gaussian. In summary, each of the following are necessary and sufficient
conditions for a rv Z with a nonsingular covariance KZ to be jointly Gaussian.

• Z = AW where the components of W are iid normal and KZ = AAT;

• Z has the joint probability density given in (7.19);

• Z has the joint probability density given in (7.23);

• All linear combinations of Z are Gaussian random variables.

For the case where KZ is singular, the above conditions are necessary and sufficient for any
linearly independent subset of the components of Z .

This section has considered only zero-mean random variables, vectors, and processes. The results
here apply directly to the fluctuation of arbitrary random variables, vectors, and processes. In
particular the probability density for a jointly Gaussian rv Z with a nonsingular covariance
matrix KZ and mean vector Z is

fZ (z ) =
1

(2π)n/2
√

det(KZ )
exp

[
−1

2
(z − Z )TK−1

Z (z − Z )
]

. (7.27)

7.4 Linear functionals and filters for random processes

This section defines the important concept of linear functionals on arbitrary random processes
{Z(t); t ∈ R} and then specializes to Gaussian random processes, where the results of the
previous section can be used. Assume that the sample functions Z(t, ω) of Z(t) are real L2

waveforms. These sample functions can be viewed as vectors over R in the L2 space of real
waveforms. For any given real L2 waveform g(t), there is an inner product,

〈Z(t, ω), g(t)〉 =
∫ ∞

−∞
Z(t, ω)g(t) dt.

By the Schwarz inequality, the magnitude of this inner product in the space of real L2 functions
is upper bounded by ‖Z(t, ω)‖‖g(t)‖ and is thus a finite real value for each ω. This then maps
sample points ω into real numbers and is thus a random variable,10 denoted V =

∫ ∞
−∞ Z(t)g(t) dt.

This random variable V is called a linear functional of the process {Z(t); t ∈ R}.
10One should use measure theory over the sample space Ω to interpret these mappings carefully, but this is

unnecessary for the simple types of situations here and would take us too far afield.
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As an example of the importance of linear functionals, recall that the demodulator for both PAM
and QAM contains a filter q(t) followed by a sampler. The output of the filter at a sampling
time kT for an input u(t) is

∫
u(t)q(kT − t) dt. If the filter input also contains additive noise

Z(t), then the output at time kT also contains the linear functional
∫

Z(t)q(kT − t) dt.

Similarly, for any random process {Z(t); t ∈ R} (again assuming L2 sample functions) and
any real L2 function h(t), consider the result of passing Z(t) through the filter with impulse
response h(t). For any L2 sample function Z(t, ω), the filter output at any given time τ is the
inner product

〈Z(t, ω), h(τ − t)〉 =
∫ ∞

−∞
Z(t, ω)h(τ − t) dt.

For each real τ , this maps sample points ω into real numbers and thus (aside from measure
theoretic issues),

V (τ) =
∫

Z(t)h(τ − t) dt (7.28)

is a rv for each τ . This means that {V (τ); τ ∈ R} is a random process. This is called the filtered
process resulting from passing Z(t) through the filter h(t). Not much can be said about this
general problem without developing a great deal of mathematics, so instead we restrict ourselves
to Gaussian processes and other relatively simple examples.

For a Gaussian process, we would hope that a linear functional is a Gaussian random variable.
The following examples show that some restrictions are needed even on the class of Gaussian
processes.

Example 7.4.1. Let Z(t) = tX for all t ∈ R where X ∼ N (0, 1). The sample functions of
this Gaussian process have infinite energy with probability 1. The output of the filter also has
infinite energy except except for very special choices of h(t).

Example 7.4.2. For each t ∈ [0, 1], let W (t) be a Gaussian rv, W (t) ∼ N (0, 1). Assume
also that E[W (t)W (τ)] = 0 for each t �= τ ∈ [0, 1]. The sample functions of this process
are discontinuous everywhere11. We do not have the machinery to decide whether the sample
functions are integrable, let alone whether the linear functionals above exist; we come back later
to further discuss this example.

In order to avoid the mathematical issues in Example 7.4.2 above, along with a host of other
mathematical issues, we start with Gaussian processes defined in terms of orthonormal expan-
sions.

7.4.1 Gaussian processes defined over orthonormal expansions

Let {φk(t); k ≥ 1} be a countable set of real orthonormal functions and let {Zk; k ≥ 1} be a
sequence of independent Gaussian random variables, {N (0, σ2

k)}. Consider the Gaussian process
defined by

Z(t) =
∞∑

k=1

Zkφk(t). (7.29)

11Even worse, the sample functions are not measurable. This process would not even be called a random process
in a measure theoretic formulation, but it provides an interesting example of the occasional need for a measure
theoretic formulation.
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Essentially all zero-mean Gaussian processes of interest can be defined this way, although we will
not prove this. Clearly a mean can be added if desired, but zero-mean processes are assumed in
what follows. First consider the simple case in which σ2

k is nonzero for only finitely many values
of k, say 1 ≤ k ≤ n. In this case, Z(t), for each t ∈ �, is a finite sum,

Z(t) =
n∑

k=1

Zkφk(t), (7.30)

of independent Gaussian rv’s and thus is Gaussian. It is also clear that Z(t1), Z(t2), . . . Z(t	) are
jointly Gaussian for all , t1, . . . , t	, so {Z(t); t ∈ R} is in fact a Gaussian random process. The
energy in any sample function, z(t) =

∑
k zkφk(t) is

∑n
k=1 z2

k. This is finite (since the sample
values are real and thus finite), so every sample function is L2. The covariance function is then
easily calculated to be

KZ (t, τ) =
∑
k,m

E[ZkZm]φk(t)φm(τ) =
n∑

k=1

σ2
k φk(t)φk(τ). (7.31)

Next consider the linear functional
∫

Z(t)g(t) dt where g(t) is a real L2 function,

V =
∫ ∞

−∞
Z(t)g(t) dt =

n∑
k=1

Zk

∫ ∞

−∞
φk(t)g(t) dt. (7.32)

Since V is a weighted sum of the zero-mean independent Gaussian rv’s Z1, . . . , Zn, V is also
Gaussian with variance

σ2
V = E[V 2] =

n∑
k=1

σ2
k|〈φk, g〉|2 . (7.33)

Next consider the case where n is infinite but
∑

k σ2
k < ∞. The sample functions are still L2 (at

least with probability 1). Equations (7.29), (7.30), (7.31), (7.32) and (7.33) are still valid, and
Z is still a Gaussian rv. We do not have the machinery to easily prove this, although Exercise
7.7 provides quite a bit of insight into why these results are true.

Finally, consider a finite set of L2 waveforms {gm(t); 1 ≤ m ≤ }. Let Vm =
∫ ∞
−∞ Z(t)gm(t) dt.

By the same argument as above, Vm is a Gaussian rv for each m. Furthermore, since each linear
combination of these variables is also a linear functional, it is also Gaussian, so {V1, . . . , V	} is
jointly Gaussian.

7.4.2 Linear filtering of Gaussian processes

We can use the same argument as in the previous subsection to look at the output of a linear
filter for which the input is a Gaussian process {Z(t); t ∈ R}. In particular, assume that
Z(t) =

∑
k Zkφk(t) where Z1, Z2, . . . is an independent sequence {Zk ∼ N (0, σ2

k} satisfying∑
k σ2

k < ∞ and where φ1(t), φ2(t), . . . , is a sequence of orthonormal functions.

Assume that the impulse response h(t) of the filter is a real L2 waveform. Then for any given
sample function Z(t, ω) =

∑
k Zk(ω)φk(t) of the input, the filter output at any epoch τ is given

by

V (τ, ω) =
∫ ∞

−∞
Z(t, ω)h(τ − t) dt =

∑
k

Zk(ω)
∫ ∞

−∞
φk(t)h(τ − t) dt. (7.34)
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{Z(t); t∈�} � h(t) � {V (τ); τ ∈�}

Figure 7.3: Filtered random Process
Each integral on the right side of (7.34) is an L2 function of τ whose energy is upper bounded
by ‖h‖2 (see Exercise 7.5). It follows from this (see Exercise 7.7) that

∫ ∞
−∞ Z(t, ω)h(τ − t) dt is

an L2 waveform with probability 1. For any given epoch τ , (7.34) maps sample points ω to real
values and thus V (τ, ω) is a sample value of a random variable V (τ).

V (τ) =
∫ ∞

−∞
Z(t)h(τ−t) dt =

∑
k

Zk

∫ ∞

−∞
φk(t)h(τ − t) dt. (7.35)

This is a Gaussian rv for each epoch τ . For any set of epochs, τ1, . . . , τ	, we see that
V (τ1), . . . , V (τ	) are jointly Gaussian. Thus {V (τ); τ ∈ R} is a Gaussian random process.

We summarize the last two subsections in the following theorem.

Theorem 7.4.1. Let {Z(t); t ∈ R} be a Gaussian process, Z(t) =
∑

k Zkφk(t), where {Zk; k ≥
1} is a sequence of independent Gaussian rv’s N (0, σ2

k) where
∑

σ2
k < ∞ and {φk(t); k ≥ 1} is

an orthonormal set. Then

• For any set of L2 waveforms g1(t), . . . , g	(t), the linear functionals {Zm; 1 ≤ m ≤ } given
by Zm =

∫ ∞
−∞ Z(t)gm(t) dt are zero-mean jointly Gaussian.

• For any filter with real L2 impulse response h(t), the filter output {V (τ); τ ∈ R} given by
(7.35) is a zero-mean Gaussian process.

These are important results. The first, concerning sets of linear functionals, is important when
we represent the input to the channel in terms of an orthonormal expansion; the noise can then
often be expanded in the same orthonormal expansion. The second, concerning linear filtering,
shows that when the received signal and noise are passed through a linear filter, the noise at the
filter output is simply another zero-mean Gaussian process. This theorem is often summarized
by saying that linear operations preserve Gaussianity.

7.4.3 Covariance for linear functionals and filters

Assume that {Z(t); t ∈ R} is a random process and that g1(t), . . . , g	(t) are real L2 waveforms.
We have seen that if {Z(t); t ∈ R} is Gaussian, then the linear functionals V1, . . . , V	 given by
Vm =

∫ ∞
−∞ Z(t)gm(t) dt are jointly Gaussian for 1 ≤ m ≤ . We now want to find the covariance

for each pair Vj , Vm of these random variables. The result does not depend on the process
Z(t) being Gaussian. The computation is quite simple, although we omit questions of limits,
interchanges of order of expectation and integration, etc. A more careful derivation could be
made by returning to the sampling theorem arguments before, but this would somewhat obscure
the ideas. Assuming that the process Z(t) is zero mean,

E[VjVm] = E

[∫ ∞

−∞
Z(t)gj(t) dt

∫ ∞

−∞
Z(τ)gm(τ) dτ

]
(7.36)

=
∫ ∞

t=−∞

∫ ∞

τ=−∞
gj(t)E[Z(t)Z(τ)]gm(τ) dt dτ (7.37)

=
∫ ∞

t=−∞

∫ ∞

τ=−∞
gj(t)KZ (t, τ)gm(τ) dt dτ. (7.38)
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Each covariance term (including E[V 2
m] for each m) then depends only on the covariance function

of the process and the set of waveforms {gm; 1 ≤ m ≤ }.
The convolution V (r) =

∫
Z(t)h(r− t) dt is a linear functional at each time r, so the covariance

for the filtered output of {Z(t); t ∈ R} follows in the same way as the results above. The output
{V (r)} for a filter with a real L2 impulse response h is given by (7.35), so the covariance of the
output can be found as

KV (r, s) = E[V (r)V (s)]

= E

[∫ ∞

−∞
Z(t)h(r−t)dt

∫ ∞

−∞
Z(τ)h(s−τ)dτ

]
=

∫ ∞

−∞

∫ ∞

−∞
h(r−t)KZ (t, τ)h(s−τ)dtdτ. (7.39)

7.5 Stationarity and related concepts

Many of the most useful random processes have the property that the location of the time origin
is irrelevant, i.e., they “behave” the same way at one time as at any other time. This property
is called stationarity and such a process is called a stationary process.

Since the location of the time origin must be irrelevant for stationarity, random processes that
are defined over any interval other than (−∞,∞) cannot be stationary. Thus assume a process
that is defined over (−∞,∞).

The next requirement for a random process {Z(t); t ∈ R} to be stationary is that Z(t) must
be identically distributed for all epochs t ∈ R. This means that, for any epochs t and t + τ ,
and for any real number x, Pr{Z(t) ≤ x} = Pr{Z(t + τ) ≤ x}. This does not mean that Z(t)
and Z(t + τ) are the same random variables; for a given sample outcome ω of the experiment,
Z(t, ω) is typically unequal to Z(t+τ, ω). It simply means that Z(t) and Z(t+τ) have the same
distribution function, i.e.,

FZ(t)(x) = FZ(t+τ)(x) for allx. (7.40)

This is still not enough for stationarity, however. The joint distributions over any set of epochs
must remain the same if all those epochs are shifted to new epochs by an arbitrary shift τ . This
includes the previous requirement as a special case, so we have the definition:

Definition 7.5.1. A random process {Z(t); t∈R} is stationary if, for all positive integers , for
all sets of epochs t1, . . . , t	 ∈ R, for all amplitudes z1, . . . , z	, and for all shifts τ ∈ R,

FZ(t1),... ,Z(t�)(z1 . . . , z	) = FZ(t1+τ),... ,Z(t�+τ)(z1 . . . , z	). (7.41)

For the typical case where densities exist, this can be rewritten as

f
Z(t1),... ,Z(t�)

(z1 . . . , z	) = f
Z(t1+τ),... ,Z(t�+τ)

(z1 . . . , z	) (7.42)

for all z1, . . . , z	 ∈ R.

For a (zero-mean) Gaussian process, the joint distribution of Z(t1), . . . , Z(t	) depends only on
the covariance of those variables. Thus, this distribution will be the same as that of Z(t1+τ),
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. . . , Z(t	+τ) if KZ(tm, tj) = KZ(tm+τ, tj+τ) for 1 ≤ m, j ≤ . This condition will be satisfied for
all τ , all , and all t1, . . . , t	 (verifying that {Z(t)} is stationary) if KZ(t1, t2) = KZ(t1+τ, t2+τ)
for all τ and all t1, t2. This latter condition will be satisfied if KZ (t1, t2) = KZ (t1−t2, 0) for all
t1, t2. We have thus shown that a zero-mean Gaussian process is stationary if

KZ (t1, t2) = KZ (t1−t2, 0) for all t1, t2 ∈ R. (7.43)

Conversely, if (7.43) is not satisfied for some choice of t1, t2, then the joint distribution of
Z(t1), Z(t2) must be different from that of Z(t1−t2), Z(0), and the process is not stationary.
The following theorem summarizes this.

Theorem 7.5.1. A zero-mean Gaussian process {Z(t); t∈�} is stationary if and only if (7.43)
is satisfied.

An obvious consequence of this is that a Gaussian process with a nonzero mean is stationary if
and only if its mean is constant and its fluctuation satisfies (7.43).

7.5.1 Wide-sense stationary (WSS) random processes

There are many results in probability theory that depend only on the covariances of the random
variables of interest (and also the mean if nonzero). For random processes, a number of these
classical results are simplified for stationary processes, and these simplifications depend only on
the mean and covariance of the process rather than full stationarity. This leads to the following
definition:

Definition 7.5.2. A random process {Z(t); t∈�} is wide-sense stationary (WSS) if E[Z(t1)] =
E[Z(0)] and KZ(t1, t2) = KZ(t1−t2, 0) for all t1, t2 ∈ R.

Since the covariance function KZ(t+τ, t) of a WSS process is a function of only one variable
τ , we will often write the covariance function as a function of one variable, namely K̃Z(τ) in
place of KZ(t+τ, t). In other words, the single variable in the single argument form represents
the difference between the two arguments in two argument form. Thus for a WSS process,
KZ(t, τ) = KZ(t−τ, 0) = K̃Z(t − τ).

The random processes defined as expansions of T -spaced sinc functions have been discussed
several times. In particular let

V (t) =
∑

k

Vk sinc
(

t − kT

T

)
, (7.44)

where {. . . , V−1, V0, V1, . . . } is a sequence of (zero-mean) iid rv’s. As shown in 7.8, the covariance
function for this random process is

KV (t, τ) = σ2
V

∑
k

sinc
(

t − kT

T

)
sinc

(
τ − kT

T

)
, (7.45)

where σ2
V is the variance of each Vk. The sum in (7.45), as shown below, is a function only of

t − τ , leading to the theorem:
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Theorem 7.5.2 (Sinc expansion). The random process in (7.44) is WSS. In addition, if the
rv’s {Vk; k ∈ Z} are iid Gaussian, the process is stationary. The covariance function is given by

K̃V(t − τ) = σ2
V sinc

(
t − τ

T

)
. (7.46)

Proof: From the sampling theorem, any L2 function u(t), baseband limited to 1/(2T ), can be
expanded as

u(t) =
∑

k

u(kT )sinc
(

t − kT

T

)
. (7.47)

For any given τ , take u(t) to be sinc( t−τ
T ). Substituting this in (7.47),

sinc
(

t−τ

T

)
=

∑
k

sinc
(

kT−τ

T

)
sinc

(
t−kT

T

)
=

∑
k

sinc
(

τ−kT

T

)
sinc

(
t−kT

T

)
. (7.48)

Substituting this in (7.45) shows that the process is WSS with the stated covariance. As shown
in subsection 7.4.1, {V (t); t ∈ R} is Gaussian if the rv’s {Vk} are Gaussian. From Theorem
7.5.1, this Gaussian process is stationary since it is WSS.

Next consider another special case of the sinc expansion in which each Vk is binary, taking values
±1 with equal probability. This corresponds to a simple form of a PAM transmitted waveform.
In this case, V (kT ) must be ±1, whereas for values of t between the sample points, V (t) can
take on a wide range of values. Thus this process is WSS but cannot be stationary. Similarly,
any discrete distribution for each Vk creates a process that is WSS but not stationary.

There are not many important models of noise processes that are WSS but not stationary12,
despite the above example and the widespread usage of the term WSS. Rather, the notion of
wide-sense stationarity is used to make clear, for some results, that they depend only on the
mean and covariance, thus perhaps making it easier to understand them.

The Gaussian sinc expansion brings out an interesting theoretical nonsequitur. Assuming that
σ2

V > 0, i.e., that the process is not the trivial process for which V (t) = 0 with probability 1
for all t, the expected energy in the process (taken over all time) is infinite. It is not difficult to
convince oneself that the sample functions of this process have infinite energy with probability 1.
Thus stationary noise models are simple to work with, but the sample functions of these processes
don’t fit into the L2 theory of waveforms that has been developed. Even more important than
the issue of infinite energy, stationary noise models make unwarranted assumptions about the
very distant past and future. The extent to which these assumptions affect the results about
the present is an important question that must be asked.

The problem here is not with the peculiarities of the Gaussian sinc expansion. Rather it is
that stationary processes have constant power over all time, and thus have infinite energy. One
practical solution13 to this is simple and familiar. The random process is simply truncated in

12An important exception is interference from other users, which as the above sinc expansion with binary
samples shows, can be WSS but not stationary. Even in this case, if the interference is modeled as just part of
the noise (rather than specifically as interference), the nonstationarity is usually ignored.

13There is another popular solution to this problem. For any L2 function g(t), the energy in g(t) outside
of [−T0

2
, T0

2
] vanishes as T0 → ∞, so intuitively the effect of these tails on the linear functional

∫
g(t)Z(t) dt

vanishes as T0 → 0. This provides a nice intuitive basis for ignoring the problem, but it fails, both intuitively and
mathematically, in the frequency domain.
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any convenient way. Thus, when we say that noise is stationary, we mean that it is stationary
within a much longer time interval than the interval of interest for communication. This is not
very precise, and the notion of effective stationarity is now developed to formalize this notion
of a truncated stationary process.

7.5.2 Effectively stationary and effectively WSS random processes

Definition 7.5.3. A (zero-mean) random process is effectively stationary within [−T0
2 , T0

2 ] if the
joint probability assignment for t1, . . . , tn is the same as that for t1+τ, t2+τ, . . . , tn+τ whenever
t1, . . . , tn and t1+τ, t2+τ, . . . , tn+τ are all contained in the interval [−T0

2 , T0
2 ]. It is effectively

WSS within [−T0
2 , T0

2 ] if KZ (t, τ) is a function only of t − τ for t, τ ∈ [−T0
2 , T0

2 ]. A random
process with nonzero mean is effectively stationary (effectively WSS) if its mean is constant
within [−T0

2 , T0
2 ] and its fluctuation is effectively stationary (WSS) within [−T0

2 , T0
2 ].

One way to view a stationary (WSS) random process is in the limiting sense of a process that is
effectively stationary (WSS) for all intervals [−T0

2 , T0
2 ]. For operations such as linear functionals

and filtering, the nature of this limit as T0 becomes large is quite simple and natural, whereas
for frequency domain results, the effect of finite T0 is quite subtle.

For an effectively WSS process within [−T0
2 , T0

2 ], the covariance within [−T0
2 , T0

2 ] is a function
of a single parameter, KZ (t, τ) = K̃Z (t − τ) for t, τ ∈ [−T0

2 , T0
2 ]. Note however that t − τ can

range from −T0 (for t= − T0
2 , τ=T0

2 ) to T0 (for t=T0
2 , τ= − T0

2 ).
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−T0
2
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2

point where t − τ = −T0

line where t − τ = −T0
2

line where t − τ = 0

line where t − τ = T0
2

line where t − τ = 3
4T0

Figure 7.4: The relationship of the two argument covariance function KZ (t, τ) and the
one argument function K̃Z (t−τ) for an effectively WSS process. KZ (t, τ) is constant on
each dashed line above. Note that, for example, the line for which t− τ = 3

4T0 applies
only for pairs (t, τ) where t ≥ T0/2 and τ ≤ −T0/2. Thus K̃Z(3

4T0) is not necessarily
equal to KZ (3

4T0, 0). It can be easily verified, however, that K̃Z(αT0) = KZ (αT0, 0)
for all α ≤ 1/2.

Since a Gaussian process is determined by its covariance function and mean, it is effectively
stationary within [−T0

2 , T0
2 ] if it is effectively WSS.

Note that the difference between a stationary and effectively stationary random process for large
T0 is primarily a difference in the model and not in the situation being modeled. If two models
have a significantly different behavior over the time intervals of interest, or more concretely, if
noise in the distant past or future has a significant effect, then the entire modeling issue should
be rethought.
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7.5.3 Linear functionals for effectively WSS random processes

The covariance matrix for a set of linear functionals and the covariance function for the output of
a linear filter take on simpler forms for WSS or effectively WSS processes than the corresponding
forms for general processes derived in Subsection 7.4.3.

Let Z(t) be a zero-mean WSS random process with covariance function K̃Z (t − τ) for t, τ ∈
[−T0

2 , T0
2 ] and let g1(t), g2(t), . . . , g	(t) be a set of L2 functions nonzero only within [−T0

2 , T0
2 ].

For the conventional WSS case, we can take T0 = ∞. Let the linear functional Vm be given by∫ T0/2
−T0/2 Z(t)gm(t) dt for 1 ≤ m ≤ . The covariance E[VmVj ] is then given by

E[VmVj ] = E

[∫ T0
2

−T0
2

Z(t)gm(t) dt

∫ ∞

−∞
Z(τ)gj(τ) dτ

]

=
∫ T0

2

−T0
2

∫ T0
2

−T0
2

gm(t)K̃Z (t−τ)gj(τ) dτ dt. (7.49)

Note that this depends only on the covariance where t, τ ∈ [−T0
2 , T0

2 ], i.e., where {Z(t)} is
effectively WSS. This is not surprising, since we would not expect Vm to depend on the behavior
of the process outside of where gm(t) is nonzero.

7.5.4 Linear filters for effectively WSS random processes

Next consider passing a random process {Z(t); t ∈ R} through a linear time-invariant filter
whose impulse response h(t) is L2. As pointed out in 7.28, the output of the filter is a random
process {V (τ); τ ∈ R} given by

V (τ) =
∫ ∞

−∞
Z(t1)h(τ−t1) dt1.

Note that V (τ) is a linear functional for each choice of τ . The covariance function evaluated
at t, τ is the covariance of the linear functionals V (t) and V (τ). Ignoring questions of orders of
integration and convergence,

KV (t, τ) =
∫ ∞

−∞

∫ ∞

−∞
h(t−t1)KZ (t1, t2)h(τ−t2)dt1dt2. (7.50)

First assume that {Z(t); t ∈ R} is WSS in the conventional sense. Then KZ (t1, t2) can be
replaced by K̃Z (t1−t2). Replacing t1−t2 by s (i.e., t1 by t2 + s),

KV (t, τ) =
∫ ∞

−∞

[∫ ∞

−∞
h(t−t2−s)K̃Z (s) ds

]
h(τ−t2) dt2.

Replacing t2 by τ+µ,

KV (t, τ) =
∫ ∞

−∞

[∫ ∞

−∞
h(t−τ−µ−s)K̃Z (s) ds

]
h(−µ) dµ. (7.51)

Thus KV (t, τ) is a function only of t−τ . This means that {V (t); t ∈ R} is WSS. This is not
surprising; passing a WSS random process through a linear time-invariant filter results in another
WSS random process.
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If {Z(t); t ∈ R} is a Gaussian process, then, from Theorem 7.4.1, {V (t); t ∈ R} is also a Gaussian
process. Since a Gaussian process is determined by its covariance function, it follows that if Z(t)
is a stationary Gaussian process, then V (t) is also a stationary Gaussian process.

We do not have the mathematical machinery to carry out the above operations carefully over
the infinite time interval14. Rather, it is now assumed that {Z(t); t ∈ R} is effectively WSS
within [−T0

2 , T0
2 ]. It will also be assumed that the impulse response h(t) above is time-limited

in the sense that for some finite A, h(t) = 0 for |t| > A.

Theorem 7.5.3. Let {Z(t); t ∈ R} be effectively WSS within [−T0
2 , T0

2 ] and have sample func-
tions that are L2 within [−T0

2 , T0
2 ] with probability 1. Let Z(t) be the input to a filter with an L2

time-limited impulse response {h(t); [−A, A] → R}. Then for T0
2 > A, the output random process

{V (t); t ∈ R} is WSS within [−T0
2 +A, T0

2 −A] and its sample functions within [−T0
2 +A, T0

2 −A]
are L2 with probability 1.

Proof: Let z(t) be a sample function of Z(t) and assume z(t) is L2 within [−T0
2 , T0

2 ]. Let
v(τ) =

∫
z(t)h(τ − t) dt be the corresponding filter output. For each τ ∈ [−T0

2 +A, T0
2 −A], v(τ)

is determined by z(t) in the range t ∈ [−T0
2 , T0

2 ]. Thus, if we replace z(t) by z0(t) = z(t)rect[T0],
the filter output, say v0(τ) will equal v(τ) for τ ∈ [−T0

2 +A, T0
2 −A]. The time-limited function

z0(t) is L1 as well as L2. This implies that the Fourier transform ẑ0(f) is bounded, say by
ẑ0(f) ≤ B, for each f . Since v̂0(f) = ẑ0(f)ĥ(f), we see that∫

|v̂0(f)|2 df =
∫

|ẑ0(f)|2|ĥ(f)|2 df ≤ B2

∫
|ĥ(f)|2 df < ∞

This means that v̂0(f), and thus also v0(t), is L2. Now v0(t), when truncated to [−T0
2 +A, T0

2 −A]
is equal to v(t) truncated to [−T0

2 +A, T0
2 −A], so the truncated version of v(t) is L2. Thus the

sample functions of {V (t)}, truncated to [−T0
2 +A, T0

2 −A], are L2 with probability 1.

Finally, since {Z(t); t ∈ R} can be truncated to [−T0
2 , T0

2 ] with no lack of generality, it follows
that KZ (t1, t2) can be truncated to t1, t2 ∈ [−T0

2 , T0
2 ]. Thus, for t, τ ∈ [−T0

2 +A, T0
2 −A], (7.50)

becomes

KV (t, τ) =
∫ T0

2

−T0
2

∫ T0
2

−T0
2

h(t−t1)K̃Z (t1−t2)h(τ−t2)dt1dt2. (7.52)

The argument in (7.50, 7.51) shows that V (t) is effectively WSS within [−T0
2 +A, T0

2 −A].

The above theorem, along with the effective WSS result about linear functionals, shows us that
results about WSS processes can be used within finite intervals. The result in the theorem about
the interval of effective stationarity being reduced by filtering should not be too surprising. If
we truncate a process, and then pass it through a filter, the filter spreads out the effect of the
truncation. For a finite duration filter, however, as assumed here, this spreading is limited.

The notion of stationarity (or effective stationarity) makes sense as a modeling tool where T0

above is very much larger than other durations of interest, and in fact where there is no need
for explicit concern about how long the process is going to be stationary.

14More important, we have no justification for modeling a process over the infinite time interval. Later, however,
after building up some intuition about the relationship of an infinite interval to a very large interval, we can use
the simpler equations corresponding to infinite intervals.
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The above theorem essentially tells us that we can have our cake and eat it too. That is,
transmitted waveforms and noise processes can be truncated, thus making use of both common
sense and L2 theory, but at the same time insights about stationarity can still be relied upon.
More specifically, random processes can be modeled as stationary, without specifying a specific
interval [−T0

2 , T0
2 ] of effective stationarity, because stationary processes can now be viewed as

asymptotic versions of finite duration processes.

Appendices 7A.2 and 7A.3 provide a deeper analysis of WSS processes truncated to an interval.
The truncated process is represented as a Fourier series with random variables as coefficients.
This gives a clean interpretation of what happens as the interval size is increased without bound,
and also gives a clean interpretation of the effect of time-truncation in the frequency domain.
Another approach to a truncated process is the Karhunen-Loeve expansion, which is discussed
in 7A.4.

7.6 Stationary and WSS processes in the Frequency Domain

Stationary and WSS zero-mean processes, and particularly Gaussian processes, are often viewed
more insightfully in the frequency domain than in the time domain. An effectively WSS process
over [−T0

2 , T0
2 ] has a single variable covariance function K̃Z (τ) defined over [T0, T0]. A WSS

process can be viewed as a process that is effectively WSS for each T0. The energy in such a
process, truncated to [−T0

2 , T0
2 ], is linearly increasing in T0, but the covariance simply becomes

defined over a larger and larger interval as T0 → ∞. Assume in what follows that this limiting
covariance is L2. This does not appear to rule out any but the most pathological processes.

First we look at linear functionals and linear filters, ignoring limiting questions and convergence
issues and assuming that T0 is ‘large enough’. We will refer to the random processes as stationary,
while still assuming L2 sample functions.

For a zero-mean WSS process {Z(t); t ∈ R} and a real L2 function g(t), consider the linear
functional V =

∫
g(t)Z(t) dt. From (7.49),

E[V 2] =
∫ ∞

−∞
g(t)

[∫ ∞

−∞
K̃Z (t − τ)g(τ) dτ

]
dt (7.53)

=
∫ ∞

−∞
g(t)

[
K̃Z ∗ g

]
(t) dt. (7.54)

where K̃Z ∗g denotes the convolution of the waveforms K̃Z (t) and g(t). Let SZ (f) be the Fourier
transform of K̃Z (t). The function SZ (f) is called the spectral density of the stationary process
{Z(t); t ∈ R}. Since K̃Z (t) is L2, real, and symmetric, its Fourier transform is also L2, real, and
symmetric, and, as shown later, SZ (f) ≥ 0. It is also shown later that SZ (f) at each frequency
f can be interpreted as the power per unit frequency at f .

Let θ(t) = [K̃Z ∗ g ](t) be the convolution of K̃Z and g . Since g and KZ are real, θ(t) is also real
so θ(t) = θ∗(t). Using Parseval’s theorem for Fourier transforms,

E[V 2] =
∫ ∞

−∞
g(t)θ∗(t) dt =

∫ ∞

−∞
ĝ(f)θ̂∗(f) df.

Since θ(t) is the convolution of KZ and g , we see that θ̂(f) = SZ (f)ĝ(f). Thus,

E[V 2] =
∫ ∞

−∞
ĝ(f)SZ (f)ĝ∗(f) df =

∫ ∞

−∞
|ĝ(f)|2 SZ (f) df. (7.55)
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Note that E[V 2] ≥ 0 and that this holds for all real L2 functions g(t). The fact that g(t) is
real constrains the transform ĝ(f) to satisfy ĝ(f) = ĝ∗(−f), and thus |ĝ(f)| = |ĝ(−f)| for all f .
Subject to this constraint and the constraint that |ĝ(f)| be L2, |ĝ(f)| can be chosen as any L2

function. Stated another way, ĝ(f) can be chosen arbitrarily for f ≥ 0 subject to being L2.

Since SZ (f) = SZ (−f), (7.55) can be rewritten as

E[V 2] =
∫ ∞

0
2 |ĝ(f)|2 SZ (f) df.

Since E[V 2] ≥ 0 and |ĝ(f)| is arbitrary, it follows that SZ (f) ≥ 0 for all f ∈ R.

The conclusion here is that the spectral density of any WSS random process must be nonnegative.
Since SZ (f) is also the Fourier transform of K̃(t), this means that a necessary property of any
single variable covariance function is that it have a nonnegative Fourier transform.

Next, let Vm =
∫

gm(t)Z(t) dt where the function gm(t) is real and L2 for m = 1, 2. From (7.49),

E[V1V2] =
∫ ∞

−∞
g1(t)

[∫ ∞

−∞
K̃Z (t − τ)g2(τ) dτ

]
dt (7.56)

=
∫ ∞

−∞
g1(t)

[
K̃ ∗ g2

]
(t) dt. (7.57)

Let ĝm(f) be the Fourier transform of gm(t) for m = 1, 2, and let θ(t) = [K̃Z (t) ∗ g2](t) be the
convolution of K̃Z and g2. Let θ̂(f) = SZ (f)ĝ2(f) be its Fourier transform. As before, we have

E[V1V2] =
∫

ĝ1(f)θ̂∗(f) df =
∫

ĝ1(f)SZ (f)ĝ∗2(f) df. (7.58)

There is a remarkable feature in the above expression. If ĝ1(f) and ĝ2(f) have no overlap in
frequency, then E[V1V2] = 0. In other words, for any stationary process, two linear functionals
over different frequency ranges must be uncorrelated. If the process is Gaussian, then the linear
functionals are independent. This means in essence that Gaussian noise in different frequency
bands must be independent. That this is true simply because of stationarity is surprising.
Appendix 7A.3 helps to explain this puzzling phenomenon, especially with respect to effective
stationarity.

Next, let {φm(t); m ∈ Z} be a set of real orthonormal functions and let {φ̂m(f)} be the corre-
sponding set of Fourier transforms. Letting Vm =

∫
Z(t)φm(t) dt, (7.58) becomes

E[VmVj ] =
∫

φ̂m(f)SZ (f)φ̂∗
j (f) df. (7.59)

If the set of orthonormal functions {φm(t); m ∈ Z} is limited to some frequency band, and if
SZ (f) is constant, say with value N0/2 in that band, then

E[VmVj ] = N0/2
∫

φ̂m(f)φ̂∗
j (f) df. (7.60)

By Parseval’s theorem for Fourier transforms, we have
∫

φ̂m(f)φ̂∗
j (f) df = δmj , and thus

E[VmVj ] =
N0

2
δmj . (7.61)



224 CHAPTER 7. RANDOM PROCESSES AND NOISE

The rather peculiar looking constant N0/2 is explained in the next section. For now, however,
it is possible to interpret the meaning of the spectral density of a noise process. Suppose that
SZ (f) is continuous and approximately constant with value SZ (fc) over some narrow band of
frequencies around fc and suppose that φ1(t) is constrained to that narrow band. Then the
variance of the linear functional

∫ ∞
−∞ Z(t)φ1(t) dt is approximately SZ (fc). In other words,

SZ (fc) in some fundamental sense describes the energy in the noise per degree of freedom at the
frequency fc. The next section interprets this further.

7.7 White Gaussian noise

Physical noise processes are very often reasonably modeled as zero mean, stationary, and Gaus-
sian. There is one further simplification that is often reasonable. This is that the covariance
between the noise at two epochs dies out very rapidly as the interval between those epochs
increases. The interval over which this covariance is significantly nonzero is often very small
relative to the intervals over which the signal varies appreciably. This means that the covariance
function K̃Z (τ) looks like a short-duration pulse around τ = 0.

We know from linear system theory that
∫

K̃Z (t − τ)g(τ)dτ is equal to g(t) if K̃Z (t) is a unit
impulse. Also, this integral is approximately equal to g(t) if K̃Z (t) has unit area and is a narrow
pulse relative to changes in g(t). It follows that under the same circumstances, (7.56) becomes

E[V1V
∗
2 ] =

∫
t

∫
τ
g1(t)K̃Z (t − τ)g2(τ) dτ dt ≈

∫
g1(t)g2(t) dt. (7.62)

This means that if the covariance function is very narrow relative to the functions of interest, then
its behavior relative to those functions is specified by its area. In other words, the covariance
function can be viewed as an impulse of a given magnitude. We refer to a zero-mean WSS
Gaussian random process with such a narrow covariance function as White Gaussian Noise
(WGN). The area under the covariance function is called the intensity or the spectral density
of the WGN and is denoted by the symbol N0/2. Thus, for L2 functions g1(t), g2(t), . . . in
the range of interest, and for WGN (denoted by {W (t); t ∈ R}) of intensity N0/2, the random
variable Vm =

∫
W (t)gm(t) dt has the variance

E[V 2
m] = (N0/2)

∫
g2
m(t) dt. (7.63)

Similarly, the random variables Vj and Vm have the covariance

E[VjVm] = (N0/2)
∫

gj(t)gm(t) dt. (7.64)

Also V1, V2, . . . are jointly Gaussian.

The most important special case of (7.63) and (7.64) is to let φj(t) be a set of orthonormal
functions and let W (t) be WGN of intensity N0/2. Let Vm =

∫
φm(t)W (t) dt. Then, from (7.63)

and (7.64),

E[VjVm] = (N0/2)δjm. (7.65)

This is an important equation. It says that if the noise can be modeled as WGN, then when
the noise is represented in terms of any orthonormal expansion, the resulting random variables
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are iid. Thus, we can represent signals in terms of an arbitrary orthonormal expansion, and
represent WGN in terms of the same expansion, and the result is iid Gaussian random variables.

Since the coefficients of a WGN process in any orthonormal expansion are iid Gaussian, it is
common to also refer to a random vector of iid Gaussian rv’s as WGN.

If KW (t) is approximated by (N0/2)δ(t), then the spectral density is approximated by SW (f) =
N0/2. If we are concerned with a particular band of frequencies, then we are interested in
SW (f) being constant within that band, and in this case, {W (t); t ∈ R} can be represented as
white noise within that band. If this is the only band of interest, we can model15 SW (f) as
equal to N0/2 everywhere, in which case the corresponding model for the covariance function is
(N0/2)δ(t).

The careful reader will observe that WGN has not really been defined. What has been said,
in essence, is that if a stationary zero-mean Gaussian process has a covariance function that
is very narrow relative to the variation of all functions of interest, or a spectral density that
is constant within the frequency band of interest, then we can pretend that the covariance
function is an impulse times N0/2, where N0/2 is the value of SW (f) within the band of
interest. Unfortunately, according to the definition of random process, there cannot be any
Gaussian random process W (t) whose covariance function is K̃(t) = (N0/2)δ(t). The reason for
this dilemma is that E[W 2(t)] = KW (0). We could interpret KW (0) to be either undefined or
∞, but either way, W (t) cannot be a random variable (although we could think of it taking on
only the values plus or minus ∞).

Mathematicians view WGN as a generalized random process, in the same sense as the unit
impulse δ(t) is viewed as a generalized function. That is, the impulse function δ(t) is not viewed
as an ordinary function taking the value 0 for t �= 0 and the value ∞ at t = 0. Rather, it is viewed
in terms of its effect on other, better behaved, functions g(t), where

∫ ∞
−∞ g(t)δ(t) dt = g(0). In

the same way, WGN is not viewed in terms of random variables at each epoch of time. Rather
it is viewed as a generalized zero-mean random process for which linear functionals are jointly
Gaussian, for which variances and covariances are given by (7.63) and (7.64), and for which the
covariance is formally taken to be (N0/2)δ(t).

Engineers should view WGN within the context of an overall bandwidth and time interval of
interest, where the process is effectively stationary within the time interval and has a constant
spectral density over the band of interest. Within that context, the spectral density can be
viewed as constant, the covariance can be viewed as an impulse, and (7.63) and (7.64) can be
used.

The difference between the engineering view and the mathematical view is that the engineering
view is based on a context of given time interval and bandwidth of interest, whereas the math-
ematical view is based on a very careful set of definitions and limiting operations within which
theorems can be stated without explicitly defining the context. Although the ability to prove
theorems without stating the context is valuable, any application must be based on the context.

7.7.1 The sinc expansion as an approximation to WGN

Theorem 7.5.2 treated the process Z(t) =
∑

k Zksinc
(

t−kT
T

)
where each rv {Zk; k ∈ Z} is iid

and N (0, σ2). We found that the process is zero-mean Gaussian and stationary with covariance
15This is not at obvious as it sounds, and will be further discussed in terms of the theorem of irrelevance in the

next chapter.



226 CHAPTER 7. RANDOM PROCESSES AND NOISE

function K̃Z (t − τ) = σ2sinc( t−τ
T ). The spectral density for this process is then given by

SZ (f) = σ2T rect(fT ). (7.66)

This process has a constant spectral density over the baseband bandwidth W = 1/(2T ), so by
making T sufficiently small, the spectral density is constant over a band sufficiently large to
include all frequencies of interest. Thus this process can be viewed as WGN of spectral density
N0
2 = σ2T for any desired range of frequencies W = 1/(2T ) by making T sufficiently small. Note,

however, that to approximate WGN of spectral density N0/2, the noise power, i.e., the variance
of Z(t) is σ2 = WN0. In other words, σ2 must increase with increasing W. This also says that N0

is the noise power per unit positive frequency. The spectral density, N0/2, is defined over both
positive and negative frequencies, and so becomes N0 when positive and negative frequencies
are combined as in the standard definition of bandwidth16.

If a sinc process is passed through a linear filter with an arbitrary impulse response h(t), the
output is a stationary Gaussian process with spectral density |ĥ(f)|2σ2T rect(fT ). Thus, by
using a sinc process plus a linear filter, a stationary Gaussian process with any desired non-
negative spectral density within any desired finite bandwith can be generated. In other words,
stationary Gaussian processes with arbitrary covariances (subject to S(f) ≥ 0 can be generated
from orthonormal expansions of Gaussian variables.

Since the sinc process is stationary, it has sample waveforms of infinite energy. As explained in
subsection 7.5.2, this process may be truncated to achieve an effectively stationary process with
L2 sample waveforms. Appendix 7A.3 provides some insight about how an effectively stationary
Gaussian process over an interval T0 approaches stationarity as T0 → ∞.

The sinc process can also be used to understand the strange, everywhere uncorrelated, process
in Example 7.4.2. Holding σ2 = 1 in the sinc expansion as T approaches 0, we get a process
whose limiting covariance function is 1 for t−τ = 0 and 0 elsewhere. The corresponding limiting
spectral density is 0 everywhere. What is happening is that the power in the process (i.e., K̃Z (0))
is 1, but that power is being spread over a wider and wider band as T → 0, so the power per
unit frequency goes to 0.

To explain this in another way, note that any measurement of this noise process must involve
filtering over some very small but nonzero interval. The output of this filter will have zero
variance. Mathematically, of course, the limiting covariance is L2-equivalent to 0, so again the
mathematics17 corresponds to engineering reality.

7.7.2 Poisson process noise

The sinc process of the last subsection is very convenient for generating noise processes that
approximate WGN in an easily used formulation. On the other hand, this process is not very
believable18 as a physical process. A model that corresponds better to physical phenomena,

16One would think that this field would have found a way to be consistent about counting only positive
frequencies or positive and negative frequencies. However, the word bandwidth is so widely used among the
mathophobic, and Fourier analysis is so necessary for engineers, that one must simply live with such minor
confusions.

17This process also can not be satisfactorily defined in a measure theoretic way.
18To many people, defining these sinc processes with their easily analyzed properties but no physical justification,

is more troublesome than our earlier use of discrete memoryless sources in studying source coding. Actually, the
approach to modeling is the same in each case: first understand a class of easy-to-analyze but perhaps impractical
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particularly for optical channels, is a sequence of very narrow pulses which arrive according to
a Poisson distribution in time.

The Poisson distribution, for our purposes, can be simply viewed as a limit of a discrete time
process where the time axis is segmented into intervals of duration ∆ and a pulse of width ∆
arrives in each interval with probability ∆ρ, independent of every other interval. When such a
process is passed through a linear filter, the fluctuation of the output at each instant of time is
approximately Gaussian if the filter is of sufficiently small bandwidth to integrate over a very
large number of pulses. One can similarly argue that linear combinations of filter outputs tend
to be approximately Gaussian, making the process an approximation of a Gaussian process.

We do not analyze this carefully, since our point of view is that WGN, over limited bandwidths,
is a reasonable and canonic approximation to a large number of physical noise processes. After
understanding how this affects various communication systems, one can go back and see whether
the model is appropriate for the given physical noise process. When we study wireless commu-
nication, we will find that the major problem is not that the noise is poorly approximated by
WGN, but rather that the channel itself is randomly varying.

7.8 Adding noise to modulated communication

Consider the QAM communication problem again. A complex L2 baseband waveform u(t) is
generated and modulated up to passband as a real waveform x(t) = 2�[u(t)e2πifct]. A sample
function w(t) of a random noise process W (t) is then added to x(t) to produce the output
y(t) = x(t)+w(t), which is then demodulated back to baseband as the received complex baseband
waveform v(t).

Generalizing QAM somewhat, assume that u(t) is given by u(t) =
∑

k ukθk(t) where the func-
tions θk(t) are complex orthonormal functions and the sequence of symbols {uk; k ∈ Z} are
complex numbers drawn from the symbol alphabet and carrying the information to be trans-
mitted. For each symbol uk, �(uk) and �(uk) should be viewed as sample values of the random
variables �(Uk) and �(Uk). The joint probability distributions of these random variables is
determined by the incoming random binary digits and how they are mapped into symbols. The
complex random variable19 �(Uk) + i�(Uk) is then denoted by Uk.

In the same way, �(
∑

k Ukθk(t)) and �(
∑

k Ukθk(t)) are random processes denoted respec-
tively by �(U(t)) and �(U(t)). We then call U(t) = �(U(t)) + i�(U(t)) for t ∈ R a com-
plex random process. A complex random process U(t) is defined by the joint distribution of
U(t1), U(t2), . . . , U(tn) for all choices of n, t1, . . . , tn. This is equivalent to defining both �(U(t))
and �(U(t)) as joint processes.

Recall from the discussion of the Nyquist criterion that if the QAM transmit pulse p(t) is
chosen to be square-root of Nyquist, then p(t) and its T -spaced shifts are orthogonal and can be
normalized to be orthonormal. Thus a particularly natural choice here is θk(t) = p(t − kT ) for

processes, then build on that understanding to understand practical cases. Actually, sinc processes have an
advantage here: the band limited statationary Gaussian random processes defined this way (although not the
method of generation) are widely used as practical noise models, whereas there are virtually no uses of discrete
memoryless sources as practical source models.

19Recall that a random variable (rv) is a mapping from sample points to real numbers, so that a complex rv is
a mapping from sample points to complex numbers. Sometimes in discussions involving both rv’s and complex
rv’s, it helps to refer to rv’s as real rv’s, but the modifier ‘real’ is superflous.
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such a p. Note that this is a generalization of the previous chapter in the sense that {Uk; k ∈ Z}
is a sequence of complex rv’s using random choices from the signal constellation rather than some
given sample function of that random sequence. The transmitted passband (random) waveform
is then

X(t) =
∑

k

2�{Ukθk(t) exp[2πifct]} . (7.67)

Recall that the transmitted waveform has twice the power of the baseband waveform. Now
define

ψk,1(t) = �{2θk(t) exp[2πifct]} ;
ψk,2(t) = �{−2θk(t) exp[2πifct]} .

Also, let Uk,1 = �(Uk) and Uk,2 = �(Uk). Then

X(t) =
∑

k

[Uk,1ψk,1(t) + Uk,2ψk,2(t)].

As shown in Theorem 6.6.1, the set of bandpass functions {ψk,	; k ∈ Z,  ∈ {1, 2}} are orthogonal
and each have energy equal to 2. This again assumes that the carrier frequency fc is greater
than all frequencies in each baseband function θk(t).

In order for u(t) to be L2, assume that the number of orthogonal waveforms θk(t) is arbitrarily
large but finite, say θ1(t), . . . , θn(t). Thus {ψk,	} is also limited to 1 ≤ k ≤ n.

Assume that the noise {W (t); t ∈ R} is white over the band of interest and effectively stationary
over the time interval of interest, but has L2 sample functions20. Since {ψk,l; 1 ≤ k ≤ n,  = 1, 2}
is a finite real orthogonal set, the projection theorem can be used to express each sample noise
waveform {w(t); t ∈ R} as

w(t) =
n∑

k=1

[zk,1ψk,1(t) + zk,2ψk,2(t)] + w⊥(t), (7.68)

where w⊥(t) is the component of the sample noise waveform perpendicular to the space spanned
by {ψk,l; 1 ≤ k ≤ n,  = 1, 2}. Let Zk,	 be the rv with sample value zk,	. Then each rv Zk,	

is a linear functional on W (t). Since {ψk,l; 1 ≤ k ≤ n,  = 1, 2} is an orthogonal set, the
rv’s Zk,	 are iid Gaussian rv’s. Let W⊥(t) be the random process corresponding to the sample
function w⊥(t) above. Expanding {W⊥(t); t ∈ R} in an orthonormal expansion orthogonal to
{ψk,l; 1 ≤ k ≤ n,  = 1, 2}, the coefficients are assumed to be independent of the Zk,	, at least
over the time and frequency band of interest. What happens to these coefficients outside of the
region of interest is of no concern, other than assuming that W⊥(t) is independent of Uk,	 and
Zk,	 for 1 ≤ k ≤ n and  = {1, 2}. The received waveform Y (t) = X(t) + W (t) is then

Y (t) =
n∑

k=1

[(Uk,1+Zk,1) ψk,1(t) + (Uk,2+Zk,2) ψk,2(t)] + W⊥(t).

20Since the set of orthogonal waveforms θk(t) are not necessarily time or frequency limited, the assumption
here is that the noise is white over a much larger time and frequency interval than the nominal bandwidth and
time interval used for communication. This assumption is discussed further in the next chapter.
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When this is demodulated,21 the baseband waveform is represented as the complex waveform

V (t) =
∑

k

(Uk + Zk)θk(t) + Z⊥(t). (7.69)

where each Zk is a complex rv given by Zk = Zk,1 + iZk,2 and the baseband residual noise Z⊥(t)
is independent of {Uk, Zk; 1 ≤ k ≤ n}. The variance of each real rv Zk,1 and Zk,2 is taken by
convention to be N0/2. We follow this convention because we are measuring the input power
at baseband; as mentioned many times, the power at passband is scaled to be twice that at
baseband. The point here is that N0 is not a physical constant - rather it is the noise power per
unit positive frequency in the units used to represent the signal power.

7.8.1 Complex Gaussian random variables and vectors

Noise waveforms, after demodulation to baseband, are usually complex and are thus represented,
as in (7.69), by a sequence of complex random variables which is best regarded as a complex
random vector (rv). It is possible to view any such n dimensional complex rv Z = Z re + iZ im

as a 2n dimensional real rv
[

Z re

Z im

]
where Z re = �(Z ) and Z im = �(Z ).

For many of the same reasons that it is desirable to work directly with a complex baseband
waveform rather than a pair of real passband waveforms, it is often beneficial to work directly
with complex rv’s.

A complex random variable Z = Zre + iZim is Gaussian if Zre and Zim are jointly Gaussian.
Z is circularly symmetric Gaussian22 if it is Gaussian and in addition Zre and Zim are iid. In
this case (assuming zero-mean as usual), the amplitude of Z is a Rayleigh distributed rv and
the phase is uniformly distributed; thus the joint density is circularly symmetric. A circularly
symmetric complex Gaussian rv Z is fully described by its mean Z̄ (which we continue to assume
to be 0 unless stated otherwise) and its variance σ2 = E[Z̃Z̃∗]. A circularly symmetric complex
Gaussian rv Z of mean Z̄ and variance σ2 is denoted as Z ∼ CN (Z̄, σ2).

A complex random vector Z is a jointly-Gaussian rv if the real and imaginary components of Z
collectively are jointly Gaussian; it is also circularly symmetric if the density of the fluctuation
Z̃ (i.e., the joint density of the real and imaginary parts of the components of Z̃ ) is the same23

as that of eiθZ̃ for all phase angles θ.

An important example of a circularly symmetric Gaussian rv is Z = (Z1, . . . , Zn)T where the
real and imaginary components collectively are iid and N (0, 1). Because of the circular symmetry
of each Zk, multiplying Z by eiθ simply rotates each Zk and the probability density does not
change. The probability density is just that of 2n iid N (0, 1) rv’s, which is

fZ (z ) =
1

(2π)n
exp

[∑n
k=1 −|zk|2

2

]
, (7.70)

21Some filtering is necessary before demodulation to remove the residual noise that is far out of band, but we
do not want to analyze that here.

22This is sometimes referred to as complex proper Gaussian.
23For a single complex random variable Z with Gaussian real and imaginary parts, this phase invariance property

is enough to show that the real and imaginary parts are jointly Gaussian, and thus that Z is circularly symmetric
Gaussian. For a random vector with Gaussian real and imaginary parts, phase invariance as defined here is not
sufficient to ensure the jointly Gaussian property. See Exercise 7.14 for an example.
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where we have used the fact that |zk|2 = �(zk)2 + �(zk)2 for each k to replace a sum over 2n
terms with a sum over n terms.

Another much more general example is to let A be an arbitrary complex n by n matrix and let
the complex rv Y be defined by

Y = AZ , (7.71)

where Z has iid real and imaginary normal components as above. The complex rv defined in
this way has jointly Gaussian real and imaginary parts. To see this, represent (7.71) as the
following real linear transformation of 2n real space:[

Y re

Y im

]
=

[
Are −Aim

Aim Are

] [
Z re

Z im

]
, (7.72)

where Y re = �(Y ), Y im = �(Y ), Are = �(A), and Aim = �(A).

The rv Y is also circularly symmetric.24 To see this, note that eiθY = eiθAZ = AeiθZ . Since
Z is circularly symmetric, the density at any given sample value z (i.e., the density for the real
and imaginary parts of z ) is the same as that at eiθz . This in turn implies25 that the density
at y is the same as that at eiθy .

The covariance matrix of a complex rv Y is defined as

KY = E[YY †], (7.73)

where Y † is defined as Y T∗. For a random vector Y defined by (7.71), KY = AA†.

Finally, for a circularly-symmetric complex Gaussian vector as defined in (7.71), the probability
density is given by

fY (y) =
1

(2π)n det(KY )
exp

[
y †KY y

]
. (7.74)

It can be seen that complex circularly symmetric Gaussian vectors behave quite similarly to (real)
jointly Gaussian vectors. Both are defined by their covariance matrices, the properties of the
covariance matrices are almost identical (see Appendix 7A.1), the covariance can be expressed
as AA† where A describes a linear transformation from iid components, and the transformation
A preserves the circular symmetric Gaussian property in the first case and the joint Gaussian
property in the second case.

An arbitrary (zero-mean) complex Gaussian rv is not specified by its variance, since E[Z2
re] might

be different from E[Z2
im]. Similarly, an arbitrary (zero-mean) complex Gaussian vector is not

specified by its covariance matrix. In fact, arbitrary Gaussian complex n-vectors are usually best
viewed as 2n dimensional real vectors; the simplifications from dealing with complex Gaussian
vectors directly are primarily constrained to the circularly symmetric case.

24Conversely, as we will see later, all circularly symmetric jointly-Gaussian rv’s can be defined this way.
25This is not as simple as it appears, and is shown more carefully in the exercises. It is easy to become facile

at working in Rn and Cn, but going back and forth between R2n and Cn is tricky and inelegant (witness (7.72)
and (7.71).
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7.9 Signal to noise ratio

There are a number of different measures of signal power, noise power, energy per symbol, energy
per bit, and so forth, which are defined here. These measures are explained in terms of QAM
and PAM, but they also apply more generally. In the previous section, a fairly general set of
orthonormal functions was used, and here a specific set is assumed. Consider the orthonormal
functions pk(t) = p(t− kT ) as used in QAM, and use a nominal passband bandwidth W = 1/T .
Each QAM symbol Uk can be assumed to be iid with energy Es = E[|Uk|2]. This is the signal
energy per real component plus imaginary component. The noise energy per real plus imaginary
component is defined to be N0. Thus the signal to noise ratio is defined to be

SNR =
Es

N0
for QAM. (7.75)

For baseband PAM, using real orthonormal functions satisfying pk(t) = p(t − kT ), the signal
energy per symbol is Es = E[|Uk|2]. Since the symbol is one dimensional, i.e., real, the noise
energy in this single dimension is defined to be N0/2. Thus SNR is defined to be

SNR =
2Es

N0
for PAM. (7.76)

For QAM there are W complex degrees of freedom per second, so the signal power is given by
P = EsW. For PAM at baseband, there are 2W degrees of freedom per second, so the signal
power is P = 2EsW. Thus in each case, the SNR becomes

SNR =
P

N0W
for QAM and PAM. (7.77)

We can interpret the denominator here as the overall noise power in the bandwidth W, so SNR
is also viewed as the signal power divided by the noise power in the nominal band. For those
who like to minimize the number of formulas they remember, all of these equations for SNR
follow from a basic definition as the signal energy per degree of freedom divided by the noise
energy per degree of freedom.

PAM and QAM each use the same signal energy for each degree of freedom (or at least for each
complex pair of degrees of freedom), whereas other systems might use the available degrees of
freedom differently. For example, PAM with baseband bandwidth W occupies bandwidth 2W if
modulated to passband, and uses only half the available degrees of freedom. For these situations,
SNR can be defined in several different ways depending on the context. As another example,
frequency hopping is a technique used both in wireless and in secure communication. It is the
same as QAM, except that the carrier frequency fc changes pseudo-randomly at intervals long
relative to the symbol interval. Here the bandwidth W might be taken as the bandwidth of the
underlying QAM system, or might be taken as the overall bandwidth within which fc hops. The
SNR in (7.77) is quite different in the two cases.

The appearance of W in the denominator of the expression for SNR in (7.77) is rather surprising
and disturbing at first. It says that if more bandwidth is allocated to a communication system
with the same available power, then SNR decreases. This is best interpreted by viewing SNR in
terms of signal to noise energy per degree of freedom. As the number of degrees of freedom per
second increases, the SNR decreases, but the available number of degrees of freedom increases.
We will later see that the net gain is positive.
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Another important parameter is the rate R; this is the number of transmitted bits per second,
which is the number of bits per symbol, log2 |A|, times the number of symbols per second. Thus

R = W log2 |A|, for QAM; R = 2W log2 |A|, for PAM. (7.78)

An important parameter is the spectral efficiency of the system, which is defined as ρ = R/W.
This is the transmitted number of bits/sec in each unit frequency interval. For QAM and PAM,
ρ is given by (7.78) to be

ρ = log2 |A|, for QAM; ρ = 2 log2 |A|, for PAM. (7.79)

More generally the spectral efficiency ρ can be defined as the number of transmitted bits per
degree of freedom. From (7.79), achieving a large value of spectral efficiency requires making
the symbol alphabet large; Note that ρ increases only logarithmically with |A|.
Yet another parameter is the energy per bit Eb. Since each symbol contains log2 A bits, Eb is
given for both QAM and PAM by

Eb =
Es

log2 |A| . (7.80)

One of the most fundamental quantities in communication is the ratio Eb/N0. Both Eb and
N0 are measured in the same way, so the ratio is dimensionless, and it is the ratio that is
important rather than either alone. Finding ways to reduce Eb/N0 is important, particularly
where transmitters use batteries. For QAM, we substitute (7.75) and (7.79) into (7.80), getting

Eb

N0
=

SNR
ρ

. (7.81)

The same equation is seen to be valid for PAM. This says that achieving a small value for Eb/N0

requires a small ratio of SNR to ρ. We look at this next in terms of channel capacity.

One of Shannon’s most famous results was to develop the concept of the capacity C of an
additive WGN communication channel. This is defined as the supremum of the number of bits
per second that can be transmitted and received with arbitrarily small error probability. For
the WGN channel with a constraint W on the bandwidth and a constraint P on the received
signal power, he showed that

C = W log2

(
1 +

P

WN0

)
. (7.82)

He showed that any rate R < C could be achieved with arbitrarily small error probability by
using channel coding of arbitrarily large constraint length. He also showed, and later results
strengthened, the fact that larger rates would lead to larger error probabilities. This result will
be demonstrated in the next chapter. This result is widely used as a benchmark for comparison
with particular systems. Figure 7.5 shows a sketch of C as a function of W. Note that C
increases monotonically with W, reaching a limit of (P/N0) log2 e as W → ∞. This is known as
the ultimate Shannon limit on achievable rate. Note also that when W = P/N0, i.e., when the
bandwidth is large enough for the SNR to reach 1, then C is within 1/ log2 e, which is 69%, of
the ultimate Shannon limit.



7.10. SUMMARY OF RANDOM PROCESSES 233

(P/N0) log2 e

P/N0

P/N0

W
Figure 7.5: Capacity as a function of bandwidth W for fixed P/N0.

For any achievable rate, R, i.e., any rate at which the error probability can be made arbitrarily
small by coding and other clever strategems, the theorem above says that R < C. If we rewrite
(7.82), substituting SNR for P/(WN0) and substituting ρ for R/W, we get

ρ < log2(1 + SNR). (7.83)

If we substitute this into (7.81), we get

Eb

N0
>

SNR
log2(1 + SNR)

.

This is a monotonic increasing function of the single variable SNR, which in turn is decreasing in
W. Thus (Eb/N0)min is monotonic decreasing in W. As W → ∞ it reaches the limit ln 2 = 0.693,
i.e., -1.59 dB. As W decreases, it grows, reaching 0 dB at SNR =1, and increasing without bound
for yet smaller W. The limiting spectral efficiency, however, is C/W. This is also monotonic
decreasing in W, going to 0 as W → ∞. In other words, there is a trade-off between Eb/N0

(which we would like to be small) and spectral efficiency (which we would like to be large). This
is further discussed in the next chapter.

7.10 Summary of Random Processes

The additive noise in physical communication systems is usually best modeled as a random
process, i.e., a collection of random variables, one at each real-valued instant of time. A random
process can be specified by its joint probability distribution over all finite sets of epochs, but
additive noise is most often modeled by the assumption that the random variables are all zero-
mean Gaussian and their joint distribution is jointly Gaussian.

These assumptions were motivated partly by the central limit theorem, partly by the simplicity
of working with Gaussian processes, partly by custom, and partly by various extremal properties.
We found that jointly Gaussian means a great deal more than individually Gaussian, and that
the resulting joint densities are determined by the covariance matrix. These densities have
ellipsoidal equiprobability contours whose axes are the eigenfunctions of the covariance matrix.

A sample function, say Z(t, ω) of a random process Z(t) can be viewed as a waveform and
interpreted as an L2 vector. For any fixed L2 function g(t), the inner product 〈g(t), Z(t, ω)〉
maps ω into a real number and thus can be viewed over Ω as a random variable. This rv is called
a linear function of Z(t) and is denoted by

∫
g(t)Z(t) dt.
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These linear functionals arise when expanding a random process into an orthonormal expansion
and also at each epoch when a random process is passed through a linear filter. For simplic-
ity these linear functionals and the underlying random processes are not viewed in a measure
theoretic form, although the L2 development in Chapter 4 provides some insight about the
mathematical subtleties involved.

Noise processes are usually viewed as being stationary, which effectively means that their statis-
tics do not change in time. This generates two problems - first that the sample functions have
infinite energy and second that there is no clear way to see whether results are highly sensitive
to time-regions far outside the region of interest. Both of these problems are treated by defining
effective stationarity (or effective wide-sense stationarity) in terms of the behavior of the process
over a finite interval. This analysis shows, for example, that Gaussian linear functionals depend
only on effective stationarity over the region of interest. From a practical standpoint, this means
that the simple results arising from the assumption of stationarity can be used without concern
for the process statistics outside the time-range of interest.

The spectral density of a stationary process can also be used without concern for the process
outside the time-range of interest. If a process is effectively WSS, it has a single variable
covariance function corresponding to the interval of interest, and this has a Fourier transform
which operates as the spectral density over the region of interest. How these results change as
the region of interest approaches ∞ is explained in Appendix 7A.3.

7A Appendix: Supplementary topics

7A.1 Properties of covariance matrices

This appendix summarizes some properties of covariance matrices that are often useful but not
absolutely critical to our treatment of random processes. Rather than repeat everything twice,
we combine the treatment for real and complex rv together. On a first reading, however, one
might assume everything to be real. Most of the results are the same in each case, although
the complex-conjugate signs can be removed in the real case. It is important to realize that the
properties developed here apply to nonGaussian as well as Gaussian rv’s. All rv’s and rv’s here
are assumed to be zero-mean.

A square matrix K is a covariance matrix if a (real or complex) rv Z exists such that K =
E[ZZ T∗]. The complex conjugate of the transpose, Z T∗, is called the Hermitian transpose and
denoted by Z †. If Z is real, of course, Z † = Z T. Similarly, for a matrix K, the Hermitian
conjugate, denoted K†, is KT∗. A matrix is Hermitian if K = K†. Thus a real Hermitian matrix
(a Hermitian matrix containing all real terms) is a symmetric matrix.

An n by n square matrix K with real or complex terms is nonnegative definite if it is Hermitian
and if, for all b ∈ Cn, b†Kb is real and nonnegative. It is positive definite if, in addition,
b†Kb > 0 for b �= 0. We now list some of the important relationships between nonnegative
definite, positive definite, and covariance matrices and state some other useful properties of
covariance matrices.

7.1. Every covariance matrix K is nonnegative definite. To see this, let Z be a rv such that
K = E[ZZ †]. K is Hermitian since E[ZkZ

∗
m] = E[Z∗

mZk] for all k, m. For any b ∈ Cn, let
X = b†Z . Then 0 ≤ E[|X|2] = E

[
(b†Z )(b†Z )∗

]
= E

[
b†ZZ †b

]
= b†Kb.



7A. APPENDIX: SUPPLEMENTARY TOPICS 235

7.2. For any complex n by n matrix A, the matrix K = AA† is a covariance matrix. In fact, let
Z have n independent unit-variance elements so that KZ is the identity matrix In. Then
Y = AZ has the covariance matrix KY = E[(AZ )(AZ )†] = E[AZZ †A†] = AA†. Note that
if A is real and Z is real, then Y is real and, of course, KY is real. It is also possible for
A to be real and Z complex, and in this case KY is still real but Y is complex.

7.3. A covariance matrix K is positive definite if and only if K is nonsingular. To see this, let
K = E[ZZ †] and note that if b†Kb = 0 for some b �= 0, then X = b†Z has zero variance,
and therefore is zero with probability 1. Thus E[XZ †] = 0, so b†E[ZZ †] = 0. Since b �= 0
and b†K = 0, K must be singular. Conversely, if K is singular, there is some b such that
Kb = 0, so b†Kb is also 0.

7.4. A complex number λ is an eigenvalue of a square matrix K if Kq = λq for some nonzero
vector q ; the corresponding q is an eigenvector of K. The following results about the
eigenvalues and eigenvectors of positive (nonnegative) definite matrices K are standard
linear algebra results (see for example, Strang, section 5.5):
All eigenvalues of K are positive (nonnegative). If K is real, the eigenvectors can be taken to
be real. Eigenvectors of different eigenvalues are orthogonal, and the eigenvectors of any one
eigenvalue form a subspace whose dimension is called the multiplicity of that eigenvalue. If
K is n by n, then n orthonormal eigenvectors, q1, . . . , qn can be chosen. The corresponding
list of eigenvalues, λ1, . . . , λn need not be distinct; specifically, the number of repetitions
of each eigenvalue equals the multiplicity of that eigenvalue. Finally det(K) =

∏n
k=1 λk.

7.5. If K is nonnegative definite, let Q be the matrix with the orthonormal columns, q1, . . . , qn

defined above. Then Q satisfies KQ = QΛ where Λ = diag(λ1, . . . , λn). This is simply the
vector version of the eigenvector/eigenvalue relationship above. Since q †

kqm = δnm, Q also
satisfies Q†Q = In. We then also have Q−1 = Q† and thus QQ† = In; this says that the
rows of Q are also orthonormal. Finally, by post-multiplying KQ = QΛ by Q†, we see that
K = QΛQT. The matrix Q is called unitary if complex, and orthogonal if real.

7.6. If K is positive definite, then Kb �= 0 for b �= 0. Thus K can have no zero eigenvalues and
Λ is nonsingular. It follows that K can be inverted as K−1 = QΛ−1Q†. For any n-vector b,

b†K−1b =
∑

k

λ−1
k |〈b, qk〉|2.

To see this, note that b†K−1b = b†QΛ−1Q†b. Letting v = Q†b and using the fact that the
rows of QT are the orthonormal vectors qk, we see that 〈b, qk〉 is the kth component of v .
We then have v †Λ−1v =

∑
k λ−1

k |vk|2, which is equivalent to the desired result. Note that
〈b, qk〉 is the projection of b in the direction of qk.

7.7. detK =
∏n

k=1 λk where λ1, . . . , λn are the eigenvalues of K repeated according to their
multiplicity. Thus if K is positive definite, detK > 0 and if K is nonnegative definite,
det K ≥ 0.

7.8. If K is a positive definite (semi-definite) matrix, then there is a unique positive definite
(semi-definite) square root matrix R satisfying R2 = K. In particular, R is given by

R = QΛ1/2Q† whereΛ1/2 = diag
(√

λ1,
√

λ2, . . . ,
√

λn

)
. (7.84)

7.9. If K is nonnegative definite, then K is a covariance matrix. In particular, K is the covariance
matrix of Y = RZ where R is the square root matrix in (7.84) and KZ = Im
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This shows that zero-mean jointly-Gaussian rv’s exist with any desired covariance matrix;
the definition of jointly Gaussian here as a linear combination of normal rv’s does not limit
the possible set of covariance matrices.

For any given covariance matrix K, there are usually many choices for A satisfying K = AAT.
The square root matrix R above is simply a convenient choice. Some of the results in this section
are summarized in the following theorem:

Theorem 7A.1. An n by n matrix K is a covariance matrix if and only if it is nonnegative
definite. Also it is a covariance matrix if and only if K = AA† for an n by n matrix A. One
choice for A is the square root matrix R in (7.84).

7A.2 The Fourier series expansion of a truncated random process

Consider a (real zero-mean) random process that is effectively WSS over some interval [−T0
2 , T0

2 ]
where T0 is viewed intuitively as being very large. Let {Z(t); |t| ≤ T0

2 } be this process trun-
cated to the interval [−T0

2 , T0
2 ]. The objective of this and the next appendix is to view this

truncated process in the frequency domain and discover its relation to the spectral density of
an untruncated WSS process. A second objective is to interpret the statistical independence
between different frequencies for stationary Gaussian processes in terms of a truncated process.

Initially assume that {Z(t); |t| ≤ T0
2 } is arbitrary; the effective WSS assumption will be added

later. Assume the sample functions of the truncated process are L2 real functions with prob-
ability 1. Each L2 sample function, say {Z(t, ω); |t| ≤ T0

2 } can then be expanded in a Fourier
series,

Z(t, ω) =
∞∑

m=−∞
Ẑk(ω)e2πikt/T0 , |t| ≤ T0

2
. (7.85)

The orthogonal functions here are complex and the coefficients Ẑk(ω) can be similarly complex.
Since the sample functions {Z(t, ω); |t| ≤ T0

2 } are real, Ẑk(ω) = Ẑ∗
−k(ω) for each k. This also

implies that Ẑ0(ω) is real. The inverse Fourier series is given by

Ẑk(ω) =
1
T0

∫ T0
2

−T0
2

Z(t, ω)e−2πikt/T0 dt. (7.86)

For each sample point ω, Ẑk(ω) is a complex number, so Ẑk is a complex random variable, i.e.,
�(Ẑk) and �(Ẑk) are each rv’s. Also, �(Ẑk) = �(Ẑ−k) and �(Ẑk) = −�(Ẑ−k) for each k. It
follows that the truncated process {Z(t); |t| ≤ T0

2 } defined by

Z(t) =
∞∑

k=−∞
Ẑke

2πikt/T0 , −T0

2
≤ t ≤ T0

2
. (7.87)

is a (real) random process and the complex random variables Ẑk are complex linear functionals
of Z(t) given by

Ẑk =
1
T0

∫ T0
2

−T0
2

Z(t)e−2πikt/T0 dt. (7.88)
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Thus (7.87) and (7.88) are a Fourier series pair between a random process and a sequence of
complex rv’s. The sample functions satisfy

1
T0

∫ T0
2

−T0
2

Z2(t, ω) dt =
∑
k∈Z

|Ẑk(ω))|2,

so that

1
T0

E

[∫ T0
2

t=−T0
2

Z2(t) dt

]
=

∑
k∈Z

E
[
|Ẑk|2

]
. (7.89)

The assumption that the sample functions are L2 with probability 1 can be seen to be equivalent
to the assumption that ∑

k∈Z
Sk < ∞ where Sk = E[|Ẑk|2]. (7.90)

This is summarized in the following theorem.

Theorem 7A.2. If a zero-mean (real) random process is truncated to [−T0
2 , T0

2 ] and the trun-
cated sample functions are L2 with probability 1, then the truncated process is specified by the
joint distributions of the complex Fourier-coefficient random variables {Ẑk}. Furthermore, any
joint distribution of {Ẑk; k ∈ Z} that satisfies (7.90) specifies such a truncated process.

The covariance function of a truncated process can be calculated from (7.87) as follows:

KZ (t, τ) = E[Z(t)Z∗(τ)] = E

[∑
k

Ẑke
2πikt/T0

∑
m

Ẑ∗
me−2πimτ/T0

]

=
∑
k,m

E[ẐkẐ
∗
m]e2πikt/T0e−2πimτ/T0 , for − T0

2
≤ t, τ ≤ T0

2
. (7.91)

Note that if the function on the right of (7.91) is extended over all t, τ ∈ R, it becomes periodic
in t with period T0 for each τ , and periodic in τ with period T0 for each t.

Theorem 7A.2 suggests that virtually any truncated process can be represented as a Fourier
series. Such a representation becomes far more insightful and useful, however, if the Fourier
coefficients are uncorrelated. The next two subsections look at this case and then specialize to
Gaussian processes, where uncorrelated implies independent.

7A.3 Uncorrelated coefficients in a Fourier series

Consider the covariance function in (7.91) under the additional assumption that the Fourier
coefficients {Z̃k; k ∈ Z} are uncorrelated, i.e., that E[ẐkẐ

∗
m] = 0 for all k, m such that k �= m.

This assumption also holds for m = −k, and, since Zk = Z∗
−k for all k, implies both that

E[(�(Zk))2] = E[(�(Zk))2] and E[�(Zk)�(Zk)] = 0 (see Exercise 7.10). Since E[ẐkẐ
∗
m] = 0 for

k �= m, (7.91) simplifies to

KZ (t, τ) =
∑
k∈Z

Ske
2πik(t−τ)/T0 , for − T0

2
≤ t, τ ≤ T0

2
. (7.92)
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This says that KZ (t, τ) is a function only of t−τ over −T0
2 ≤ t, τ ≤ T0

2 , i.e., that KZ (t, τ) is
effectively WSS over [T0

2 , T0
2 ]}. Thus KZ (t, τ) can be denoted as K̃Z (t−τ) in this region, and

K̃Z (τ) =
∑

k

Ske
2πikτ/T0 . (7.93)

This means that the variances Sk of the sinusoids making up this process are the Fourier series
coefficients of the covariance function K̃Z (r).

In summary, the assumption that a truncated (real) random process has uncorrelated Fourier
series coefficients over [−T0

2 , T0
2 ] implies that the process is WSS over [−T0

2 , T0
2 ] and that the

variances of those coefficients are the Fourier coefficients of the single variable covariance. This is
intuitively plausible since the sine and cosine components of each of the corresponding sinusoids
are uncorrelated and have equal variance.

Note that KZ (t, τ) in the above example is defined for all t, τ ∈ [−T0
2 , T0

2 ] and thus t−τ ranges
from −T0 to T0 and K̃Z (r) must satisfy (7.93) for −T0 ≤ r ≤ T0. From (7.93), K̃Z (r) is also
periodic with period T0, so the interval [−T0, T0] constitutes 2 periods of K̃Z (r) . This means,
for example, that E[Z(−ε)Z∗(ε)] = E[Z(T0

2 −ε)Z∗(−T0
2 +ε)]. More generally, the periodicity of

K̃Z (r) is reflected in KZ (t, τ) as illustrated in figure 7.6.
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Lines of equal KZ (t, τ)

Figure 7.6: Constraint on KZ (t, τ) imposed by periodicity of K̃Z (t−τ).

We have seen that essentially any random process, when truncated to [−T0
2 , T0

2 ], has a Fourier
series representation, and that if the Fourier series coefficients are uncorrelated, then the trun-
cated process is WSS over [−T0

2 , T0
2 ] and has a covariance function which is periodic with period

T0. This proves the first half of the following theorem:

Theorem 7A.3. Let {Z(t); t∈[−T0
2 , T0

2 ]} be a finite-energy zero-mean (real) random process
over [−T0

2 , T0
2 ] and let {Ẑk; k∈Z} be the Fourier series rv’s of (7.87) and (7.88).

• If E[ZkZ
∗
m] = Skδk,m for all k, m ∈ Z, then {Z(t); t ∈ [−T0

2 , T0
2 ]} is effectively WSS within

[−T0
2 , T0

2 ] and satisfies (7.93).

• If {Z(t); t∈[−T0
2 , T0

2 ]} is effectively WSS within [−T0
2 , T0

2 ] and if K̃Z(t−τ) is periodic with
period T0 over [−T0, T0], then E[ZkZ

∗
m] = Skδk,m for some choice of Sk ≥ 0 and for all

k, m ∈ Z.

Proof: To prove the second part of the theorem, note from (7.88) that

E[ẐkẐ
∗
m] =

1
T 2

0

∫ T0
2

−T0
2

∫ T0
2

−T0
2

KZ (t, τ)e−2πikt/T0e2πimτ/T0 dt dτ. (7.94)
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By assumption, KZ (t, τ) = K̃Z (t−τ) for t, τ ∈ [−T0
2 , T0

2 ] and K̃Z (t − τ) is periodic with period
T0. Substituting s = t−τ for t as a variable of integration, (7.94) becomes

E[ZkZ
∗
m] =

1
T 2

0

∫ T0
2

−T0
2

(∫ T0
2
−τ

−T0
2
−τ

K̃Z (s)e−2πiks/T0 ds

)
e−2πikτ/T0e2πimτ/T0 dτ. (7.95)

The integration over s does not depend on τ because the interval of integration is one period
and K̃Z is periodic. Thus this integral is only a function of k, which we denote by T0Sk. Thus

E[ZkZ
∗
m] =

1
T0

∫ T0
2

−T0
2

Ske
−2πi(k−m)τ/T0 dτ =

{
Sk for m = k
0 otherwise

(7.96)

This shows that the Zk are uncorrelated, completing the proof.

The next issue is to find the relationship between these processes and processes that are WSS
over all time. This can be done most cleanly for the case of Gaussian processes. Consider a WSS
(and therefore stationary) zero-mean Gaussian random process26 {Z ′(t); t ∈ R} with covariance
function K̃Z ′(τ) and assume a limited region of nonzero covariance i.e.,

K̃Z ′(τ) = 0 for |τ | >
T1

2
.

Let SZ′(f) ≥ 0 be the spectral density of Z ′ and let T0 satisfy T0 > T1. The Fourier series coeffi-
cients of K̃Z ′(τ) over the interval [−T0

2 , T0
2 ] are then given by Sk = SZ′ (k/T0)

T0
. Suppose this process

is approximated over the interval [−T0
2 , T0

2 ] by a truncated Gaussian process {Z(t); t∈[−T0
2 , T0

2 ]}
composed of independent Fourier coefficients Ẑk, i.e.

Z(t) =
∑

k

Ẑke
2πikt/T0 , −T0

2
≤ t ≤ T0

2
,

where

E[ẐkẐ
∗
m] = Skδk,m for all k, m ∈ Z.

By Theorem 7A.3, the covariance function of Z(t) is K̃Z (τ) =
∑

k Ske
2πikt/T0 . This is periodic

with period T0 and for |τ | ≤ T0
2 , K̃Z (τ) = K̃Z ′(τ). The original process Z ′(t) and the approx-

imation Z(t) thus have the same covariance for |τ | ≤ T0
2 . For |τ | > T0

2 , K̃Z ′(τ) = 0 whereas
K̃Z (τ) is periodic over all τ . Also, of course, Z ′ is stationary, whereas Z is effectively stationary
within its domain [−T0

2 , T0
2 ]. The difference between Z and Z ′ becomes more clear in terms of

the two-variable covariance function, illustrated in Figure 7.7.

It is evident from the figure that if Z ′ is modeled as a Fourier series over [−T0
2 , T0

2 ] using
independent complex circularly symmetric Gaussian coefficients, then KZ′(t, τ) = KZ(t, τ) for
|t|, |τ | ≤ T0−T1

2 . Since zero-mean Gaussian processes are completely specified by their covariance
functions, this means that Z ′ and Z are statistically identical over this interval.

In summary, a stationary Gaussian process Z ′ can not be perfectly modeled over an interval
[−T0

2 , T0
2 ] by using a Fourier series over that interval. The anomalous behavior is avoided,

26Equivalently, one can assume that Z′ is effectively WSS over some interval much larger than the intervals of
interest here.
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Figure 7.7: Part (a) illustrates KZ′(t, τ) over the region −T0
2 ≤ t, τ ≤ T0

2 for a stationary
process Z ′ satisfying K̃Z ′(τ) = 0 for |τ | > T1/2. Part (b) illustrates the approximating process
Z comprised of independent sinusoids, spaced by 1/T0 and with uniformly distribuited phase.
Note that the covariance functions are identical except for the anomalous behavior at the
corners where t is close to T0/2 and τ is close to −T0/2 or vice versa.

however, by using a Fourier series over a larger interval, large enough to include the interval of
interest plus the interval over which K̃Z ′(τ) �= 0. If this latter interval is unbounded, then the
Fourier series model can only be used as an approximation. The following theorem has been
established.

Theorem 7A.4. Let Z ′(t) be a zero-mean stationary Gaussian random process with spectral
density S(f) and covariance K̃Z′(τ) = 0 for |τ | ≥ T1/2. Then for T0 > T1, the truncated process
Z(t) =

∑
k Zke

2πikt/T0 for |t| ≤ T0
2 , where the Zk are independent and Zk ∼ CN (S(k/T0)

T0
) for all

k ∈ Z is statistically identical to Z ′(t) over [−T0−T1
2 , T0−T1

2 ].

The above theorem is primarily of conceptual use, rather than as a problem solving tool. It shows
that, aside from the anomalous behavior discussed above, stationarity can be used over the region
of interest without concern for how the process behaves outside far outside the interval of interest.
Also, since T0 can be arbitrarily large, and thus the sinusoids arbitrarily closely spaced, we see
that the relationship between stationarity of a Gaussian process and independence of frequency
bands is quite robust and more than something valid only in a limiting sense.

7A.4 The Karhunen-Loeve expansion

There is another approach, called the Karhunen-Loeve expansion for representing a random
process that is truncated to some interval [−T0

2 , T0
2 ] by an orthonormal expansion. The objec-

tive is to choose a set of orthonormal functions such that the coefficients in the expansion are
uncorrelated.

We start with the covariance function K(t, τ) defined for t, τ ∈ [−T0
2 , T0

2 ]. The basic facts about
these time-limited covariance functions are virtually the same as the facts about covariance
matrices in Appendix 7A.1. K(t, τ) is nonnegative definite in the sense that for all L2 functions
g(t), ∫ T0

2

−T0
2

∫ T0
2

−T0
2

g(t)KZ (t, τ)g(τ) dt dτ ≥ 0

KZ also has real valued orthonormal eigenvectors defined over [−T0
2 , T0

2 ] and nonnegative eigen-
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values. That is∫ T0
2

−T0
2

KZ (t, τ)φm(τ) dτ = λmφm(t); t ∈
[
−T0

2
,

T0

2

]
where 〈φm,φk〉 = δm,k

These eigenvectors span the L2 space of real functions over [−T0
2 , T0

2 ]. By using these eigenvectors
as the orthonormal functions of Z(t) =

∑
m Zmφm(t), it is easy to show that E[ZmZk] = λmδm,k.

In other words, given an arbitrary covariance function over the truncated interval [−T0
2 , T0

2 ], we
can find a particular set of orthonormal functions so that Z(t) =

∑
m Zmφm(t) and E[ZmZk] =

λmδm,k. This is called the Karhunen-Loeve expansion.

These equations for the eigenvectors and eigenvalues are well-known integral equations and can
be calculated by computer. Unfortunately they do not provide a great deal of insight into the
frequency domain.
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7.E Exercises

7.1. (a) Let X, Y be iid rv’s, each with density fX (x) = α exp(−x2/2). In part (b), we show
that α must be 1/

√
2π in order for fX (x) to integrate to 1, but in this part, we leave α

undetermined. Let S = X2 + Y 2. Find the probability density of S in terms of α. Hint:
Sketch the contours of equal probability density in the X, Y plane.
(b) Prove from part (a) that α must be 1/

√
2π in order for S, and thus X and Y , to be

random variables. Show that E[X] = 0 and that E[X2] = 1.
(c) Find the probability density of R =

√
S. R is called a Rayleigh rv.

7.2. (a) Let X ∼ N (0, σ2
X) and Y ∼ N (0, σ2

Y ) be independent zero-mean Gaussian rv’s. By
convolving their densities, find the density of X+Y . Hint: In performing the integration for
the convolution, you should do something called “completing the square” in the exponent.
This involves multiplying and dividing by eαy2/2 for some α, and you can be guided in this
by knowing what the answer is. This technique is invaluable in working with Gaussian rv’s.
(b) The Fourier transform of a probability density fX(x) is f̂X(θ) =

∫
fX(x)e−2πixθ dx =

E[e−2πiXθ]. By scaling the basic Gaussian transform in (4.28), show that for X ∼ N (0, σ2
X),

f̂X(θ) = exp
[
−(2πθ)2σ2

X

2

]
.

(b) Now find the density of X + Y by using Fourier transforms of the densities.
(c) Using the same Fourier transform technique, find the density of V =

∑n
k=1 αkWk where

W1, . . . , Wk are independent normal rv’s.

7.3. In this exercise you will construct two rv’s that are individually Gaussian but not jointly
Gaussian. Consider the nonnegative random variable X with the density

fX(x) =

√
2
π

exp
(−x2

2

)
for x ≥ 0.

Let U be binary, ±1, with pU (1) = pU (−1) = 1/2.
(a) Find the probability density of Y1 = UX. Sketch the density of Y1 and find its mean
and variance.
(b) Describe two normalized Gaussian rv’s, say Y1 and Y2, such that the joint density of
Y1, Y2 is zero in the second and fourth quadrants of the plane. It is nonzero in the first
and third quadrants where it has the density 1

π exp(−y2
1−y2

2
2 ). Hint: Use part (a) for Y1 and

think about how to construct Y2.
(c) Find the covariance E[Y1Y2]. Hint: First find the mean of the rv X above.
(d) Use a variation of the same idea to construct two normalized Gaussian rv’s V1, V2

whose probability is concentrated on the diagonal axes v1 = v2 and v1 = −v2, i.e., for
which Pr(V1 �= V2 andV1 �= −V2) = 0.

7.4. Let W1 ∼ N (0, 1) and W2 ∼ N (0, 1) be independent normal rv’s. Let X = max(W1, W2)
and Y = min(W1, W2).
(a) Sketch the transformation from sample values of W1, W2 to sample values of X, Y .
Which sample pairs w1, w2 of W1, W2 map into a given sample pair x, y of X, Y ?
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(b) Find the probability density fXY (x, y) of X, Y . Explain your argument briefly but
work from your sketch rather than equations.
(c) Find fS(s) where S = X + Y .
(d) Find fD(d) where D = X − Y .
(e) Let U be a random variable taking the values ±1 with probability 1/2 each and let U
be statistically independent of W1, W2. Are S and UD jointly Gaussian?

7.5. Let φ(t) be an L2 function of energy 1 and let h(t) be L2. Show that
∫ ∞
−∞ φ(t)h(τ − t) dt

is an L2 function of τ with energy upper bounded by ‖h‖2. Hint: Consider the Fourier
transform of φ(t) and h(t).

7.6. (a) Generalize the random process of (7.30) by assuming that the Zk are arbitrarily corre-
lated. Show that every sample function is still L2.
(b) For this same case, show that

∫∫
|KZ(t, τ)|2 dtdτ < ∞.

7.7. (a) Let Z1, Z2, . . . , be a sequence of independent Gaussian rv’s, Zk ∼ N (0, σ2
k) and let

{φk(t) : R → R} be a sequence of orthonormal functions. Argue from fundamental def-
initions that for each t, Z(t) =

∑n
k=1 Zkφk(t) is a Gaussian random variable. Find the

variance of Z(t) as a function of t.
(b) For any set of epochs, t1, . . . , t	, let Z(tm) =

∑n
k=1 Zkφk(tm) for 1 ≤ m ≤ . Explain

carefully from the basic definitions why {Z(t1), . . . , Z(t	)} are jointly Gaussian and specify
their covariance matrix. Explain why {Z(t); t ∈ R} is a Gaussian random process.
(c) Now let n = ∞ above and assume that

∑
k σ2

k < ∞. Also assume that the orthonormal
functions are bounded for all k and t in the sense that for some constant A, |φk(t)| ≤ A for
all k and t. Consider the linear combination of rv’s

Z(t) =
∑

k

Zkφk(t) = lim
n→∞

n∑
k=1

Zkφk(t)

Let Z(n)(t) =
∑n

k=1 Zkφk(t). For any given t, find the variance of Z(j)(t) − Z(n)(t) for
j > n. Show that for all j > n, this variance approaches 0 as n → ∞. Explain intuitively
why this indicates that Z(t) is a Gaussian rv. Note: Z(t) is in fact a Gaussian rv, but
proving this rigorously requires considerable background. Z(t) is a limit of a sequence of
rv’s, and each rv is a function of a sample space - the issue here is the same as that of a
sequence of functions going to a limit function, where we had to invoke the Riesz-Fischer
theorem.
(d) For the above Gaussian random process {Z(t); t ∈ R}, let z(t) be a sample function of
Z(t) and find its energy, i.e., ‖z‖2 in terms of the sample values z1, z2, . . . of Z1, Z2, . . . .
Find the expected energy in the process, E[‖{Z(t); t ∈ R}‖2].
(e) Find an upper bound on Pr{‖{Z(t); t ∈ R}‖2 > α} that goes to zero as α → ∞.
Hint: You might find the Markov inequality useful. This says that for a nonnegative rv
Y , Pr{Y ≥ α} ≤ E[Y ]

α . Explain why this shows that the sample functions of {Z(t)} are L2

with probability 1.

7.8. Consider a stochastic process {Z(t); t ∈ R} for which each sample function is a sequence of
rectangular pulses as in the figure below.
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z−1

z0 z1

z2

Analytically, Z(t) =
∑∞

k=−∞ Zkrect(t − k) where . . . Z−1, Z0, Z1, . . . is a sequence of iid
normal variables, Zk ∼ N (0, 1)..
(a) Is {Z(t); t ∈ R} a Gaussian random process? Explain why or why not carefully.
(b) Find the covariance function of {Z(t); t ∈ R}.
(c) Is {Z(t); t ∈ R} a stationary random process? Explain carefully.
(d) Now suppose the stochastic process is modified by introducing a random time shift Φ
which is uniformly distributed between 0 and 1. Thus, the new process, {V (t); t ∈ R} is
defined by V (t) =

∑∞
k=−∞ Zkrect(t − k − Φ). Find the conditional distribution of V (0.5)

conditional on V (0) = v.
(e) Is {V (t); t ∈ R} a Gaussian random process? Explain why or why not carefully.
(f) Find the covariance function of {V (t); t ∈ R}.
(g) Is {V (t); t ∈ R} a stationary random process? It is easier to explain this than to write
a lot of equations.

7.9. Consider the Gaussian sinc process, V (t) =
∑

k Vk sinc
(

t−kT
T

)
where {. . . , V−1, V0, V1, . . . , }

is a sequence of iid rv’s, Vk ∼ N (0, σ2).
(a) Find the probability density for the linear functional

∫
V (t)sinc( t

T ) dt.
(b) Find the probability density for the linear functional

∫
V (t)sinc(αt

T ) dt for α > 1.
(c) Consider a linear filter with impulse response h(t) = sinc(αt

T ) where α > 1. Let {Y (t)}
be the output of this filter when V (t) above is the input. Find the covariance function of
the process {Y (t)}. Explain why the process is Gaussian and why it is stationary.

(d) Find the probability density for the linear functional Y (τ) =
∫

V (t)sinc(α(t−τ)
T ) dt for

α ≥ 1 and arbitrary τ .
(e) Find the spectral density of {Y (t); t ∈ R}.
(f) Show that {Y (t); t ∈ R} can be represented as Y (t) =

∑
k Yksinc

(
t−kT

T

)
and characterize

the rv’s {Yk; k ∈ Z}.
(g) Repeat parts (c), (d), and (e) for α < 1.
(h) Show that {Y (t)} in the α < 1 case can be represented as a Gaussian sinc process (like
{V (t)} but with an appropriately modified value of T ).

(i) Show that if any given process {Z(t); t ∈ R} is stationary, then so is the process {Y (t); t ∈
R} where Y (t) = Z2(t) for all t ∈ R.

7.10. (Complex random variables)(a) Suppose the zero-mean complex random variables Xk

and X−k satisfy X∗
−k = Xk for all k. Show that if E[XkX

∗
−k] = 0 then E[(�(Xk))2] =

E[(�(Xk))2] and E[�(Xk)�(X−k)] = 0.
(b) Use this to show that if E[XkX

∗
m] = 0 then E[�(Xk)�(Xm)] = 0, E[�(Xk)�(Xm)] = 0,

and E[�(Xk)�(Xm)] = 0 for all m not equal to either k or −k.

7.11. Explain why the integral in (7.58) must be real for g1(t) and g2(t) real, but the integrand
ĝ1(f)SZ (f)ĝ∗2(f) need not be real.
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7.12. (Filtered white noise) Let {Z(t)} be a White Gaussian noise process of spectral density
N0/2.

(a) Let Y =
∫ T
0 Z(t) dt. Find the probability density of Y .

(b) Let Y (t) be the result of passing Z(t) through an ideal baseband filter of bandwidth
W whose gain is adjusted so that its impulse response has unit energy. Find the joint
distribution of Y (0) and Y ( 1

4W).
(c) Find the probability density of

V =
∫ ∞

0
e−tZ(t) dt.

7.13. (Power spectral density) (a) Let {φk(t)} be any set of real orthonormal L2 waveforms whose
transforms are limited to a band B, and let {W (t)} be white Gaussian noise with respect
to B with power spectral density SW (f) = N0/2 for f ∈ B. Let the orthonormal expansion
of W (t) with respect to the set {φk(t)} be defined by

W̃ (t) =
∑

k

Wkφk(t),

where Wk = 〈W (t), φk(t)〉. Show that {Wk} is an iid Gaussian sequence, and give the
probability distribution of each Wk.
(b) Let the band B be B = [−1/2T, 1/2T ], and let φk(t) = (1/

√
T )sinc( t−kT

T ), k ∈ Z.
Interpret the result of part (a) in this case.

7.14. (Complex Gaussian vectors) (a) Give an example of a 2 dimensional complex rv Z =
(Z1, Z2) where Zk ∼ CN (0, 1) for k = 1, 2 and where Z has the same joint probability
distribution as eiφZ for all φ ∈ [0, 2π] but where Z is not jointly Gaussian and thus not
circularly symmetric. Hint: Extend the idea in part (d) of Exercise 7.3.
(b) Suppose a complex random variable Z = Zre + iZim has the properties that Zre and
Zim are individually Gaussian and that Z has the same probability density as eiφZ for all
φ ∈ [0, 2π]. Show that Z is complex circularly symmetric Gaussian.
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Chapter 8

Detection, coding, and decoding

8.1 Introduction

The previous chapter showed how to characterize noise as a random process and this chapter
uses that characterization to retrieve the signal from the noise corrupted received waveform.
As one might guess, this is not possible without occasional errors when the noise is unusually
large. The objective then, is to retrieve the data while minimizing the effect of these errors.
This process of retrieving data from a noise corrupted version is known as detection.

Detection, decision making, hypothesis testing, and decoding are synonyms. The word detection
refers to the effort to detect whether some phenomenon is present or not on the basis of obser-
vations. For example, a radar system uses the observations to detect whether or not a target
is present; a quality control system attempts to detect whether a unit is defective; a medical
test detects whether a given disease is present. The meaning of detection has been extended
in the digital communication field from a yes/no decision to a decision at the receiver from a
finite set of possible transmitted signals. Such a decision from a set of possible transmitted
signals is also called decoding, but here the possible set is usually regarded as the codewords in a
code rather than the signals in a signal set.1 Decision making is, again, the process of deciding
between a number of mutually exclusive alternatives. Hypothesis testing is the same, and here
the mutually exclusive alternatives are called hypotheses. We use the word hypotheses for the
possible choices in what follows, since the word conjures up the appropriate intuitive image of
making a choice between a set of alternatives, where one alternative is correct and there is a
possibility of erroneous choice.

These problems will be studied initially in a purely probabilistic setting. That is, there is a
probability model within which each hypothesis is an event. These events are mutually exclusive
and collectively exhaustive, i.e., the sample outcome of the experiment lies in one and only one
of these events, which means that in each performance of the experiment, one and only one
hypothesis is correct. Assume there are M hypotheses2, labeled a0, . . . , aM−1. The sample
outcome of the experiment will lie in one of these M events, and this defines a random symbol

1As explained more fully later, there is no fundamental difference between a code and a signal set.
2The principles here apply essentially without change for a countably infinite set of hypotheses; for an uncount-

ably infinite set of hypotheses, the process of choosing an hypothesis from an observation is called estimation.
Typically, the probability of choosing correctly in this case is 0 and the emphasis is on making an estimate that
is close in some sense to the correct hypothesis.

247
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U which, for each m, takes the value am when event am occurs. The marginal probability pU (am)
of hypothesis am is denoted pm and is usually referred to as the a priori probability of am. There
is also a random variable (rv) V , called the observation. This is the data on which the decision
must be based. A sample value v of V is observed, and on the basis of that observation, the
detector selects one of the possible M hypotheses. The observation could equally well be a
complex random variable, a random vector, a random process, or a random symbol, and these
generalizations are discussed in what follows.

Before discussing how to make decisions, it is important to understand when and why decisions
must be made. As a binary example, assume that the conditional probability of hypothesis a0,
given the observation, is 2/3 and that of hypothesis a1 is 1/3. Simply deciding on hypothesis a0

and forgetting about the probabilities throws away the information about the probability that
the decision is correct. However, actual decisions sometimes must be made. In a communication
system, the user usually wants to receive the message (even partly garbled) rather than a set of
probabilities. In a control system, the controls must occasionally take action. Similarly managers
must occasionally choose between courses of action, between products, and between people to
hire. In a sense, it is by making decisions that we return from the world of mathematical
probability models to the world being modeled.

There are a number of possible criteria to use in making decisions. Initially assume that the
criterion is to maximize the probability of correct choice. That is, when the experiment is
performed, the resulting experimental outcome maps into both a sample value am for U and a
sample value v for V . The decision maker observes v (but not am) and maps v into a decision
ũ(v). The decision is correct if ũ(v) = am. In principal, maximizing the probability of correct
choice is almost trivially simple. Given v, calculate p

U|V (am | v) for each possible hypothesis am.
This is the probability that am is the correct hypothesis conditional on v. Thus the rule for
maximizing the probability of being correct is to choose ũ(v) to be that am for which p

U|V (am | v)
is maximized. For each possible observation v, this is denoted

ũ(v) = arg max
m

[p
U|V(am | v)] (MAP rule), (8.1)

where arg maxm means the argument m that maximizes the function. If the maximum is not
unique, the probability of being correct is the same no matter which maximizing m is chosen, so
to be explicit, the smallest such m will be chosen.3 Since the rule (8.1) applies to each possible
sample output v of the random variable V , (8.1) also defines the selected hypothesis as a random
symbol Ũ(V ). The conditional probability p

U|V is called an a posteriori probability. This is in
contrast to the a priori probability pU of the hypothesis before the observation of V . The decision
rule in (8.1) is thus called the maximum a posteriori probability (MAP) rule.

An important consequence of (8.1) is that the MAP rule depends only on the conditional prob-
ability p

U|V and thus is completely determined by the joint distribution of U and V . Everything
else in the probability space is irrelevant to making a MAP decision.

When distinguishing between different decision rules, the MAP decision rule in (8.1) is denoted
as ũMAP(v). Since the MAP rule maximizes the probability of correct decision for each sample
value v, it also maximizes the probability of correct decision averaged over all v. To see this

3As discussed in the appendix, it is sometimes desirable to choose randomly among the maximum aposteriori
choices when the maximum in (8.1) is not unique. There are often situations (such as with discrete coding and
decoding) where non-uniqueness occurs with positive probability.
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analytically, let ũD(v) be an arbitrary decision rule. Since ũMAP maximizes pU |V (m | v)] over m,

p
U|V(ũMAP(v) | v) − p

U|V(ũD(v) | v) ≥ 0; for each rule D and observation v. (8.2)

Taking the expected value of the first term on the left over the observation V , we get the
probability of correct decision using the MAP decision rule. The expected value of the second
term on the left, for any given D is the probability of correct decision using that rule. Thus,
taking the expected value of (8.2) over V shows that the MAP rule maximizes the probability
of correct decision over the observation space. The above results are very simple, but also
important and fundamental. They are summarized in the following theorem.

Theorem 8.1.1. The MAP rule, given in (8.1), maximizes the probability of correct decision,
both for each observed sample value v and as an average over V . The MAP rule is determined
solely by the joint distribution of U and V .

Before discussing the implications and use of the MAP rule, the above assumptions are reviewed.
First, a probability model was assumed in which all probabilities are known, and in which, for
each performance of the experiment, one and only one hypothesis is correct. This conforms very
well to the communication model in which a transmitter sends one of a set of possible signals,
and the receiver, given signal plus noise, makes a decision on the signal actually sent. It does not
always conform well to a scientific experiment attempting to verify the existence of some new
phenomenon; in such situations, there is often no sensible way to model a priori probabilities.
Detection in the absence of known a priori probabilities is discussed in the appendix.

The next assumption was that maximizing the probability of correct decision is an appropriate
decision criterion. In many situations, the cost of a wrong decision is highly asymmetric. For
example, when testing for a treatable but deadly disease, making an error when the disease is
present is far more costly than making an error when the disease is not present. As shown in
Exercise 8.1, it is easy to extend the theory to account for relative costs of errors.

With the present assumptions, the detection problem can be stated concisely in the following
probabilistic terms. There is an underlying sample space Ω, a probability measure, and two rv’s
U and V of interest. The corresponding experiment is performed, an observer sees the sample
value v of rv V , but does not observe anything else, particularly not the sample value of U , say
am. The observer uses a detection rule, ũ(v), which is a function mapping each possible value
of v to a possible value, a0 to aM−1, of U . If ṽ(v) = am, the detection is correct, and otherwise
an error has been made. The above MAP rule maximizes the probability of correct detection
conditional on each v and also maximizes the unconditional probability of correct detection.
Obviously, the observer must know the conditional probability assignment p

U|V in order to use
the MAP rule.

The next two sections are restricted to the case of binary hypotheses, (M = 2). This allows us
to understand most of the important ideas but simplifies the notation considerably. This is then
generalized to an arbitrary number of hypotheses; fortunately this extension is almost trivial.

8.2 Binary detection

Assume a probability model in which the correct hypothesis U is a binary random variable with
possible values {a0, a1} and a priori probabilities p0 and p1. In the communication context, the a
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priori probabilities are usually modeled as equi-probable, but occasionally there are multi-stage
detection processes in which the result of the first stage can be summarized by a new set of a
priori probabilities. Thus let p0 and p1 = 1 − p0 be arbitrary. Let V be a rv with a conditional
probability density f

V |U (v | am) that is finite and non-zero for all v ∈ R and m ∈ {0, 1}. The
modifications for zero densities, discrete V , complex V , or vector V are relatively straight-
forward and discussed later.

The conditional densities f
V |U (v | am), m ∈ {0, 1} are called likelihoods in the jargon of hypothesis

testing. The marginal density of V is given by fV (v) = p0fV |U (v | a0) + p1fV |U (v | a1). The a
posteriori probability of U , for m = 0 or 1, is given by

p
U|V(am | v) =

pmf
V |U (v | am)
fV (v)

. (8.3)

Writing out (8.1) explicitly for this case,

p0fV |U (v | a0)
fV (v)

≥Ũ=a0

<Ũ=a1

p1fV |U (v | a1)
fV (v)

. (8.4)

This “equation” indicates that the MAP decision is a0 if the left side is greater than or equal
to the right, and is a1 if the left side is less than the right. Choosing the decision Ũ = a0 when
equality holds in (8.4) is an arbitrary choice and does not affect the probability of being correct.
Canceling fV (v) and rearranging,

Λ(v) =
f

V |U (v | a0)
f

V |U (v | a1)
≥Ũ=a0

<Ũ=a1

p1

p0
= η. (8.5)

Λ(v) = f
V |U (v | a0)/f

V |U (v | a1) is called the likelihood ratio, and is a function only of v. The
ratio η = p1/p0 is called the threshold and depends only on the a priori probabilities. The
binary MAP rule (or MAP test, as it is usually called) then compares the likelihood ratio to
the threshold, and decides on hypothesis a0 if the threshold is reached, and on hypothesis a1

otherwise. Note that if the a priori probability p0 is increased, the threshold decreases, and
the set of v for which hypothesis a0 is chosen increases; this corresponds to our intuition—the
more certain we are initially that U is 0, the stronger the evidence required to make us change
our minds. As shown in Exercise 8.1, the only effect of minimizing over costs rather than error
probability is to change the threshold η in (8.5).

An important special case of (8.5) is that in which p0 = p1. In this case η = 1, and the rule
chooses Ũ(v) = a0 for f

V |U (v | a0) ≥ f
V |U (v | a1) and chooses Ũ(v) = 1 otherwise. This is called

a maximum likelihood (ML) rule or test. In the communication case, as mentioned above, the
a priori probabilities are usually equal, so MAP then reduces to ML. The maximum likelihood
test is also often used when p0 and p1 are unknown.

The probability of error, i.e., one minus the probability of choosing correctly, is now derived
for MAP detection. First we find the probability of error conditional on each hypothesis,
Pr{e |U=a1} and Pr{e |U=a0}. The overall probability of error is then given by

Pr{e} = p0 Pr{e |U=a0} + p1 Pr{e |U=a1}.

In the radar field, Pr{e |U=a0} is called the probability of false alarm, and Pr{e |U=a1} is
called the probability of a miss. Also 1− Pr{e |U=a1} is called the probability of detection. In
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statistics, Pr{e |U=a1} is called the probability of error of the second kind, and Pr{e |U=a0} is
the probability of error of the first kind. These terms are not used here.

Note that (8.5) partitions the space of observed sample values into 2 regions. R0 = {v : Λ(v) ≥ η}
is the region for which Ũ = a0 and R1 = {v : Λ(v) < η} is the region for which Ũ = a1. For
U = a1, an error occurs if and only if v is in R0, and for U = a0, an error occurs if and only if
v is in R1. Thus,

Pr{e |U=a0} =
∫

R1

f
V |U (v | a0) dv. (8.6)

Pr{e |U=a1} =
∫

R0

f
V |U (v | a1) dv. (8.7)

Another, often simpler, approach is to work directly with the likelihood ratio. Since Λ(v) is
a function of the observed sample value v, the random variable, Λ(V ), also called a likelihood
ratio, is defined as follows: for every sample point ω, V (ω) is the corresponding sample value
v, and Λ(V ) is then shorthand for Λ(V (ω)). In the same way, Ũ(V ) (or more briefly Ũ) is the
decision random variable. In these terms, (8.5) states that

Ũ = a0 if and only if Λ(V ) ≥ η. (8.8)

Thus, for MAP detection with a threshold η,

Pr{e |U=a0} = Pr{Ũ=a1 |U=a0} = Pr{Λ(V ) < η |U=a0}. (8.9)

Pr{e |U=a1} = Pr{Ũ=a0 |U=a1} = Pr{Λ(V ) ≥ η |U=a1}. (8.10)

A sufficient statistic is defined as any function of the observation v from which the likelihood ratio
can be calculated. As examples, v itself, Λ(v), and any one-to-one function of Λ(v) are sufficient
statistics. Λ(v), and functions of Λ(v), are often simpler to work with than v in calculating
the probability of error. This will be particularly true when vector or process observations are
discussed, since Λ(v) is always one dimensional and real.

We have seen that the MAP rule (and thus also the ML rule) is a threshold test on the likelihood
ratio. Similarly the min-cost rule, (see Exercise 8.1), and the Neyman-Pearson test (which, as
shown in the appendix, makes no assumptions about a priori probabilities), are threshold tests
on the likelihood ratio. Not only are all these binary decision rules based only on threshold
tests on the likelihood ratio, but the properties of these rules, such as the conditional error
probabilities in (8.9) and (8.10) are based only on Λ(V ) and η. In fact, it is difficult to imagine
any sensible binary decision procedure, especially in the digital communication context, that is
not a threshold test on the likelihood ratio. Thus, once a sufficient statistic has been calculated
from the observed vector, that observed vector has no further value in any decision rule of
interest here.

The log likelihood ratio, LLR(V ) = ln[Λ(V )] is an important sufficient statistic which is often
easier to work with than the likelihood ratio itself. As seen in the next section, the LLR is
particularly convenient with Gaussian noise statistics.
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8.3 Binary signals in white Gaussian noise

This section first treats standard 2-PAM, then 2-PAM with an offset, then binary signals with
vector observations, and finally binary signals with waveform observations.

8.3.1 Detection for PAM antipodal signals

Consider PAM antipodal modulation (i.e., 2 -PAM), as illustrated in Figure 8.1.

{0,1}
Input� Encoder

{0, 1} → ±a
�

U = ±a
Baseband
modulator

� Baseband to
passband

�©+

Baseband
Demodulator

� Passband to
baseband{0, 1}

Output�
V = U+Z

Detector
V →Ũ→{0, 1}

� �

�WGN

Figure 8.1: The source produces a binary digit which is mapped into U = ±a. This is
modulated into a waveform, WGN is added, the resultant waveform is demodulated and
sampled, resulting in a noisy received value V = U + Z. From Section 7.8, Z ∼ N (0, N0/2).
This is explained more fully later. Based on this observation the receiver makes a decision
Ũ and maps this back to the binary output, which is the hypothesized version of the binary
input.

The correct hypothesis U is either a0 = a or a1 = −a. Let Z ∼ N (0, N0/2) be a Gaussian noise
rv of mean 0 and variance N0/2, independent of U . That is,

fZ (z) =
1√

2πN0/2
exp

[−z2

N0

]
.

Assume that 2-PAM is simplified by sending only a single binary symbol (rather than a sequence
over time) and by observing only the single sample value v corresponding to that input. As seen
later, these simplifications are unnecessary, but they permit the problem to be viewed in the
simplest possible context. The observation V (i.e., the channel output prior to detection) is a+Z
or −a + Z, depending on whether U = a or −a. Thus, conditional on U = a, V ∼ N (a, N0/2)
and, conditional on U = −a, V ∼ N (−a, N0/2).

f
V |U (v | a) =

1√
πN0

exp
[−(v−a)2

N0

]
; f

V |U (v | − a) =
1√
πN0

exp
[−(v+a)2

N0

]
.

The likelihood ratio is the ratio of these likelihoods, and given by

Λ(v) = exp
[−(v−a)2 + (v+a)2

N0

]
= exp

[
4av

N0

]
. (8.11)

Substituting this into (8.5),

exp
[
4av

N0

]
≥Ũ=a

<Ũ=−a

p1

p0
= η. (8.12)



8.3. BINARY SIGNALS IN WHITE GAUSSIAN NOISE 253

This is further simplified by taking the logarithm, yielding

LLR(v) =
[
4av

N0

]
≥Ũ=a

<Ũ=−a

ln(η). (8.13)

v
≥Ũ=a

<Ũ=−a

N0 ln(η)
4a

. (8.14)

Figure 8.2 interprets this decision rule.

0
��������� �

���
−a a

v

f
V |U (v|a)f

V |U (v| − a)

Pr{Ũ = a|U = −a}

(N0/4a) ln η

Ũ=a�
Ũ= − a�

Figure 8.2: Binary hypothesis testing for antipodal signal, 0 → a, 1 → −a. The a priori
probabilities are p0 and p1, the threshold is η = p0/p1, and the noise is N (0, N0/2).

The probability of error, given U= − a, is seen to be the probability that the noise value is
greater than a + N0 ln(η)

4a . Since the noise has variance N0/2, this is the probability that the
normalized Gaussian rv Z/

√
N0/2 exceeds a/

√
N0/2 +

√
N0/2 ln(η)/(2a). Thus,

Pr{e |U= − a} = Q

(
a√

N0/2
+

√
N0/2 ln η

2a

)
, (8.15)

where Q(x), the complementary distribution function of N (0, 1), is given by

Q(x) =
∫ ∞

x

1√
2π

exp
(−z2

2

)
dz.

The probability of error given U=a is calculated the same way, but is the probability that −Z
is greater than or equal to −a + N0 ln(η)

4a . Since −Z has the same distribution as Z,

Pr{e |U=a} = Q

(
a√

N0/2
−

√
N0/2 ln η

2a

)
. (8.16)

It is more insightful to express a/
√

N0/2 as
√

2a2/N0. As seen before, a2 can be viewed as the
energy per bit, Eb, so that (8.15) and (8.16) become

Pr{e |U= − a} = Q

(√
2Eb

N0
+

ln η

2
√

2Eb/N0

)
, (8.17)

Pr{e |U=a} = Q

(√
2Eb

N0
− ln η

2
√

2Eb/N0

)
. (8.18)
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Note that these formulas involve only the ratio Eb/N0 rather than Eb or N0 separately. If the
signal, observation, and noise had been measured on a different scale, then both Eb and N0

would change by the same factor, helping explain why only the ratio is relevant. In fact, the
scale could be normalized so that either the noise has variance 1 or the signal has variance 1.

The hypotheses in these communication problems are usually modeled as equiprobable, p0 =
p1 = 1/2. In this case, ln η = 0 and MAP detection is equivalent to ML. Eqns. (8.17) and (8.18)
then simplify to

Pr{e} = Pr{e |U= − a} = Pr{e |U=a} = Q

(√
2Eb

N0

)
. (8.19)

In terms of Figure 8.2, this is the tail of either Gaussian distribution from the point 0 where
they cross. This equation keeps reappearing in different guises, and it will soon seem like a
completely obvious result for a variety of Gaussian detection problems.

8.3.2 Detection for binary non-antipodal signals

Next consider the slightly more complex case illustrated in Figure 8.3. Instead of mapping 0 to
+a and 1 to −a, 0 is mapped to an arbitrary number b0 and 1 to an arbitrary number b1. To
analyze this, let c be the mid-point between b0 and b1, c = (b0 + b1)/2. Assuming b1 < b0, let
a = b0 − c = c − b1. Conditional on U=b0, the observation is V = c + a + Z; conditional on
U=b1, it is V = c− a + Z. In other words, this more general case is simply the result of shifting
the previous signals by the constant c.

c
��������� �

���
b1 b0

v

f
V |U (v|b0)f

V |U (v|b1)

Pr{Ũ = b0|U = b1}

(N0/4a) ln η

Ũ=b0�Ũ=b1�

Figure 8.3: Binary hypothesis testing for arbitrary signals, 0 → b0, 1 → b1, for b0 > b1. With
c = (b0+b1)/2 and a = |b0 − b1|/2, this is the same as Figure 8.2 shifted by c. For b0 < b1, the
picture must be reversed, but the answer is the same.

Define Ṽ = V − c as the result of shifting the observation by −c. Ṽ is a sufficient statistic and
Ṽ = ±a + Z. This is the same as the problem above, so the error probability is again given by
(8.15) and (8.16).

The energy used in achieving this error probability has changed from the antipodal case. The
energy per bit (assuming equal a priori probabilities) is now (b2

0 + b1
2)/2 = a2 + c2. A center

value c is frequently used as a ‘pilot tone’ in communication for tracking the channel. We see
that Eb is then the sum of the energy used for the actual binary transmission (a2) plus the
energy used for the pilot tone (c2). The fraction of energy Eb used for the signal is γ = a2

a2+c2
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and (8.17) and (8.18) are changed to

Pr{e |U=b1} = Q

(√
2γEb

N0
+

ln η

2
√

2γEb/N0

)
, (8.20)

Pr{e |U=b0} = Q

(√
2γEb

N0
− ln η

2
√

2γEb/N0

)
. (8.21)

For example, a common binary communication technique called on-off keying uses the binary
signals 0 and 2a. In this case, γ = 1/2 and there is an energy loss of 3 dB from the antipodal
case. For ML, the probability of error then becomes, Q(

√
Eb/N0).

8.3.3 Detection for binary real vectors in WGN

Next consider the vector version of the Gaussian detection problem. Suppose the observation
is a random n-vector V = U + Z . The noise Z is a random n-vector (Z1, Z2, . . . , Zn)T,
independent of U , with iid components given by Zk ∼ N (0, N0/2). The input U is a random
n-vector with M possible values (hypotheses). The mth hypothesis, 0 ≤ m ≤ M − 1, is denoted
by am = (am1, am2, . . . , amn)T. A sample value v of V is observed and the problem is to make
a MAP decision, denoted Ũ , about U .

Initially assume the binary antipodal case where a1 = −a0. For notational simplicity, let a0 be
denoted as a = (a1, a2, . . . , an)T. Thus the two hypotheses are U = a and U = −a and the
observation is either a + Z or −a + Z . The likelihoods are then given by

f
V |U (v | a) =

1
(πN0)n/2

exp
n∑

k=1

−(vk − ak)2

N0
=

1
(πN0)n/2

exp
(−‖v − a‖2

N0

)

f
V |U (v | -a) =

1
(πN0)n/2

exp
n∑

k=1

−(vk + ak)2

N0
=

1
(πN0)n/2

exp
(−‖v + a‖2

N0

)
.

The log likelihood ratio is thus given by

LLR(v) =
−‖v − a‖2 + ‖v + a‖2

N0
=

4〈v , a〉
N0

, (8.22)

and the MAP test is

LLR(v) =
4〈v , a〉

N0

≥Ũ=a

<Ũ=−a

ln
p1

p0
= ln(η).

This can be restated as

〈v ,a〉
‖a‖

≥Ũ=a

<Ũ=−a

N0 ln(η)
4‖a‖ . (8.23)

The projection of the observation v onto the signal a is 〈v ,a〉
‖a‖

a
‖a‖ . Thus the left side of (8.23) is

the component of v in the direction of a , thus showing that the decision is based solely on that
component of v . This result is rather natural; the noise is independent in different orthogonal
directions, and only the noise in the direction of the signal should be relevant in detecting the
signal.
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The geometry of the situation is particularly clear in the ML case (see Figure 8.4). The noise is
spherically symmetric around the origin, and the likelihoods depend only on the distance from
the origin. The ML detection rule is then equivalent to choosing the hypothesis closest to the
received point. The set of points equidistant from the two hypotheses, as illustrated in Figure
8.4, is the perpendicular bisector between them; this bisector is the set of v satisfying 〈v ,a〉 = 0.
The set of points closer to a is on the a side of this perpendicular bisector; it is determined by
〈v ,a〉 > 0 and is mapped into a by the ML rule. Similarly, the set of points closer to −a is
determined by 〈v ,a〉 < 0, and is mapped into −a . In the general MAP case, the region mapped
into a is again separated from the region mapped into −a by a perpendicular to a , but in this
case it is the perpendicular defined by 〈v ,a〉 = N0 ln(η)/4.
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2 − d̃ ′2
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Ũ = −a���# ����

0

Figure 8.4: ML decision regions for binary signals in WGN. A vector v on the threshold
boundary is shown. The distance from v to a is d = ‖v − a‖. Similarly the distance to −a

is d ′ = ‖v + a‖. As shown algebraically in (8.22), any point at which d2 − d ′2 = 0 is a point
at which 〈v ,a〉 = 0, and thus at which the LLR is 0. Geometrically, from the Pythagorean
theorem, however, d2 − d ′2 = d̃2 − d̃ ′2, where d̃ and d̃ ′ are the distances from a and −a to
the projection of v on the straight line generated by a . This demonstrates geometrically why
it is only the projection of v onto a that is important.

Another way of interpreting (8.23) is to view it in a different co-ordinate system. That is,
choose φ1 = a/‖ a‖ as one element of an orthonormal basis for the n-vectors and choose
another n−1 orthonormal vectors by the Gram-Schmidt procedure. In this new co-ordinate
system v can be expressed as (v′1, v

′
2, . . . , v′n)T, where for 1 ≤ k ≤ n, v′k = 〈v , φk〉. Since

〈v ,a〉 = ‖a‖〈v ,φ1〉 = ‖a‖v′1, the left side of (8.23) is simply v′1, i.e., the size of the projection
of v onto a . Thus (8.23) becomes

v′1
≥Ũ=0

<Ũ=1

N0 ln(η)
4‖a‖ .

This is the same as the one-dimensional MAP test in (8.14). In other words, the n-dimensional
problem is the same as the one dimensional problem when the appropriate co-ordinate system
is chosen. Actually, the derivation of (8.23) has shown something more, namely that v′1 is a
sufficient statistic. The components v′2, . . . , v′n, which contain only noise, cancel out in (8.22)
if (8.22) is expressed in the new co-ordinate system. The fact that the co-ordinates of v in
directions orthogonal to the signal do not affect the LLR is sometimes called the theorem of
irrelevance. A generalized form of this theorem is stated later as Theorem 8.4.2.
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Some additional insight into (8.23) (in the original co-ordinate system) can be gained by writing
〈v ,a〉 as

∑
k vkak. This says that the MAP test weights each co-ordinate linearly by the amount

of signal in that co-ordinate. This is not surprising, since the two hypotheses are separated more
by the larger components of a than by the smaller.

Next consider the error probability conditional on U = −a . Given U=−a , V = −a +Z , and
thus

〈V ,a〉
‖a‖ = −‖a‖ + 〈Z ,φ1〉.

The mean and variance of this, given U= − a , are −‖a‖ and N0/2. Thus, 〈V ,a〉/‖a‖ is
N (−‖a‖, N0/2). From (8.23), the probability of error, given U= − a , is the probability that
N (−‖a‖, N0/2) exceeds N0 ln(η)/(4 ‖a‖). This is the probability that Z is greater than ‖a‖ +
N0 ln(η)/(4 ‖a‖). Normalizing as in subsection 8.3.1,

Pr{e | U= − a} = Q

√
2‖a‖2

N0
+

ln η

2
√

2‖a‖2/N0

 . (8.24)

By the same argument,

Pr{e | U=a} = Q

√
2‖a‖2

N0
− ln η

2
√

2‖a‖2/N0

 . (8.25)

It can be seen that this is the same answer as given by (8.15) and (8.16) when the problem is
converted to a coordinate system where a is collinear with a coordinate vector. The energy per
bit is Eb = ‖a‖2, so that (8.17) and (8.18) follow as before. This is not surprising, of course,
since this vector decision problem is identical to the scalar problem when the appropriate basis
is used.

For most communication problems, the a priori probabilities are assumed to be equal so that
η = 1. Thus, as in (8.19),

Pr{e} = Q

(√
2Eb

N0

)
. (8.26)

This gives us a useful sanity check - the probability of error does not depend on the orthonormal
coordinate basis.

Now suppose that the binary hypotheses correspond to non-antipodal vector signals, say b0 and
b1. We analyze this in the same way as the scalar case. Namely, let c = (b0 + b1)/2 and
a = b0 − c. Then the two signals are b0 = a + c and b1 = −a + c. As before, converting
the observation V to Ṽ = V − c shifts the midpoint and converts the problem back to the
antipodal case. The error probability depends only on the distance 2‖a‖ between the signals,
but the energy per bit is Eb = ‖a‖2 + ‖c‖2. Thus the center point c contributes to the energy,
but not to the error probability.

It is often more convenient, especially when dealing with M > 2 hypotheses, to express the LLR
for the non-antipodal case directly in terms of b0 and v1. Using (8.22) for the shifted vector Ṽ ,
the LLR can be expressed as

LLR(v) =
−‖v − b0‖2 + ‖v − b2

1‖2

N0
. (8.27)
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For ML detection, this is simply the minimum distance rule, and for MAP, the interpretation is
the same as for the antipodal case.

8.3.4 Detection for binary complex vectors in WGN

Next consider the complex vector version of the same problem. Assume the observation is a
complex random n-vector V = U + Z . The noise, Z = (Z1, . . . , Zn)T, is a complex ran-
dom vector of n zero-mean complex iid Gaussian rv’s with iid real and imaginary parts, each
N (0, N0/2). Thus each Zk is circularly symmetric and denoted by CN (0, N0). The input U is
independent of Z and binary, taking on value a with probability p0 and −a with probability p1

where a = (a1, . . . , an)T is an arbitrary complex n-vector.

This problem can be reduced to that of the last subsection by letting Z ′ be the 2n dimensional
real random vector with components �(Zk) and �(Zk) for 1 ≤ k ≤ n. Similarly let a ′ be the 2n
dimensional real vector with components �(ak) and �(ak) for 1 ≤ k ≤ n and let U ′ be the real
random vector that takes on values a ′ or −a ′. Finally, let V ′ = U ′ + Z ′.

Recalling that probability densities for complex random variables or vectors are equal to the
joint probability densities for the real and imaginary parts,

f
V |U (v |a) = f

V ′|U ′ (v
′|a ′) =

1
(πN0)n

exp
n∑

k=1

−�(vk − ak)2 −�(vk − ak)2

N0

f
V |U (v |−a) = f

V ′|U ′ (v
′|−a ′) =

1
(πN0)n

exp
n∑

k=1

−�(vk + ak)2 −�(vk + ak)2

N0
.

The LLR is then

LLR(v) =
−‖v − a‖2 + ‖v + a‖2

N0
. (8.28)

Note that

‖v − a‖2 = ‖v‖2 − 〈v ,a〉 − 〈a , v〉 + ‖a‖2 = ‖v‖2 − 2�[〈v ,a〉] + ‖a‖2

Using this and the analagous expression for ‖v + a‖2, (8.28) becomes

LLR(v) =
4�[〈v ,a〉]

N0
(8.29)

The MAP test can now be stated as

�[〈v ,a〉]
‖a‖

≥Ũ=a

<Ũ=−a

N0 ln(η)
4‖a‖ . (8.30)

Note that the value of the LLR and the form of the MAP test are the same as the real vector case
except for the real part of 〈v ,a〉. The significance of this real part operation is now discussed.

In the n-dimensional complex vector space, 〈v ,a〉/‖a‖ is the complex value of the projection of
v in the direction of a . In order to understand this projection better, consider an orthonormal
basis in which a = (1, 0, 0, . . . , 0)T. Then 〈v ,a〉/‖a‖ = v1. Thus �(v1) = ±1 + �(z1) and
�(v1) = �(z1). Clearly, only �(v1) is relevant to the binary decision. Using �[〈v ,a〉/‖a‖] in
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(8.30) is simply the general way of stating this elementary idea. If the complex plane is viewed
as a 2-dimensional real space, then taking the real part of 〈v ,a〉 is the value of the further
projection of this two dimensional real vector in the direction of a (see Exercise 8.12).

The other results and interpretations of the last subsection remain unchanged. In particular,
since ‖a ′‖ = ‖a‖, the error probability results are given by

Pr{e | U= − a} = Q

√
2‖a‖2

N0
+

ln η

2
√

2‖a‖2/N0

 (8.31)

Pr{e | U=a} = Q

√
2‖a‖2

N0
− ln η

2
√

2‖a‖2/N0

 . (8.32)

For the ML case, recognizing that ‖a‖2 = Eb, we have the familiar result

Pr{e} = Q

(√
2Eb

N0

)
. (8.33)

Finally, for the non-antipodal case with hypotheses b0 and b1, the LLR is again given by (8.27).

8.3.5 Detection of binary antipodal waveforms in WGN

This section extends the vector case of the previous two subsections to the waveform case.
It will be instructive to do this simultaneously for both passband real random processes and
baseband complex random processes. Let U(t) be the baseband modulated waveform. As
before, the situation is simplified by transmitting a single bit rather than a sequence of bits,
so for some arbitrary, perhaps complex, baseband waveform a(t), the binary input 0 is mapped
into U(t) = a(t) and 1 is mapped into U(t) = −a(t); the a priori probabilities are denoted by p0

and p1. Let {θk(t); k ∈ Z} be a complex orthonormal expansion covering the baseband region
of interest, and let a(t) =

∑
k akθk(t).

Assume U(t) = ±a(t) is modulated onto a carrier fc larger than the baseband bandwidth. The
resulting bandpass waveform is denoted X(t) = ±b(t) where, from Section 7.8, the modulated
form of a(t), denoted b(t), can be represented as

b(t) =
∑

k

bk,1ψk,1(t) + bk,2ψk,2(t)

where

bk,1 = �(ak); ψk,1(t) = �{2θk(t) exp[2πifct]};
bk,2 = �(ak); ψk,2(t) = −�{2θk(t) exp[2πifct]}.

From Theorem 6.6.1, the set of waveforms {ψk,j(t); k ∈ Z, j ∈ {1, 2}} are orthogonal, each with
energy 2. Let {φm(t);m ∈ Z} be a set of orthogonal functions, each of energy 2 and each
orthogonal to each of the ψk,j(t). Assume that {φm(t);m ∈ Z}, together with the ψk,j(t), span
L2.

The noise W (t), by assumption, is WGN. It can be represented as

W (t) =
∑

k

(Zk,1ψk,1(t) + Zk,2ψk,2(t)) +
∑
m

Wmφm(t),
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where {Zk,m; k ∈ Z, m ∈ {1, 2}} is the set of scaled linear functionals of the noise in the L2 vector
space spanned by the ψk,m(t), and {Wm;m ∈ Z} is the set of linear functionals of the noise in
the orthogonal complement of the space. As will be seen shortly, the joint distribution of the
Wm makes no difference in choosing between a(t) and −a(t), so long as the Wm are independent
of the Zk,j and the transmitted binary digit. The observed random process at passband is then
Y (t) = X(t) + W (t),

Y (t) =
∑

k

[Yk,1ψk,1(t) + Yk,2ψk,2(t)] +
∑
m

Wmφm(t) where

Yk,1 = (±bk,1 + Zk,1) ; Yk,2 = (±bk,2 + Zk,2) .

First assume that a finite number n of orthonormal functions are used to represent a(t). This
is no loss of generality, since the single function a(t)/‖a(t)‖ would be sufficient. Suppose also,
initially, that only a finite set, say W1, . . . , W	 of the orthogonal noise functionals are observed.
Assume also that the noise variables, Zk,j and Wm are independent and each4 N (0, N0/2). Then
the likelihoods are given by

f
Y |X (y | b) =

1
(πN0)n

exp

 n∑
k=1

2∑
j=1

−(yk,j − bk,j)2

N0
+

	∑
m=1

−w2
m

N0

 ,

f
Y |X (y | −b) =

1
(πN0)n

exp

 n∑
k=1

2∑
j=1

−(yk,j + bk,j)2

N0
+

	∑
m=1

−w2
m

N0

 .

The log likelihood ratio is thus given by

LLR(y) =
n∑

k=1

2∑
j=1

−(yk,j − bk,j)2 + (yk,j + bk,j)2

N0

=
‖ − y − b‖2 + ‖y + b‖2

N0
(8.34)

=
n∑

k=1

2∑
j=1

4yk,jbk,j

N0
=

4〈y , b〉
N0

. (8.35)

and the MAP test is

〈y , b〉 ≥X̃=b

<X̃=−b

=
N0 ln(η)

4‖b‖ .

This is the same as the real vector case analyzed in Subsection 8.3.3. In fact, the only difference
is that the observation here includes noise in the degrees of freedom orthogonal to the range of
interest, and the derivation of the LLR shows clearly why these noise variables do not appear
in the LLR. In fact, the number  of rv’s Wm can be taken to be arbitrarily large, and they can

4Recall that N0/2 is the noise variance using the same scale as used for the input, and the use of orthogonal
functions of energy 2 at passband corresponds to orthonormal functions at baseband. Thus since the input energy
is measured at baseband, the noise is also; at passband, then, both the signal energy and the spectral density of
the noise are multiplied by 2.
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have any joint density. So long as they are independent of the Zk,j (and of X(t)), they cancel
out in the LLR. In other words, WGN is noise that is iid Gaussian over a large enough space to
represent the signal, and is independent of the signal and noise elsewhere.

The argument above leading to (8.34) and (8.35) is not entirely satisfying mathematically, since
it is based on the slightly vague notion of the signal space of interest, but in fact it is just this
feature that makes it useful in practice, since physical noise characteristics do change over large
changes in time and frequency.

The inner product in (8.35) is the inner product over the L2 space of real sequences. Since these
sequences are coefficients in an orthogonal (rather than orthonormal) expansion, the conversion
to an inner product over the corresonding functions (see Exercise 8.5) is given by∑

k,j

yk,jbk,j =
1
2

∫
y(t)b(t) dt. (8.36)

This shows that the LLR is independent of the basis, and that this waveform problem reduces
to the single dimensional problem if b(t) is a multiple of one of the basis functions. Also, if a
countably infinite basis for the signal space of interest is used, (8.36) is still valid.

Next consider what happens when Y (t) = ±b(t)+W (t) is demodulated to the baseband waveform
V (t). The component

∑
m Wm(t) of Y (t) extends to frequencies outside the passband, and thus

Y (t) is filtered before demodulation, preventing an aliasing like effect between
∑

m Wm(t) and
the signal part of Y (t) (see Exercise 6.11). Assuming that this filtering does not affect b(t), b(t)
maps back into a(t) =

∑
k akθk(t) where ak = bk,1 + ibk,2. Similarly W (t) maps into

Z(t) =
∑

k

Zkθk(t) + Z⊥(t)

where Zk = Zk,1 + iZk,2 and Z⊥(t) is the result of filtering and frequency demodulation on∑
m Wmφm(t). The received baseband complex process is then

V (t) =
∑

k

Vkθk(t) + Z⊥(t) where Vk = ±ak + Zk. (8.37)

By the filtering assumption above, the sample functions of Z⊥(t) are orthogonal to the space
spanned by the θk(t) and thus the sequence {Vk; k ∈ Z} is determined from V (t). Since Vk =
Yk,1 + iYk,2, the sample value LLR(y) in (8.35) is determined as follows by the sample values of
{vk; k ∈ Z},

LLR(y) =
4〈y , b〉

N0
=

4�[〈v ,a〉]
N0

. (8.38)

Thus {vk; k ∈ Z} is a sufficient statistic for y(t), and thus the MAP test based on y(t) can be
done using v(t). Now an implementation that first finds the sample function v(t) from y(t) and
then does a MAP test on v(t) is simply a particular kind of test on y(t), and thus cannot achieve
a smaller error probability than the MAP test on y . Finally, since {vk; k ∈ Z} is a sufficient
statistic for y(t), it is also a sufficient statistic for v(t) and thus the orthogonal noise Z⊥(t) is
irrelevant.

Note that the LLR in (8.38) is the same as the complex vector result in (8.29). One could repeat
the argument there, adding in an orthogonal expansion for Z⊥(t) to verify the argument that
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Z⊥(t) is irrelevant. Since Z⊥(t) could take on virtually any form, the argument above, based on
the fact that Z⊥(t) is a function of

∑
m WmφM (t), which is independent of the signal and noise

in the signal space, is more insightful.

To summarize this subsection, the detection of a single bit sent by generating antipodal signals
at baseband and modulating to passband has been analyzed. After adding WGN, the received
waveform is demodulated to baseband and then the single bit is detected. The MAP detector at
passband is a threshold test on

∫
y(t)b(t) dt. This is equivalent to a threshold test at baseband

on �[
∫

v(t)a(t) dt]. This shows that no loss of optimality occurs by demodulating to baseband
and also shows that detection can be done either at passband or at baseband. In the passband
case, the result is an immediate extension of binary detection for real vectors, and at baseband,
it is an immediate extension of binary detection of complex vectors.

The results of this section can now be interpreted in terms of PAM and QAM, while still assuming
a “one-shot” system in which only one binary digit is actually sent. Recall that for both PAM
and QAM modulation, the modulation pulse p(t) is orthogonal to its T -spaced time shifts if
|p̂(f)|2 satisfies the Nyquist criterion. Thus, if the corresponding received baseband waveform
is passed through a matched filter (a filter with impulse response p∗(t)) and sampled at times
kT , the received samples will have no intersymbol interference. For a single bit transmitted at
discrete time 0, u(t) = ±a(t) = ap(t). The output of the matched filter at receiver time 0 is
then ∫

v(t)p∗(t) dt =
�[〈v ,a〉]

a
,

which is a scaled version of the LLR. Thus the receiver from Chapter 6 that avoids intersymbol
interference also calculates the LLR, from which a threshold test yields the MAP detection.

The next section shows that this continues to provide MAP tests on successive signals. It
should be noted also that sampling the output of the matched filter at time 0 yields the MAP
test whether or not p(t) has been chosen to avoid intersymbol interference.

It is important to note that the performance of binary antipodal communication in WGN de-
pends only on the energy of the transmitted waveform. With ML detection, the error probability
is the familiar expression Q(2Eb

N0
) where Eb =

∫
|a(t)|2 dt and the variance of the noise in each

real degree of freedom in the region of interest is N0/2.

This completes the analysis of binary detection in WGN, including the relationship between the
vector case and waveform case and that between complex waveforms or vectors at basebande
and real waveforms or vectors at passband.

The following sections analyze M -ary detection. The relationships between vector and waveform
and between real and complex is the same as above, so the following sections each assume
whichever of these cases is most instructive without further discussion of these relationships.

8.4 M-ary detection and sequence detection

The analysis in the previous section was limited in several ways. First, only binary signal
sets were considered, and second, only the ‘one-shot’ problem where a single bit rather than
a sequence of bits was considered. In this section, M -ary signal sets for arbitrary M will be
considered, and this will then be used to study the transmission of a sequence of signals and to
study arbitrary modulation schemes.
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8.4.1 M-ary detection

Going from binary to M -ary hypothesis testing is a simple extension. To be specific, this will
be analyzed for the complex random vector case. Let the observation be a complex random
n-vector V and let the complex random n-vector U to be detected take on a value from the set
{a0, . . . ,aM−1} with a priori probabilities p0, . . . , pM−1. Denote the a posteriori probabilities
by p

U |V (am|v). The MAP rule (see Section 8.1) then chooses Ũ (v) = arg maxm p
U |V (am|v).

Assuming that the likelihoods can be represented as probability densities f
V |U , the MAP rule

can be expressed as

Ũ (v) = arg maxm pm f
V |U (v |am).

Usually, the simplest approach to this M -ary rule is to consider multiple binary hypothesis
testing problems. That is, Ũ (v) is that am for which

Λm,m′(v) =
f

V |U (v |am)
f

V |U (v|am′)
≥ pm′

pm

for all m′. In the case of ties, it makes no difference which of the maximizing hypotheses are
chosen.

For the complex vector additive WGN case, the observation is V = U +Z where Z is complex
Gaussian noise with iid real and imaginary components. As derived in (8.28), the log likelihood
ratio (LLR) between each pair of hypotheses am and am′ is given by

LLRm,m′(v) =
−‖v − am‖2 + ‖v − a2

m′‖2

N0
. (8.39)

Thus each binary test separates the observation space5 into two regions separated by the per-
pendicular bisector between the two points. With M hypotheses, the space is separated into
the Voronoi regions of points closest to each of the signals (hypotheses) (see Figure 8.5). If
the a priori probabilities are unequal, then these perpendicular bisectors are shifted, remaining
perpendicular to the axis joining the two signals, but no longer being bisectors.

��
���a0

��
���a2

���
��

a1
Ũ = a0

Ũ = a1

Ũ = a2


�

�

���Ũ = a1

Figure 8.5: Decision regions for an M -ary alphabet of vector signals in iid Gaussian noise. For
ML detection, the decision regions are Voronoi regions, i.e., regions separated by perpendicular
bisectors between the signal points.

5For an n dimensional complex vector space, it is simplest to view the observation space as the corresponding
2n dimensional real vector space.
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The probability that noise carries the observation across one of these perpendicular bisectors is
given in (8.30). The only new problem that arises with M -ary hypothesis testing is that the error
probability, given U = m, is the union of M − 1 events, namely crossing the corresponding per-
pendicular to each other point. This can be found exactly by integrating over the n dimensional
vector space, but is usually upper bounded and approximated by the union bound, where the
probability of crossing each perpendicular is summed over the M −1 incorrect hypotheses. This
is usually a good approximation (if M is not too large), because the Gaussian density decreases
so rapidly with distance; thus in the ML case, most errors are made when observations occur
roughly half way between the transmitted and the detected signal point.

8.4.2 Successive transmissions of QAM signals in WGN

This subsection extends the ‘single-shot’ analysis of detection for QAM and PAM in the presence
of WGN to the case in which an n-tuple of successive independent symbols are transmitted. We
shall find that under many conditions, both the detection rule and the corresponding probability
of symbol error can be analyzed by looking at one symbol at a time.

First consider a QAM modulation system using a modulation pulse p(t). Assume that p(t) has
unit energy and is orthonormal to its T -spaced shifts {p(t−kT ); k ∈ Z}, i.e., that {p(t−kT ); k ∈
Z} is a set of orthonormal functions. Let A = {a0 , . . . , aM−1} be the alphabet of complex input
signals and denote the input waveform over an arbitrary n-tuple of successive input signals as

u(t) =
n∑

k=1

ukp(t − kT ),

where each uk is a selection from the input alphabet A.

Let {φk(t); k ≥ 1} be an orthonormal basis of complex L2 waveforms such that the first n
waveforms in that basis are given by φk(t) = p(t − kT ), 1 ≤ k ≤ n. The received baseband
waveform is then

V (t) =
∞∑

k=1

Vkφk(t) =
n∑

k=1

(uk + Zk)p(t − kT ) +
∑
k>n

Zkφk(t). (8.40)

We now compare two different detection schemes. In the first, a single ML decision between the
Mn hypotheses for all possible joint values of U1, . . . , Un is made based on V (t). In the second
scheme, for each k, 1 ≤ k ≤ n, an ML decision between the M possible hypotheses a0 . . . , aM−1

is made for input Uk based on the observation V (t). Thus in this scheme, n separate M -ary
decisions are made, one for each of the n successive inputs.

For the first alternative, each hypothesis corresponds to an n dimensional vector of inputs,
u = (u1, . . . , un)T. As in Subsection 8.3.5, the sample value v(t) =

∑
k vkφk(t) of the received

waveform can be taken as an -tuple v = (v1, v2, . . . , v	)T with  ≥ n. The likelihood of v
conditional on u is then given by

f
V |U (v |u) =

n∏
k=1

fZ (vk − uk)
	∏

k=n+1

fZ (vk).

For any two hypotheses, say u = (u1, . . . , un)T and u ′ = (u′
1, . . . , u′

n)T, the likelihood ratio and



8.4. M -ARY DETECTION AND SEQUENCE DETECTION 265

LLR are

Λu ,u ′(v) =
n∏

k=1

fZ (vk − uk)
fZ (vk − u′

k)
(8.41)

LLRu ,u ′(v) =
−‖v − u‖2 + ‖v − u ′‖2

N0
. (8.42)

Note that for each k > n, vk does not appear in this likelihood ratio. Thus this likelihood ratio
is still valid6 in the limit  → ∞, but the only relevant terms in the decision are v1, . . . , vn.
Therefore let v = (v1, . . . , vn)T in what follows. From (8.42), this likelihood ratio is positive if
and only if ‖v − u‖ < ‖v − u ′‖. The conclusion is that for Mn-ary detection, done jointly on
u1, . . . , un, the ML decision is the vector u that minimizes the distance ‖v − u‖.
Consider how to minimize ‖v − u‖. Note that

‖v − u‖2 =
n∑

k=1

(vk − uk)2. (8.43)

Suppose that ũ = (ũ1, . . . , ũn)T minimizes this sum. Then for each k, ũk minimizes (vk − uk)2

over the M choices for uk (otherwise some am �= ũk could be substituted for ũk to reduce
(vk − uk)2 and therefore reduce the sum in (8.43)). Thus the ML sequence detector with Mn

hypotheses detects each Uk by minimizing (vk − uk)2 over the M hypotheses for that Uk.

Next consider the second alternative above. For a given sample observation v = v1, . . . , v	 and
a given k, 1 ≤ k ≤ n, the likelihood of v conditional on Uk = uk is

f
V |Uk

(v |uk) = fZ (vk − uk)
∏

j �=k,1≤j≤n

fVj
(vj)

	∏
j=n+1

fZ (vj)

where fVj
(vj) =

∑
m pmf

Vj |Uj
(vj |am) is the marginal probability of Vj . The likelihood ratio of

v between the hypotheses Uk = am and Uk = am′ is then

Λ(k)
m,m′(v) =

fZ (vk − am)
fZ (vk − am′

This is the familiar one-dimensional non-antipodal Gaussian detection problem, and the ML
decision is to choose ũk as the am closest to uk. Thus, given the sample observation v(t), the
vector (ũ1, . . . , ũn)T of individual M -ary ML detectors for each Uk is the same as the Mn-ary
ML sequence detector for the sequence U = (U1, . . . , Un)T. Moreover, each of these detectors
are equivalent to a vector of ML decisions on each Uk based solely on the observation Vk.

Summarizing, we have proved the following theorem:

Theorem 8.4.1. Let U(t) =
∑n

k=1 Ukp(t−kT ) be a QAM (or PAM) baseband input to a WGN
channel and assume that {p(t− nT ); 1 ≤ k ≤ n} is an orthonormal sequence. Then the Mn-ary
ML decision on U = (U1, . . . Un)T is equivalent to making separate M -ary ML decisions on each
Uk, 1 ≤ k ≤ n, where the decision on each Uk can be based either on the observation v(t) or the
observation of vk.

6In fact, these final �− n components do not have to be independent or equally distributed, they simply must
be independent of the signals and noise for 1 ≤ k ≤ n.



266 CHAPTER 8. DETECTION, CODING, AND DECODING

Note that the theorem states that the same decision is made for both sequence detection and
separate detection for each signal. It does not say that the probability of an error within the
sequence is the same as the error for a single signal. Letting P be the probability of error for a
single signal, the probability of error for the sequence is 1 − (1 − P )n.

The theorem makes no assumptions about the probabilities of the successive inputs, although
the use of ML detection would not minimize the probability of error if the inputs were not
independent and equally likely. If coding is used between the n input signals, then not all of
these Mn n-tuples are possible. In this case, ML detection on the possible encoded sequences (as
opposed to all Mn sequences) is different from separate detection on each signal. As an example,
if the transmitter always repeats each signal, with u1 = u2, u3 = u4, etc., then the detection of
u1 should be based on both v1 and v2. Similarly, the detection of u3 should be based on v3 and
v4, etc.

When coding is used, it is possible to make ML decisions on each signal separately, and then
to use the coding constraints to correct errors in the detected sequence. These individual signal
decisions are then called hard decisions. It is also possible, for each k, to save a sufficient
statistic (such as vk) for the decision on Uk. This is called a soft decision since it saves all the
relevant information needed for an ML decision between the set of possible codewords. Since
the ML decision between possible encoded sequences minimizes the error probability (assuming
equi-probable codewords), soft decisions allow for smaller error probabilities than hard decisions.

Theorem 8.4.1 can be extended to MAP detection if the input signals are statistically indepen-
dent of each other (see Exercise 8.15). One can see this intuitively by drawing the decision
boundaries for the two-dimensional real case; these decision boundaries are then horizontal and
vertical lines.

A nice way to interpret Theorem 8.4.1 is to observe that the detection of each signal Uk de-
pends only on the corresponding received signal Vk; all other components of the received vector
are irrelevant to the decision on Uk. The next subsection generalizes from QAM to arbitrary
modulation schemes and also generalizes this notion of irrelevance.

8.4.3 Detection with arbitrary modulation schemes

The previous sections have concentrated on detection of PAM and QAM systems, using real
hypotheses A = {a0, . . . , aM−1} for PAM and complex hypotheses A = a0, . . . , aM−1 for QAM.
In each case, a sequence {uk; k ∈ Z} of signals from A is modulated into a baseband waveform
u(t) =

∑
k ukp(t − kT ). The PAM waveform is then either transmitted or first modulated to

passband. The complex QAM waveform is necessarily modulated to a real passband waveform.

This is now generalized by considering a signal set A to be an M -ary alphabet, {a0, . . . ,aM−1},
of real n-tuples. Thus each am is an element of Rn. The n components of the mth signal vector
are denoted by am = (am,1, . . . , am,n)T. The selected signal vector am is then modulated into
a signal waveform bm(t) =

∑n
k=1 am,kφk(t) where {φ1(t), . . . , φn(t)} is a set of n orthonormal

waveforms.

The above provides a general scenario for mapping the symbols 0 to M − 1 into a set of signal
waveforms b0(t) to bM−1(t). A provision must also be made for transmitting a sequence of such
M -ary symbols. If these symbols are to be transmitted at T -spaced intervals, the most straight-
forward way of accomplishing this is to choose the orthonormal waveforms φ1(t), . . . , φn(t) in
such a way that φk(t − T ) and φj(t−′T ) are orthonormal for all j, k, 1 ≤ j, k ≤ n and all
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integer , ′. In this case, a sequence of symbols, say s1, s2, . . . , each drawn from the alpha-
bet {0, . . . , M−1}, could be mapped into a sequence of waveforms bs1(t), bs2(t − T ), . . . . The
transmitted waveform would then be

∑
	 bs�

(t − T ).

PAM is a special case of this scenario where the dimension n is 1. The function φ1(t) in this case
is the real modulation pulse p(t) for baseband transmission and

√
2 p(t) cos(2πfct) for passband

transmission. QAM is another special case where n is 2 at passband. In this case, the complex
signals am are viewed as 2-dimensional real signals. The orthonormal waveforms (assuming real
p(t)) are φ1(t) =

√
2 p(t) cos(2πfct) and

√
2 p(t) sin(2πfct).

More generally, it is not necessary to start at baseband and shift to passband7, and it is not
necessary for successive signals to be transmitted as time shifts of a basic waveform set. For
example, in frequency-hopping systems, successive n-dimensional signals can be modulated to
different carrier frequencies. What is important is that the successive transmitted signal wave-
forms are all orthogonal to each other.

Let X(t) be the first signal waveform in such a sequence of successive waveforms. Then X(t) is a
choice from the set of M waveforms, b0(t), . . . , bM−1(t). We can represent X(t) as

∑n
k=1 Xkφk(t)

where, under hypothesis m, Xk = am,k for 1 ≤ k ≤ n. Let φn+1(t), φn+2(t) . . . be an additional
set of orthonormal functions such that the entire set {φk(t); k ≥ 1} spans the space of real
L2 waveforms. The subsequence φn+1(t), φn+2(t) . . . might include the successive time shifts of
φ1(t), . . . , φn(t) for the example above, but in general can be arbitrary. We do assume, however,
that successive signal waveforms are orthogonal to φ1(t), . . . , φn(t), and thus that they can be
expanded in terms of φn+1(t), φn+2(t), . . . , . The received random waveform Y (t) is assumed to
be the sum of X(t), the WGN Z(t), and contributions of signal waveforms other than X. These
other waveforms could include successive signals from the given channel input and also signals
from other users. This sum can be expanded over an arbitrarily large number, say , of these
orthonormal functions as

Y (t) =
	∑

k=1

Ykφk(t) =
n∑

k=1

(Xk + Zk)φk(t) +
	∑

k=n+1

Ykφk(t). (8.44)

Note that in (8.44), the random process {Y (t); t ∈ R} specifies the random variables Y1, . . . , Y	.
Assuming that the sample waveforms of Y (t) are L2, it also follows that the limit as  → 0 of
Y1, . . . , Y	 specifies Y (t) in the L2 sense. Thus we consider Y1, . . . , Y	 to be the observation at
the channel output. It is convenient to separate these terms into two vectors, Y = (Y1, . . . , Yn)T

and Y ′ = (Yn+1, . . . , Y	)T.

Similarly, the WGN Z(t) =
∑

k Zkφk(t) can be represented by Z = (Z1, . . . , Zn)T and
Z ′ = (Zn+1, . . . , Z	)T and X(t) can be represented as X = (X1, . . . , Xn)T. Finally let
V (t) =

∑
k Vkφk(t) be the contributions from other users and successive signals from the

given user. Since these terms are orthogonal to φ1(t), . . . , φn(t), V (t) can be represented by
V ′ = (Vn+1, . . . , V	)T. With these changes, (8.44) becomes

Y = X + Z ; Y ′ = Z ′ + V ′. (8.45)

The observation is a sample value of (Y ,Y ′), and the detector must choose the MAP value
of X . Assuming that X ,Z ,Z ′, and V ′ are statistically independent, the likelihoods can be

7It seems strange at first that the real vector and real waveform case here is more general than the complex
case, but the complex case is used for notational and conceptual simplifications at baseband, where the baseband
waveform will be modulated to passsband and converted to a real waveform.
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expressed as

fYY ′|X (yy ′|am) = fZ (y − am)fY ′(y ′).

The likelihood ratio between hypothesis am and am′ is then given by

Λm,m′(y) =
fZ (y − am)
fZ (y − am′)

. (8.46)

The important thing here is that all the likelihood ratios (for 0 ≤ m, m′ ≤ M−1) depend only
on Y and thus Y is a sufficient statistic for a MAP decision on X . Y ′ is irrelevant to the
decision, and thus its probability density is irrelevant (other than the need to assume that Y ′

is statistically independent of (Z ,X )). This also shows that the size of  is irrelevant. This
is summarized (and slightly generalized by dropping the Gaussian noise assumption) in the
following theorem.

Theorem 8.4.2 (Theorem of irrelevance). Let {φk(t); k ≥ 1} be a set of real orthonormal
functions. Let X(t) =

∑n
k=1 Xkφk(t) and Z(t) =

∑n
k=1 Zkφk(t) be the input to a channel and the

corresponding noise respectively, where X = (X1, . . . , Xn)T and Z = (Z1, . . . , Zn)T are random
vectors. Let Y ′(t) =

∑
k>n Ykφk(t) where for each  > n, Y′ = (Yn+1, . . . , Y	)T is a random

vector that is statistically independent of the pair X, Z. Let Y = X+Z. Then the LLR and the
MAP detection of X from the observation of Y,Y′ depends only on Y. That is, the observed
sample value of Y′ is irrelevant.

The orthonormal set {φ1(t), . . . , φn(t)} chosen above appears to have a more central importance
than it really has. What is important is the existence of an n-dimensional subspace of real L2

that includes the signal set and has the property that the noise and signals orthogonal to this
subspace are independent of the noise and signal within the subspace. In the usual case, we
choose this subspace to be the space spanned by the signal set, but there are also cases where
the subspace must be somewhat larger to provide for the independence between the subspace
and its complement.

The irrelevance theorem does not specify how to do MAP detection based on the observed
waveform, but rather shows how to reduce the problem to a finite dimensional problem. Since the
likelihood ratios specify both the decision regions and the error probability for MAP detection,
it is clear that the choice of orthonormal set cannot influence either the error probability or the
mapping of received waveforms to hypotheses.

One important constraint in the above analysis is that both the noise and the interference (from
successive transmissions and from other users) are additive. The other important constraint is
that the interference is both orthogonal to the signal X(t) and also statistically independent of
X(t). The orthogonality is why Y = X + Z , with no contribution from the interference. The
statistical independence is what makes Y ′ irrelevant.

If the interference is orthogonal but not independent, then a MAP decision could still be made
based on Y alone; the error probability would be the same as that based on Y ,Y ′ with
independence, but the dependence could lead to a smaller error probability.

On the other hand, if the interference is non-orthogonal but independent, then Y would include
both noise and a contribution from the interference, and the error probability would typically be
larger, but never smaller, than in the orthogonal case. As a rule of thumb, then, non-orthogonal
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interference tends to increase error probability, whereas dependence (if the receiver makes use
of it) tends to reduce error probability.

If successive statistically independent signals, X 1,X 2, . . . , are modulated onto distinct sets of
orthonormal waveforms (i.e., if X1 is modulated onto the orthonormal waveforms φ1(t) to φn(t)),
X2 is modulated onto φn+1(t) to φ2n(t), etc.) then it also follows, as in Subsection 8.4.2, that
ML detection on a sequence X1, . . . , X	 is equivalent to separate ML decisions on each input
signal Xj , 1 ≤ j ≤ . The details are omitted since the only new feature in this extension is
more complicated notation.

The higher dimensional mappings allowed in this subsection are sometimes called channel codes,
and are sometimes simply viewed as more complex forms of modulation. The coding field is
very large, but the following sections provide an introduction.

8.5 Orthogonal signal sets and simple channel coding

An orthogonal signal set is a set a0, . . . ,aM−1 of M real orthogonal M -vectors, each with the
same energy E. Without loss of generality we choose a basis for RM in which the mth basis vector
is am/

√
E. In this basis, a0 = (

√
E, 0, 0, . . . , 0)T,a1 = (0,

√
E, 0, . . . , 0)T, etc. Modulation onto

an orthonormal set {φm(t)} of waveforms then maps hypothesis am (0 ≤ m ≤ M−1) into the
waveform

√
Eφm(t). After addition of WGN, the sufficient statistic for detection is a sample

value y of Y = A + Z where A takes on the values a0, . . . ,aM−1 with equal probability and
Z = (Z0, . . . , ZM−1)T has iid components N (0, N0/2). It can be seen that the ML decision is
to decide on that m for which ym is largest.

The major case of interest for orthogonal signals is where M is a power of 2, say M = 2b. Thus
the signal set can be used to transmit b binary digits, so the energy per bit is Eb = E/b. The
number of required degrees of freedom for the signal set, however, is M = 2b ,so the spectral
efficiency ρ (the number of bits per pair of degrees of freedom) is then ρ = b/2b−1. As b gets
large, ρ gets small at almost an exponential rate. It will be shown, however, that for large enough
Eb, as b gets large holding Eb constant, the ML error probabiliity goes to 0. In particular, for
any Eb/N0 < ln 2 = 0.693, the error probability goes to 0 exponentially as b → ∞. Recall that
ln 2 = 0.693, i.e., -1.59 dB, is the Shannon limit for reliable communication on a WGN channel
with unlimited bandwidth. Thus the derivation to follow will establish the Shannon theorem for
WGN and unlimited bandwidth. Before doing that, however, two closely related types of signal
sets are discussed.

8.5.1 Simplex signal sets

Consider the random vector A with orthogonal equiprobable sample values a0, . . . ,aM−1 as
described above. The mean value of A is then

A =

(√
E

M
,

√
E

M
, . . . ,

√
E

M

)T

.

We have seen that if a signal set is shifted by a constant vector, the Voronoi detection regions are
also shifted and the error probability remains the same. However, such a shift can change the
expected energy of the random signal vector. In particular, if the signals are shifted to remove
the mean, then the signal energy is reduced by the energy (norm squared) of the mean. In this
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case, the energy of the mean is E/M . A simplex signal set is an orthogonal signal set with the
mean removed. That is,

S = A−A; sm = am −A; 0 ≤ m ≤ M−1.

In other words, the mth component of sm is
√

E (1−1/M) and each other component is
−
√

E /M . Each simplex signal has energy E(1−1/M), so the simplex set has the same er-
ror probability as the related orthogonal set, but requires less energy by a factor of (1−1/M).
The simplex set of size M has dimensionality M − 1, as can be seen from the fact that the sum
of all the signals is 0, so the signals are linearly dependent. Figure 8.6 illustrates the orthogonal
and simplex sets for M = 2 and 3.

For small M , the simplex set is a substantial improvement over the orthogonal set. For example,
for M = 2, it has a 3 dB energy advantage (it is simply the antipodal one dimensional set).
Also it uses half the dimensions of the orthogonal set. For large M , however, the improvement
becomes almost negligible.
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Figure 8.6: Orthogonal, simplex, and bi-orthogonal signal constellations, normalized to unit energy.

8.5.2 Bi-orthogonal signal sets

If a0 , . . . ,aM−1 is a set of orthogonal signals, we call the set of 2M signals consisting of
±a0 , . . . ,±aM−1 a bi-orthogonal signal set. Two and three dimensional examples of bi-orthognal
signals sets are given in figure 8.6.

It can be seen by the same argument used for orthogonal signal sets that the ML detection rule
for such a set is to first choose the dimension m for which |ym| is largest, and then choose am

or −am depending on whether ym is positive or negative. Orthogonal signal sets and simplex
signal sets each have the property that each signal is equidistant from every other signal. For
bi-orthogonal sets, each signal is equidistant from all but one of the other signals. The exception,
for the signal am, is the signal −am.
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The bi-orthogonal signal set of M dimensions contains twice as many signals as the orthogonal set
(thus sending one extra bit per signal), but has the same minimum distance between signals. It
is hard to imagine8 a situation where we would prefer an orthogonal signal set to a bi-orthogonal
set, since one extra bit per signal is achieved at essentially no cost. However, for the limiting
argument to follow, an orthogonal set is used since it is notationally simpler to treat analytically.
As M gets very large, the advantage of bi-orthogonal signals becomes smaller, which is why,
asymptotically, the two are equivalent.

8.5.3 Error probability for orthogonal signal sets

Since the signals differ only by the ordering of the coordinates, the probability of error does
not depend on which signal is sent; thus Pr(e) = Pr(e | A=a0). Conditional on A = a0, Y0 is
N (

√
E, N0/2) and Ym is N (0, N0/2) for 1 ≤ m ≤ M−1. Note that if A=a0 and Y0=y0, then

an error is made if Ym ≥ y0 for any m, 1 ≤ m ≤ M−1. Thus

Pr(e) =
∫ ∞

−∞
fY0|A(y0 | a0) Pr

(
M−1⋃
m=1

(Ym ≥ y0 | A = a0)

)
dy0. (8.47)

The rest of the derivation of Pr(e), and its asymptotic behavior as M gets large, is simplified
if we normalize the outputs to Wm = Ym

√
2/N0. Then, conditional on signal a0 being sent,

W0 is N (
√

2E/N0, 1) = N (α, 1), where α is an abbreviation for
√

2E/N0. Also, conditional on
A = a0, Wm is N (0, 1) for 1 ≤ m ≤ M−1.

Pr(e) =
∫ ∞

−∞
fW0|A(w0 | a0) Pr

(
M−1⋃
m=1

(Wm ≥ w0 | A = a0)

)
dw0. (8.48)

Using the union bound on the union above,

Pr

(
M−1⋃
m=1

(Wm ≥ w0 | A = a0)

)
≤ (M − 1)Q(w0). (8.49)

The union bound is quite tight when applied to independent quantitities that have small aggre-
gate probability. Thus this bound will be quite tight when w0 is large and M is not too large.
When w0 is small, however, the bound becomes loose. For example, for w0 = 0, Q(w0) = 1/2
and the bound in (8.49) is (M − 1)/2, much larger than the obvious bound of 1 for any prob-
ability. Thus, in the analysis to follow, the left side of (8.49) will be upper-bounded by 1 for
small w0 and by (M − 1)Q(w0) for large w0. Since both 1 and (M − 1)Q(w0) are valid upper
bounds for all w0, the dividing point γ between small and large can be chosen arbitrarily. It is
chosen in what follows to satisfy

exp(−γ2/2) = 1; γ =
√

2 lnM (8.50)

It might seem more natural in light of (8.49) to replace γ above by the γ1 that satisfies (M −
1)Q(γ1) = 1, and that turns out to be the natural choice in the lower bound to Pr(e) developed

8One possibility is that at passband a phase error of π can turn am into −am. Thus with bi-orthogonal signals
it is necessary to track phase or use differential phase.
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in Exercise 8.10. It is not hard to see, however, that γ/γ1 goes to 1 as M → ∞, so the difference
is not of major importance. Splitting the integral in (8.48) into w0 ≤ γ and w0 > γ,

Pr(e) ≤
∫ γ

−∞
fW0|A(w0 | a0) dw0 +

∫ ∞

γ
fW0|A(w0 | a0)(M−1)Q(w0) dw0 (8.51)

≤ Q(α − γ) +
∫ ∞

γ
fW0|A(w0 | a0)(M−1)Q(γ) exp

[
γ2

2
− w2

0

2

]
dw0 (8.52)

≤ Q(α − γ) +
∫ ∞

γ

1√
2π

exp
[−(w0 − α)2 + γ2 − w2

0

2

]
dw0 (8.53)

= Q(α − γ) +
∫ ∞

γ

1√
2π

exp
[−2(w0 − α/2)2 + γ2 − α2/2

2

]
dw0 (8.54)

= Q(α − γ) +
1√
2
Q

(√
2

(
γ − α

2

))
exp

[
γ2

2
− α2

4

]
. (8.55)

The first term on the right side of (8.51) is the lower tail of the distribution of W0, and is the
probability that the negative of the fluctuation of W0 exceeds α−γ, i.e., Q(α−γ). In the second
term, Q(w0) is upper bounded using Exercise 8.7c, thus resulting in (8.52). This is simplified
by (M −1)Q(γ) ≤ M exp(−γ2/2) = 1, resulting in (8.53). The exponent is then manipulated to
‘complete the square’ in (8.54), leading to an integral of a Gaussian density, as given in (8.55).

The analysis now breaks into three special cases, the first where α ≤ γ, the second where
α/2 ≤ γ < α , and the third where γ ≤ α/2. We explain the significance of these cases after
completing the bounds.

Case (1): (α ≤ γ) The argument of the first Q function in (8.54) is less than or equal to 0,
so its value lies between 1/2 and 1. This means that Pr(e) ≤ 1/2, which is a useless result. As
seen later, this is the case where the rate is greater than or equal to capacity. It is also shown
in Exercise 8.10 that the error probability must be large in this case.

Case (2): (α/2 ≤ γ < α) Each Q function in (8.54) has a non-negative argument, so the bound
Q(x) ≤ 1

2 exp(−x2

2 ) applies (see Exercise 8.7b).

Pr(e) ≤ 1
2

exp
[−(α−γ)2

2

]
+

1
2
√

2
exp

(−α2

4
+

γ2

2
− (γ − α/2)2

)
(8.56)

≤
[
1
2

+
1

2
√

2

]
exp

[−(α−γ)2

2

]
≤ exp

(−(α−γ)2

2

)
. (8.57)

Note that (8.57) follows (8.56) from combining the terms in the exponent of the second term.
The fact that exponents are equal is not too surprising, since γ was chosen to approximately
equalize the integrands in (8.51) at w0 = γ.

Case (3): (γ ≤ α/2) The argument of the second Q function in (8.54) is less than or equal to
0, so its value lies between 1/2 and 1 and is upper bounded by 1, yielding

Pr(e) ≤ 1
2

exp
[−(α−γ)2

2

]
+

1
2
√

2
exp

[−α2

4
+

γ2

2

]
(8.58)

≤ exp
(−α2

4
+

γ2

2

)
. (8.59)

Since the two exponents in (8.56) are equal, the first exponent in (8.58) must be smaller than
the second, leading to (8.59). This is essentially the union bound derived in Exercise 8.8.
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The lower bound in Exercise 8.10 shows that these bounds are quite tight, but the sense in
which they are tight will be explained later.

We now explore what α and γ are in terms of the number of codewords M and the energy per
bit, Eb. Recall that α =

√
2E/N0. Also log2 M = b where b is the number of bits per signal.

Thus α =
√

2bEb/N0. From (8.50), γ2 = 2 lnM = 2b ln(2). Thus

α − γ =
√

2b
[√

Eb/N0 −
√

ln 2
]
.

Substituting these values into (8.57) and (8.59),

Pr(e) ≤ exp
[
−b

(√
Eb/N0 −

√
ln 2

)2
]

for
Eb

4N0
≤ ln 2 <

Eb

N0
(8.60)

Pr(e) ≤ exp
[
−b

(
Eb

2N0
− ln 2

)]
for ln 2 <

Eb

4N0
. (8.61)

We see from this that if Eb/N0 > ln 2, then as b → ∞ holding Eb constant, Pr(e) → 0.

Recall that in (7.82), we stated that the capacity (in bits per second) of a WGN channel of
bandwidth W, noise spectral density N0/2, and power P is

C = W log
(

1 +
P

WN0

)
. (8.62)

With no bandwidth constraint, i.e., in the limit W → ∞, the ultimate capacity is then C =
P

N0 ln 2 . This means that, according to Shannon’s theorem, for any rate R < C = P
N0 ln 2 , there

are codes of rate R bits per second for which the error probability is arbitrarily close to 0. Now
P/R = Eb, so Shannon says that if Eb

N0 ln 2 > 1, then codes exist with arbitrarily small error.

The orthogonal codes provide a concrete proof of this ultimate capacity result, since (8.60) shows
that Pr(e) can be made arbitrarily small (by increasing b) so long as Eb

N0 ln 2 > 1. Shannon’s
theorem also says that the error probability can not be made small if Eb

N0 ln 2 < 1. We have not
quite proven that here, although Exercise 8.10 shows that the error probability cannot be made
arbitrarily small for an orthogonal code9 if Eb

N0 ln 2 < 1.

The limiting operation here is slightly unconventional. As b increases, Eb is held constant. This
means that the energy E in the signal increases linearly with b, but the size of the constellation
increases exponentially with b. Thus the bandwidth required for this scheme is infinite in the
limit, and going to infinity very rapidly. This means that this is not a practical scheme for
approaching capacity, although sets of 64 or even 256 bi-orthogonal waveforms are used in
practice.

The point of the analysis, then, is first to show that this infinite bandwidth capacity can be ap-
proached, but second to show also that using large but finite sets of orthogonal (or bi-orthogonal
or simplex) waveforms does decrease error probability for fixed signal to noise ratio, and decreases
it as much as desired (for rates below capacity) if enough bandwidth is used.

9Since a simplex code has the same error probability as the corresponding orthogonal code, but differs in
energy from the orthogonal code by a vanishingly small amount as M → ∞, the error probability for simplex
codes also cannot be made arbitrarily small for any given Eb

N0 ln 2
less than 1. It is widely believed, but never

proven, that simplex codes are optimal in terms of ML error probability whenever the error probability is small.
There is a known example, however, [25], for all M ≥ 7, where the simplex is non-optimal, but in this example,
the signal to noise ratio is very small and the error probability is very large.
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The different forms of solution in (8.60) and (8.61) are interesting, and not simply consequences
of the upper bounding used. For case (2), which leads to (8.60), the typical way that errors
occur is when w0 ≈ γ. In this situation, the union bound is on the order of 1, which indicates
that, conditional on y0 ≈ γ, it is quite likely that an error will occur. In other words, the typical
error event involves an unusually large negative value for w0 rather than any unusual values for
the other noise terms. In case (3), which leads to (8.61), the typical way for errors to occur is
when w0 ≈ α/2 and when some other noise term is also at about α/2. In this case, an unusual
event is needed both in the signal direction and in some other direction.

A more intuitive way to look at this distinction is to visualize what happens when E/N0 is held
fixed and M is varied. Case 3 corresponds to small M , case 2 to larger M , and case 1 to very
large M . For small M , one can visualize the Voronoi region around the transmitted signal point.
Errors occur when the noise carries the signal point outside the Voronoi region, and that is most
likely at the points in the Voronoi surface closest to the transmitted signal, i.e., at points half
way between the transmitted point and some other signal point. As M increases, the number
of these midway points increases until one of them is almost certain to cause an error when the
noise in the signal direction becomes too large.

8.6 Block Coding

This section provides a brief introduction to the subject of coding for error correction on noisy
channels. Coding is a major topic in modern digital communication, certainly far more major
than suggested by the length of this introduction. In fact, coding is a topic that deserves its
own text and its own academic subject in any serious communication curriculum. Suggested
texts are [5] and [12]. Our purpose here is to provide enough background and examples to
understand the role of coding in digital communication, rather than to prepare the student for
coding research. We start by viewing orthogonal codes as block codes using a binary alphabet.
This is followed by the Reed-Muller codes, which provide considerable insight into coding for
the WGN channel. This then leads into Shannon’s celebrated noisy-channel coding theorem.

A block code is a code for which the incoming sequence of binary digits is segmented into blocks
of some given length m and then these binary m-tuples are mapped into codewords. There
are thus 2m codewords in the code; these codewords might be binary n-tuples of some block
length n > m, or might be vectors of signals, or might be waveforms. There is no fundamental
difference between coding and modulation; for example the orthogonal code above with M = 2m

codewords can be viewed either as modulation with a large signal set or coding using binary
m-tuples as input.

8.6.1 Binary orthogonal codes and Hadamard matrices

When orthogonal codewords are used on a WGN channel, any orthogonal set is equally good from
the standpoint of error probability. One possibility, for example, is the use of orthogonal sine
waves. From an implementation standpoint, however, there are simpler choices than orthogonal
sine waves. Conceptually, also, it is helpful to see that orthogonal codewords can be constructed
from binary codewords. This digital approach will turn out to be conceptually important in
the study of fading channels and diversity in the next chapter. It also helps in implementation,
since it postpones the point at which digital hardware gives way to analog waveforms.
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One digital approach to generating a large set of orthogonal waveforms comes from first gener-
ating a set of M binary codewords, each of length M and each distinct pair differing in exactly
M/2 places. Each binary digit can then be mapped into an antipodal signal, 0 → +a and
1 → −a. This yields an M -tuple of real-valued antipodal signals, s1, . . . , sM , which is then
mapped into the waveform

∑
j sjφj(t) where {φj(t); 1≤j≤M} is an orthonormal set (such as

sinc functions or Nyquist pulses). Since each pair of binary codewords differs in M/2 places, the
corresponding pair of waveforms are orthogonal and each waveform has equal energy. A binary
code with the above properties is called an binary orthogonal code.

There are many ways to generate binary orthogonal codes. Probably the simplest is from a
Hadamard matrix. For each integer m ≥ 1, there is a 2m by 2m Hadamard matrix Hm. Each
distinct pair of rows in the Hadamard matrix Hm differs in exactly 2m−1 places, so the 2m rows
of Hm constitute an binary orthogonal code with 2m codewords.

It turns out that there is a simple algorithm for generating the Hadamard matrices. The
Hadamard matrix H1 is defined to have the rows 00 and 01 which trivially satisfy the con-
dition that each pair of distinct rows differ in half the positions. For any integer m > 1, the
Hadamard matrix Hm+1 of order 2m+1 can be expressed as four 2m by 2m submatrices. Each of
the upper two submatrices is Hm, and the lower two submatrices are Hm and Hm, where Hm

is the complement of Hm. This is illustrated in Figure 8.7 below.

0
0 0

1

m = 1

0
0 1

0

0
0 1

0

0
0 1

0

1
1 0

1

m = 2

0000 0000
0101 0101
0011 0011
0110 0110
0000 1111
0101 1010
0011 1100
0110 1001

m = 3
Figure 8.7: Hadamard Matrices.

Note that each row of each matrix in Figure 8.7, other than the all zero row, contains half zeroes
and half ones. To see that this remains true for all larger values of m, we can use induction.
Thus assume, for given m, that Hm contains a single row of all zeros and 2m − 1 rows, each
with exactly half ones. To prove the same for Hm+1, first consider the first 2m rows of Hm+1.
Each row has twice the length and twice the number of ones as the corresponding row in Hm.
Next consider the final 2m rows. Note that Hm has all ones in the first row and 2m−1 ones in
each other row. Thus the first row in the second set of 2m rows of Hm+1 has no ones in the first
2m positions and 2m ones in the final 2m positions, yielding 2m ones in 2m+1 positions. Each
remaining row has 2m−1 ones in the first 2m positions and 2m−1 ones in the final 2m positions,
totaling 2m ones as required.

By a similar inductive argument (See Exercise 8.18), the mod-2 sum10 of any two rows of Hm

is another row of Hm. Since the mod-2 sum of two rows gives the positions in which the rows
differ, and only the mod-2 sum of a codeword with itself gives the all 0 codeword, this means
that the set of rows is a binary orthogonal set.

The fact that the mod-2 sum of any two rows is another row makes the corresponding code a
10The mod-2 sum of two binary numbers is defined by 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0. The

mod-2 sum of two rows (or vectors) or binary numbers is the component-wise row (or vector) of mod-2 sums.
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special kind of binary code called a linear code, parity-check code or group code (these are all
synonyms). Binary M -tuples can be regarded as vectors in a vector space over the binary scalar
field. It is not necessary here to be precise about what a field is; so far it has been sufficient
to consider vector spaces defined over the real or complex fields. However, the binary numbers,
using mod-two addition and ordinary multiplication, also form a field and the familiar properties
of vector spaces apply here also.

Since the set of codewords in a linear code is closed under mod-2 sums (and also closed under
scalar multiplication by 1 or 0), a linear code is a binary vector subspace of the binary vector
space of binary M -tuples. An important property of such a subspace, and thus of a linear
code, is that the set of positions in which two codewords differ is the set of positions in which
the mod-2 sum of those codewords contains 1’s. This means that the distance between two
codewords (i.e., the number of positions in which they differ) is equal to the weight (the number
of positions containing 1’s) of their mod-2 sum. This means, in turn, that for a linear code, the
minimum distance dmin, taken between all distinct pairs of codewords, is equal to the minimum
weight (minimum number of 1’s) of any non-zero codeword.

Another important property of a linear code (other than the trivial code consisting of all binary
M -tuples) is that some components xk of each codeword x = (x1, . . . , xM )T can be represented
as mod-2 sums of other components. For example, in the m = 3 case of Figure 8.7, x4 = x2⊕x3,
x6 = x2 ⊕ x5, x7 = x3 ⊕ x5, x8 = x4 ⊕ x5, and x1 = 0, Thus only 3 of the components can
be independently chosen, leading to a 3-dimensional binary subspace. Since each component is
binary, such a 3-dimensional subspace contains 23 = 8 vectors. The components that are mod-2
combinations of previous components are called ‘parity checks’ and often play an important role
in decoding. The first component, x1, can be viewed as a parity check since it cannot be chosen
independently, but its only role in the code is to help achieve the orthogonality property. It is
irrelevant in decoding.

It is easy to modify the binary orthogonal code to generate a binary simplex code, i.e., a binary
code which, after the mapping 0 → a, 1 → −a, forms a simplex in Euclidean space. The first
component of each binary codeword is dropped, turning the code into M codewords over M − 1
dimensions. Note that in terms of the antipodal signals generated by the binary digits, dropping
the first component converts the signal +a (corresponding to the first binary component 0) into
the signal 0 (which corresponds neither to the binary 0 or 1) . The generation of the binary
biorthogonal code is equally simple; the rows of Hm yield half of the codewords and the rows
of Hm yield the other half. Both the simplex and the biorthogonal code, as expressed in binary
form here, are linear binary block codes.

Two things have been accomplished with this representation of orthogonal codes. First, orthog-
onal codes can be generated from a binary sequence mapped into an antipodal sequence, and
second, an example has been given where modulation over a large alphabet can be viewed as a
binary block code followed by modulation over a binary or very small alphabet.

8.6.2 Reed-Muller codes

Orthogonal codes (and the corresponding simplex and biorthgonal codes) use enormous band-
width for large M . The Reed-Muller codes constitute a class of binary linear block codes that
include large bandwidth expansion (in fact they include the binary biorthogonal codes) but also
allow for much smaller bandwidth expansion, i.e., they allow for binary codes with M codewords
where log M is much closer to the number of dimensions used by the code.
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The Reed-Muller codes are specified by two integer parameters, m ≥ 1 and 0 ≤ r ≤ m; a binary
linear block code, denoted RM(r, m), exists for each such choice. The parameter m specifies the
block length to be n = 2m. The minimum distance dmin(r, m) of the code and the number of
binary information digits k(r, m) required to specify a codeword are given by

dmin(r, m) = 2m−r k(r, m) =
r∑

j=0

(
m

j

)
(8.63)

where
(
m
j

)
= m!

j!(m−j)! . Thus these codes, like the binary orthogonal codes, exist only at block
lengths equal to a power of 2. While there is only one binary orthogonal code (as defined through
Hm) for each m, there is a range of RM codes for each m ranging from large dmin and small k
to small dmin and large k as r increases.

For each m, these codes are trivial for r = 0 and r = m. For r = 0 the code consists of two
codewords selected by a single bit, so k(0, m) = 1; one codeword is all 0’s and the other is all
1’s, leading to dmin(0, m) = 2m. For r = m, the code is the set of all binary 2m tuples, leading
to dmin(m, m) = 1 and k(m, m) = 2m. For m = 1, then, there are two RM codes. RM(0, 1)
consists of the two codewords (0,0) and (1,1), and RM(1, 1) consists of the four codewords (0,0),
(0,1), (1,0), and (1,1).

For m > 1 and intermediate values of r, there is a simple algorithm, much like that for Hadamard
matrices, that specifies the set of codewords. The algorithm is recursive, and, for each m > 1
and 0 < r < m, specifies RM(r, m) in terms of RM(r, m−1) and RM(r−1, m−1). Specifically,
x ∈ RM(r, m) if x is the concatenation of u and u ⊕ v , denoted x = (u ,u ⊕ v), for some
u ∈ RM(r, m−1, ) and v ∈ RM(r−1, m−1). More formally, for 0 < r < m,

RM(r, m) = {(u ,u ⊕ v) | u ∈ RM(r, m−1), v ∈ RM(r−1, m−1)}. (8.64)

The analogy with Hadamard matrices is that x is a row of Hm if u is a row of Hm−1 and v is
either all ones or all zeros.

The first thing to observe about this definition is that if RM(r, m−1) and RM(r−1, m−1) are
linear codes, then RM(r, m) is also. To see this, let x = (u ,u ⊕ v) and x ′ = (u ′,u ′⊕ v ′). Then

x ⊕ x ′ = (u ⊕ u ′,u ⊕ u ′ ⊕ v ⊕ v ′) = (u ′′,u ′′ ⊕ v ′′)

where u ′′ = u ⊕u ′ ∈ RM(r, m−1) and v ′′ = v ⊕v ′ ∈ RM(r−1, m−1). This shows that x ⊕x ′ ∈
RM(r, m), and it follows that RM(r, m) is a linear code if RM(r, m−1) and RM(r−1, m−1) are.
Since both RM(0, m) and RM(m, m) are linear for all m ≥ 1, it follows by induction on m that
all the Reed-Muller codes are linear.

Another observation is that different choices of the pair u and v cannot lead to the same value
of x = (u ,u ⊕ v). To see this, let x ′ = (u ′, v ′). Then if u �= u ′, it follows that the first half
of x differs from that of x ′. Similarly if u = u ′, and v �= v ′, then the second half of x differs
from that of x ′. Thus x = x ′ only if both u = u ′ and v = v ′. As a consequence of this, the
number of information bits required to specify a codeword in RM(r, m), denoted k(r, m) is equal
to the number required to specify a codeword in RM(r, m−1) plus that to specify a codeword
in RM(r−1, m−1), i.e., for 0 < r < m,

k(r, m) = k(r, m−1) + k(r−1, m−1)

Exercise 8.19 shows that this relationship implies the explicit form for k(r, m) given in (8.63).
Finally Exercise 8.20 verifies the explicit form for dmin(r, m) in (8.63).
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The RM(1, m) codes are the binary bi-orthogonal codes and one can view the construction in
(8.64) as being equivalent to the Hadamard matrix algorithm by replacing the M by M matrix
Hm in the Hadamard algorithm by the 2M by M matrix

[
Hm

Gm

]
where Gm = Hm.

Another interesting case is the RM(m − 2, m) codes. These have dmin(m−2, m) = 4 and
k(m−2, m) = 2m − m − 1 information bits. In other words, they have m + 1 parity checks.
As explained below, these codes are called extended Hamming codes. A property of all RM
codes is that all codewords have an even number11 of 1’s and thus the last component in each
codeword can be viewed as an overall parity check which is chosen to ensure that the codeword
contains an even number of 1’s.

If this final parity check is omitted from RM(m − 2, m) for any given m, the resulting code is
still linear and must have a minimum distance of at least 3, since only one component has been
omitted. This code is called the Hamming code of block length 2m − 1 with m parity checks. It
has the remarkable property that every binary 2m − 1 tuple is either a codeword in this code or
distance 1 from a codeword12.

The Hamming codes are not particularly useful in practice for the following reasons. If one uses
a Hamming code at the input to a modulator and then makes hard decisions on the individual
bits before decoding, then a block decoding error is made whenever 2 or more bit errors occur.
This is a small improvement in reliability at a very substantial cost in transmission rate. On the
other hand, if soft decisions are made, using the extended Hamming code (i.e., RM(m−2, m)
extends dmin from 3 to 4, greatly decreasing the error probability with a marginal cost in added
redundant bits.

8.7 The noisy-channel coding theorem

The previous sections provided a brief introduction to coding. It provided several examples
showing that the use of binary codes could accomplish the same thing, for example, as the use
of large sets of orthogonal, simplex, or bi-orthogonal waveforms. There was an ad hoc nature to
the development, however, illustrating a number of schemes with various interesting properties,
but little in the way of general results.

The earlier results on Pr(e) for orthogonal codes were more fundamental, showing that Pr(e)
could be made arbitrarily small for a WGN channel with no bandwidth constraint if Eb

N0
is

greater than ln 2. This constituted a special case of the noisy-channel coding theorem, saying
that arbitrarily small Pr(e) can be achieved for that very special channel and set of constraints.

8.7.1 Discrete memoryless channels

This section states and proves the noisy-channel coding theorem for another special case, that
of discrete memoryless channels (DMC’s). This may seem a little peculiar after all the emphasis
in this and the last chapter on WGN. There are two major reasons for this choice. The first is
that the argument is particularly clear in the DMC case, particularly after studying the AEP for

11This property can be easily verified by induction.
12To see this, note that there are 22m−1−m codewords, and each codeword has 2m − 1 neighbors; these are

distinct from the neighbors of other codewords since dmin is at least 3. Adding the codewords and the neighbors,
we get the entire set of 22m−1 vectors. This also shows that the minimum distance is exactly 3.
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discrete memoryless sources. The second is that the argument can be generalized easily, as will
be discussed later. A DMC has a discrete input sequence X = X1, . . . , Xk, . . . . At each discrete
time k, the input to the channel belongs to a finite alphabet X of symbols. For example, in
the last section, the input alphabet could be viewed as the signals ±a. The question of interest
would then be whether it is possible to communicate reliably over a channel when the decision
to use the alphabet X = {a,−a} has already been made. The channel would then be regarded
as the part of the channel from signal selection to an output sequence from which detection
would be done. In a more general case, the signal set could be an arbitrary QAM set.

A DMC is also defined to have a discrete output sequence Y = Y1, . . . , Yk, . . . , where each
output Yk in the output sequence is a selection from a finite alphabet Y and is a probabilistic
function of the input and noise in a way to be described shortly. In the example above, the
output alphabet could be chosen as Y = {a,−a} corresponding to the case in which hard
decisions are made on each signal at the receiver. The channel would then include the modulation
and detection as an internal part, and the question of interest would be whether coding at
the input and decoding from the single-letter hard decisions at the output could yield reliable
communication.

Another choice would be to use the pre-decision outputs, first quantized to satisfy the finite
alphabet constraint. Another, almost identical choice, would be a detector that produced a
quantized LLR as opposed to a decision.

In summary, the choice of discrete memoryless channel alphabets depends on what part of the
overall communication problem is being addressed.

In general, a channel is described not only by the input and output alphabets but also the
probabilistic description of the outputs conditional on the inputs (the probabilistic description
of the inputs is selected by the channel user). Let X n = (X1, X2, . . . Xn)T be the channel input,
here viewed either over the lifetime of the channel or any time greater than or equal to the
duration of interest. Similarly the output is denoted by Y n = (Y1, . . . , Yn). For a DMC, the
probability of the output n-tuple, conditional on the input n-tuple, is defined to satisfy

p
Y n|Xn (y1, . . . , yn | x1, . . . , xn) =

n∏
k=1

p
Yk|Xk

(yk|xk) (8.65)

where p
Yk|Xk

(yk = j|xk = i), for each j ∈ Y and i ∈ X is a function only of i and j and not of
the time k. Thus, conditional on the inputs, the outputs are independent and have the same
conditional distribution at all times. This conditional distribution is denoted Pi,j for all i ∈ X
and j ∈ Y, i.e., p

Yk|Xk
(yk=j|xk=i) = Pi,j . Thus the channel is completely described by the input

alphabet, the output alphabet, and the conditional distribution function Pi,j . The conditional
distribution function is usually called the transition function or matrix.

The most intensely studied DMC over the past 60 years is the binary symmetric channel (BSC),
which has X = {0, 1},Y = {0, 1} and satisfies P0,1 = P1,0. This single number P0,1 thus specifies
the BSC. The WGN channel with antipodal inputs and ML hard decisions at the output is an
example of the BSC. Despite the intense study of the BSC and its inherent simplicity, the ques-
tion of optimal codes of long block length (optimal in the sense of minimum error probability) is
largely unanswered. Thus, the noisy-channel coding theorem, which describes various properties
of the achievable error probability through coding plays a particularly important role in coding.
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8.7.2 Capacity

The capacity C of a DMC is defined in this subsection. The following subsection, after defining
the rate R at which information enters the modulator, shows that reliable communication is
impossible on a channel if R > C. This is known as the converse to the noisy-channel coding
theorem, and is in contrast to the final subsection which shows that arbitrarily reliable commu-
nication is possible for any R < C. As in the analysis of orthogonal codes, communication at
rates below capacity can be made increasingly reliable with increasing block length, while this
is not possible for R > C.

The capacity is defined in terms of various entropies. For a given DMC and given sequence length
n, let p

Y n|Xn (yn|xn) be given by (8.65) and let p
Xn (xn) denote an arbitrary probability mass

function chosen by the user on the input X1. . . . , Xn. This leads to a joint entropy H[X nY n].
From (2.37), this can be broken up as

H[X nY n] = H[X n] + H[Y n|X n], (8.66)

where H[Y n|X n] = E[− log p
Y n|Xn (Y n|X n)]. Note that because H[Y n|X n] is defined as an

expectation over both X n and Y n, H[Y n|X n] depends on the distribution of X n as well as the
conditional distribution of Y n given X n. The joint entropy H[X nY n] can also be broken up
the opposite way as

H[X nY n] = H[Y n] + H[X n|Y n], (8.67)

Combining (8.66) and (8.67),it is seen that H[X n] − H[X n|Y n] = H[Y n] − H[Y n|X n]. This
difference of entropies is called the mutual information between X n and Y n and denoted
I(X n;Y n), so

I(X n;Y n) = H[X n] − H[X n|Y n] = H[Y n] − H[Y n|X n] (8.68)

The first expression for I(X n;Y n) has a nice intuitive interpretation. H[X n] is understood
from source coding as representing the number of bits required to represent the channel input.
If we look at a particular sample value yn of the output, H[X n|Y n=yn] can be interpreted as
the number of bits required to represent X n after observing the output sample value yn. Note
that H[X n|Y n] is the expected value of this over Y n. Thus I(X n;Y n) can be interpreted as
the reduction in uncertainty, or number of required bits for specification, after passing through
the channel. This intuition will lead to the converse to the noisy-channel coding theorem in the
next subsection.

The second expression for I(X n;Y n) is the one most easily manipulated. Taking the log of the
expression in (8.65),

H[Y n|X n] =
n∑

k=1

H[Yk|Xk] (8.69)

Since the entropy of a sequence of random symbols is upper bounded by the sum of the corre-
sponding terms (see Exercise 2.19)

H[Y n] ≤
n∑

k=1

H[Yk] (8.70)
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Substituting this and (8.69) in (8.68),

I(X n;Y n) ≤
n∑

k=1

I(Xk;Yk) (8.71)

If the inputs are independent, then the outputs are also and (8.70) and (8.71) are satisfied
with equality. The mutual information I(Xk;Yk) at each time k is a function only of the pmf
for Xk, since the output probabilities conditional on the input are determined by the channel.
Thus, each mutual information term in (8.71) is upper bounded by the maximum of the mutual
information over the input distribution. This maximum is defined as the capacity of the channel,

C = max
p

∑
i∈X

∑
j∈Y

piPi,j log
Pi,j∑

	∈X p	P	,j
, (8.72)

where p = (p0, p1, . . . , pX−1) is the set (over the alphabet X ) of input probabilities. The
maximum is over this set of input probabilities, subject to pi ≥ 0 for each i ∈ X and

∑
i∈X pi = 1.

The above function is concave in p, and thus the maximimization is straight-forward; for the
BSC, for example, the maximum is at p0 = p1 = 1/2 and C = 1 + P0,1 log P0,1 + P0,0 log P0,0.
Since C upper bounds I(Xk;Yk) for each k, with equality if the distribution for Xk is the
maximizing distribution,

I(X n;Y n) ≤ nC, (8.73)

with equality if all inputs are independent and chosen with the maximizing probabilities in
(8.72).

8.7.3 Converse to the noisy-channel coding theorem

Define the rate R for the DMC above as the number of iid equiprobable binary source digits
that enter the channel per channel use. More specifically assume that nR bits enter the source
and are transmitted over the n channel uses under discussion. Assume also that these bits are
mapped into the channel input X n in a one-to-one way. Thus H[X n] = nR and X n can take on
M = 2nR equiprobable values. The following theorem now bounds Pr(e) away from 0 if R > C.

Theorem 8.7.1. Consider a DMC with capacity C. Assume that the rate R satisfies R > C.
Then for any block length n, the ML probability of error, i.e., the probability that the decoded
n-tuple X̃

n
is unequal to the transmitted n-tuple Xn, is lower bounded by

R − C ≤ Hb(Pr(e)) + R Pr(e), (8.74)

where Hb(α) is the binary entropy, −α log α − (1 − α) log(1 − α).

Note that the right hand side of (8.74) is 0 at Pr(e) = 0 and is increasing for Pr(e) ≤ 1/2, so
(8.74) provides a lower bound to Pr(e) that depends only on C and R.

Proof: Note that H[X n] = nR and, from (8.71) and (8.68), H(X n) − H(X n|Y n) ≤ nC. Thus

H(X n|Y n) ≥ nR − nC. (8.75)

For each sample value yn of Y n, H(X n | Y n=yn) is an ordinary entropy. The received yn

is decoded into some x̃n and the corresonding probability of error is Pr(X n �= x̃n | Y n=yn).
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As in Exercise 2.20, the entropy H(X n | Y n=yn) can be upper bounded as the sum of two
terms, first the binary entropy of whether or not X n = x̃n, and second, the entropy of all M −1
possible errors in the case X n �= x̃n, i.e.,

H(X | Y n=yn) ≤ Hb(Pr(e|yn)) + Pr(e|yn) log(M − 1).

Upper bounding log(M − 1) by log M = nR and averaging over Y n,

H(X n|Y n) ≤ Hb(Pr(e)) + nR Pr(e). (8.76)

Combining (8.75 and (8.76),

R − C ≤ Hb(Pr(e))
n

+ R Pr(e),

and upper bounding 1/n by 1 yields (8.74).

The above theorem is not entirely satisfactory, since it shows that block errors cannot be made
negligible at rates above capacity, but does not rule out the possibility that each block error
causes only one bit error, say, and thus the probability of bit error might go to 0 as n → ∞. As
shown in Theorem 4.3.4 of [6], this cannot happen, but the proof doesn’t add much insight and
will be omitted here.

8.7.4 noisy-channel coding theorem, forward part

There are two critical ideas in the forward part of the coding theorem. The first is to use the
AEP on the joint ensemble X nY n. The second, however, is what shows the true genius of
Shannon. His approach, rather than an effort to find and analyze good codes, was to simply
choose each codeword of a code randomly, choosing each letter in each codeword to be iid with
the capacity yielding input distribution.

One would think initially that the codewords should be chosen to be maximally different in
some sense, but Shannon’s intuition said that independence would be enough. Some initial
sense of why this might be true comes from looking at the binary orthogonal codes. Here each
codeword of length n differs from each other codeword in n/2 positions, which is equal to the
average number of differences with random choice. Another initial intuition comes from the
fact that mutual information between input and output n-tuples is maximized by iid inputs.
Truly independent inputs do not allow for coding constraints, but choosing a limited number of
codewords using an iid distribution is at least a plausible approach. In any case, the following
theorem proves that this approach works.

It clearly makes no sense for the encoder to choose codewords randomly if the decoder doesn’t
know what those codewords are, so we visualize the designer of the modem as choosing these
codewords and building them into both transmitter and receiver. Presumably the designer
is smart enough to test her code before shipping a million copies around the world, but we
won’t worry about that. We simply average the performance over all random choices. Thus
the probability space consists of M independent iid codewords of block length n, followed by
a randomly chosen message m, 0 ≤ m ≤ M − 1 that enters the encoder. The corresponding
sample value xn

m of the mth randomly chosen codeword is transmitted and combined with noise
to yield a received sample sequence yn. The decoder then compares yn with the M possible
randomly chosen messages (the decoder knows xn

0 , . . . ,xn
M−1, but doesn’t know m) and chooses
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the most likely of them. It appears that a simple problem has been replaced with a complex
problem, but since there is so much independence between all the random symbols, the new
problem is surprisingly simple.

These randomly chosen codewords and channel outputs are now analyzed with the help of the
AEP. For this particular problem, however, it is simpler to use a slightly different form of AEP,
called the strong AEP, than that of Chapter 2. The strong AEP was analyzed in Exercise 2.28
and is reviewed here. Let U n = U1, . . . , Un be an n-tuple of iid discrete random symbols with
alphabet U and letter probabilities pj for each j ∈ U . Then for any ε > 0, the strongly typical
set Sε(U n) of sample n-tuples is defined as

Sε(U n) =
{
un : pj(1 − ε) <

Nj(un)
n

< pj(1 + ε); for all j ∈ U
}

, (8.77)

where Nj(un) is the number of appearances of letter j in the n-tuple un. The double inequality
in (8.77) will be abbreviated as Nj(un) = npj(1 ± ε), so (8.77) becomes

Sε(U n) = {un : Nj(un) = npj(1 ± ε); for all j ∈ U} (8.78)

Thus the strongly typical set is the set of n-tuples for which each letter appears with ap-
proximately the right relative frequency. For any given ε, the law of large numbers says that
limn→∞ Pr(Nj(U n) = pj(1 ± ε)) = 1 for each j. Thus (see Exercise 2.28)

lim
n→∞

Pr(U n ∈ Sε(U n)) = 1. (8.79)

Next consider the probability of n-tuples in Sε(U n). Note that p
Un (un) =

∏
j p

Nj(u
n)

j . Taking
the log of this,

log p
Un (un) = −nH(U)(1 ± ε) for un ∈ Sε(U n). (8.80)

Thus the strongly typical set has the same basic properties as the typical set defined in Chapter
2. Because of the requirement that each letter has a typical number of appearances, however, it
has additional properties that are useful in the coding theorem below.

Consider an n-tuple of channel input/output pairs, X nY n = (X1Y1), (X2Y2), . . . , (XnYn) where
successive pairs are iid. For each pair, XY , let X have the pmf {pi; i ∈ X} which achieves
capacity in (8.72). Let the pair XY have the pmf {piPi,j ; i ∈ X , j ∈ Y} where Pi,j is the channel
transition probability from input i to output j. This is the joint pmf for the randomly chosen
codeword that is transmitted and the corresponding received sequence.

The strongly typical set Sε(X nY n) is then given by (8.78) as

Sε(X nY n) = {xnyn : Nij(xnyn) = n piPi,j(1 ± ε); for all i ∈ X , j ∈ Y} (8.81)

where Nij(xnyn) is the number of xy pairs in ((x1y1), (x2y2), . . . , (xnyn)) for which x = i and
y = j. The transmitted codeword X n and the received n-tuple Y n then satisfy

lim
n→∞

Pr((X nY n) ∈ Sε(X nY n)) = 1. (8.82)

log p
XnY n (xnyn) = −nH(XY )(1 ± ε) for (xnyn) ∈ Sε(X nY n). (8.83)
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The nice feature about strong typicality is that if xnyn is in the set Sε(X nY n), then xn must
be in Sε(X n) and yn must be in Sε(Y n). To see that xn ∈ Sε(X n), simply sum over j in (8.81),
and to see that yn ∈ Sε(Y n), sum over i.

The noisy-channel coding theorem can now be stated and proved.

Theorem 8.7.2. Consider a DMC with capacity C and let R be any fixed rate R < C. Then
for any δ > 0, and all sufficiently large block lengths n, there exist block codes with M ≥ 2nR

equiprobable codewords such that the ML error probability satisfies Pr(e) ≤ δ.

Proof: As suggested above, we consider the error probability averaged over the random selection
of codes defined above, where for given block length n and rate R, the number of codewords
will be M = �2nR�. Since at least one code must be as good as the average, the theorem can be
proved by showing that Pr(e) ≤ δ.

The decoding rule to be used will be different than maximum likelihood, but since ML is op-
timum, proving that Pr(e) ≤ δ for any decoding rule will prove the theorem. The rule to be
used is strong typicality. That is, for given ε to be selected later, the decoder, given yn, chooses
the xn

m for which the pair (xn
myn) lies in Sε(X nY n). The decoder is said to make an error

if (xn
myn) ∈ Sε(X nY n) for more than one m, for the wrong m, or for no m. The probability

of error given message m is then upper bounded by two terms, first, Pr(X nY n /∈ Sε(X nY n))
where X nY n is the transmitted/received pair, and second, the probability that some other
codeword is jointly typical with Y n. The other codewords are independent of Y and each
chosen with iid symbols using the same pmf as the transmitted codeword. Let X

n be any one
of these codewords. Using the union bound,

Pr(e) ≤ Pr((X nY n) /∈ Sε(X nY n)) + (M − 1) Pr((X n
Y n) ∈ Sε(X nY n)) (8.84)

For any large enough n, (8.82) shows that the first term is at most δ/2. Also M − 1 ≤ 2nR.
Thus

Pr(e) ≤ δ

2
+ 2nR Pr((X n

Y n) ∈ Sε(X nY n)) (8.85)

To analyze the second term above, define F (yn) as the set of input sequences xn that are jointly
typical with any given yn. This set is empty if yn /∈ Sε(Y n). Note that for yn ∈ Sε(Y n),

p
Y n (yn) ≥

∑
xn∈F (yn)

p
XnY n (xnyn) ≥

∑
xn∈F (yn)

2−nH(XY )(1+ε)

where the final inequality comes from (8.83). Since p
Y n (yn) ≤ 2−nH(Y )(1−ε) for yn ∈ Sε(Y n),

the conclusion is that the number of n-tuples in F (yn) for any typical yn satisfies

|F (yn)| ≤ 2n[H(XY )(1+ε)−H(Y )(1−ε)] (8.86)

This means that the probability that X
n lies in F (yn) is at most the size |F (yn)| times the

maximum probability of a typical X
n (recall that X

n is independent of Y n but has the same
marginal distribution as X n. Thus

Pr((X n
Y n) ∈ Sε(X nY n)) ≤ 2−n[H(X)(1−ε)+H(Y )(1−ε)−H(XY )(1+ε)]

= 2−n{C−ε[H(X)+H(Y )+H(XY )]},
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where we have used the fact that C = H(X)−H(X|Y ) = H(X) + H(Y )−H(XY ). Substituting
this into (8.85),

Pr(e) ≤ δ

2
+ 2n[R−C+εα]

where α = H(X) + H(Y ) + H(XY ). Finally, choosing ε = (C − R)/(2α),

Pr(e) ≤ δ

2
+ 2−n(C−R)/2 ≤ δ

for sufficiently large n.

The above proof is essentially the original proof given by Shannon, with a little added explanation
of details. It will be instructive to explain the essence of the proof without any of the epsilons or
deltas. The transmitted and received n-tuple pair (X nY n) is typical with high probability and
the typical pairs essentially have probability 2−nH(XY ) (including both the random choice of X n

and the random noise). Each typical output yn essentially has a marginal probability 2−nH(Y ).
For each typical yn, there are essentially 2nH(X|Y ) input n-tuples that are jointly typical with yn

(this is the nub of the proof). An error occurs if any of these are selected to be codewords (other
than the actual transmitted codeword). Since there are about 2nH(X) typical input n-tuples
altogether, a fraction 2−nI(X;Y ) = 2−nC of them are jointly typical with the given received yn.

More recent proofs of the noisy-channel coding theorem also provide much better upper bounds
on error probability. These bounds are exponentially decreasing with n with a rate of decrease
that typically becomes vanishingly small as R → C.

8.7.5 The noisy-channel coding theorem for WGN

The coding theorem for DMC’s can be easily extended to discrete-time channels with arbitrary
real or complex input and output alphabets, but doing this with mathematical generality and
precision is difficult with our present tools.

This is done here for the discrete time Gaussian channel, which will make clear the conditions
under which this generalization is easy. Let Xk and Yk be the input and output to the channel
at time k, and assume that Yk = Xk + Zk where Zk ∼ N (0, N0/2) is independent of Xk and
independent of the signal and noise at all other times. Assume the input is constrained in second
moment to E[X2

k ] ≤ E, so E[Y 2] ≤ E + N0/2.

From Exercise 3.8, the differential entropy of Y is then upper bounded by

h(Y ) ≤ 1
2

log(2πe(E + N0/2). (8.87)

This is satisfied with equality if Y is N (0, E + N0/2), and thus if X is N (0, E). For any given
input x, h(Y |X = x) = 1

2 log(2πeN0/2), so averaging over the input space,

h(Y |X) =
1
2

log(2πeN0/2). (8.88)

By analogy with the DMC case, let the capacity C (in bits per channel use) be defined as the
maximum of h(Y )−h(Y |X) subject to the second moment constraint E. Thus, combining (8.87)
and (8.88),

C =
1
2

log
(

1 +
2E

N0

)
(8.89)
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Theorem 8.7.2 applies quite simply to this case. For any given rate R in bits per channel use
such that R < C, one can quantize the channel input and output space finely enough so that the
corresponding discrete capacity is arbitrarily close to C and in particular larger than R. Then
Theorem 8.7.2 applies, so rates arbitrarily close to C can be transmitted with arbitrarily high
reliability. The converse to the coding theorem can be extended in a similar way.

For a discrete time WGN channel using 2W degrees of freedom per second and a power constraint
P , the second moment constraint on each degree of freedom13 becomes E = P/(2W ) and the
capacity Ct in bits per second becomes Shannon’s famous formula

Ct = W log
(

1 +
P

WN0

)
. (8.90)

This is then the capacity of a WGN channel with input power constrained to P and degrees of
freedom per second constrained to 2W .

With some careful interpretation, this is also the capacity of a continuous-time channel con-
strained in bandwidth to W and in power to P . The problem here is that if the input is strictly
constrained in bandwidth, no information at all can be transmitted. That is, if a single bit is
introduced into the channel at time 0, the difference in the waveform generated by symbol 1 and
that generated by symbol 0 must be 0 before time 0, and thus, by the Paley-Wiener theorem,
cannot be nonzero and strictly bandlimited. From an engineering perspective, this doesn’t seem
to make sense, but the waveforms used in all engineering systems have negligible but non-zero
energy outside the nominal bandwidth.

Thus, to use (8.90) for a bandlimited input, it is necessary to start with the constraint that for
any given η > 0, at least a fraction (1− η) of the energy must lie within a bandwidth W . Then
reliable communication is possible at all rates Rt in bits per second less than Ct as given in (8.90).
Since this is true for all η > 0, no matter how small, it makes sense to call this the capacity of
the bandlimited WGN channel. This is not an issue in the design of a communication system,
since filters must be used and it is widely recognized that they can’t be entirely bandlimited.

8.8 Convolutional codes

The theory of coding, and particularly of coding theorems, concentrate on block codes, but
convolutional codes are also widely used and have essentially no block structure. These codes
can be used whether bandwidth is highly constrained or not. We give an example below where
there are two output bits for each input bit. Such a code is said to have rate 1/2 (in input bits
per channel bit). More generally, such codes produce an m-tuple of output bits for each b-tuple
of input bits for arbitrary integers 0 < b < m. These codes are said to have rate b/m.

A convolutional code looks very much like a discrete filter. Instead of having a single input and
output stream, however, we have b input streams and m output streams. For the example given
here, the number of input streams is b = 1 and the number of output streams is m = 2, thus
producing two output bits per input bit. There is another difference between a convolutional
code and a discrete filter; the inputs and outputs for a convolutional code are binary and the
addition is modulo 2. Consider the example below in Figure 8.8.

13We were careless in not specifying whether the constraint must be satisfied for each degree of freedom or
overall as a time-average. It is not hard to show, however, that the mutual information is maximized when the
same energy is used in each degree of freedom.
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Information bits
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Figure 8.8: Example of a convolutional code

For the example above, the equations for the outputs are

Uk,1 = Dk ⊕ Dk−1 ⊕ Dk−2

Uk,2 = Dk ⊕ Dk−2.

Thus each of the two output streams are linear modulo two convolutions of the input stream.
This encoded pair of binary streams can now be mapped into a pair of signal streams such
as antipodal signals ±a. This pair of signal streams can then be interleaved and modulated
by a single stream of Nyquist pulses at twice the rate. This baseband waveform can then be
modulated to passband and transmitted.

The structure of this code can be most easily visualized by a “trellis” diagram as illustrated in
Figure 8.9.
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Figure 8.9: Trellis Diagram; each transition is labeled with the input and corresponding output

To understand this trellis diagram, note from Figure 8.8 that the encoder is characterized at
any epoch k by the previous binary digits, Dk−1 and Dk−2. Thus the encoder has four possible
states, corresponding to the four possible values of the pair Dk−1, Dk−2. Given any of these
four states, the encoder output depends only on the current binary input, and the next state
depends also only on that binary input. Figure 8.9 shows these four states arranged vertically
and shows time horizontally. We assume the encoder starts at epoch 0 with D−1 = D−2 = 0.

In the convolutional code of the above example, the output at epoch k depends on the current
input and the previous two inputs. In this case, the constraint length of the code is 2. In general
the output could depend on the input and the previous n inputs, and the constraint length is
then defined to be n. If the constraint length is n (and a single binary digit enters the encoder
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at each epoch k), then there are 2n possible states, and the trellis diagram contains 2n nodes at
each time instant rather than 4.

As we have described convolutional codes above, the encoding starts at time 1 and then continues
forever. In practice, because of packetization of data and various other reasons, the encoding
usually comes to an end after some large number, say k0, of binary digits have been encoded.
After Dk0 enters the encoder, two final 0’s enter the encoder, at epochs (k0+1) and (k0+2), and
4 final encoded digits come out of the encoder. This restores the state of the encoder to state 0,
which, as we see later, is very useful for decoding. For the more general case with a constraint
length of n, we need n final zeros to restore the encoder to state 0. Altogether, k0 inputs lead to
2(k0 + n) outputs, for a code rate of k0/[2(k0 + n)]. Since k0 is usually large relative to n, this
is still referred to as a rate 1/2 code. Figure 8.10 below shows the part of the trellis diagram
corresponding to this termination.
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Figure 8.10: Trellis Termination

8.8.1 Decoding of convolutional codes

Decoding a convolutional code is essentially the same as using detection theory to choose between
each pair of codewords, and then choosing the best overall (the same as done for the orthogonal
code). There is one slight conceptual difference in that, in principle, the encoding continues
forever. When the code is terminated, however, this problem does not exist, and in principle
one takes the maximum likelihood choice of all the (finite length) possible codewords.

As usual, assume that the incoming binary digits are iid and equiprobable. This is reasonable
if the incoming bit stream has been source encoded. This means that the codewords out to any
given length are equally likely, which then justifies maximum likelihood (ML) decoding.

ML detection is also used so that codes for error correction can be designed independently of the
source data to be transmitted. For all the codes under discussion, the error probability using
ML decoding is independent of the transmitted codeword. Thus ML decoding is robust in the
sense that the error probability is independent of the probability distribution of the incoming
bits.

Another issue, given iid inputs, is determining what is meant by probability of error. In all of
the examples above, given a received sequence of symbols, we have attempted to choose the
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codeword that minimizes the probability of error for the entire codeword. An alternative would
have been to minimize the probability of error individually for each binary information digit. It
turns out to be easier to minimize the sequence error probability than the bit error probability.
This in fact is what happens when we use ML detection between codewords, as suggested above.

In decoding for error correction, the objective is almost invariably to minimize the sequence
probability of error. Along with the convenience suggested above, a major reason is that a
binary input is usually a source coded version of some other source sequence or waveform, and
thus a single output error is often as serious as multiple errors within a codeword. ML detection
on sequences is assumed in what follows.

8.8.2 The Viterbi algorithm

The Viterbi algorithm is an algorithm for performing ML detection for convolutional codes.
Assume for the time being that the code is terminated as in Figure 8.10. It will soon be seen
that whether or not the code is terminated is irrelevant. The algorithm will now be explained
for the example above and for the assumption of WGN; the extension to arbitrary convolutional
codes will be obvious except for the notational complexity of the general case. For any given
input d1, . . . , dk0 , let the encoded sequence be u1,1, u1,2, u2,1, u2,2 . . . , uk0+2,2 and let the channel
output, after modulation, addition of WGN, and demodulation, be v1,1, v1,2, v2,1, v2,2 . . . , vk0+2,2.

There are 2k0 possible codewords, corresponding to the 2k0 possible binary k0-tuples d1, . . . , dk0 ,
so an unimaginative approach to decoding would be to compare the likelihood for each of these
codewords. For large k0, even with today’s technology, such an approach would be prohibitive.
It turns out, however, that by using the trellis structure of Figure 8.9, this decoding effort can
be greatly simplified.

Each input d1, . . . , dk0 (i.e., each codeword) corresponds to a particular path through the trellis
from epoch 1 to k0+2, and each path, at each epoch k, corresponds to a particular trellis state.

Consider two paths d1, . . . , dk0 and d′1, . . . , d′k0
through the trellis that pass through the same

state at time k+ (i.e., at the time immediately after the input and state change at epoch
k) and remain together thereafter. Thus dk+1, . . . , dk0 = d′k+1, . . . , d′k0

. For example, from
Figure 8.8, we see that (0, . . . , 0) and 1, 0, . . . , 0 are both in state 00 at 3+ and both remain
in the same state thereafter. Since the two paths are in the same state at k+ and have the
same inputs after this time, they both have the same encoder outputs after this time. Thus
uk+1,i, . . . , uk0+2,i = u′

k+1,i, . . . , u′
k0+2,i for i = 1, 2.

Since each channel output rv Vk,i is given by Vk,i = Uk,i + Zk,i and the Gaussian noise variables
Zk,i are independent, this means that for any channel output v1,1, . . . , vk0+2,2,

f(v1,1, . . . , vk0+2,2|d1, . . . , dk0)
f(v1,1, . . . , vk0+2,2|d′1, . . . , d′k0

)
=

f(v1,1, . . . , vk,2|d1, . . . , dk0)
f(v1,1, . . . , vk,2|d′1, . . . , d′k0

)
.

In plain English, this says that if two paths merge at time k+ and then stay together, the
likelihood ratio depends on only the first k output pairs. Thus if the right hand side exceeds 1,
then d1, . . . , dk0 is more likely than d′1, . . . , d′k0

. This conclusion holds no matter how the final
inputs dk+1 . . . , dk0 are chosen.

We then see that when two paths merge at a node, no matter what the remainder of the path
is, the most likely of the paths is the one that is most likely at the point of the merger. Thus,
whenever two paths merge, the least likely of the paths can be eliminated at that point. Doing
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this elimination successively from the smallest k for which paths merge (3 for the example),
there is only one survivor for each state at each epoch.

To be specific, let h(d1, . . . , dk) be the state at time k+ with input d1, . . . , dk. For the example,
h(d1, . . . , dk) = (dk−1, dk). Let

fmax(k, s) = max
h(d1,... ,dk)=s

f(v1,1, . . . , vk,2|d1, . . . , dk).

These quantities can then be calculated iteratively for each state and each time k by the iteration

fmax(k + 1, s) = max
r:r→s

fmax(k, r) · f(vk,1|u1(r→s))f(vk,2|u2(r→s)). (8.91)

where the maximization is over the set of states r that have a transition to state s in the trellis
and u1(r→s) and u2(r→s) are the two outputs from the encoder corresponding to a transition
from r to s.

This expression is simplified (for WGN) by taking the log, which is proportional to the negative
squared distance between v and u . For the antipodal signal case in the example, this is further
simplified by simply taking the dot product between v and u . Letting L(k, s) be this dot
product,

L(k + 1, s) = max
r:r→s

L(k, r) + vk,1u1(r→s)) + vk,2u2(r→s)). (8.92)

What this means is that at each epoch (k+1), it is necessary to calculate the inner product in
(8.92) for each link in the trellis going from k to k + 1. These must be maximized over r for
each state s at epoch (k+1). The maximum must then be saved as L(k + 1, s) for each s. One
must, of course, also save the paths taken in arriving at each merging point.

Those familiar with dynamic programming will recognize this as an example of the dynamic
programming principle.

The entire computation for decoding a block of k0 information bits is proportional to 4(k0+2).
In the more general case where the constraint length of the convolutional coder is n rather than
2, there are 2n states and the computation is proportional to 2n(k0+n). The Viterbi algorithm is
usually used in cases where the constraint length is moderate, say 6 - 12, and in these situations,
the computation is quite moderate, expecially compared with 2k0 .

Usually one does not wait until the end of the block to start decoding. Usually when the above
computation is done at epoch k, all the paths up to k′ have merged for k′ a few constraint lengths
less than k. In this case, one can decode without any bound on k0, and the error probability is
viewed in terms of “error events” rather than block error.

8.9 Summary

This chapter analyzed the last major segment of a general point-to-point communication system
in the presence of noise, namely how to detect the input signals from the noisy version presented
at the output. Initially the emphasis was on detection alone, i.e., the assumption was that the
rest of the system had been designed and the only question remaining was how to extract the
signals.

At a very general level, the problem of detection in this context is trivial. That is, under
the assumption that the statistics of the input and the noise are known, the sensible problem is
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maximum a posteriori probability decoding: find the a posteriori probability of all the hypotheses
and choose the largest. This is somewhat complicated by questions of whether to do sequence
detection or bit detection, but these questions in a sense are details.

At a more specific level, however, the detection problem led to many interesting insights and
simplifications, particularly for WGN channels. A particularly important simplification is the
principle of irrelevance, which says that components of the received waveform in degrees of
freedom not occupied by the signal of interest (or statistically related signals) can be ignored
in detection of those signals. Looked at in another way, this said that matched filters oculd be
used to extract the degrees of freedom of interest.

The last part of the chapter introduced coding and decoding. The focus changed here from
decoding/detection to the question of how coding could change the input waveforms so as to
make the decoding more effective. In other words, a MAP detector can be designed for any signal
structure, but the real problem is to design both signal structure and detection for effective
performance.

At this point, the noisy-channel coding theorem came into the picture. If R < C, then the
probability of error can be reduced arbitrarily, meaning that there is no “optimal” solution to
the joint problem of choosing signal structure and detection. By making the block length longer,
error probability can be reduced at will.

Thus the problem must involve not only overcoming the noise, but doing this with reasonable
delay and complexity. The following chapter considers some of these problems in the context of
wireless communication.

8A Appendix: Neyman-Pearson threshold tests

We have seen above that any binary MAP test can be formulated as a comparison of a likelihood
ratio with a threshold. It turns out that many other detection rules can also be viewed as
threshold tests on likelihood ratios. One of the most important binary detection problems
for which a threshold test turns out to be essentially optimum is the Neyman-Pearson test.
This is often used in those situations in which there is no sensible way to choose a priori
probabilities. In the Neyman-Pearson test, an acceptable value α is established for Pr{e |U=1},
and, subject to the constraint, Pr{e |U=1} ≤ α, a Neyman-Pearson test is a test that minimizes
Pr{e |U=0}. We shall show in what follows that such a test is essentially a threshold test.
Before demonstrating this, we need some terminology and definitions.

Define q0(η) to be Pr{e |U=0} for a threshold test with threshold η, 0 < η < ∞ and similarly
define q1(η) as Pr{e |U=1}. Thus for 0 < η < ∞,

q0(η) = Pr{Λ(V )<η |U=0}; q1(η) = Pr{Λ(V )≥η |U=1}. (8.93)

Define q0(0) as limη→0 q0(η) and q1(0) as limη→0 q1(η). Clearly q0(0) = 0 and in typical situations
q1(0) = 1. More generally, q1(0) = Pr{Λ(V )>0|U=1}. In other words, q1(0) is less than 1 if
there is some set of observations that are impossible under U=0 but have positive probability
under U=1. Similarly, define q0(∞) as limη→∞ q0(η) and q1(∞) as limη→∞ q1(η). We have
q0(∞) = Pr{Λ(V ) < ∞} and q1(∞) = 0.

Finally, for an arbitrary test A, threshold or not, denote Pr{e |U=0} as q0(A) and Pr{e |U=1}
as q1(A).
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Using (8.93), we can plot q0(η) and q1(η) as parametric functions of η; we call this the error
curve.3 Figure 8.11 illustrates this error curve for a typical detection problem such as (8.17)
and (8.18) for antipodal binary signalling. We have already observed that, as the threshold η is
increased, the set of v mapped into Ũ=0 decreases, thus increasing q0(η) and decreasing q1(η).
Thus, as η increases from 0 to ∞, the curve in Figure 8.11 moves from the lower right to the
upper left.

2
2
2
2
2
2
2
2
2
2

q0(η) + ηq1(η)

q0(η)

1 q0(∞)

1

q1(0)

q1(η)

slope −η

��� increasing η

Figure 8.11: The error curve; q1(η) and q0(η) as parametric functions of η

Figure 8.11 also shows a straight line of slope −η through the point (q1(η), q0(η)) on the error
curve. The following lemma shows why this line is important.

Lemma 1: For each η, 0<η<∞, the line of slope −η through the point (q1(η), q0(η)) lies on or
beneath all other points (q1(η′), q0(η′)) on the error curve, and also lies beneath (q1(A), q0(A))
for all tests A.

Before proving this lemma, we give an example of the error curve for a discrete observation
space.

Example of Discrete Observations: Figure 8.12 shows the error curve for an example in
which the hypotheses 0 and 1 are again mapped 0 → +a and 1 → −a. Assume that the
observation V can take on only four discrete values +3,+1,−1,−3. The probabilities of each
these values, conditional on U=0 and U=1, are given in the figure. As indicated there, the
likelihood ratio Λ(v) then takes the values 4, 3/2, 2/3, and 1/4, corresponding respectively to
v = 3, 1,−1, and −3.

A threshold test at η decides Ũ = 0 if and only if Λ(V ) ≥ η. Thus, for example, for any η ≤ 1/4,
all possible values of v are mapped into Ũ = 0. In this range, q1(η) = 1 since U = 1 always
causes an error. Also q0(η) = 0 since U = 0 never causes an error. In the range 1/4 < η ≤ 2/3,
since Λ(−3) = 1/4, the value -3 is mapped into Ũ = 1 and all other values into Ũ = 0. In this
range, q1(η) = 0.6 since, when U = 1, an error occurs unless V = −3.

In the same way, all threshold tests with 2/3 < η ≤ 3/2 give rise to the decision rule that maps
-1 and -3 into Ũ = 1 and 1 and 3 into Ũ = 0. In this range q1(η) = q0(η) = 0.3. As shown, there
is another decision rule for 3/2 < η ≤ 4 and a final decision rule for η > 4.

The point of this example is that a finite observation space leads to an error curve that is simply
a finite set of points. It is also possible for a continuously varying set of outputs to give rise
to such an error curve when there are only finitely many possible likelihood ratios. The figure
illustrates what the lemma means for error curves consisting only of a finite set of poinits.

3In the radar field, one often plots 1 − q0(η) as a function of q1(η). This is called the receiver operating
characteristic (ROC). If one flips the error curve vertically around the point 1/2, the ROC results.
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Figure 8.12: The error curve for a discrete observation space. There are only five points
making up the ‘curve,’ one corresponding to each of the five distinct threshold rules. For
example, the threshold rule Ũ = 1 for v = −3, yields (q1(η), q0(η)) = (0.6, 0.1) for all η in the
range 1/4 to 2/3. A straight line of slope −η through that point is also shown for η = 1/2.
The lemma asserts that this line lies on or beneath each point of the error curve and each
point (q1(A), q0(A) for any other test. Note that as η increases or decreases, this line will
rotate around the point (0.6, 0.1) until η becomes larger than 2/3 or smaller than 1/4, and
then starts to rotate around the next point in the error curve.

Proof of lemma: Consider the line of slope −η through the point (q1(η), q0(η)). From plane
geometry, as illustrated in Figure 8.11, we see that the vertical axis intercept of this line is
q0(η)+ηq1(η). To interpret this line, define p0 and p1 as a priori probabilities such that η = p1/p0.
The overall error probability for the corresponding MAP test is then

q(η) = p0q0(η) + p1q1(η)
= p0 [q0(η) + ηq1(A)]; η = p1/p0. (8.94)

Similarly, the overall error probability for an arbitrary test A with the same a priori probabilities
is

q(A) = p0 [q0(A) + ηq1(A)]. (8.95)

From Theorem 8.1.1, q(η) ≤ q(A), so, from (8.94) and (8.95),

q0(η) + η q1(η) ≤ q0(A) + η q1(A). (8.96)

We have seen that the left side of (8.96) is the vertical axis intercept of the line of slope −η
through (q1(η), q0(η)). Similarly, the right side is the vertical axis intercept of the line of slope
−η through (q1(A), q0(A)). This says that the point (q1(A), q0(A)) lies on or above the line of
slope −η through (q1(η), q0(η)). This applies to every test A, which includes every threshold
test.

The lemma shows that if the error curve gives q0(η) as a differentiable function of q1(η) (as in
the case of Figure 8.11), then the line of slope −η through (q1(η), q0(η)) is a tangent, at point
(q1(η), q0(η)), to the error curve. Thus in what follows we denote this line as the η-tangent to
the error curve. Note that the error curve of Figure 8.12 is not really a curve at all, but the
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η-tangent, as defined above and illustrated in the figure for η = 2/3, still lies on or beneath all
points of the error curve and all achievable points (q1(A), q0(A)), as proven above.

Since, for each test A, the point (q1(A), q0(A)) lies on or above each η-tangent, it also lies on or
above the supremum of these η-tangents over 0 < η < ∞. It also follows, then, that for each
η′, 0 < η′ < ∞, (q1(η′), q0(η′)) lies on or above this supremum. Since (q1(η′), q0(η′)) also lies on
the η′-tangent, it lies on or beneath the supremum, and thus must lie on the supremum. We
conclude that each point of the error curve lies on the supremum of the η-tangents.

Although all points of the error curve lie on the supremum of the η-tangents, all points of the
supremum are not necessarily points of the error curve, as seen from Figure 8.12. We shall
see shortly, however, that all points on the supremum are achievable by a simple extension of
threshold tests. Thus we call this supremum the extended error curve.

For the example in Figure 8.11 the extended error curve is the same as the error curve itself.
For the discrete example in Figure 8.12, the extended error curve is shown in Figure 8.13.
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Figure 8.13: The extended error curve for the discrete observation example of Figure 8.12.
From Lemma 1, for each slope −η, the η-tangent touches the error curve. Thus, the line
joining two adjacent points on the error curve must be an η-tangent for its particular slope,
and therefore must lie on the extended error curve.

To understand the discrete case better, assume that the extended error function has a straight
line portion of slope −η∗ and horizontal extent γ. This implies that the distribution function
of Λ(V ) given U=1 has a discontinuity of magnitude γ at η∗. Thus there is a set V∗ of one
or more v with Λ(v) = η∗, Pr{V∗|U=1} = γ, and Pr{V∗|U=0} = η∗γ. For a MAP test with
threshold η∗, the overall error probability is not effected by whether v ∈ V∗ is detected as Ũ=0
or Ũ=1. Our convention is to detect v ∈ V∗ as Ũ=0, which corresponds to the lower right point
on the straight line portion of the extended error curve. The opposite convention, detecting
v ∈ V∗ as Ũ=1 reduces the error probability given U=1 by γ and increases the error probability
given U=0 by η∗γ, i.e., it corresponds to the upper left point on the straight line portion of the
extended error curve.

Note that when we were interested in MAP detection, it made no difference how v ∈ V∗ was
detected for the threshold η∗. For the Neyman-Pearson test, however, it makes a great deal of
difference since q0(η∗) and q1(η∗) are changed. In fact, we can achieve any point on the straight
line in question by detecting v ∈ V∗ randomly, increasing the probability of choosing Ũ=0 to
approach the lower right end point. In other words, the extended error curve is the curve relating
q1 to q0 using a randomized threshold test. For a given η∗, of course, only those v ∈ V∗ are
detected randomly.
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To summarize, the Neyman-Pearson test is a randomized threshold test. For a constraint α on
Pr{e|U=1}, we choose the point α on the abscissa of the extended error curve and achieve the
corresponding ordinate as the minimum Pr{e|U=1}. If that point on the extended error curve
lies within a straight line segment of slope η∗, a randomized test is used for those observations
with likelihood ratio η∗.

Since the extended error curve is a supremum of straight lines, it is a convex function. Since
these straight lines all have negative slope, it is a monotonic decreasing14 function. Thus, Figures
8.11 and 8.13 represent the general behavior of extended error curves, with the slight possible
exception mentioned above that the end points need not have one of the error probabilities equal
to 1.

The following theorem summarizes the results about Neyman-Pearson tests.

Theorem 8A.1. The extended error curve is convex and strictly decreasing between
(q1(∞), q0(∞)) and (q1(0), q0(0)). For a constraint α on Pr{e|U=1}, the minimum value of
Pr{e|U=0} is given by the ordinate of the extended error curve corresponding to the abscissa α
and is achieved by a randomized threshold test.

There is one more interesting variation on the theme of threshold tests. If the a priori prob-
abilities are unknown, we might want to minimize the maximum probability of error. That
is, we visualize choosing a test followed by nature choosing a priori probabilities to maximize
the probability of error. Our objective is to minimize the probability of error under this worst
case assumption. The resulting test is called a minmax test. It can be seen geometrically from
Figures 8.11 or 8.13 that the minmax test is the randomized threshold test at the intersection
of the extended error curve with a 45◦ line from the origin.

If there is symmetry between U = 0 and U = 1 (as in the Gaussian case), then the extended
error curve will be symmetric around the 45◦ degree line, and the threshold will be at η = 1 (i.e.,
the ML test is also the minmax test). This is an important result for Gaussian communication
problems, since it says that ML detection, i.e., minimum distance detection is robust in the
sense of not depending on the input probabilities. If we know the a priori probabilities, we can
do better than the ML test, but we can do no worse.

14To be more precise, it is strictly decreasing between the end points (q1(∞), q0(∞)) and (q1(0), q0(0)).
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8.E Exercises

8.1. (Binary minimum cost detection) (a) Consider a binary hypothesis testing problem with a
priori probabilities p0, p1 and likelihoods f

V |U (v|i), i = 0, 1. Let Cij be the cost of deciding
on hypothesis j when i is correct. Conditional on an observation V = v, find the expected
cost (over U = 0, 1) of making the decision Ũ = j for j = 0, 1. Show that the decision of
minimum expected cost is given by

Ũmincost = arg minj

[
C0jpU|V (0|v) + C1jpU|V (1|v)

]
(b) Show that the min cost decision above can be expressed as the following threshold test:

Λ(v) =
f

V |U (v | 0)
f

V |U (v | 1)
≥Ũ=0

<Ũ=1

p1(C10 − C11)
p0(C01 − C00)

= η.

(c) Interpret the result above as saying that the only difference between a MAP test and
a minimum cost test is an adjustment of the threshold to take account of the costs. i.e.,
a large cost of an error of one type is equivalent to having a large a priori probability for
that hypothesis.

8.2. Consider the following two equiprobable hypotheses:

U = 0 : V1 = a cos Θ + Z1, V2 = a sin Θ + Z2,

U = 1 : V1 = −a cos Θ + Z1, V2 = −a sin Θ + Z2.

Z1 and Z2 are iid N (0, σ2), and Θ takes on the values {−π/4, 0, π/4} each with probability
1/3.
Find the ML decision rule when V1, V2 are observed.
Hint: Sketch the possible values of V1, V2 for Z = 0 given each hypothesis. Then, without
doing any calculations try to come up with a good intuitive decision rule. Then try to
verify that it is optimal.

8.3. Let
Vj = SjXj + Zj for 1 ≤ j ≤ 4

where {Xj ; 1 ≤ j ≤ 4} are iid N (0, 1) and {Zj ; 1 ≤ j ≤ 4} are iid N (0, σ2) and independent
of {Xj ; 1 ≤ j ≤ 4}. {Vj ; 1 ≤ j ≤ 4} are observed at the output of a communication system
and the input is a single binary random variable U which is independent of {Zj ; 1 ≤ j ≤ 4}
and {Xj ; 1 ≤ j ≤ 4}. Given that U = 0, S1 = S2 = 1 and S3 = S4 = 0. Given U = 1,
S1 = S2 = 0 and S3 = S4 = 1.

(a) Find the log likelihood ratio

LLR(v) = ln
(

fV |U (v |0
fV |U (xn|1

)
.

(b) Let Ea = |V1|2 + |V2|2 and Eb = |V3|2 + |V4|2. Explain why {Ea, Eb} form a sufficient
statistic for this problem and express the log likelihood ratio in terms of the sample values
of {Ea, Eb}.
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(c) Find the threshold for ML detection.

(d) Find the probability of error. Hint: Review Exercise 6.1. Note: we will later see that
this corresponds to binary detection in Rayleigh fading.

8.4. Consider binary antipodal MAP detection for the real vector case. Modify the picture
and argument in Figure 8.4 to verify the algebraic relation between the squared energy
difference and the inner product in (8.22).

8.5. Derive (8.36), i.e., that
∑

k,j yk,jbk,j = 1
2

∫
y(t)b(t) dt. Explain the factor of 1/2.

8.6. In this problem, you will derive the inequalities(
1 − 1

x2

)
1

x
√

2π
e−x2/2 ≤ Q(x) ≤ 1

x
√

2π
e−x2/2; for x > 0, (8.97)

where Q(x) = (2π)−1/2
∫ ∞
x exp(−z2/2) dz is the “tail” of the Normal distribution. The

purpose of this is to show that, when x is large, the right side of this inequality is a very
tight upper bound on Q(x).
(a) By using a simple change of variable, show that

Q(x) =
1√
2π

e−x2/2

∫ ∞

0
exp

(
−y2/2 − xy

)
dy.

(b) Show that

1 − y2/2 ≤ exp(−y2/2) ≤ 1.

(c) Use parts (a) and (b) to establish (8.97)

8.7. (Other bounds on Q(x)) (a) Show that the following bound holds for any γ and η such
that 0 ≤ γ and 0 ≤ ηw:

Q(γ + η) ≤ Q(γ) exp[−ηγ − γ2/2]

Hint: Start with Q(γ + η) =
∫
γ+η exp[−x2/2] dx and use the change of variable y = x − η.

(b) Use part (a) to show that for all η ≥ 0,

Q(η) ≤ 1
2

exp[−η2/2]

(c) Use (a) to show that for all 0 ≤ γ ≤ w,

Q(w)
exp[−w2/2]

≤ Q(γ)
exp[−γ2/2]

Note: (8.97) shows that Q(w) goes to 0 with increasing w as a slowly varying coefficient
time exp[−w2/2]. This demonstrates that the coefficient is decreasing for w ≥ 0.
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8.8. (Orthogonal signal sets) An orthogonal signal set is a set A = {am, 0 ≤ m ≤ M − 1} of M
orthogonal vectors in RM with equal energy E; i.e., 〈am,a j〉 = Eδmj .
(a) Compute the normalized rate ρ of A in bits per two dimensions. Compute the average
energy Eb per information bit.
(b) Compute the minimum squared distance d2

min(A) between these signal points. Show
that every signal has M−1 nearest neighbors.
(c) Let the noise variance be N0/2 per dimension. Describe a ML detector on this set of
M signals. Hint: Represent the signal set in an orthonormal expansion where each vector
is collinear with one coordinate. Then visualize making binary decisions between each pair
of possible signals.

8.9. (Orthogonal signal sets; continuation of Exercise 8.8) Consider a set A = {am, 0 ≤ m ≤
M − 1} of M orthogonal vectors in RM with equal energy E.
(a) Use the union bound to show that Pr{e}, using ML detection, is bounded by

Pr{e} ≤ (M − 1)Q(
√

E/N0).

(b) Let M → ∞ with Eb = E/ log M held constant. Using the upper bound for Q(x) in
Exercise 8.7b, show that if Eb/N0 > 2 ln 2 then limM→∞ Pr(e) = 0. How close is this to
the ultimate Shannon limit on Eb/N0? What is the limit of the normalized rate ρ?

8.10. (Lower bound to Pr(e) for orthogonal signals) (a) Recall the exact expression for error
probability for orthogonal signals in WGN from (8.48),

Pr(e) =
∫ ∞

−∞
fW0|A(w0|a0) Pr

(
M−1⋃
m=1

(Wm ≥ w0|A = a0)

)
dw0.

Explain why the events Wm ≥ w0 for 1 ≤ m ≤ M − 1 are iid conditional on A = w0 and
W0 = w0.
(b) Demonstrate the following two relations for any w0,

Pr

(
M−1⋃
m=1

(Wm ≥ w0|A = a0)

)
= 1 − [1 − Q(w0)]M−1

≥ (M − 1)Q(w0) −
[(M − 1)Q(w0)]2

2

(c) Define γ1 by (M − 1)Q(γ1) = 1. Demonstrate the following:

Pr

(
M−1⋃
m=1

(Wm ≥ w0|A = a0)

)
≥

{
(M−1)Q(w0)

2 for w0 > γ1
1
2 for w0 ≤ γ1

(d) Show that

Pr(e) ≥ 1
2
Q(α − γ1)

(e) Show that limM→∞ γ1/γ = 1 where γ =
√

2 lnM . Use this to compare the lower bound
in part (d) to the upper bounds for cases 1 and 2 in Subsection 8.5.3. In particular show
that Pr(e) ≥ 1/4 for γ1 > α (the case where capacity is exceeded).
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(f) Derive a tighter lower bound on Pr(e) than part (d) for the case where γ1 ≤ α. Show
that the ratio of the log of your lower bound and the log of the upper bound in Subsection
8.5.3 approaches 1 as M → ∞. Note: this is much messier than the bounds above.

8.11. Section 8.3.4 discusses detection for binary complex vectors in WGN by viewing complex n-
dimensional vectors as 2n-dimensional real vectors. Here you will treat the vectors directly
as n-dimensional complex vectors. Let Z = (Z1, . . . , Zn)T be a vector of complex iid
Gaussian rv’s with iid real and imaginary parts, each N (0, N0/2). The input U is binary
antipodal, taking on values a or −a , The observation V is U + Z ,
(a) The probability density of Z is given by

fZ (z ) =
1

(πN0)n
exp

n∑
j=1

−|zj |2
N0

=
1

(πN0)n
exp

−‖z‖2

N0
.

Explain what this probability density represents (i.e., probability per unit what?).
(b) Give expressions for f

V |U (v |a) and f
V |U (v | − a).

(c) Show that the log likelihood ratio for the observation v is given by

LLR(v) =
−‖v − a‖2 + ‖v + a‖2

N0
.

(d) Explain why this implies that ML detection is minimum distance detection (defining
the distance between two complex vectors as the norm of their difference).

(e) Show that LLR(v) can also be written as 4�(〈v ,u〉)
N0

.
(f) The appearance of the real part, �(〈v , u〉), above is surprising. Point out why log
likelihood ratios must be real. Also explain why replacing �(〈v , u〉) by |〈v , u〉| in the
above expression would give a non-sensical result in the ML test.
(g) Does the set of points {v : LLR(v) = 0} form a complex vector space?

8.12. Let D be the function that maps vectors in Cn into vectors in R2n by the mapping

a = (a1, a2, . . . , an) → (�a1,�a2, . . . ,�an,�a1,�a2, . . . ,�an) = D(a)

(a) Explain why a ∈ Cn and ia (i =
√
−1)are contained in the one dimensional complex

subspace of Cn spanned by a .
(b) Show that D(a) and D(ia) are orthogonal vectors in R2n.

(c) For v ,a ∈ Cn, the projection of v on a is given by v |a = 〈v ,a〉
‖a‖

a
‖a‖ . Show that D(v |a)

is the projection of D(v) onto the subspace of R2n spanned by D(a) and D(ia).

(d) Show that D(�[〈v ,a〉]
‖a‖

a
‖a‖) is the further projection of D(v) onto D(a).

8.13. Consider 4-QAM with the 4 signal points u = ±a±ia. Assume Gaussian noise with spectral
density N0/2 per dimension.
(a) Sketch the signal set and the ML decision regions for the received complex sample value
y. Find the exact probability of error (in terms of the Q function) for this signal set using
ML detection.
(b) Consider 4-QAM as two 2-PAM systems in parallel. That is, a ML decision is made
on �(u) from �(v) and a decision is made on �(u) from �(v). Find the error probability
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(in terms of the Q function) for the ML decision on �(u) and similarly for the decision on
�(u).
(c) Explain the difference between what has been called an error in part (a) and what has
been called an error in part (b).
(d) Derive the QAM error probability directly from the PAM error probability.

8.14. Consider two 4-QAM systems with the same 4-QAM constellation

s0 = 1 + i, s1 = −1 + i, s2 = −1 − i, s3 = 1 − i.

For each system, a pair of bits is mapped into a signal, but the two mappings are different:

Mapping 1: 00 → s0, 01 → s1, 10 → s2, 11 → s3

Mapping 2: 00 → s0, 01 → s1, 11 → s2, 10 → s3

The bits are independent and 0’s and 1’s are equiprobable, so the constellation points are
equally likely in both systems. Suppose the signals are decoded by the minimum distance
decoding rule, and the signal is then mapped back into the two binary digits. Find the
error probability (in terms of the Q function) for each bit in each of the two systems.

8.15. Re-state Theorem 8.4.1 for the case of MAP detection. Assume that the inputs U1, . . . , Un

are independent and each have the a priori distribution p0, . . . , pM−1. Hint: start with
(8.42) and (8.43) which are still valid here.

8.16. The following problem relates to a digital modulation scheme often referred to as minimum
shift keying (MSK). Let

s0(t) =

{√
2E
T cos(2πf0t) if 0 ≤ t ≤ T ,

0 otherwise.

s1(t) =

{√
2E
T cos(2πf1t) if 0 ≤ t ≤ T ,

0 otherwise.

a) Compute the energy of the signals s0(t), s1(t). You may assume that f0T � 1 and
f1T � 1.
(b) Find conditions on the frequencies f0, f1 and the duration T to ensure both that the
signals s0(t) and s1(t) are orthogonal and that s0(0) = s0(T ) = s1(0) = s1(T ). Why do
you think a system with these parameters is called minimum shift keying?
(c) Assume that the parameters are chosen as in (b). Suppose that, under U=0, the
signal s0(t) is transmitted, and under U=1, the signal s1(t) is transmitted. Assume that
the hypotheses are equally likely. Let the observed signal be equal to the sum of the
transmitted signal and a White Gaussian process with spectral density N0/2. Find the
optimal detector to minimize the probability of error. Draw a block diagram of a possible
implementation.
(d) Compute the probability of error of the detector you have found in part (c).
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8.17. Consider binary communication to a receiver containing k0 antennas. The transmitted
signal is ±a. Each antenna has its own demodulator, and the received signal after demod-
ulation at antenna k, 1 ≤ k ≤ k0, is given by

Vk = Ugk + Zk,

where U is +a for U=0 and −a for U=1. Also gk is the gain of antenna k and Zk ∼ N (0, σ2)
is the noise at antenna k; everything is real and U, Z1, Z2, . . . , Zk0 are independent. In
vector notation, V = Ug + Z where V = (v1, . . . , vk0)

T etc.

(a) Suppose that the signal at each receiving antenna k is weighted by an arbitrary real
number qk and the signals are combined as Y =

∑
k Vkqk = 〈V , q〉. What is the maximum

likelihood (ML) detector for U given the observation Y ?
(b) What is the probability of error Pr(e) for this detector?

(c) Let β = 〈g ,q〉
‖g‖‖q‖ . Express Pr(e) in a form where q does not appear except for its effect

on β.

(d) Give an intuitive explanation why changing q to cq for some nonzero scalar c does not
change Pr(e).
(e) Minimize Pr(e) over all choices of q (or β) above.
(f) Is it possible to reduce Pr(e) further by doing ML detection on V1, . . . , Vk0 rather than
restricting ourselves to a linear combination of those variables?

(g) Redo part (b) under the assumption that the noise variables have different variances,
i.e., Zk ∼ N (0, σ2

k). As before, U, Z1, . . . , Zk0 are independent.
(h) Minimize Pr(e) in part (g) over all choices of q .

8.18. (a) The Hadamard matrix H1 has the rows 00 and 01. Viewed as binary codewords this
is rather foolish since the first binary digit is always 0 and thus carries no information at
all. Map the symbols 0 and 1 into the signals a and −a respectively, a > 0 and plot these
two signals on a two dimensional plane. Explain the purpose of the first bit in terms of
generating orthogonal signals.
(b) Assume that the mod-2 sum of each pair of rows of Hb is another row of Hb for any
given integer b ≥ 1. Use this to prove the same result for Hb+1. Hint: Look separately at
the mod-2 sum of two rows in the first half of the rows, two rows in the second half, and
two rows in different halves.

8.19. (RM codes) (a) Verify the following combinatorial identity for 0 < r < m:

r∑
j=0

(
m

j

)
=

r−1∑
j=0

(
m−1

j

)
+

r∑
j=0

(
m−1

j

)
.

Hint: Note that the first term above is the number of binary m tuples with r or fewer 1’s.
Consider separately the number of these that end in 1 and end in 0.
(b) Use induction on m to show that k(r, m) =

∑r
j=1

(
m
j

)
. Be careful how you handle r = 0

and r = m.

8.20. (RM codes) This exercise first shows that RM(r, m) ⊂ RM(r+1, m) for 0 ≤ r < m. It then
shows that dmin(r, m) = 2m−r.
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(a) Show that if RM(r−1, m−1) ⊂ RM(r, m−1) for all r, 0 < r < m, then

RM(r−1, m) ⊂ RM(r, m) for all r, 0 < r ≤ m

Note: Be careful about r = 1 and r = m.
(b) Let x = (u ,u ⊕ v) where u ∈ RM(r, m−1) and v ∈ RM(r−1, m−1). Assume that
dmin(r, m−1) ≤ 2m−1−r and dmin(r−1, m−1) ≤ 2m−r. Show that if x is nonzero, it has at
least 2m−r 1’s. Hint 1: For a linear code, dmin is equal to the weight (number of ones) in
the minimum-weight nonzero codeword. Hint 2: First consider the case v = 0, then the
case u = 0. Finally use part (a) in considering the case u �= 0, v �= 0 under the subcases
u = v and u �= v .
(c) Use induction on m to show that dmin = 2m−r for 0 ≤ r ≤ m.



Chapter 9

Wireless digital communication

9.1 Introduction

This chapter provides a brief treatment of wireless digital communication systems. More exten-
sive treatments are found in many texts, particularly [27] and [8] As the name suggests, wireless
systems operate via transmission through space rather than through a wired connection. This
has the advantage of allowing users to make and receive calls almost anywhere, including while
in motion. Wireless communication is sometimes called mobile communication since many of
the new technical issues arise from motion of the transmitter or receiver.

There are two major new problems to be addressed in wireless that do not arise with wires. The
first is that the communication channel often varies with time. The second is that there is often
interference between multiple users. In previous chapters, modulation and coding techniques
have been viewed as ways to combat the noise on communication channels. In wireless systems,
these techniques must also combat time-variation and interference. This will cause major changes
both in the modeling of the channel and the type of modulation and coding.

Wireless communication, despite the hype of the popular press, is a field that has been around for
over a hundred years, starting around 1897 with Marconi’s successful demonstrations of wireless
telegraphy. By 1901, radio reception across the Atlantic Ocean had been established, illustrating
that rapid progress in technology has also been around for quite a while. In the intervening
hundred years, many types of wireless systems have flourished, and often later disappeared. For
example, television transmission, in its early days, was broadcast by wireless radio transmitters,
which is increasingly being replaced by cable or satellite transmission. Similarly, the point-
to-point microwave circuits that formerly constituted the backbone of the telephone network
are being replaced by optical fiber. In the first example, wireless technology became outdated
when a wired distribution network was installed; in the second, a new wired technology (optical
fiber) replaced the older wireless technology. The opposite type of example is occurring today
in telephony, where cellular telephony is partially replacing wireline telephony, particularly in
parts of the world where the wired network is not well developed. The point of these examples is
that there are many situations in which there is a choice between wireless and wire technologies,
and the choice often changes when new technologies become available.

Cellular networks will be emphasized in this chapter, both because they are of great current
interest and also because they involve a relatively simple architecture within which most of the
physical layer communication aspects of wireless systems can be studied. A cellular network
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consists of a large number of wireless subscribers with cellular telephones (cell phones) that can
be used in cars, buildings, streets, etc. There are also a number of fixed base stations arranged
to provide wireless electromagnetic communication with arbitrarily located cell phones.

The area covered by a base station, i.e., the area from which incoming calls can reach that base
station, is called a cell. One often pictures a cell as a hexagonal region with the base station in
the middle. One then pictures a city or region as being broken up into a hexagonal lattice of cells
(see Figure 9.1a). In reality, the base stations are placed somewhat irregularly, depending on the
location of places such as building tops or hill tops that have good communication coverage and
that can be leased or bought (see Figure 9.1b). Similarly, the base station used by a particular
cell phone is selected more on the basis of communication quality than of geographic distance.
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Part (a): an oversimplified view
in which each cell is hexagonal.

Part (b): a more realistic case where base
stations are irregularly placed and cell phones
choose the best base station

Figure 9.1: Cells and Base stations for a cellular network
Each cell phone, when it makes a call, is connected (via its antenna and electromagnetic radi-
ation) to the base station with the best apparent communication path. The base stations in
a given area are connected to a mobile telephone switching office (MTSO) by high speed wire,
fiber, or microwave connections. The MTSO is connected to the public wired telephone network.
Thus an incoming call from a cell phone is first connected to a base station and from there to the
MTSO and then to the wired network. From there the call goes to its destination, which might
be another cell phone, or an ordinary wire line telephone, or a computer connection. Thus, we
see that a cellular network is not an independent network, but rather an appendage to the wired
network. The MTSO also plays a major role in coordinating which base station will handle a
call to or from a cell phone and when to hand-off a cell phone conversation from one base station
to another.

When another telephone (either wired or wireless) places a call to a given cell phone, the reverse
process takes place. First the cell phone is located and an MTSO and nearby base station is
selected. Then the call is set up through the MTSO and base station. The wireless link from
a base station to a cell phone is called the downlink (or forward) channel, and the link from a
cell phone to a base station is called the uplink (or reverse) channel. There are usually many
cell phones connected to a single base station. Thus, for downlink communication, the base
station multiplexes the signals intended for the various connected cell phones and broadcasts
the resulting single waveform from which each cell phone can extract its own signal. This set
of downlink channels from a base station to multiple cell phones is called a broadcast channel.
For the uplink channels, each cell phone connected to a given base station transmits its own
waveform, and the base station receives the sum of the waveforms from the various cell phones
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plus noise. The base station must then separate and detect the signals from each cell phone
and pass the resulting binary streams to the MTSO. This set of uplink channels to a given base
station is called a multiaccess channel.

Early cellular systems were analog. They operated by directly modulating a voice waveform
on a carrier and transmitting it. Different cell phones in the same cell were assigned different
modulation frequencies, and adjacent cells used different sets of frequencies. Cells sufficiently far
away from each other could reuse the same set of frequencies with little danger of interference.

All of the newer cellular systems are digital (i.e., use a binary interface), and thus, in principle,
can be used for voice or data. Since these cellular systems, and their standards, originally focused
on telephony, the current data rates and delays in cellular systems are essentially determined by
voice requirements. At present, these systems are still mostly used for telephony, but both the
capability to send data and the applications for data are rapidly increasing. Also the capabilities
to transmit data at higher rates than telephony rates are rapidly being added to cellular systems.

As mentioned above, there are many kinds of wireless systems other than cellular. First there
are the broadcast systems such as AM radio, FM radio, TV, and paging systems. All of these
are similar to the broadcast part of cellular networks, although the data rates, the size of the
areas covered by each broadcasting node, and the frequency ranges are very different.

In addition, there are wireless LANs (local area networks). These are designed for much higher
data rates than cellular systems, but otherwise are somewhat similar to a single cell of a cellular
system. These are designed to connect PC’s, shared peripheral devices, large computers, etc.
within an office building or similar local environment. There is little mobility expected in such
systems and their major function is to avoid stringing a maze of cables through an office building.
The principal standards for such networks are the 802.11 family of IEEE standards. There is
a similar even smaller-scale standard called Bluetooth whose purpose is to reduce cabling and
simplify transfers between office and hand held devices.

Finally, there is another type of LAN called an ad hoc network. Here, instead of a central node
(base station) through which all traffic flows, the nodes are all alike. These networks organize
themselves into links between various pairs of nodes and develop routing tables using these links.
The network layer issues of routing, protocols, and shared control are of primary concern for ad
hoc networks; this is somewhat disjoint from our focus here on physical-layer communication
issues.

One of the most important questions for all of these wireless systems is that of standardiza-
tion. Some types of standardization are mandated by the Federal Communication Commission
(FCC) in the USA and corresponding agencies in other countries. This has limited the available
bandwidth for conventional cellular communication to three frequency bands, one around 0.9
gH, another around 1.9 gH, and the other around 5.8 gH. Other kinds of standardization are
important since users want to use their cell phones over national and international areas. There
are three well established mutually incompatible major types of digital cellular systems. One is
the GSM system,1 which was standardized in Europe and is now used worldwide, another is a
TDM (Time Division Modulation) standard developed in the U.S, and a third is CDMA (Code
Division Multiple Access). All of these are evolving and many newer systems with a dizzying
array of new features are constantly being introduced. Many cell phones can switch between
multiple modes as a partial solution to these incompatibility issues.

1GSM stands for Groupe Speciale Mobile or Global Systems for Mobile Communication, but the acronym is
far better known and just as meaningful as the words.
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This chapter will focus primarily on CDMA, partly because so many newer systems are using
this approach, and partly because it provides an excellent medium for discussing communication
principles. GSM and TDM will be discussed briefly, but the issues of standardization are so
centered on non-technological issues and so rapidly changing that they will not be discussed
further.

In thinking about wireless LAN’s and cellular telephony, an obvious question is whether they
will some day be combined into one network. The use of data rates compatible with voice rates
already exists in the cellular network, and the possibility of much higher data rates already exists
in wireless LANs, so the question is whether very high data rates are commercially desirable
for standardized cellular networks. The wireless medium is a much more difficult medium for
communication than the wired network. The spectrum available for cellular systems is quite
limited, the interference level is quite high, and rapid growth is increasing the level of interference.
Adding higher data rates will exacerbate this interference problem even more. In addition, the
display on hand held devices is small, limiting the amount of data that can be presented and
suggesting that many applications of such devices do not need very high data rates. Thus it is
questionable whether very high-speed data for cellular networks is necessary or desirable in the
near future. On the other hand, there is intense competition between cellular providers, and
each strives to distinguish their service by new features requiring increased data rates.

Subsequent sections begin the study of the technological aspects of wireless channels, focusing
primarily on cellular systems. Section 9.2 looks briefly at the electromagnetic properties that
propagate signals from transmitter to receiver. Section 9.3 then converts these detailed elec-
tromagnetic models into simpler input/output descriptions of the channel. These input/output
models can be characterized most simply as linear time-varying filter models.

The input/output model above views the input, the channel properties, and the output at
passband. Section 9.4 then finds the baseband equivalent for this passband view of the channel.
It turns out that the channel can then be modeled as a complex baseband linear time-varying
filter. Finally, in section 9.5, this deterministic baseband model is replaced by a stochastic
model.

The remainder of the chapter then introduces various issues of communication over such a
stochastic baseband channel. Along with modulation and detection in the presence of noise, we
also discuss channel measurement, coding, and diversity. The chapter ends with a brief case
study of the CDMA cellular standard, IS95.

9.2 Physical modeling for wireless channels

Wireless channels operate via electromagnetic radiation from transmitter to receiver. In prin-
ciple, one could solve Maxwell’s equations for the given transmitted signal to find the electro-
magnetic field at the receiving antenna. This would have to account for the reflections from
nearby buildings, vehicles, and bodies of land and water. Objects in the line of sight between
transmitter and receiver would also have to be accounted for.

The wavelength Λ(f) of electromagnetic radiation at any given frequency f is given by Λ = c/f ,
where c = 3 × 108 meters per second is the velocity of light. The wavelength in the bands
allocated for cellular communication thus lies between 0.05 and 0.3 meters. To calculate the
electromagnetic field at a receiver, the locations of the receiver and the obstructions would have
to be known within sub-meter accuracies. The electromagnetic field equations therefore appear
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to be unreasonable to solve, especially on the fly for moving users. Thus, electromagnetism
cannot be used to characterize wireless channels in detail, but it will provide understanding
about the underlying nature of these channels.

One important question is where to place base stations, and what range of power levels are then
necessary on the downlinks and uplinks. To a great extent, this question must be answered
experimentally, but it certainly helps to have a sense of what types of phenomena to expect.
Another major question is what types of modulation techniques and detection techniques look
promising. Here again, a sense of what types of phenomena to expect is important, but the
information will be used in a different way. Since cell phones must operate under a wide variety
of different conditions, it will make sense to view these conditions probabilistically. Before
developing such a stochastic model for channel behavior, however, we first explore the gross
characteristics of wireless channels by looking at several highly idealized models.

9.2.1 Free space, fixed transmitting and receiving antennas

First consider a fixed antenna radiating into free space. In the far field,2 the electric field and
magnetic field at any given location d are perpendicular both to each other and to the direction
of propagation from the antenna. They are also proportional to each other, so we focus on only
the electric field (just as we normally consider only the voltage or only the current for electronic
signals). The electric field at d is in general a vector with components in the two co-ordinate
directions perpendicular to the line of propagation. Often one of these two components is zero
so that the electric field at d can be viewed as a real-valued function of time. For simplicity, we
look only at this case. The electric waveform is usually a passband waveform modulated around
a carrier, and we focus on the complex positive frequency part of the waveform. The electric
far-field response at point d to a transmitted complex sinusoid, exp(2πift), can be expressed as

E(f, t,d) =
αs(θ, ψ, f) exp{2πif(t − r/c)}

r
. (9.1)

Here (r, θ, ψ) represents the point d in space at which the electric field is being measured; r is
the distance from the transmitting antenna to d and (θ, ψ) represents the vertical and horizontal
angles from the antenna to d . The radiation pattern of the transmitting antenna at frequency
f in the direction (θ, ψ) is denoted by the complex function αs(θ, ψ, f). The magnitude of αs

includes antenna losses; the phase of αs represents the phase change due to the antenna. The
phase of the field also varies with fr/c, corresponding to the delay r/c caused by the radiation
traveling at the speed of light c.

We are not concerned here with actually finding the radiation pattern for any given antenna,
but only with recognizing that antennas have radiation patterns, and that the free space far
field depends on that pattern as well as on the 1/r attenuation and r/c delay.

The reason why the electric field goes down with 1/r in free space can be seen by looking at
concentric spheres of increasing radius r around the antenna. Since free space is lossless, the
total power radiated through the surface of each sphere remains constant. Since the surface area
is increasing with r2, the power radiated per unit area must go down as 1/r2, and thus E must
go down as 1/r. This does not imply that power is radiated uniformly in all directions - the

2The far field is the field many wavelengths away from the antenna, and (9.1) is the limiting form as this
number of wavelengths increase. It is a safe assumption that cellular receivers are in the far field.
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radiation pattern is determined by the transmitting antenna. As seen later, this r−2 reduction of
power with distance is sometimes invalid when there are obstructions to free space propagation.

Next, suppose there is a fixed receiving antenna at location d = (r, θ, ψ). The received waveform
at the antenna terminals (in the absence of noise) in response to exp(2πift) is then

α(θ, ψ, f) exp{2πif(t − r/c)}
r

, (9.2)

where α(θ, ψ, f) is the product of αs (the antenna pattern of the transmitting antenna) and the
antenna pattern of the receiving antenna; thus the losses and phase changes of both antennas
are accounted for in α(θ, ψ, f). The explanation for this response is that the receiving antenna
causes only local changes in the electric field, and thus alters neither the r/c delay nor the 1/r
attenuation.

For the given input and output, a system function ĥ(f) can be defined as

ĥ(f) =
α(θ, ψ, f) exp{−2πifr/c}

r
. (9.3)

Substituting this in (9.2), the response to exp(2πift) is ĥ(f) exp{2πift}.
Electromagnetic radiation has the property that the response is linear in the input. Thus
the response at the receiver to a superposition of transmitted sinusoids is simply the su-
perposition of responses to the individual sinusoids. The response to an arbitrary input
x(t) =

∫
x̂(f) exp{2πift} df is then

y(t) =
∫ ∞

−∞
x̂(f)ĥ(f) exp{2πift} df. (9.4)

We see from (9.4) that the Fourier transform of the output y(t) is ŷ(f) = x̂(f)ĥ(f). From the
convolution theorem, this means that

y(t) =
∫ ∞

−∞
x(τ)h(t − τ) dτ, (9.5)

where h(t) =
∫ ∞
−∞ ĥ(f) exp{2πift} df is the inverse Fourier transform of ĥ(f). Since the physical

input and output must be real, x̂(f) = x̂∗(−f) and ŷ(f) = ŷ∗(−f). It is then necessary that
ĥ(f) = ĥ∗(−f) also.

The channel in this free space example is thus a conventional linear time-invariant (LTI) system
with impulse response h(t) and system function ĥ(f).

For the special case where the the combined antenna pattern α(θ, ψ, f) is real and independent
of frequency (at least over the frequency range of interest), we see that ĥ(f) is a complex
exponential3 in f and thus h(t) is α

r δ(t − r
c ) where δ is the Dirac delta function. From (9.5),

y(t) is then given by

y(t) =
α

r
x(t − r

c
).

If ĥ(f) is other than a complex exponential, then h(t) is not an impulse, and y(t) becomes a
non-trivial filtered version of x(t) rather than simply an attenuated and delayed version. From

3More generally, ĥ(f) is a complex exponential if |α| is independent of f and ∠α is linear in f .
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(9.4), however, y(t) only depends on ĥ(f) over the frequency band where x̂(f) is non-zero. Thus
it is common to model ĥ(f) as a complex exponential (and thus h(t) as a scaled and shifted
Dirac delta function) whenever ĥ(f) is a complex exponential over the frequency band of use.

We will find in what follows that linearity is a good assumption for all the wireless channels to
be considered, but that time invariance does not hold when either the antennas or reflecting
objects are in relative motion.

9.2.2 Free space, moving antenna

Continue to assume a fixed antenna transmitting into free space, but now assume that the
receiving antenna is moving with constant velocity v in the direction of increasing distance from
the transmitting antenna. That is, assume that the receiving antenna is at a moving location
described as d(t) = (r(t), θ, ψ) with r(t) = r0 + vt. In the absence of the receiving antenna, the
electric field at the moving point d(t), in response to an input exp(2πift), is given by (9.1) as

E(f, t,d(t)) =
αs(θ, ψ, f) exp{2πif(t − r0/c−vt/c)}

r0 + vt
. (9.6)

We can rewrite f(t−r0/c−vt/c) as f(1−v/c)t − fr0/c. Thus the sinusoid at frequency f has
been converted to a sinusoid of frequency f(1−v/c); there has been a Doppler shift of −fv/c
due to the motion of d(t).4 Physically, each successive crest in the transmitted sinusoid has to
travel a little further before it gets observed at this moving observation point.

Placing the receiving antenna at d(t), the waveform at the terminals of the receiving antenna,
in response to exp(2πift), is given by

α(θ, ψ, f) exp{2πi[f(1−v
c )t − fr0

c ]}
r0 + vt

, (9.7)

where α(θ, ψ, f) is the product of the transmitting and receiving antenna patterns.

This channel cannot be represented as an LTI channel since the response to a sinusoid is not a
sinusoid of the same frequency. The channel is still linear, however, so it is characterized as a
linear time-varying channel. Linear time-varying channels will be studied in the next section,
but first, several simple models will be analyzed where the received electromagnetic wave also
includes reflections from other objects.

9.2.3 Moving antenna, reflecting wall

Consider Figure 9.2 below in which there is a fixed antenna transmitting the sinusoid exp(2πift).
There is a large perfectly-reflecting wall at distance r0 from the transmitting antenna. A vehicle
starts at the wall at time t = 0 and travels toward the sending antenna at velocity v. There is a
receiving antenna on the vehicle whose distance from the sending antenna at time t > 0 is then
given by r0 − vt.

In the absence of the vehicle and receiving antenna, the electric field at r0 − vt is the sum of
the free space waveform and the waveform reflected from the wall. Assuming that the wall is

4Doppler shifts of electromagnetic waves follow the same principles as Doppler shifts of sound waves. For
example, when an airplane flies overhead, the noise from it appears to drop in frequency as it passes by.
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Figure 9.2: Illustration of a direct path and a reflected path

very large, the reflected wave at r0 − vt is the same (except for a sign change) as the free space
wave that would exist on the opposite side of the wall in the absence of the wall (see Figure
9.3). This means that the reflected wave at distance r0 − vt from the sending antenna has the
intensity and delay of a free-space wave at distance r0 + vt. The combined electric field at d(t)
in response to the input exp(2πift) is then

E(f, t,d(t)) =
αs(θ, ψ, f) exp{2πif [t − r0−vt

c ]}
r0 − vt

− αs(θ, ψ, f) exp{2πif [t − r0+vt
c ]}

r0 + vt
. (9.8)

WallSending
Antenna

0
r0

� �
−vt

+vt

Figure 9.3: Relation of reflected wave to the direct wave in the absence of a wall.

Including the vehicle and its antenna, the signal at the antenna terminals, say y(t), is again the
electric field at the antenna as modified by the receiving antenna pattern. Assume for simplicity
that this pattern is identical in the directions of the direct and the reflected wave. Letting α
denote the combined antenna pattern of transmitting and receiving antenna, the received signal
is then

yf (t) =
α exp{2πif [t − r0−vt

c ]}
r0 − vt

− α exp{2πif [t − r0+vt
c ]}

r0 + vt
. (9.9)

In essence, this approximates the solution of Maxwell’s equations by an approximate method
called ray tracing. The approximation comes from assuming that the wall is infinitely large and
that both fields are ideal far fields.

The first term in (9.9), the direct wave, is a sinusoid of frequency f(1 + v/c); its magnitude
is slowly increasing in t as 1/(r0 − vt). The second is a sinusoid of frequency f(1 − v/c); its
magnitude is slowly decreasing as 1/(r0 + vt). The combination of the two frequencies creates
a beat frequency at fv/c. To see this analytically, assume initially that t is very small so the
denominator of each term above can be approximated as r0 . Then, factoring out the common
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terms in the above exponentials, yf (t) is given by

yf (t) ≈ α exp{2πif [t − r0
c ]} (exp{2πifvt/c} − exp{−2πifvt/c})

r0

=
2i α exp{2πif [t − r0

c ]} sin{2πfvt/c}
r0

. (9.10)

This is the product of two sinusoids, one at the input frequency f , which is typically on the
order of gH, and the other at the Doppler shift fv/c, which is typically 500H or less.

As an example, if the antenna is moving at v = 60 km/hr and if f = 900MH, this beat frequency
is fv/c = 50H. The sinusoid at f has about 1.8×107 cycles for each cycle of the beat frequency.
Thus yf (t) looks like a sinusoid at frequency f whose amplitude is sinusoidally varying with
a period of 20 ms. The amplitude goes from its maximum positive value to 0 in about 5ms.
Viewed another way, the response alternates between being unfaded for about 5 ms and then
faded for about 5 ms. This is called multipath fading . Note that in (9.9) the response is viewed
as the sum of two sinusoids, each of different frequency, while in (9.10), the response is viewed
as a single sinusoid of the original frequency with a time-varying amplitude. These are just two
different ways to view essentially the same waveform.

It can be seen why the denominator term in (9.9) was approximated in (9.10). When the dif-
ference between two paths changes by a quarter wavelength, the phase difference between the
responses on the two paths changes by π/2, which causes a very significant change in the overall
received amplitude. Since the carrier wavelength is very small relative to the path lengths, the
time over which this phase change is significant is far smaller than the time over which the
denominator changes significantly. The phase changes are significant over millisecond intervals,
whereas the denominator changes are significant over intervals of seconds or minutes. For mod-
ulation and detection, the relevant time scales are milliseconds or less, and the denominators
are effectively constant over these intervals.

The reader might notice that many more approximations are required in even very simple wireless
models than with wired communication. This is partly because the standard linear time invariant
assumptions of wired communication usually provide straight-forward models, such as the system
function in (9.3). Wireless systems are usually time-varying, and appropriate models depend very
much on the time scales of interest. For wireless systems, making the appropriate approximations
is often more important than subsequent manipulation of equations.

9.2.4 Reflection from a ground plane

Consider a transmitting and receiving antenna, both above a plane surface such as a road (see
Figure 9.4). If the angle of incidence between antenna and road is sufficiently small, then a
dielectric reflects most of the incident wave, with a sign change. When the horizontal distance
r between the antennas becomes very large relative to their vertical displacements from the
ground plane, a very surprising thing happens. In particular, the difference between the direct
path length and the reflected path length goes to zero as r−1 with increasing r.

When r is large enough, this difference between the path lengths becomes small relative to the
wavelength c/f of a sinusoid at frequency f . Since the sign of the electric field is reversed on
the reflected path, these two waves start to cancel each other out. The combined electric field
at the receiver is then attenuated as r−2, and the received power goes down as r−4. This is
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Figure 9.4: Illustration of a direct path and a reflected path off of a ground plane

worked out analytically in Exercise 9.3. What this example shows is that the received power
can decrease with distance considerably faster than r−2 in the presence of reflections. This
particular geometry leads to an attenuation of r−4 rather than multipath fading.

The above example is only intended to show how attenuation can vary other than with r−2 in the
presence of reflections. Real road surfaces are not perfectly flat and behave in more complicated
ways. In other examples, power attenuation can vary with r−6 or even decrease exponentially
with r. Also these attenuation effects cannot always be cleanly separated from multipath effects.

A rapid decrease in power with increasing distance is helpful in one way and harmful in another.
It is helpful in reducing the interference between adjoining cells, but is harmful in reducing
the coverage of cells. As cellular systems become increasingly heavily used, however, the major
determinant of cell size is the number of cell phones in the cell. The size of cells has been steadily
decreasing in heavily used areas and one talks of micro cells and pico cells as a response to this
effect.

9.2.5 Shadowing

Shadowing is a wireless phenomenon similar to the blocking of sunlight by clouds. It occurs
when partially absorbing materials, such as the walls of buildings, lie between the sending and
receiving antennas. It occurs both when cell phones are inside buildings and when outside cell
phones are shielded from the base station by buildings or other structures.

The effect of shadow fading differs from multipath fading in two important ways. First, shadow
fades have durations on the order of multiple seconds or minutes. For this reason, shadow fading
is often called slow fading and multipath fading is called fast fading. Second, the attenuation
due to shadowing is exponential in the width of the barrier that must be passed through. Thus
the overall power attenuation contains not only the r−2 effect of free space transmission, but
also the exponential attenuation over the depth of the obstructing material.

9.2.6 Moving antenna, multiple reflectors

Each example with two paths above has used ray tracing to calculate the individual response
from each path and then added those responses to find the overall response to a sinusoidal input.
An arbitrary number of reflectors may be treated the same way. Finding the amplitude and
phase for each path is in general not a simple task. Even for the very simple large wall assumed
in Figure 9.2, the reflected field calculated in (9.9) is valid only at small distances from the wall
relative to the dimensions of the wall. At larger distances, the total power reflected from the wall
is proportional both to r−2

0 and the cross section of the wall. The portion of this power reaching
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the receiver is proportional to (r0 − r(t))−2. Thus the power attenuation from transmitter to
receiver (for the reflected wave at large distances) is proportional to [r0(r0 − r(t)]−2 rather than
to [2r0 − r(t)]−2. This shows that ray tracing must be used with some caution. Fortunately,
however, linearity still holds in these more complex cases.

Another type of reflection is known as scattering and can occur in the atmosphere or in reflections
from very rough objects. Here the very large set of paths is better modeled as an integral over
infinitesimally weak paths rather than as a finite sum.

Finding the amplitude of the reflected field from each type of reflector is important in determining
the coverage, and thus the placement, of base stations, although ultimately experimentation is
necessary. Studying this in more depth, however, would take us too far into electromagnetic
theory and too far away from questions of modulation, detection, and multiple access. Thus we
now turn our attention to understanding the nature of the aggregate received waveform, given
a representation for each reflected wave. This means modeling the input/output behavior of a
channel rather than the detailed response on each path.

9.3 Input/output models of wireless channels

This section shows how to view a channel consisting of an arbitrary collection of J electromag-
netic paths as a more abstract input/output model. For the reflecting wall example, there is a
direct path and one reflecting path, so J = 2. In other examples, there might be a direct path
along with multiple reflected paths, each coming from a separate reflecting object. In many
cases, the direct path is blocked and only indirect paths exist.

In many physical situations, the important paths are accompanied by other insignificant and
highly attenuated paths. In these cases, the insignificant paths are omitted from the model and
J denotes the number of remaining significant paths.

As in the examples of the previous section, the J significant paths are associated with atten-
uations and delays due to path lengths, antenna patterns, and reflector characteristics. As
illustrated in Figure 9.5, the signal at the receiving antenna coming from path j in response to
an input exp(2πift) is given by

αj exp{2πif [t − rj(t)
c ]}

rj(t)
.

The overall response at the receiving antenna to an input exp(2πift) is then

yf (t) =
J∑

j=1

αj exp{2πif [t − rj(t)
c ]}

rj(t)
. (9.11)

For the example of a perfectly reflecting wall, the combined antenna gain α1 on the direct path
is denoted as α in (9.9). The combined antenna gain α2 for the reflected path is −α because
of the phase reversal at the reflector. The path lengths are r1(t) = r0 − vt and r2(t) = r0 + vt,
making (9.11) equivalent to (9.9) for this example.

For the general case of J significant paths, it is more convenient and general to replace (9.11)
with an expression explicitly denoting the complex attenuation βj(t) and delay τj(t) on each
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Figure 9.5: The reflected path above is represented by a vector c(t) from sending antenna
to reflector and a vector d(t) from reflector to receiving antenna. The path length rj(t) is
the sum of the lengths |c(t)| and |d(t)|. The complex function αj(t) is the product of the
transmitting antenna pattern in the direction toward the reflector, the loss and phase change
at the reflector, and the receiver pattern in the direction from the reflector.

path.

yf (t) =
J∑

j=1

βj(t) exp{2πif [t − τj(t)], (9.12)

βj(t) =
αj(t)
rj(t)

τj(t) =
rj(t)

c
. (9.13)

Eq. (9.12) can also be used for arbitrary attenuation rates rather than just the 1/r2 power loss
assumed in (9.11). By factoring out the term exp{2πift}, (9.12) can be rewritten as

yf (t) = ĥ(f, t) exp{2πift} where ĥ(f, t) =
J∑

j=1

βj(t) exp{−2πifτj(t)}. (9.14)

The function ĥ(f, t) is similar to the system function ĥ(f) of a linear-time-invariant (LTI) system
except for the variation in t. Thus ĥ(f, t) is called the system function for the linear-time-varying
(LTV) system (i.e., channel) above.

The path attenuations βj(t) vary slowly with time and frequency, but these variations are neg-
ligibly slow over the time and frequency intervals of concern here. Thus a simplified model is
often used in which each attenuation is simply a constant βj . In this simplified model, it is also
assumed that each path delay is changing at a constant rate, τj(t) = τ o

j + τ ′
jt. Thus ĥ(f, t) in

the simplified model is

ĥ(f, t) =
J∑

j=1

βj exp{−2πifτj(t)} where τj(t) = τ o
j + τ ′

j t. (9.15)

This simplified model was used in analyzing the reflecting wall. There, β1 = −β2 = α/r0,
τ o
1 = τ o

2 = r0/c, and τ ′
1 = −τ ′

2 = −v/c.

9.3.1 The system function and impulse response for LTV systems

The LTV system function ĥ(f, t) in (9.14) was defined for a multipath channel with a finite
number of paths. A simplified model was defined in (9.15). The system function could also be
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generalized in a straight-forward way to a channel with a continuum of paths. More generally
yet, if yf (t) is the response to the input exp{2πift}, then ĥ(f, t) is defined as ŷf (t) exp{−2πift}.
In this subsection, ĥ(f, t) exp{2πift} is taken to be the response to exp{2πift} for each frequency
f . The objective is then to find the response to an arbitrary input x(t). This will involve
generalizing the well-known impulse response and convolution equation of LTI systems to the
LTV case.

The key assumption in this generalization is the linearity of the system. That is, if y1(t) and
y2(t) are the responses to x1(t) and x2(t) respectively, then α1y1(t) + α2y2(t) is the response to
α1x1(t) + α2x2(t). This linearity follows from Maxwell’s equations5.

Using linearity, the response to a superposition of complex sinusoids, say x(t) =∫ ∞
−∞ x̂(f) exp{2πift} df , is

y(t) =
∫ ∞

−∞
x̂(f)ĥ(f, t) exp(2πift) df. (9.16)

There is a temptation here to blindly imitate the theory of LTI systems and to confuse the Fourier
transform of y(t), namely ŷ(f), with x̂(f)ĥ(f, t). This is wrong both logically and physically. It
is wrong logically because x̂(f)ĥ(f, t) is a function of t and f , whereas ŷ(f) is a function only of
f . It is wrong physically because Doppler shifts cause the response to x̂(f) exp(2πift) to contain
multiple sinusoids around f rather than a single sinusoid at f . From the receiver’s viewpoint,
ŷ(f) at a given f depends on x̂(f̃) over a range of f̃ around f .

Fortunately, (9.16) can still be used to derive a very satisfactory form of impulse response and
convolution equation. Define the time-varying impulse response h(τ, t) as the inverse Fourier
transform (in the time variable τ) of ĥ(f, t), where t is viewed as a parameter. That is, for each
t ∈ R,

h(τ, t) =
∫ ∞

−∞
ĥ(f, t) exp(2πifτ) df ĥ(f, t) =

∫ ∞

−∞
h(τ, t) exp(−2πifτ) dτ. (9.17)

Intuitively, ĥ(f, t) is regarded as a conventional LTI system function that is slowly changing
with t and h(τ, t) is regarded as a channel impulse response (in τ) that is slowly changing with
t. Substituting the second part of (9.17) into (9.16),

y(t) =
∫ ∞

−∞
x̂(f)

[∫ ∞

−∞
h(τ, t) exp[2πif(t − τ)] dτ

]
df.

Interchanging the order of integration,6

y(t) =
∫ ∞

−∞
h(τ, t)

[∫ ∞

−∞
x̂(f) exp[2πif(t − τ)] df

]
dτ.

Identifying the inner integral as x(t − τ), we get the convolution equation for LTV filters,

y(t) =
∫ ∞

−∞
x(t − τ)h(τ, t) dτ. (9.18)

5Nonlinear effects can occur in high-power transmitting antennas, but we ignore that here.
6Questions about convergence and interchange of limits will be ignored in this section. This is reasonable since

the inputs and outputs of interest should be essentially time and frequency limited to the range of validity of the
simplified multipath model.
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This expression is really quite nice. It says that the effects of mobile transmitters and receivers,
arbitrarily moving reflectors and absorbers, and all of the complexities of solving Maxwell’s
equations, finally reduce to an input/output relation between transmit and receive antennas
which is simply represented as the impulse response of an LTV channel filter. That is, h(τ, t)
is the response at time t to an impulse at time t − τ . If h(τ, t) is a constant function of t, then
h(τ, t), as a function of τ , is the conventional LTI impulse response.

This derivation applies for both real and complex inputs. The actual physical input x(t) at
bandpass must be real, however, and for every real x(t), the corresponding output y(t) must
also be real. This means that the LTV impulse response h(τ, t) must also be real. It then follows
from (9.17) that ĥ(−f, t) = ĥ∗(f, t), which defines ĥ(−f, t) in terms of ĥ(f, t) for all f > 0.

There are many similarities between the results above for LTV filters and the conventional results
for LTI filters. In both cases, the output waveform is the convolution of the input waveform
with the impulse response; in the LTI case, y(t) =

∫
x(t − τ)h(τ) dτ , whereas in the LTV case,

y(t) =
∫

x(t − τ)h(τ, t) dτ . In both cases, the system function is the Fourier transform of the
impulse response; for LTI filters, h(τ) ↔ ĥ(f) and for LTV filters h(τ, t) ↔ ĥ(f, t), i.e., for each
t the function ĥ(f, t) (as a function of f) is the Fourier transform of h(τ, t) (as a function of
τ). The most significant difference is that ŷ(f) = ĥ(f) x̂(f) in the LTI case, whereas in the
LTV case, the corresponding statement says only that y(t) is the inverse Fourier transform of
ĥ(f, t)x̂(f).

It is important to realize that the Fourier relationship between the time-varying impulse re-
sponse h(τ, t) and the time-varying system function ĥ(f, t) is valid for any LTV system and
does not depend on the simplified multipath model of (9.15). This simplified multipath model is
valuable, however, in acquiring insight into how multipath and time-varying attenuation affect
the transmitted waveform.

For the simplified model of (9.15), h(τ, t) can be easily derived from ĥ(f, t) as

ĥ(f, t) =
J∑

j=1

βj exp{−2πifτj(t)} ↔ h(τ, t) =
∑

j

βj δ{τ − τj(t)}, (9.19)

where δ is the Dirac delta function. Substituting (9.19) into (9.18),

y(t) =
∑

j

βj x(t − τj(t)). (9.20)

This says that the response at time t to an arbitrary input is the sum of the responses over all
paths. The response on path j is simply the input, delayed by τj(t) and attenuated by βj . Note
that both the delay and attenuation are evaluated at the time t at which the output is being
measured.

The idealized, non-physical, impulses in (9.19) arise because of the tacit assumption that the
attenuation and delay on each path are independent of frequency. It can be seen from (9.16)
that ĥ(f, t) affects the output only over the frequency band where x̂(f) is non-zero. If frequency
independence holds over this band, it does no harm to assume it over all frequencies, leading to
the above impulses. For typical relatively narrow-band applications, this frequency independence
is usually a reasonable assumption.

Neither the general results about LTV systems nor the results for the multipath models of
(9.14) and (9.15) provide much immediate insight into the nature of fading. The following
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two subsections look at this issue, first for sinusoidal inputs, and then for general narrow-band
inputs.

9.3.2 Doppler spread and coherence time

Assuming the simplified model of multipath fading in (9.15), the system function ĥ(f, t) can be
expressed as

ĥ(f, t) =
J∑

j=1

βj exp{−2πif(τ ′
j t + τ o

j )}

The rate of change of delay, τ ′
j , on path j is related to the Doppler shift on path j at frequency

f by Dj = −fτ ′
j , and thus ĥ(f, t) can be expressed directly in terms of the Doppler shifts as

ĥ(f, t) =
J∑

j=1

βj exp{2πi(Djt − fτ o
j )}

The response to an input exp{2πift} is then

yf (t) = ĥ(f, t) exp{2πift} =
J∑

j=1

βj exp{2πi(f + Dj)t − fτ o
j } (9.21)

This is the sum of sinusoids around f ranging from f + Dmin to f + Dmax, where Dmin is the
smallest of the Doppler shifts and Dmax is the largest. The terms −2πifτo

j are simply phases.

The Doppler shifts Dj above can be positive or negative, but can be assumed to be small relative
to the transmission frequency f . Thus yf (t) is a narrow band waveform whose bandwidth is the
spread between Dmin and Dmax. This spread,

D = max
j

Dj − min
j

Dj (9.22)

is defined as the Doppler spread of the channel. The Doppler spread is a function of f (since
all the Doppler shifts are functions of f), but it is usually viewed as a constant since it is
approximately constant over any given frequency band of interest.

As shown above, the Doppler spread is the bandwidth of yf (t), but it is now necessary to be
more specific about how to define fading. This will also lead to a definition of the coherence
time of a channel.

The fading in (9.21) can be brought out more clearly by expressing ĥ(f, t) in terms of its
magnitude and phase, i.e., as |ĥ(f, t)| ei∠ĥ(f,t). The response to exp{2πift} is then

yf (t) = |ĥ(f, t)| exp{2πift + i∠ĥ(f, t)}. (9.23)

This expresses yf (t) as an amplitude term |ĥ(f, t)| times a phase modulation of magnitude 1.
This amplitude term |ĥ(f, t)| is now defined as the fading amplitude of the channel at frequency
f . As explained above, |ĥ(f, t)| and ∠ĥ(f, t) are slowly varying with t relative to exp{2πift},
so it makes sense to view |ĥ(f, t)| as a slowly varying envelope, i.e., a fading envelope, around
the received phase modulated sinusoid.



318 CHAPTER 9. WIRELESS DIGITAL COMMUNICATION

The fading amplitude can be interpreted more clearly in terms of the response �[yf (t)] to an
actual real input sinusoid cos(2πft) = �[exp(2πift)]. Taking the real part of (9.23),

�[yf (t)] = |ĥ(f, t)| cos[2πft + ∠ĥ(f, t)].

The waveform �[yf (t)] oscillates at roughly the frequency f inside the slowly varying limits
±|ĥ(f, t)|. This shows that|ĥ(f, t)| is also the envelope, and thus the fading amplitude, of
�[yf (t)] (at the given frequency f). This interpretation will be extended later to narrow band
inputs around the frequency f .

We have seen from (9.21) that D is the bandwidth of yf (t), and it is also the bandwidth of
�[yf (t)]. Assume initially that the Doppler shifts are centered around 0, i.e., that Dmax =
−Dmin. Then ĥ(f, t) is a baseband waveform containing frequencies between −D/2 and +D/2.
The envelope of �[yf (t)], namely |ĥ(f, t)|, is the magnitude of a waveform baseband limited to
D/2. For the reflecting wall example, D1 = −D2, the Doppler spread is D = 2D1, and the
envelope is | sin[2π(D/2)t]|.
More generally, the Doppler shifts might be centered around some non-zero ∆ defined as the
midpoint between minj Dj and maxj Dj . In this case, consider the frequency shifted system
function ψ̂(f, t) defined as

ψ̂(f, t) = exp(−2πit∆) ĥ(f, t) =
J∑

j=1

βj exp{2πit(Dj−∆) − 2πifτo
j } (9.24)

As a function of t, ψ̂(f, t) has bandwidth D/2. Since

|ψ̂(f, t)| = |e−2πi∆t ĥ(f, t)| = |ĥ(f, t)|,

the envelope of �[yf (t)] is the same as7 the magnitude of ψ̂(f, t), i.e., the magnitude of a
waveform baseband limited to D/2. Thus this limit to D/2 is valid independent of the Doppler
shift centering.

As an example, assume there is only one path and its Doppler shift is D1. Then ĥ(f, t) is a
complex sinusoid at frequency D1, but |ĥ(f, t)| is a constant, namely |β1|. The Doppler spread is
0, the envelope is constant, and there is no fading. As another example, suppose the transmitter
in the reflecting wall example is moving away from the wall. This decreases both of the Doppler
shifts, but the difference between them, namely the Doppler spread, remains the same. The
envelope |ĥ(f, t)| then also remains the same. Both of these examples illustrate that it is the
Doppler spread rather than the individual Doppler shifts that controls the envelope.

Define the coherence time Tcoh of the channel to be8

Tcoh =
1

2D , (9.25)

This is one quarter of the wavelength of D/2 (the maximum frequency in ψ̂(f, t)) and one
half the corresponding sampling interval. Since the envelope is |ψ̂(f, t)|, Tcoh serves as a crude

7Note that ψ̂(f, t), as a function of t, is baseband limited to D/2, whereas ĥ(f, t) is limited to frequencies
within D/2 of ∆ and ŷf (t) is limited to frequencies within D/2 of f+∆. It is rather surprising initially that all
these waveforms have the same envelope. We focus on ψ̂(f, t) = e−2πif∆ĥ(f, t) since this is the function that
is baseband limited to D/2. Exercises 6.17 and 9.5 give additional insight and clarifying examples about the
envelopes of real passband waveforms.

8Some authors define Tcoh as 1/(4D) and others as 1/D; these have the same order-of-magnitude interpretations.
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order-of-magnitude measure of the typical time interval for the envelope to change significantly.
Since this envelope is the fading amplitude of the channel at frequency f , Tcoh is fundamentally
interpreted as the order-of-magnitude duration of a fade at f . Since D is typically less than
1000H, Tcoh is typically greater than 1/2 msec.

Although the rapidity of changes in a baseband function cannot be specified solely in terms
of its bandwidth, high bandwidth functions tend to change more rapidly than low bandwidth
functions; the definition of coherence time captures this loose relationship. For the reflecting
wall example, the envelope goes from its maximum value down to 0 over the period Tcoh; this is
more or less typical of more general examples.

Crude though Tcoh might be as a measure of fading duration, it is an important parameter
in describing wireless channels. It is used in waveform design, diversity provision, and chan-
nel measurement strategies. Later, when stochastic models are introduced for multipath, the
relationship between fading duration and Tcoh will become sharper.

It is important to realize that Doppler shifts are linear in the input frequency, and thus Doppler
spread is also. For narrow band inputs, the variation of Doppler spread with frequency is
insignificant. When comparing systems in different frequency bands, however, the variation of
D with frequency is important. For example, a system operating at 8 gH has a Doppler spread
8 times that of a 1 gH system and thus a coherence time 1/8th as large; fading is faster, with
shorter fade durations, and channel measurements become outdated 8 times as fast.

9.3.3 Delay spread, and coherence frequency

Another important parameter of a wireless channel is the spread in delay between different
paths. The delay spread L is defined as the difference between the path delay on the longest
significant path and that on the shortest significant path. That is,

L = max
j

[τj(t)] − min
j

[τj(t)].

The difference between path lengths is rarely greater than a few kilometers, so L is rarely
more than several microseconds. Since the path delays τj(t) are changing with time, L can also
change with time, so we focus on L at some given t. Over the intervals of interest in modulation,
however, L can usually be regarded as a constant.9

A closely related parameter is the coherence frequency of a channel. It is defined as10

Fcoh =
1

2L . (9.26)

The coherence frequency is thus typically greater than 100 kH. This section shows that Fcoh

provides an approximate answer to the following question: if the channel is badly faded at one
frequency f , how much does the frequency have to be changed to find an unfaded frequency?
We will see that, to a very crude approximation, f must be changed by Fcoh.

The analysis of the parameters L and Fcoh is, in a sense, a time/frequency dual of the analysis of
D and Tcoh. More specifically, the fading envelope of �[yf (t)] (in response to the input cos(2πft))

9For the reflecting wall example, the path lengths are r0 − vt and r0 + vt, so the delay spread is L = 2vt/c.
The change with t looks quite significant here, but at reasonable distances from the reflector, the change is small
relative to typical intersymbol intervals.

10Fcoh is sometimes defined as 1/L and sometimes as 1/(4L); the interpretation is the same.
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is |ĥ(f, t)|. The analysis of D and Tcoh concerned the variation of |ĥ(f, t)| with t. That of L and
Fcoh concern the variation of |ĥ(f, t)| with f .

In the simplified multipath model of (9.15), ĥ(f, t) =
∑

j βj exp{−2πifτj(t)}. For fixed t, this
is a weighted sum of J complex sinusoidal terms in the variable f . The ‘frequencies’ of these
terms, viewed as functions of f , are τ1(t), . . . , τJ(t). Let τmid be the midpoint between minj τj(t)
and maxj τj(t) and define the function η̂(f, t) as

η̂(f, t) = e2πifτmid ĥ(f, t) =
∑

j

βj exp{−2πif [τj(t) − τmid]}, (9.27)

The shifted delays, τj(t) − τmid, vary with j from −L/2 to +L/2. Thus η̂(f, t), as a function of
f , has a ‘baseband bandwidth’11 of L/2. From (9.27), we see that |ĥ(f, t)| = |η̂(f, t)|. Thus the
envelope |ĥ(f, t)|, as a function of f , is the magnitude of a function ‘baseband limited’ to L/2.

It is then reasonable to take 1/4 of a ‘wavelength’ of this bandwidth, i.e., Fcoh = 1/(2L), as
an order-of-magnitude measure of the required change in f to cause a significant change in the
envelope of �[yf (t)].

The above argument relating L to Fcoh is virtually identical to that relating D to Tcoh. The
interpretations of Tcoh and Fcoh as order-of-magnitude approximations are also virtually iden-
tical. The duality here, however, is between the t and f in ĥ(f, t) rather than between time
and frequency for the actual transmitted and received waveforms. The envelope |ĥ(f, t)| used in
both of these arguments can be viewed as a short-term time-average in |�[yf (t)]| (see Exercise
9.6 (b)), and thus Fcoh is interpreted as the frequency change required for significant change in
this time-average rather than in the response itself.

One of the major questions faced with wireless communication is how to spread an input signal
or codeword over time and frequency (within the available delay and frequency constraints). If
a signal is essentially contained both within a time interval Tcoh and a frequency interval Fcoh,
then a single fade can bring the entire signal far below the noise level. If, however, the signal
is spread over multiple intervals of duration Tcoh and/or multiple bands of width Fcoh, then a
single fade will affect only one portion of the signal. Spreading the signal over regions with
relatively independent fading is called diversity, which is studied later. For now, note that the
parameters Tcoh and Fcoh tell us how much spreading in time and frequency is required for using
such diversity techniques.

In earlier chapters, the receiver timing has been delayed from the transmitter timing by the
overall propagation delay; this is done in practice by timing recovery at the receiver. Timing
recovery is also used in wireless communication, but since different paths have different propa-
gation delays, timing recovery at the receiver will approximately center the path delays around
0. This means that the offset τmid in (9.27) becomes zero and the function η̂(f, t) = ĥ(f, t).
Thus η̂(f, t) can be omitted from further consideration and it can be assumed without loss of
generality that h(τ, t) is nonzero only for |τ | ≤ L/2.

Next consider fading for a narrow-band waveform. Suppose that x(t) is a transmitted real
passband waveform of bandwidth W around a carrier fc. Suppose moreover that W � Fcoh.
Then ĥ(f, t) ≈ ĥ(fc, t) for fc−W/2 ≤ f ≤ fc+W/2. Let x+(t) be the positive frequency part of
x(t), so that x̂+(f) is nonzero only for fc−W/2 ≤ f ≤ fc+W/2. The response y+(t) to x+(t) is
given by (9.16) as y+(t) =

∫
f≥0 x̂(f)ĥ(f, t)e2πift df and is thus approximated as

11In other words, the inverse Fourier transform, h(τ−τmid, t) is nonzero only for |τ−τmid| ≤ L/2.
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y+(t) ≈
∫ fc+W/2

fc−W/2
x̂(f)ĥ(fc, t)e2πift df = x+(t)ĥ(fc, t).

Taking the real part to find the response y(t) to x(t),

y(t) ≈ |ĥ(fc, t)| �[x+(t)ei∠ ˆh(fc,t)]. (9.28)

In other words, for narrow-band communication, the effect of the channel is to cause fading with
envelope |ĥ(fc, t)| and with phase change ∠ĥ(fc, t). This is called flat fading or narrow-band
fading. The coherence frequency Fcoh defines the boundary between flat and non-flat fading,
and the coherence time Tcoh gives the order-of-magnitude duration of these fades.

The flat-fading response in (9.28) looks very different from the general response in (9.20) as a
sum of delayed and attenuated inputs. The signal bandwidth in (9.28), however, is so small
that if we view x(t) as a modulated baseband waveform, that baseband waveform is virtually
constant over the different path delays. This will become clearer in the next section.

9.4 Baseband system functions and impulse responses

The next step in interpreting LTV channels is to represent the above bandpass system function
in terms of a baseband equivalent. Recall that for any complex waveform u(t), baseband limited
to W/2, the modulated real waveform x(t) around carrier frequency fc is given by

x(t) = u(t) exp{2πifct} + u∗(t) exp{−2πifct}.
Assume in what follows that fc � W/2.

In transform terms, x̂(f) = û(f − fc) + û∗(−f + fc). The positive-frequency part of x(t) is
simply u(t) shifted up by fc. To understand the modulation and demodulation in simplest terms,
consider a baseband complex sinusoidal input e2πift for f ∈ [−W/2, W/2] as it is modulated,
transmitted through the channel, and demodulated (see Figure 9.6). Since the channel may
be subject to Doppler shifts, the recovered carrier, f̃c, at the receiver might be different than
the actual carrier fc. Thus, as illustrated, the positive-frequency channel output is yf (t) =
ĥ(f+fc, t) e2πi(f+fc)t and the demodulated waveform is ĥ(f+fc, t) e2πi(f+fc−f̃c)t.

For an arbitrary baseband-limited input, u(t) =
∫ W/2
−W/2 û(f)e2πift df , the positive-frequency chan-

nel output is given by superposition as

y+(t) =
∫ W/2

−W/2
û(f)ĥ(f+fc, t) e2πi(f+fc)t df.

The demodulated waveform, v(t), is then y+(t) shifted down by the recovered carrier f̃c, i.e.,

v(t) =
∫ W/2

−W/2
û(f)ĥ(f+fc, t) e2πi(f+fc−f̃c)t df.

Let ∆ be the difference between recovered and transmitted carrier,12 i.e., ∆ = f̃c − fc. Thus

v(t) =
∫ W/2

−W/2
û(f)ĥ(f+fc, t) e2πi(f−∆)t df. (9.29)

12It might be helpful to assume ∆ = 0 on a first reading.
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Figure 9.6: A complex baseband sinusoid, as it is modulated to passband, passed through
a multipath channel, and demodulated without noise. The modulation is around a carrier
frequency fc and the demodulation is in general at another frequency f̃c.

The relationship between the input u(t) and the output v(t) at baseband can be expressed
directly in terms of a baseband system function ĝ(f, t) defined as

ĝ(f, t) = ĥ(f+fc, t)e−2πi∆t. (9.30)

Then (9.29) becomes

v(t) =
∫ W/2

−W/2
û(f)ĝ(f, t) e2πift df. (9.31)

This is exactly the same form as the passband input-output relationship in (9.16). Letting
g(τ, t) =

∫
ĝ(f, t)e2πifτ df be the LTV baseband impulse response, the same argument as used

to derive the passband convolution equation leads to

v(t) =
∫ ∞

−∞
u(t−τ)g(τ, t) dτ. (9.32)

The interpretation of this baseband LTV convolution equation is the same as that of the passband
LTV convolution equation in (9.18). For the simplified multipath model of (9.15), ĥ(f, t) =∑J

j=1 βj exp{−2πifτj(t)} and thus, from (9.30), the baseband system function is

ĝ(f, t) =
J∑

j=1

βj exp{−2πi(f+fc)τj(t) − 2πi∆t}. (9.33)

We can separate the dependence on t from that on f by rewriting this as

ĝ(f, t) =
J∑

j=1

γj(t) exp{−2πifτj(t)} where γj(t) = βj exp{−2πifcτj(t) − 2πi∆t}. (9.34)

Taking the inverse Fourier transform for fixed t, the LTV baseband impulse response is

g(τ, t) =
∑

j

γj(t) δ{τ−τj(t)}. (9.35)
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Thus the impulse response at a given receive-time t is a sum of impulses, the jth of which is
delayed by τj(t) and has an attenuation and phase given by γj(t). Substituting this impulse
response into the convolution equation, the input-output relation is

v(t) =
∑

j

γj(t)u(t−τj(t)).

This baseband representation can provide additional insight about Doppler spread and coherence
time. Consider the system function in (9.34) at f = 0 (i.e., at the passband carrier frequency).
Letting Dj be the Doppler shift at fc on path j, we have τj(t) = τ o

j −Djt/fc. Then

ĝ(0, t) =
J∑

j=1

γj(t) where γj(t) = βj exp{2πi[Dj − ∆]t − 2πifcτ
o
j }.

The carrier recovery circuit estimates the carrier frequency from the received sum of Doppler
shifted versions of the carrier, and thus it is reasonable to approximate the shift in the recovered
carrier by the midpoint between the smallest and largest Doppler shift. Thus ĝ(0, t) is the same
as the frequency-shifted system function ψ̂(fc, t) of (9.24). In other words, the frequency shift
∆, which was introduced in (9.24) as a mathematical artifice, now has a physical interpretation
as the difference between fc and the recovered carrier f̃c. We see that ĝ(0, t) is a waveform with
bandwidth D/2, and that Tcoh = 1/(2D) is an order-of-magnitude approximation to the time
over which ĝ(0, t) changes significantly.

Next consider the baseband system function ĝ(f, t) at baseband frequencies other than 0. Since
W � fc, the Doppler spread at fc + f is approximately equal to that at fc, and thus ĝ(f, t), as
a function of t for each f ≤ W/2, is also approximately baseband limited to D/2 (where D is
defined at f = fc).

Finally, consider flat fading from a baseband perspective. Flat fading occurs when W � Fcoh,
and in this case13 ĝ(f, t) ≈ ĝ(0, t). Then, from (9.31),

v(t) = ĝ(0, t)u(t). (9.36)

In other words, the received waveform, in the absence of noise, is simply an attenuated and phase
shifted version of the input waveform. If the carrier recovery circuit also recovers phase, then
v(t) is simply an attenuated version of u(t). For flat fading, then, Tcoh is the order-of-magnitude
interval over which the ratio of output to input can change significantly.

In summary, this section has provided both a passband and baseband model for wireless com-
munication. The basic equations are very similar, but the baseband model is somewhat easier
to use (although somewhat more removed from the physics of fading). The ease of use comes
from the fact that all the waveforms are slowly varying and all are complex. This can be seen
most clearly by comparing the flat-fading relations, (9.28) for passband and (9.36) for baseband.

9.4.1 A discrete-time baseband model

This section uses the sampling theorem to convert the above continuous-time baseband channel
to a discrete-time channel. If the baseband input u(t) is bandlimited to W/2, then it can be

13There is an important difference between saying that the Doppler spread at frequency f+fc is close to that
at fc and saying that ĝ(f, t) ≈ ĝ(0, t). The first requires only that W be a relatively small fraction of fc, and is
reasonable even for W = 100 mH and fc = 1gH, whereas the second requires W � Fcoh, which might be on the
order of hundreds of kH.
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represented by its T -spaced samples, T = 1/W, as u(t) =
∑

	 u	sinc( t
T − ), where u	 = u(T ).

Using (9.32), the baseband output is given by

v(t) =
∑

	

u	

∫
g(τ, t) sinc(t/T − τ/T − ) dτ. (9.37)

The sampled outputs, vm = v(mT ), at multiples of T are then given by14

vm =
∑

	

u	

∫
g(τ, mT ) sinc(m −  − τ/T ) dτ (9.38)

=
∑

k

um−k

∫
g(τ, mT ) sinc(k − τ/T ) dτ, . (9.39)

where k = m−. By labeling the above integral as gk,m, (9.39) can be written in the discrete-time
form

vm =
∑

k

gk,m um−k where gk,m =
∫

g(τ, mT ) sinc(k − τ/T ) dτ. (9.40)

In discrete-time terms, gk,m is the response at mT to an input sample at (m−k)T . We refer
to gk,m as the kth (complex) channel filter tap at discrete output time mT . This discrete-time
filter is represented in Figure 9.7. As discussed later, the number of channel filter taps (i.e.,

input um+2 um+1 um um−1 um−2

� � � � ��
 �
 �
 �
 �
�4
g1,m g2,m

�4�4
g−1,m g0,m

�4
g−2,m

�∑ � vm

� � � � �

Figure 9.7: Time-varying discrete-time baseband channel model. Each unit of time a new
input enters the shift register and the old values shift right. The channel taps also change,
but slowly. Note that the output timing here is offset from the input timing by two units.

different values of k) for which gk,m is significantly non-zero is usually quite small. If the kth
tap is unchanging with m for each k, then the channel is linear time-invariant. If each tap
changes slowly with m, then the channel is called slowly time-varying. Cellular systems and
most wireless systems of current interest are slowly time-varying.

The filter tap gk,m for the simplified multipath model is obtained by substituting (9.35), i.e.,
g(τ, t) =

∑
j γj(t) δ{τ−τj(t)}, into the second part of (9.40), getting

gk,m =
∑

j

γj(mT ) sinc
[
k − τj(mT )

T

]
. (9.41)

14Due to Doppler spread, the bandwidth of the output v(t) can be slightly larger than the bandwidth W/2
of the input u(t). Thus the output samples vm do not fully represent the output waveform. However, a QAM
demodulator first generates each output signal vm corresponding to the input signal um, so these output samples
are of primary interest. A more careful treatment would choose a more appropriate modulation pulse than a
sinc function and then use some combination of channel estimation and signal detection to produce the output
samples. This is beyond our current interest.
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The contribution of path j to tap k can be visualized from Figure 9.8. If the path delay equals
kT for some integer k, then path j contributes only to tap k, whereas if the path delay lies
between kT and (k+1)T , it contributes to several taps around k and k+1.

τj(mT )
T

2 31 k0−1

sinc(k − τj(mT )/T )

Figure 9.8: This shows sinc(k − τj(mt)/T ), as a function of k, marked at integer values of k.
In the illustration, τj(mt)/T ) = 0.8. The figure indicates that each path contributes primarily
to the tap or taps closest to the given path delay.

The relation between the discrete-time and continuous-tme baseband models can be better
understood by observing that when the input is baseband limited to W/2, then the baseband
system function ĝ(f, t) is irrelevant for f > W/2. Thus an equivalent filtered system function
ĝ

W
(f, t) and impulse response g

W
(τ, t) can be defined by filtering out the frequencies above W/2,

i.e.,

ĝ
W
(f, t) = ĝ(f, t)rect(f/W) g

W
(τ, t) = g(τ, t) ∗ Wsinc(τW). (9.42)

Comparing this with the second half of (9.40), we see that the tap gains are simply scaled sample
values of the filtered impulse response, i.e.,

gk,m = Tg
W
(kT, mT ). (9.43)

For the simple multipath model, the filtered impulse response replaces the impulse at τj(t) by a
scaled sinc function centered at τj(t) as illustrated in Figure 9.8.

Now consider the number of taps required in the discrete time model. The delay spread, L,
is the interval between the smallest and largest path delay15 and thus there are about L/T
taps close to the various path delays. There are a small number of additional significant taps
corresponding to the decay time of the sinc function. In the special case where L/T is much
smaller than 1, the timing recovery will make all the delay terms close to 0 and the discrete-time
model will have only one significant tap. This corresponds to the flat-fading case we looked at
earlier.

The coherence time Tcoh provides a sense of how fast the individual taps gk,m are changing
with respect to m. If a tap gk,m is affected by only a single path, then |gk,m| will be virtually
unchanging with m, although ∠gk,m can change according to the Doppler shift. If a tap is
affected by several paths, then its magnitude can fade at a rate corresponding to the spread of
the Doppler shifts affecting that tap.

15Technically, L varies with the output time t, but we generally ignore this since the variation is slow and L
has only an order-of-magnitude significance.
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9.5 Statistical channel models

The previous subsection created a discrete-time baseband fading channel in which the individual
tap gains gk,m in (9.41) are scaled sums of the attenuation and smoothed delay on each path. The
physical paths are unknown at the transmitter and receiver, however, so from an input/output
viewpoint, it is the tap gains themselves16 that are of primary interest. Since these tap gains
change with time, location, bandwidth, carrier frequency, and other parameters, a statistical
characterization of the tap gains is needed in order to understand how to communicate over
these channels. This means that each tap gain gk,m should be viewed as a sample value of a
random variable Gk,m.

There are many approaches to characterizing these tap-gain random variables. One would be to
gather statistics over a very large number of locations and conditions, and then model the joint
probability densities of these random variables according to these measurements, and do this
conditionally on various types of locations (cities, hilly areas, flat areas, highways, buildings,
etc.). Much data of this type has been gathered, but it is more detailed than what is desirable
to achieve an initial understanding of wireless issues.

Another approach, which is taken here and in virtually all the theoretical work in the field, is
to choose a few very simple probability models that are easy to work with, and then use the
results from these models to gain insight about actual physical situations. After presenting the
models, we discuss the ways in which the models might or might not reflect physical reality.
Some standard results are then derived from these models, along with a discussion of how they
might reflect actual performance.

In the Rayleigh tap-gain model, the real and imaginary parts of all the tap gains are taken to be
zero-mean jointly-Gaussian random variables. Each tap gain Gk,m is thus a complex Gaussian
random variable which is further assumed to be circularly symmetric, i.e., to have iid real and
imaginary parts. Finally it is assumed that the probability density of each Gk,m is the same for
all m. We can then express the probability density of Gk,m as

f�(Gk,m),�(Gk,m)(gre, gim) =
1

2πσ2
k

exp
{−g2

re − g2
im

2σ2
k

}
, (9.44)

where σ2
k is the variance of �(Gk,m) (and thus also of �(Gk,m)) for each m. We later address

how these rv’s are related between different m and k.

As shown in Exercise 7.1, the magnitude |Gk,m| of the kth tap is a Rayleigh rv with density

f|Gk,m|(|g|) =
|g|
σ2

k

exp
{−|g|2

2σ2
k

}
. (9.45)

This model is called the Rayleigh fading model. Note from (9.44) that the model includes a
uniformly distributed phase that is independent of the Rayleigh distributed amplitude. The
assumption of uniform phase is quite reasonable, even in a situation with only a small number
of paths, since a quarter wavelength at cellular frequencies is only a few inches. Thus even with
fairly accurately specified path lengths, we would expect the phases to be modeled as uniform

16Many wireless channels are characterized by a very small number of significant paths, and the corresponding
receivers track these individual paths rather than using a receiver structure based on the discrete-time model.
The discrete-time model is none-the-less a useful conceptual model for understanding the statistical variation of
multiple paths.
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and independent of each other. This would also make the assumption of independence between
tap-gain phase and amplitude reasonable.

The assumption of Rayleigh distributed amplitudes is more problematic. If the channel involves
scattering from a large number of small reflectors, the central limit theorem would suggest a
jointly Gaussian assumption for the tap gains,17 thus making (9.44) reasonable. For situations
with a small number of paths, however, there is no good justification for (9.44) or (9.45).

There is a frequently used alternative model in which the line of sight path (often called a specular
path) has a known large magnitude, and is accompanied by a large number of independent
smaller paths. In this case, gk,m, at least for one value of k, can be modeled as a sample value of
a complex Gaussian rv with a mean (corresponding to the specular path) plus real and imaginary
iid fluctuations around the mean. The magnitude of such a rv has a Rician distribution. Its
density has quite a complicated form, but the error probability for simple signaling over this
channel model is quite simple and instructive.

The preceding paragraphs make it appear as if a model is being constructed for some known
number of paths of given character. Much of the reason for wanting a statistical model, however,
is to guide the design of transmitters and receivers. Having a large number of models means
investigating the performance of given schemes over all such models, or measuring the channel,
choosing an appropriate model, and switching to a scheme appropriate for that model. This is
inappropriate for an initial treatment, and perhaps inappropriate for design, returning us to the
Rayleigh and Rician models. One reasonable point of view here is that these models are often
poor approximations for individual physical situations, but when averaged over all the physical
situations that a wireless system must operate over, they make more sense.18 At any rate, these
models provide a number of insights into communication in the presence of fading.

Modeling each gk,m as a sample value of a complex rv Gk,m provides part of the needed statistical
description, but this is not the only issue. The other major issue is how these quantities vary
with time. In the Rayleigh fading model, these random variables have zero mean, and it will
make a great deal of difference to useful communication techniques if the sample values can be
estimated in terms of previous values. A statistical quantity that models this relationship is
known as the tap-gain correlation function, R(k,∆). It is defined as

R(k, n) = E[Gk,mG∗
k,m+∆]. (9.46)

This gives the autocorrelation function of the sequence of complex random variables, modeling
each given tap k as it evolves in time. It is tacitly assumed that this is not a function of time m,
which means that the sequence {Gk,m;m ∈ Z} for each k is assumed to be wide-sense stationary.
It is also assumed that, as a random variable, Gk,m is independent of Gk′,m′ for all k �= k′ and
all m, m′. This final assumption is intuitively plausible19 since paths in different ranges of delay
contribute to Gk,m for different values of k.

The tap-gain correlation function is useful as a way of expressing the statistics for how tap gains
change, given a particular bandwidth W. It does not address the questions comparing different

17In fact, much of the current theory of fading was built up in the 1960s when both space communication and
military channels of interest then were well modeled as scattering channels with a very large number of small
reflectors.

18This is somewhat oversimplified. As shown in Exercise 9.9, a random choice of a small number of paths from
a large possible set does not necessarily lead to a Rayleigh distribution. There is also the question of an initial
choice of power level at any given location.

19One could argue that a moving path would gradually travel from the range of one tap to another. This is
true, but the time intervals for such changes are typically large relative to the other intervals of interest.
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bandwidths for communication. If we visualize increasing the bandwidth, several things happen.
First, since the taps are separated in time by 1/W, the range of delay corresponding to a single
tap becomes narrower. Thus there are fewer paths contributing to each tap, and the Rayleigh
approximation can in many cases become poorer. Second, the sinc functions of (9.41) become
narrower, so the path delays spill over less in time. For this same reason, R(k, 0) for each k gives a
finer grained picture of the amount of power being received in the delay window of width k/W. In
summary, as this model is applied to larger W, more detailed statistical information is provided
about delay and correlation at that delay, but the information becomes more questionable.

In terms of R(k,∆), the multipath spread L might be defined as the range of kT over which
R(k, 0) is significantly non-zero. This is somewhat preferable to the previous “definition” in
that the statistical nature of L becomes explicit and the reliance on some sort of stationarity
becomes explicit. In order for this definition to make much sense, however, the bandwidth W
must be large enough for several significant taps to exist.

The coherence time Tcoh can also be defined more explicitly as mT for the smallest value of
∆ > 0 for which R(0,∆) is significantly different from R(0, 0). Both these definitions maintain
some ambiguity about what ‘significant’ means, but they face the reality that L and Tcoh should
be viewed probabilistically rather than as instantaneous values.

9.5.1 Passband and baseband noise

The statistical channel model above focuses on how multiple paths and Doppler shifts can affect
the relationship between input and output, but the noise and the interference from other wireless
channels have been ignored. The interference from other users will continue to be ignored (except
for regarding it as additional noise), but the noise will now be included.

Assume that the noise is WGN with power WN0 over the bandwidth W. The earlier convention
will still be followed of measuring both signal power and noise power at baseband. Extending
the deterministic baseband input/output model vm =

∑
k gk,mum−k to include noise as well as

randomly varying gap gains,

Vm =
∑

k

Gk,mUm−k + Zm, (9.47)

where . . . , Z−1, Z0, Z1, . . . , is a sequence of iid circularly symmetric complex Gaussian random
variables. Assume also that the inputs, the tap gains, and the noise are statistically independent
of each other.

The assumption of WGN essentially means that the primary source of noise is at the receiver
or is radiation impinging on the receiver that is independent of the paths over which the signal
is being received. This is normally a very good assumption for most communication situations.
Since the inputs and outputs here have been modeled as samples at rate W of the baseband
processes, we have E[|Um|2] = P where P is the baseband input power constraint. Similarly,
E[|Zm|2] = N0W. Each complex noise rv is thus denoted as Zm ∼ CN (0, WN0)

The channel tap gains will be normalized so that V ′
m =

∑
k Gk,mUm−k satisfies E[|V ′

m|2] = P . It
can be seen that this normalization is achieved by

E[
∑

k

|Gk,0|2] = 1. (9.48)
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This assumption is similar to our earlier assumption for the ordinary (non-fading) WGN channel
that the overall attenuation of the channel is removed from consideration. In other words, both
here and there we are defining signal power as the power of the received signal in the absence
of noise. This is conventional in the communication field and allows us to separate the issue of
attenuation from that of coding and modulation.

It is important to recognize that this assumption cannot be used in a system where feedback
from receiver to transmitter is used to alter the signal power when the channel is faded.

There has always been a certain amount of awkwardness about scaling from baseband to pass-
band, where the signal power and noise power each increase by a factor of 2. Note that we have
also gone from a passband channel filter Ĥ(f, t) to a baseband filter Ĝ(f, t) using the same con-
vention as used for input and output. It is not difficult to show that if this property of treating
signals and channel filters identically is preserved, and the convolution equation is preserved at
baseband and passband, then losing a factor of 2 in power is inevitable in going from passband
to baseband.

9.6 Data detection

A reasonable approach to detection for wireless channels is to measure the channel filter taps
as they evolve in time, and to use these measured values in detecting data. If the response can
be measured accurately, then the detection problem becomes very similar to that for wireline
channels; i.e., detection in WGN.

Even under these ideal conditions, however, there are a number of problems. For one thing,
even if the transmitter has perfect feedback about the state of the channel, power control is a
difficult question; namely, how much power should be sent as a function of the channel state?

For voice, both maintaining voice quality and maintaining small constant delay is important.
This leads to a desire to send information at a constant rate, which in turn leads to increased
transmission power when the channel is poor. This is very wasteful of power, however, since
common sense says that if power is scarce and delay is unimportant, then the power and trans-
mission rate should be decreased when the channel is poor.

Increasing power when the channel is poor has a mixed impact on interference between users.
This strategy maintains equal received power at a base station for all users in the cell corre-
sponding to that base station. This helps reduce the effect of multiaccess interference within the
same cell. The interference between neighboring cells can be particularly bad, however, since
fading on the channel between a cell phone and its base station is not highly correlated with
fading between that cell phone and another base station.

For data, delay is less important, so data can be sent at high rate when the channel is good,
and at low rate (or zero rate) when the channel is poor. There is a straightforward information-
theoretic technique called water filling that can be used to maximize overall transmission rate
at a given overall power. The scaling assumption that we made above about input and output
power must be modified for all of these issues of power control.

An important insight from this discussion is that the power control used for voice should be very
different from that for data. If the same system is used for both voice and data applications,
then the basic mechanisms for controlling power and rate should be very different for the two
applications.
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In this section, power control and rate control are not considered, and the focus is simply on
detecting signals under various assumptions about the channel and the state of knowledge at
the receiver.

9.6.1 Binary detection in flat Rayleigh fading

Consider a very simple example of communication in the absence of channel measurement.
Assume that the channel can be represented by a single discrete-time complex filter tap G0,m,
which we abbreviate as Gm. Also assume Rayleigh fading; i.e., the probability density of the
magnitude of each Gm is

f|Gm|(|g|) = 2|g| exp{−|g|2} ; |g| ≥ 0, (9.49)

or, equivalently, the density of γ = |Gm|2 ≥ 0 is

f(γ) = exp(−γ) ; γ ≥ 0. (9.50)

The phase is uniform over [0, 2π) and independent of the magnitude. Equivalently, the real and
imaginary parts of Gm are iid Gaussian, each with variance 1/2. The Rayleigh fading has been
scaled in this way to maintain equality between the input power, E[|Um|2], and the output signal
power, E[|Um|2 |Gm|2]. It is assumed that Um and Gm are independent, i.e., that feedback is
not used to control the input power as a function of the fading. For the time being, however,
the dependence between the taps Gm at different times m is not relevant.

This model is called flat fading for the following reason. A single-tap discrete-time model, where
v(mT ) = g0,mu(mT ), corresponds to a continuous-time baseband model for which g(τ, t) =
g(0, t)sinc(τ/T ). Thus the baseband system function for the channel is given by ĝ(f, t) =
g0(t)rect(fT ). Thus the fading is constant (i.e., flat) over the baseband frequency range used
for communication. When more than one tap is required, the fading varies over the baseband
region. To state this another way, the flat fading model is appropriate when the coherence
frequency is greater than the baseband bandwidth.

Consider using binary antipodal signaling with Um = ±a for each m. Assume that {Um; m ∈ Z}
is an iid sequence with equiprobable use of plus and minus a. This signaling scheme fails
completely, even in the absence of noise, since the phase of the received symbol is uniformly
distributed between 0 and 2π under each hypothesis, and the received amplitude is similarly
independent of the hypothesis. It is easy to see that phase modulation is similarly flawed. In
fact, signal structures must be used in which either different symbols have different magnitudes,
or, alternatively, successive signals must be dependent.20

Next consider a form of binary pulse-position modulation where, for each pair of time-samples,
one of two possible signal pairs, (a, 0) or (0, a), is sent. (This has the same performance as a
number of binary orthogonal modulation schemes such as minimum shift keying (see Exercise
??)), but is simpler to describe in discrete time. The output is then

Vm = UmGm + Zm, m = 0, 1, (9.51)

where, under one hypothesis, the input signal pair is U = (a, 0), and under the other hypothesis,
U = (0, a). The noise samples, {Zm;m ∈ Z} are iid circularly symmetric complex Gaussian

20For example, if the channel is slowly varying, differential phase modulation, where data is sent by the difference
between the phase of successive signals, could be used.
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random variables, Zm ∼ CN (0, N0W ). Assume for now that the detector looks only at the
outputs V0 and V1.

Given U = (a, 0), V0 = aG0 + Z0 is the sum of two independent complex Gaussian random
variables, the first with variance a2/2 per dimension, and the second with variance N0W/2 per
dimension. Thus, given U = (a, 0), the real and imaginary parts of V0 are independent, each
N (0, a2/2 + N0W/2). Similarly, given U = (a, 0), the real and imaginary parts of V1 = Z1

are independent, each N (0, N0W/2). Finally, since the noise variables are independent, V0 and
V1 are independent (given U = (a, 0)). The joint probability density21 of (V0, V1) at (v0, v1),
conditional on hypothesis U = (a, 0), is therefore

f0(v0, v1) =
1

(2π)2(a2/2 + WN0/2)(WN0/2)
exp

{
− |v0|2

a2 + WN0
− |v1|2

WN0

}
. (9.52)

where f0 denotes the conditional density given hypothesis U=(a, 0). Note that the density in
(9.52) depends only on the magnitude and not the phase of v0 and v1. Treating the alternate
hypothesis in the same way, and letting f1 denote the conditional density given U = (0, a),

f1(v0, v1) =
1

(2π)2(a2/2 + WN0/2)(WN0/2)
exp

{
− |v0|2

WN0
− |v1|2

a2 + WN0

}
. (9.53)

The log likelihood ratio is then

LLR(v0, v1) = ln
{

f0(v0, v1)
f1(v0, v1)

}
=

[
|v0|2 − |v1|2

]
a2

(a2 + WN0)(WN0)
. (9.54)

The maximum likelihood (ML) decision rule is therefore to decode Ũ=(a, 0) if |v0|2 ≥ |v1|2 and
decode Ũ=(0, a) otherwise. Given the symmetry of the problem, this is certainly no surprise. It
may however be somewhat surprising that this rule does not depend on any possible dependence
between G0 and G1.

Next consider the ML probability of error. Let Xm = |Vm|2 for m = 0, 1. The probability
densities of X0 ≥ 0 and X1 ≥ 0, conditioning on U = (a, 0) throughout, are then given by

fX0
(x0) =

1
a2+WN0

exp
{
− x0

a2+WN0

}
; fX1

(x1) =
1

WN0
exp

{
− x1

WN0

}
.

Then, Pr(X1 > x) = exp(− x
WN0

) for x ≥ 0, and therefore

Pr(X1 > X0) =
∫ ∞

0

1
a2+WN0

exp
{
− x0

a2+WN0

}
exp{− x0

WN0
} dx0

=
1

2 + a2

WN0

. (9.55)

Since X1 > X0 is the condition for an error when U = (a, 0), this is Pr(e) under the hypothesis
U = (a, 0). By symmetry, the error probability is the same under the hypothesis U = (0, a),
so this is the unconditional probability of error.

21V0 and V1 are complex random variables, so the probability density of each is defined as probability per unit
area in the real and complex plane. If V0 and V1 are represented by amplitude and phase, for example, the
densities are different.
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The mean signal power is a2/2 since half the inputs have a square value a2 and half have value
0. There are W/2 binary symbols per second, so Eb, the energy per bit, is a2/W. Substituting
this into (9.55),

Pr(e) =
1

2 + Eb/N0
. (9.56)

This is a very discouraging result. To get an error probability Pr(e) = 10−3 would require
Eb/N0 ≈ 1000 (30 dB). Stupendous amounts of power would be required for more reliable
communication.

After some reflection, however, this result is not too surprising. There is a constant signal energy
Eb per bit, independent of the channel response Gm. The errors generally occur when the sample
values |gm|2 are small; i.e., during fades. Thus the damage here is caused by the combination
of fading and constant signal power. This result, and the result to follow, make it clear that to
achieve reliable communication, it is necessary either to have diversity and/or coding between
faded and unfaded parts of the channel, or to use channel measurement and feedback to control
the signal power in the presence of fades.

9.6.2 Non-coherent detection with known channel magnitude

Consider the same binary pulse position modulation of the previous subsection, but now assume
that G0 and G1 have the same magnitude, and that the sample value of this magnitude, say g,
is a fixed parameter that is known at the receiver. The phase φm of Gm, m = 0, 1 is uniformly
distributed over [0, 2π) and is unknown at the receiver. The term non-coherent detection is used
for detection that does not make use of a recovered carrier phase, and thus applies here. We
will see that the joint density of φ0 and φ1 is immaterial. Assume the same noise distribution
as before. Under hypothesis U=(a, 0), the outputs V0 and V1 are given by

V0 = ag exp{iφ0} + Z0 ; V1 = Z1 (under U=(a, 0)). (9.57)

Similarly, under U=(0, a),

V0 = Z0 ; V1 = ag exp{iφ1} + Z1 (under U=(0, a)). (9.58)

Only V0 and V1, along with the fixed channel magnitude g, can be used in the decision, but it
will turn out that the value of g is not needed for an ML decision. The channel phases φ0 and
φ1 are not observed and cannot be used in the decision.

The probability density of a complex random variable is usually expressed as the joint density
of the real and imaginary parts, but here it is more convenient to use the joint density of
magnitude and phase. Since the phase φ0 of ag exp{iφ0} is uniformly distributed, and since Z0

is independent with uniform phase, it follows that V0 has uniform phase; i.e., ∠V0 is uniform
conditional on U=(a, 0). The magnitude |V0|, conditional on U=(a, 0), is a Rician random
variable which is independent of φ0, and therefore also independent of ∠V0. Thus, conditional
on U=(a, 0), V0 has independent phase and amplitude, and uniformly distributed phase.

Similarly, conditional on U = (0, a), V0 = Z0 has independent phase and amplitude, and uni-
formly distributed phase. What this means is that both the hypothesis and |V0| are statistically
independent of the phase ∠V0. It can be seen that they are also statistically independent of φ0.
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Using the same argument on V1, we see that both the hypothesis and |V1| are statistically
independent of the phases ∠V1 and φ1. It should then be clear that |V0|, |V1|, and the hypothesis
are independent of the phases (∠V0,∠V1, φ0, φ1). This means that the sample values |v0|2 and
|v1|2 are sufficient statistics for choosing between the hypotheses U=(a, 0) and U=(0, a).

Given the sufficient statistics |v0|2 and |v1|2, we must determine the ML detection rule, again
assuming equiprobable hypotheses. Since v0 contains the signal under hypothesis U=(a, 0), and
v1 contains the signal under hypothesis U = (0, a), and since the problem is symmetric between
U=(a, 0) and U = (0, a), it appears obvious that the ML detection rule is to choose U=(a, 0)
if |v0|2 > |v1|2 and to choose U = (0, a) otherwise. Unfortunately, to show this analytically, it
seems necessary to calculate the likelihood ratio. The appendix gives this likelihood ratio and
calculates the probability of error. The error probability for a given g is derived there as

Pr(e) =
1
2

exp
(
− a2g2

2WN0

)
. (9.59)

The mean received baseband signal power is a2g2/2 since only half the inputs are used. There
are W/2 bits per second, so Eb = a2g2/W. Thus, this probability of error can be expressed as

Pr(e) =
1
2

exp
(
− Eb

2N0

)
(non − coherent). (9.60)

It is interesting to compare the performance of this non-coherent detector with that of a coherent
detector (i.e., a detector such as those in Chapter 8 that use the carrier phase) for equal-energy
orthogonal signals. As seen before, the error probability in the latter case is

Pr(e) = Q

(√
Eb

N0

)
≈

√
N0

2πEb
exp

(
− Eb

2N0

)
(coherent). (9.61)

Thus both expressions have the same exponential decay with Eb/N0 and differ only in the
coefficient. The error probability with non-coherent detection is still substantially higher22 than
with coherent detection, but the difference is nothing like that in (9.56). More to the point, if
Eb/N0 is large, we see that the additional energy per bit required in non-coherent communication
to make the error probability equal to that of coherent communication is very small. In other
words, a small increment in dB corresponds to a large decrease in error probability. Of course,
with non-coherent detection, we also pay a 3 dB penalty for not being able to use antipodal
signaling.

Early telephone-line modems (in the 1200 bits per second range) used non-coherent detection,
but current high-speed wireline modems generally track the carrier phase and use coherent
detection. Wireless systems are subject to rapid phase changes because of the transmission
medium, so non-coherent techniques are still common there.

It is even more interesting to compare the non-coherent result here with the Rayleigh fading
result. Note that both use the same detection rule, and thus knowledge of the magnitude of the
channel strength at the receiver in the Rayleigh case would not reduce the error probability. As
shown in Exercise 9.11, if we regard g as a sample value of a random variable that is known at

22As an example, achieving Pr(e) = 10−6 with non-coherent detection requires Eb/N0 to be 26.24, which would
yield Pr(e) = 1.6 × 10−7 with coherent detection. However, it would require only about half a dB of additional
power to achieve that lower error probability with non-coherent detection.
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the receiver, and average over the result in (9.59), then the error probability is the same as that
in (9.56).

The conclusion from this comparison is that the real problem with binary communication over
flat Rayleigh fading is that when the signal is badly faded, there is little hope for successful
transmission using a fixed amount of signal energy. It has just been seen that knowledge of the
fading amplitude at the receiver does not help. Also, as seen in the second part of Exercise
9.11, using power control at the transmitter to maintain a fixed error probability for binary
communication leads to infinite average transmission power. The only hope, then, is either to
use variable rate transmission or to use coding and/or diversity. In this latter case, knowledge of
the fading magnitude will be helpful at the receiver in knowing how to weight different outputs
in making a block decision.

Finally, consider the use of only V0 and V1 in binary detection for Rayleigh fading and non-
coherent detection. If there are no inputs other than the binary input at times 0 and 1, then
all other outputs can be seen to be independent of the hypothesis and of V0 and V1. If there
are other inputs, however, the resulting outputs can be used to measure both the phase and
amplitude of the channel taps.

The results in the previous two sections apply to any pair of equal energy baseband signals that
are orthogonal as complex waveforms (i.e., the real and imaginary parts of one waveform are
orthogonal to both the real and imaginary parts of the other waveform). For this more general
result, however, we must assume that Gm is constant over the range of m used by the signals.

9.6.3 Non-coherent detection in flat Rician fading

Flat Rician fading occurs when the channel can be represented by a single tap and one path
is significantly stronger than the other paths. This is a reasonable model when a line of sight
path exists between transmitter and receiver, accompanied by various reflected paths. Perhaps
more important, this model provides a convenient middle ground between a large number of
weak paths, modeled by Rayleigh fading, and a single path with random phase, modeled in the
last subsection. The error probability is easy to calculate in the Rician case, and contains the
Rayleigh case and known magnitude case as special cases. When we study diversity, the Rician
model provides additional insight into the benefits of diversity.

As with Rayleigh fading, consider binary pulse position modulation where U = u0 = (a, 0)
under one hypothesis and U = u1 = (0, a) under the other hypothesis. The corresponding
outputs are then

V0 = U0G0 + Z0 and V1 = U1G1 + Z1.

Using non-coherent detection, ML detection is the same for Rayleigh, Rician, or deterministic
channels, i.e., given sample values v0 and v1 at the receiver,

|v0|2
Ũ=u0

≥
<

Ũ=u1

|v1|2 (9.62)

The magnitude of the strong path is denoted by g and the collective variance of the weaker
paths is denoted by σ2

g . Since only the magnitude of v0 and v1 are used in detection, the phase
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of the tap gains G0 and G1 do not affect the decision, so the tap gains can be modeled as
G0 ∼ G1 ∼ CN (g, σ2

g). This is explained more fully, for the known magnitude case, in the
appendix.

From the symmetry between the two hypotheses, the error probability is clearly the same for
both. Thus the error probability will be calculated conditional on U = u0. All of the following
probabilities and probability densities are assumed to be conditional on U = u0. Under this
conditioning, the real and imaginary parts of V0 and V1 are independent and characterized by

V0,re ∼ N (ag, σ2
0) V0,im ∼ N (0, σ2

0)
V1,re ∼ N (0, σ2

1) V1,im ∼ N (0, σ2
1),

where

σ2
0 =

WN0 + a2σ2
g

2
σ2

1 =
WN0

2
(9.63)

Observe that |V1|2 is an exponentially distributed rv and for any x ≥ 0, Pr(|V1|2 ≥ x) =
exp(−x/2σ2

1). Thus the probability of error, conditional on |V0|2 = x, is exp(−x/2σ2
1). The

unconditional probability of error (still conditioning on U = u0) can then be found by averaging
over V 0.

Pr(e) =
∫ ∞

−∞

∫ ∞

−∞

1
2πσ2

0

exp

[
−(v0,re − ag)2

2σ2
0

−
v2
0,im

2σ2
0

]
exp

[
−

v2
0,re + v2

0,im

2σ2
1

]
dv0,re dv0.im

Integrating this over v0,im,

Pr(e) =

√
2πσ2

0σ
2
1

σ2
0 + σ2

1

∫ ∞

−∞

1
2πσ2

0

exp

[
−(v0,re − ag)2

2σ2
0

−
v2
0,re

2σ2
1

]
dv0,re

This can be integrated by completing the square in the exponent, resulting in

σ2
1

σ1
0 + σ2

1

exp
[
− a2g2

2(σ2
0 + σ2

1)

]
Substituting the values for σ0 and σ1 from (9.63), the result is

Pr(e) =
1

2 + a2σ2
g

WN0

exp− g2a
2

2WN0 + a2σ2
g

Finally, the channel gain should be normalized so that g2 + σ2
g = 1. Then Eb becomes a2/W

and

Pr(e) =
1

2 + Ebσ2
g

N0

exp
[
− g2Eb

2N0 + Ebσ2
g

]
(9.64)

In the Rayleigh fading case, g = 0 and σ2
g = 1, simplifying Pr(e) to 1

2+Eb/N0
agreeing with

the result derived earlier. For the fixed amplitude case, g = 1 and σ2
g = 0, reducing Pr(e) to

1
2 exp(−Eb/2N0), again agreeing with the earlier result.
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It is important to realize that this result does not depend on the receiver knowing that a strong
path exists, since the detection rule is the same for non-coherent detection whether the fading is
Rayleigh, Rician, or deterministic. The result says that with Rician fading, the error probability
can be much smaller than with Rayleigh. However, if σ2

g > 0, the exponent approaches a
constant with increasing Eb, and Pr(e) still goes to zero with (Eb/N0)−1. What this says, then,
is that this slow approach to zero error probability with increasing Eb can not be avoided by
a strong specular path, but only by the lack of an arbitrarily large number of arbitrarily weak
paths. This is discussed further when we discuss diversity.

9.7 Channel measurement

This section introduces the topic of dynamically measuring the taps in the discrete-time baseband
model of a wireless channel. Such measurements are made at the receiver based on the received
waveform. They can be used to improve the detection of the received data, and, by sending the
measurements back to the transmitter, to help in power and rate control at the transmitter.

One approach to channel measurement is to allocate a certain portion of each transmitted packet
for that purpose. During this period, a known probing sequence is transmitted and the receiver
uses this known sequence either to estimate the current values for the taps in the discrete-time
baseband model of the channel or to measure the actual paths in a continuous-time baseband
model. Assuming that the actual values for these taps or paths do not change rapidly, these
estimated values can then help in detecting the remainder of the packet.

Another technique for channel measurement is called a rake receiver. Here the detection of the
data and the estimation of the channel are done together. For each received data symbol, the
symbol is detected using the previous estimate of the channel and then the channel estimate is
updated for use on the next data symbol.

Before studying these measurement techniques, it will be helpful to understand how such mea-
surements will help in detection. In studying binary detection for flat-fading Rayleigh channels,
we saw that the error probability is very high in periods of deep fading, and that these periods
are frequent enough to make the overall error probability large even when Eb/N0 is large. In
studying non-coherent detection, we found that the ML detector does not use its knowledge of
the channel strength, and thus, for binary detection in flat Rayleigh fading, knowledge at the
receiver of the channel strength is not helpful. Finally, we saw that when the channel is good
(the instantaneous Eb/N0 is high), knowing the phase at the receiver is of only limited benefit.

It turns out, however, that binary detection on a flat-fading channel is very much a special case,
and that channel measurement can be very helpful at the receiver both for non-flat fading and
for larger signal sets such as coded systems. Essentially, when the receiver observation consists
of many degrees of freedom, knowledge of the channel helps the detector weight these degrees
of freedom appropriately.

Feeding channel measurement information back to the transmitter can be helpful in general,
even in the case of binary transmission in flat fading. The transmitter can then send more
power when the channel is poor, thus maintaining a constant error probability,23 or can send
at higher rates when the channel is good. The typical round trip delay from transmitter to

23Exercise 9.11 shows that this leads to infinite expected power on a pure flat-fading Rayleigh channel, but in
practice the very deep fades that require extreme instantaneous power simply lead to outages.
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receiver in cellular systems is usually on the order of a few microseconds or less, whereas typical
coherence times are on the order of 100 msec. or more. Thus feedback control can be exercised
within the interval over which a channel is relatively constant.

9.7.1 The use of probing signals to estimate the channel

Consider a discrete-time baseband channel model in which the channel, at any given output time
m, is represented by a given number k0 of randomly varying taps, G0,m , · · · , G

k0−1,m
. We will

study the estimation of these taps by the transmission of a probing signal consisting of a known
string of input signals. The receiver, knowing the transmitted signals, estimates the channel
taps. This procedure has to be repeated at least once for each coherence-time interval.

One simple (but not very good) choice for such a known signal is to use an input of maximum
amplitude, say a, at a given epoch, say epoch 0, followed by zero inputs for the next k0−1
epochs. The received sequence over the corresponding k0 epochs in the absence of noise is then
(ag0,0 , ag1,1 , . . . , ag

k0−1,k0−1
). In the presence of sample values z0, z1 . . . of complex discrete-time

WGN, the output v = (v0, . . . , vk0−1)T from time 0 to k0−1 is then

v = (ag0,0+z0, ag1,1+z1, . . . , ag
k0−1,k0−1

+zk0−1)T.

A reasonable estimate of the kth channel tap, 0 ≤ k ≤ k0 − 1 is then

g̃
k,k

=
vk

a
. (9.65)

The principles of estimation are quite similar to those of detection, but are not essential here. In
detection, an observation (a sample value v of a random variable or vector V ) is used to select
a choice ũ from the possible sample values of a discrete random variable U (the hypothesis). In
estimation, a sample value v of V is used to select a choice g̃ from the possible sample values
of a continuous rv G. In both cases, the likelihoods fV |U (v|u) or fV |G(v|g) are assumed to be
known and the a priori probabilities pU (u) or fG(g) are assumed to be known.

Estimation, like detection, is concerned with determining and implementing reasonable rules for
estimating g from v. A widely used rule is the maximum likelihood (ML) rule. This chooses
the estimate g̃ to be the value of g that maximizes fV |G(v|g). The ML rule for estimation is the
same as the ML rule for detection. Note that the estimate in (9.65) is a ML estimate.

Another widely used estimation rule is minimum mean square error (MMSE) estimation. The
MMSE rule chooses the estimate g̃ to be the mean of the a posteriori probability density fG|V (g|v)
for the given observation v. In many cases, such as where G and V are jointly Gaussian, this
mean is the same as the value of g which maximizes fG|V (g|v). Thus the MMSE rule is somewhat
similar to the MAP rule of detection theory.

For detection problems, the ML rule is usually chosen when the a priori probabilities are all the
same, and in this case ML and MAP are equivalent. For estimation problems, ML is more often
chosen when the a priori probability density is unknown. When the a priori density is known,
the MMSE rule typically has a strictly smaller mean square estimation error than the ML rule.

For the situation at hand, there is usually very little basis for assuming any given model for
the channel taps (although Rayleigh and Rician models are frequently used in order to have
something specific to discuss). Thus the ML estimate makes considerable sense and is commonly
used. Since the channel changes very slowly with time, it is reasonable to assume that the
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measurement in (9.65) can be used at any time within a given coherence interval. It is also
possible to repeat the above procedure several times within one coherence interval. The multiple
measurements of each channel filter tap can then be averaged (corresponding to ML estimation
based on the multiple observations).

The problem with the single pulse approach above is that a peak constraint usually exists on the
input sequence; this is imposed both to avoid excessive interference to other channels and also
to simplify implementation. If the square of this peak constraint is little more than the energy
constraint per symbol, then a long input sequence with equal energy in each symbol will allow
much more signal energy to be used in the measurement process than the single pulse approach.
As seen in what follows, this approach will then yield more accurate estimates of the channel
response than the single pulse approach.

Using a predetermined antipodal pseudo-noise (PN) input sequence u = (u1, . . . , un)T is a good
way to perform channel measurements with such evenly distributed energy.24 The components
u1, . . . , un of u are selected to be ±a and the desired property is that the covariance function
of u approximates an impulse. That is, the sequence is chosen to satisfy

n∑
m=1

umum+k ≈
{

a2n ; k = 0
0 ; k �= 0

= a2nδk, (9.66)

where um is taken to be 0 outside of [1, n]. For long PN sequences, the error in this approximation
can be viewed as additional but negligible noise. The implementation of such vectors (in binary
rather than antipodal form) is discussed at the end of this subsection.

An almost obvious variation on choosing u to be an antipodal PN sequence is to choose it to
be complex with antipodal real and imaginary parts, i.e., to be a 4-QAM sequence. Choos-
ing the real and imaginary parts to be antipodal PN sequences and also to be approximately
uncorrelated, (9.66) becomes

n∑
m=1

umu∗
m+k ≈ 2a2nδk. (9.67)

The QAM form spreads the input measurement energy over twice as many degrees of freedom
for the given n time units, and is thus usually advantageous. Both the antipodal and the 4-QAM
form, as well as the binary version of the the antipodal form, are referred to as PN sequences.
The QAM form is assumed in what follows, but the only difference between (9.66) and (9.67)
is the factor of 2 in the covariance. It is also assumed for simplicity that (9.66) is satisfied with
equality.

The condition (9.67) (with equality) states that u is orthogonal to each of its time shifts. This
condition can also be expressed by defining the matched filter sequence for u as the sequence u†

where u†
j = u∗

−j . That is, u† is the complex conjugate of u reversed in time. The convolution

of u with u† is then u ∗ u† =
∑

m umu†
k−m. The covariance condition in (9.67) (with equality)

is then equivalent to the convolution condition,

u ∗ u† =
n∑

m=1

umu†
k−m =

n∑
m=1

umu∗
m−k = 2a2nδk. (9.68)

24This approach might appear to be an unimportant detail here, but it becomes more important for the rake
receiver to be discussed shortly.
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Let the complex-valued rv Gk,m be the value of the kth channel tap at time m. The channel
output at time m for the input sequence u (before adding noise) is the convolution

V ′
m =

n−1∑
k=0

Gk,mum−k. (9.69)

Since u is zero outside of the interval [1, n], the noise-free output sequence V ′ is zero outside
of [1, n+k0−1]. Assuming that the channel is random but unchanging during this interval, the
kth tap can be expressed as the complex rv Gk. Correlating the channel output with u∗

1, · · · , u∗
n

results in the covariance at each epoch j given by

C ′
j =

−j+n∑
m=−j+1

V ′
mu∗

m+j =
−j+n∑

m=−j+1

n−1∑
k=0

Gkum−ku
∗
m+j (9.70)

=
n−1∑
k=0

Gk(2a2n)δj+k = 2a2nG−j . (9.71)

Thus the result of correlation, in the absence of noise, is the set of channel filter taps, scaled
and reversed in time.

It is easier to understand this by looking at the convolution of V ′ with u†. That is,

V ′ ∗ u† = (u ∗G) ∗ u† = (u ∗ u†) ∗G = 2a2nG.

This uses the fact that convolution of sequences (just like convolution of functions) is both
associative and commutative. Note that the result of convolution with the matched filter is
the time reversal of the result of correlation, and is thus simply a scaled replica of the channel
taps. Finally note that the matched filter u† is zero outside of the interval [−n,−1]. Thus if
we visualize implementing the measurement of the channel using such a discrete filter, we are
assuming (conceptually) that the receiver time reference lags the transmitter time reference by
at least n epochs.

With the addition of noise, the overall output is V = V ′ + Z , i.e., the output at epoch m is
Vm = V ′

m+Zm. Thus the convolution of the noisy channel output with the matched filter u† is
given by

V ∗ u† = V ′ ∗ u† + Z ∗ u† = 2a2nG + Z ∗ u†. (9.72)

After dividing by 2a2n, the kth component of this vector equation is

1
2a2n

∑
m

Vmu†
k−m = Gk + Ψk, (9.73)

where Ψk is defined as the complex random variable

Ψk =
1

2a2n

∑
m

Zmu†
k−m. (9.74)

This estimation procedure is illustrated in Figure 9.9.
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u � G �V ′ � ��

Z

V
u† � �
 � G̃ = G+Ψ

�

1
2a2n

Figure 9.9: Illustration of channel measurement using a filter matched to a PN input. We
have assumed that G is nonzero only in the interval [0, k0−1] so the output is observed only
in this interval. Note that the component G in the output is the response of the matched
filter to the input u , whereas Ψ is the response to Z .

Assume that the channel noise is white Gaussian noise so that the discrete-time noise variables
{Zm} are circularly symmetric CN (0,WN0) and iid, where W/2 is the baseband bandwidth25.
Since u is orthogonal to each of its time shifts, its matched filter vector u† must have the same
property. It then follows that

E[ΨkΨ∗
i ] =

1
4a4n2

∑
m

E[|Zm|2]u†
k−m(u†

i−m)∗ =
N0W

2a2n
δk−i. (9.75)

The random variables {Ψk} are jointly Gaussian from (9.74) and uncorrelated from (9.75), so
they are independent Gaussian rv’s. It is a simple additional exercise to show that each Ψk is
circularly symmetric, i.e., Ψk ∼ CN (0, N0W

2a2n
).

Going back to (9.73), it can be seen that for each k, 0 ≤ k ≤ k0−1, the ML estimate of Gk from
the observation of Gk + Ψk is given by

G̃k =
1

2a2n

∑
m

Vmu†
k−m.

It can also be shown that this is the ML estimate of Gk from the entire observation V , but
deriving this would take us too far afield. From (9.73), the error in this estimate is Ψk, so the
mean squared error in the real part of this estimate, and similarly in the imaginary part, is given
by WN0/(4a2n).

By increasing the measurement length n or by increasing the input magnitude a, we can make
the estimate arbitrarily good. Note that the mean squared error is independent of the fading
variables {Gk}; the noise in the estimate does not depend on how good or bad the channel is.
Finally observe that the energy in the entire measurement signal is 2a2nW, so the mean squared
error is inversely proportional to the measurement-signal energy.

What is the duration over which a channel measurement is valid? Fortunately, for most wireless
applications, the coherence time Tcoh is many times larger than the delay spread, typically on
the order of hundreds of times larger. This means that it is feasible to measure the channel and
then use those measurements for an appreciable number of data symbols. There is, of course,
a tradeoff, since using a long measurement period n, leads to an accurate measurement, but
uses an appreciable part of Tcoh for measurement rather than data. This tradeoff becomes less
critical as the coherence time increases.

One clever technique that can be used to increase the number of data symbols covered by one
measurement interval is to do the measurement in the middle of a data frame. It is also possible,

25Recall that these noise variables are samples of white noise filtered to W/2. Thus their mean square value
(including both real and imaginary parts) is equal to the bandlimited noise power N0W. Viewed alternatively, the
sinc functions in the orthogonal expansion have energy 1/W so the variance of each real and imaginary coefficient
in the noise expansion must be scaled up by W from the noise energy N0/2 per degree of freedom.
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for a given data symbol, to interpolate between the previous and the next channel measurement.
These techniques are used in the popular GSM cellular standard. These techniques appear to
increase delay slightly, since the early data in the frame cannot be detected until after the
measurement is made. However, if coding is used, this delay is necessary in any case. We have
also seen that one of the primary purposes of measurement is for power/rate control, and this
clearly cannot be exercised until after the measurement is made.

The above measurement technique rests on the existence of PN sequences which approximate
the correlation property in (9.67). PN sequences (in binary form) are generated by a procedure
very similar to that by which output streams are generated in a convolutional encoder. In a
convolutional encoder of constraint length n, each bit in a given output stream is the mod-2 sum
of the current input and some particular pattern of the previous n inputs. Here there are no
inputs, but instead, the output of the shift register is fed back to the input as shown in Figure
9.10.

Dk � Dk−3

�



Dk−4
�Dk−2

�Dk−1
�

� �

Figure 9.10: A maximal-length shift register with n = 4 stages and a cycle of length 2n − 1
that cycles through all states except the all 0 state.

By choosing the stages that are summed mod 2 in an appropriate way (denoted a maximal-length
shift register), any non-zero initial state will cycle through all possible 2n − 1 non-zero states
before returning to the initial state. It is known that maximal-length shift registers exist for all
positive integers n.

One of the nice properties of a maximal-length shift register is that it is linear (over mod-2
addition and multiplication). That is, let y be the sequence of length 2n − 1 bits generated by
the initial state x , and let y ′ be that generated by the initial state x ′. Then it can be seen with
a little thought that y ⊕ y ′ is generated by x ⊕ x ′. Thus the difference between any two such
cycles started in different initial states contains 2n−1 ones and 2n−1 − 1 zeros. In other words,
the set of cycles forms a binary simplex code.

It can be seen that any nonzero cycle of a maximal length shift register has an almost ideal
correlation with a cyclic shift of itself. Here, however, it is the correlation over a single period,
where the shifted sequence is set to zero outside of the period, that is important. There is no
guarantee that such a correlation is close to ideal, although these shift register sequences are
usually used in practice to approximate the ideal.

9.7.2 Rake receivers

A Rake receiver is a type of receiver that combines channel measurement with data reception
in an iterative way. It is primarily applicable to spread spectrum systems in which the input
signals are pseudo-noise (PN) sequences. It is, in fact, just an extension of the pseudo-noise
measurement technique described in the previous subsection. Before describing the rake receiver,
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it will be helpful to review binary detection, assuming that the channel is perfectly known and
unchanging over the duration of the signal.

Let the input U be one of the two signals u0 = (u0
1, · · · , u0

n)T and u1 = (u1
1, · · · , u1

n)T. Denote
the known channel taps as g = (g0, · · · , gk0−1)T. Then the channel output, before the addition
of white noise, is either u0 ∗ g which we denote by b0, or u1 ∗ g , which we denote by b1.
These convolutions are contained within the interval [1, n+k0−1]. After the addition of WGN,
the output is either V = b0 + Z or V = b1 + Z . The detection problem is to decide, from
observation of V , which of these two possibilities is more likely. The LLR for this detection
problem is shown in Section 8.3.4 to be given by (8.27), repeated below,

LLR(v) =
−‖v − b0‖2 + ‖v − b1‖2

N0

=
2�(〈v , b0〉) − 2�(〈v , b1〉) − ‖b0‖2 + ‖b1‖2

N0
(9.76)

It is shown in Exercise 9.17 that if u0 and u1 are ideal PN sequences, i.e., sequences that satisfy
(9.68), then ‖b0‖2 = ‖b1‖2. The ML test then simplifies to

�(〈v ,u0 ∗ g〉)
Ũ=u0

≥
<

Ũ=u1

�(〈v ,u1 ∗ g〉). (9.77)

Finally, for i = 0, 1, the inner product 〈v ,u i ∗ g〉 is simply the output at epoch 0 when v is
the input to a filter matched to u i ∗ g . The filter matched to u i ∗ g , however, is just the filter
matched to u i convolved with the filter matched to g . The block diagram for this is shown in
Figure 9.11.

u1

u0 �
���

/
//5

g �b0 or b1

b†
0

� �

b†
1

� �v)�
Z

��
�
�
���

/
/
/
//5 (u0)† � g † �

�
���

(u1)† � g †
/
/
//5

Decision

Figure 9.11: Detection for binary signals passed through a known filter g . The real parts of
the inputs entering the decision box at epoch 0 are compared. Ũ=u0 if the real part of the
lower input is larger, and Ũ = u1 is chosen otherwise.

If the signals above are PN sequences, there is a great similarity between figures 9.9 and 9.11.
In particular, if u0 is sent, then the output of the matched filter (u0)†, i.e., the first part of the
lower matched filter, will be 2a2ng in the absence of noise. Note that g is a vector, meaning
that the noise-free output at epoch k is 2a2ngk Similarly, if u1 is sent, then the noise-free output
of the first part of the upper matched filter, at epoch k, will be a2ngk. The decision is made
at receiver time 0 after the sequence 2a2ng , along with noise, passes through the unrealizable
filter g †. These unrealizable filters are made realizable by the delay in receiver timing relative
to transmitter timing.
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Under the assumption that a correct decision is made, an estimate can also be made of the
channel filter g . In particular, if the decision is Ũ=u0, then the outputs of the first part of the
lower matched filter, at receiver times −k0 + 1 to 0, will be scaled noisy versions of g0 to gk0−1.
Instead of using these outputs as a ML estimate of the filter taps, they must be combined with
earlier estimates, constantly updating the current estimate each n epochs. This means that if
the coherence time is long, then the filter taps will change very slowly in time, and the continuing
set of channel estimates, one each n sample times, can be used to continually improve and track
the channel filter taps.

Note that the decision in Figure 9.11 was based on knowledge of g and thus knowledge of the
matched filter g †. The ability to estimate g as part of the data detection thus allows us to
improve the estimate g † at the same time as making data decisions. When Ũ = u i (and the
decision is correct), the outputs of the matched filter (u i)† provide an estimate of g , and thus
allow g † to be updated. The combined structure for making decisions and estimating the channel
is called a rake receiver and is illustrated in Figure 9.12.
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Figure 9.12: Rake Receiver. If Ũ=u0, then the corresponding k0 outputs from the matched
filter (u0)† is used to update the estimate of g (and thus the taps of each matched filter
g†). Alternatively, if Ũ = u1, then the output from the matched filter (u1)† is used. These
updated matched filters g† are then used, with the next block of outputs from (u0)† and (u1)†

to make the next decision, and so forth for subsequent estimates and decisions.

The rake receiver structure can only be expected to work well if the coherence time of the channel
includes many decision points. That is, the updated channel estimate made on one decision can
only be used on subsequent decisions. Since the channel estimates made at each decision epoch
are noisy, and since the channel changes very slowly, the estimate ĝ made at one decision epoch
will only be used to make a small change to the existing estimate.

A rough idea of the variance in the estimate of each tap gk can be made by continuing to
assume that decisions are made correctly. Assuming as before that the terms in the input PN
sequences have magnitude a, it can be seen from (9.75) that for each signaling interval of n
samples, the variance of the measurement noise (in each of the real and imaginary directions) is
WN0/(4a2n). There are roughly TcohW/n signaling intervals in a coherence-time interval, and
we can approximate the estimate of gk as the average of those measurements. This reduces the
measurement noise by a factor of TcohW/n, reducing the variance of the measurement error26 to

26The fact that the variance of the measurement error does not depend on W might be surprising. The estimation
error per discrete epoch 1/W is WN0/(4a2Tcoh), which increases with W, but the number of measurements per
second increases in the same way, leading to no overall variation with W. Since the number of taps is increasing
with W, however, the effect of estimation errors increases with W. However, this assumes a model in which there
are many paths with propagation delays within 1/W of each other, and this is probably a poor assumption when



344 CHAPTER 9. WIRELESS DIGITAL COMMUNICATION

N0/(4a2Tcoh).

An obvious question, however, is the effect of decision errors. Each decision error generates an
“estimate” of each gk that is independent of the true gk. Clearly, too many decision errors will
degrade the estimated value of each gk, which in turn will further degrade the decision errors
until both estimations and decisions are worthless. Thus a rake receiver requires an initial good
estimate of each gk and also requires some mechanism for recovering from the above catastrophe.

Rake receivers are often used with larger alphabets of input PN sequences, and the analysis of
such non-binary systems is the same as for the binary case above. For example, the IS95 cellular
standard to be discussed later uses spread spectrum techniques with a bandwidth of 1.25 MH. In
this system, a signal set of 64 orthogonal signal waveforms are used with a 64-ary rake receiver.
In that example, however, the rake receiver uses non-coherent techniques.

Usually, in a rake system, the PN sequences are chosen to be mutually orthogonal, but this is not
really necessary. So long as each signal is a PN sequence with the appropriate autocorrelation
properties, the channel estimation will work as before. The decision element for the data, of
course, must be designed for the particular signal structure. For example, we could even use
binary antipodal signaling, given some procedure to detect if the channel estimates become
inverted.

9.8 Diversity

Diversity has been mentioned several times in the previous sections as a way to reduce error
probabilities at the receiver. Diversity refers to a rather broad set of techniques, and the model
of the last two sections must be generalized somewhat.

The first part of this generalization is to represent the baseband modulated waveform as an
orthonormal expansion u(t) =

∑
k ukφk(t) rather than the sinc expansion of the last two sections.

For the QAM type systems in the last two sections, this is a somewhat trivial change. The
modulation pulse sinc(Wt) is normalized to W−1/2sinc(Wt). With this normalization, the noise
sequence Z1, Z2, . . . becomes Zk ∼ CN (0, N0) for k ∈ Z+ and the antipodal input signal ±a
satisfies a2 = Eb.

Before discussing other changes in the model, we give a very simple example of diversity using
the tapped gain model of Section 9.5.

Example 9.8.1. Consider a Rayleigh fading channel modeled as a two-tap discrete-time base-
band model. The input is a discrete time sequence Um and the output is a discrete time complex
sequence described, as illustrated below, by

Vm = G0,mUm + G1,mUm−1 + Zm.

For each m, G0,m and G1,m are iid and circularly symmetric complex Gaussian rv’s with G0,m ∼
CN (0, 1/2). This satisfies the condition

∑
k E[|Gk|2] = 1 given in (9.48). The correlation of G0,m

and G1,m with m is immaterial, and can be assumed uncorrelated. Assume that the sequence
Zm is a sequence of iid circularly symmetric rv’s, Zm ∼ CN (0, N0).

Assume that a single binary digit is sent over this channel, sending either u0 = (
√

Eb, 0, 0, 0) or
u1 = (0, 0,

√
Eb, 0), each with equal probability. The input for the first hypothesis is at epoch

W is large.
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Figure 9.13: Two-tap discrete-time Rayleigh fading model

0 and for the second hypothesis at epoch 2, thus allowing a separation between the responses
from the two hypotheses.

Conditional on U = u0, it can be seen that V0 ∼ CN (0, Eb/2+N0), where the signal contribution
to V0 comes through the first tap. Similarly, V1 ∼ CN (0, Eb/2+N0), with the signal contribution
coming through the second tap. Given U = u0, V2 ∼ CN (0, N0) and V3 ∼ CN (0, N0). Since the
noise variables and the two gains are independent, it can be seen that V0, . . . , V3 are independent
conditional on U = u0. The reverse situation occurs for U = u1, with Vm ∼ CN (0, Eb/2 + N0)
for m = 2, 3 and Vm ∼ CN (0, N0) for m = 0, 1.

Since ∠Vm for 0 ≤ m ≤ 3 are independent of the hypothesis, it can be seen the energy in the set
of received components, Xm = |Vm|2, 0 ≤ m ≤ 3 forms a sufficient statistic. Under hypothesis
u0, X0 and X1 are exponential rv’s with mean Eb/2 + N0 and X2 and X3 are exponential with
mean N0; all are independent. Thus the probability density of X0 and X1 (given u0) are given
by αe−αx for x ≥ 0 where α = 1

N0+Eb/2 . Similarly, the probability density of X2 and X3 are
given by βe−βx for x ≥ 0 where β = 1

N0
. The reverse occurs under hypothesis u1.

The LLR and the probability of error (under ML detection) are then evaluated in Exercise 9.13
to be

LLR(x ) = (β − α)(x0+x1−x2−x3) .

Pr(e) =
3α2β + α3

(α + β)3
=

4 + 3Eb
2N0(

2 + Eb
2N0

)3 .

Note that as Eb/N0 becomes large, the error probability approaches 0 as (Eb/N0)−2 instead of
(Eb/N0)−1, as with flat Raleigh fading. This is a good example of diversity; errors are caused
by high fading levels, but with two independent taps, there is a much higher probability that
one or the other has reasonable strength.

Note that multiple physical transmission paths give rise both to multipath fading and to diver-
sity; the first usually causes difficulties and the second usually ameliorates those difficulties. It
is important to understand what the difference is between them.

If the input bandwidth is chosen to be half as large as in the example above, then the two-tap
model would essentially become a one-tap model; this would lead to flat Rayleigh fading and no
diversity. The major difference is that with the two tap model, the path outputs are separated
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into two groups and the effect of each can be observed separately. With the one tap model, the
paths are all combined, since there are no longer independently observable sets of paths.

It is also interesting to compare the diversity receiver above with a receiver that could make use
of channel measurements. If the tap values were known, then an ML detector would involve a
matched filter on the channel taps, as in Figure 9.12. In terms of the particular input in the above
exercise, this would weight the outputs from the two channel taps according to the magnitude of
the tap, whereas the diversity receiver above weights them equally. In other words, the diversity
detector above doesn’t do quite the right thing given known tap values, but it certainly is a
large improvement over narrow band transmission.

The type of diversity used above is called time diversity since it makes use of the delay between
different sets of paths. The analysis above hides a major part of the benefit to be gained by time
diversity. For example, in the familiar reflecting wall example, there are only two paths. If the
signal bandwidth is large enough that the response comes on different taps (or if the receiver
measures the time delay on each path), then the fading will be eliminated.

It appears that many wireless situations, particularly those in cellular and local area networks,
contain a relatively small number of significant coherent paths, and if the bandwidth is large
enough to resolve these paths, then the gain is far greater than that indicated in the example
above.

The diversity receiver above can be generalized to other discrete models for wireless channels.
For example, the frequency band could be separated into segments separated by the coherence
frequency, thus getting roughly independent fading in each and the ability to separate the outputs
in each of those bands. Diversity in frequency is somewhat different than diversity in time, since
it doesn’t allow the resolution of paths of different delays.

Another way to achieve diversity is through multiple antennas at the transmitter and receiver.
Note that multiple antennas at the receiver allow the full received power available at one antenna
to be received at each antenna, rather than splitting the power as occurs with time diversity
or frequency diversity. For all of these more general ways to achieve diversity, the input and
output should obviously be represented by the appropriate orthonormal expansions to bring out
the diversity terms.

The two-tap example above can be easily extended to an arbitrary number of taps. As-
sume the model of Figure 9.13 modified to have L taps, G0,m, . . . , GL−1,m satisfying Gk,m ∼
CN (0, 1/L) for 0 ≤ k ≤ L − 1. The input is assumed to be either u0 = (

√
Eb, 0, . . . , 0) or

u1 = (0, . . . , 0,
√

Eb, 0, . . . , 0), where each of these 2L-tuples has zeros in all but one position,
namely position 0 for u0 and position L for u1. The energy in the set of received components,
Xm = |Vm|2, 0 ≤ m ≤ 2L − 1, forms a sufficient statistic for the same reason as in the dual di-
versity case. Under hypothesis u0, X0, . . . , XL−1 are exponential rv’s with density α exp(−αx)
where α = 1

N0+Eb/L . Similarly, XL, . . . , X2L−1 are exponential rv’s with density β exp(−βx).
All are conditionally independent given u0. The reverse is true given hypothesis u1.

It can be seen that the ML detection rule is to choose u0 if
∑L−1

m=0 Xm ≥
∑2L−1

m=L Xm and to
choose u1 otherwise. Exercise 9.14 then shows that the error probability is

Pr(e) =
2L−1∑
	=L

(
2L − 1



)
p	(1 − p)2L−1−	.
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where p = α/(α + β). Substituting in the values for α and β, this becomes

Pr(e) =
2L−1∑
	=L

(
2L − 1



)(
1 + Eb

LN0

)2L−1−	

(
2 + Eb

LN0

)2L−1
. (9.78)

It can be seen that the dominant term in this sum is  = L. For any given L, then, the probability
of error decreases with Eb as E−L

b . At the same time, however, if L is increased for a given Eb,
then eventually the probability of error starts to increase and approaches 1/2 asymptotically.
In other words, increased diversity can decrease error probability up to a certain point but then
further increased diversity, for fixed Eb, is counter productive.

If one evaluates (9.78) as a function of Eb/N0 and L, one finds that Pr(e) is minimized for large
but fixed Eb/N0 when L is on the order of 0.3 Eb/N0. The minimum is quite broad, but too much
diversity does not help. The situation remains essentially the same with channel measurement.
Here the problem is that when the available energy is spread over too many degrees of freedom,
there is not enough energy per degree of freedom to measure the channel.

The preceding discussion assumed that each diversity path is Rayleigh, but we have seen that
with time diversity, the individual paths might become separable, thus allowing much lower error
probability than if the taps remain Rayleigh. Perhaps at this point, we are trying to model the
channel too accurately. If a given transmitter and receiver design is to be used over a broad
set of different channel behaviors, then the important question is the fraction of behaviors over
which the design works acceptably. This question ultimately must be answered experimentally,
but simple models such as Rayleigh fading with diversity provide some insight into what to
expect.

9.9 CDMA; The IS95 Standard

In this section, IS95, one of the major classes of cellular standards, is briefly described. This
system has been selected both because it is conceptually more interesting, and because most
newer systems are focusing on this approach. This standard uses spread spectrum, which is often
known by the name CDMA (Code Division Multiple Access). There is no convincing proof that
spread spectrum is inherently superior to other approaches, but it does have a number of inherent
engineering advantages over traditional narrow band systems. Our main purpose, however, is
to get some insight into how a major commercial cellular network system deals with some of
the issues we have been discussing. The discussion here focuses on the issues arising with voice
transmission.

IS95 uses a frequency band from 800 to 900 megahertz (MH). The lower half of this band is used
for transmission from cell phones to base station (the uplinks), and the upper half is used for base
station to cell phones (the downlinks). There are multiple subbands27 within this band, each
1.25 MH wide. Each base station uses each of these subbands, and multiple cell phones within
a cell can share the same subband. Each downlink subband is 45 MH above the corresponding
uplink subband. The transmitted waveforms are sufficiently well filtered at both the cell phones

27It is common in the cellular literature to use the word channel for a particular frequency subband; we will
continue to use the word channel for the transmission medium connecting a particular transmitter and receiver.
Later we use the words multiaccess channel to refer to the uplinks for multiple cell phones in the same cell.
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and the base stations so that they don’t interfere appreciably with reception on the opposite
channel.

The other two major established cellular standards use TDMA (time-division multiple access).
The subbands are more narrow in TDMA, but only one cell phone uses a subband at a time to
communicate with a given base station. In TDMA, there is little interference between different
cell phones in the same cell, but considerable interference between cells. CDMA has more
interference between cell phones in the same cell, but less between cells.

A high level block diagram for the parts of a transmitter is given in Figure 9.14.

Voice
Waveform

�
Compressor

Voice �
Coder

Channel � Modulator � Channel

Figure 9.14: High Level Block Diagram of Transmitters

The receiver, at a block level viewpoint (see Figure 9.15), performs the corresponding receiver
functions in reverse order. This can be viewed as a layered system, although the choice of
function in each block is somewhat related to that in the other blocks.

Voice
Waveform

�
Decoder
Voice �

Decoder
Channel � Demodulator � Channel

Figure 9.15: High Level Block Diagram of Receiver

These three blocks are described in the following subsections. The voice compression and channel
coding are quite similar in each of the standards, but the modulation is very different.

9.9.1 Voice compression

The voice waveform, in all of these standards, is first segmented into 20 ms. increments. These
segments are long enough to allow considerable compression, but short enough to cause relatively
little delay. In IS95, each 20 ms segment is encoded into 172 bits. The digitized voice rate is
then 8600 = 172/0.02 bits per second (bps). Voice compression has been an active research area
for many years. In the early days, voice waveforms, which lie in a band from about 400 to 3200
H, were simply sampled at 8000 times a second, corresponding to a 4 KH band. Each sample
was then quantized to 8 bits for a total of 64, 000 bps. Achieving high quality voice at 8600 bps
is still a moderate challenge today and requires considerable computation.

The 172 bits per 20 ms segment from the compressor is then extended by 12 bits per segment
for error detection. This error detection is unrelated to the error correction algorithms to be
discussed later, and is simply used to detect when those systems fail to correct the channel
errors. Each of these 12 bits is a parity check (i.e., a modulo-2 sum) of a prespecified set of the
data bits. Thus, it is very likely, when the channel decoder fails to decode correctly, that one
of these parity checks will fail to be satisfied. When such a failure occurs, the corresponding
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frame is mapped into 20 ms of silence, thus avoiding loud squawking noises under bad channel
conditions.

Each segment of 172 + 12 bits is then extended by 8 bits, all set to 0. These bits are used as
a terminator sequence for the convolutional code to be described shortly. With the addition of
these bits, each 20 msec segment generates 192 bits, so this overhead converts the rate from
8600 to 9600 bps. The timing everywhere else in the transmitter and receiver is in multiples of
this bit rate. In all the standards, many overhead items creep in, each performing small but
necessary functions, but each increasing the overall transmitted bit rate.

9.9.2 Channel coding and decoding

The channel encoding and decoding use a convolutional code and a Viterbi decoder. The convo-
lutional code has rate 1/3, thus producing three output bits per input bit, and mapping the 9600
bps input into a 28.8 Kbps output. The choice of rate is not very critical, since it involves how
much coding is done here and how much is done later as part of the modulation proper. The
convolutional encoder has a constraint length of 8, so each of the three outputs corresponding
to a given input depends on the current input plus the eight previous inputs. There are then
28 = 256 possible states for the encoder, corresponding to the possible sets of values for the
previous 8 inputs.

The complexity of the Viterbi algorithm is directly proportional to the number of states, so there
is a relatively sharp tradeoff between complexity and error probability. The fact that decoding
errors are caused primarily by more fading than expected (either a very deep fade that cannot
be compensated by power control or by an inaccurate channel measurement), suggests that
increasing the constraint length from 8 to 9 would, on the one hand be somewhat ineffective,
and, on the other hand, double the decoder complexity.

The convolutional code is terminated at the end of each voice segment, thus turning the con-
volutional encoder into a block code of block length 576 and rate 1/3, with 192 inputs bits per
segment. As mentioned in the previous subsection, this 192 bits includes 8 bits to terminate
the code and return it to state 0. Part of the reason for this termination is the requirement
for small delay, and part is the desire to prevent a fade in one segment from causing errors in
multiple voice segments (the failure to decode correctly in one segment makes decoding in the
next segment less reliable in the absence of this termination).

When a Viterbi decoder makes an error, it is usually detectable from the likelihood ratios in
the decoder, so the 12 bit overhead for error detection could probably have been avoided. Many
such tradeoffs between complexity, performance, and overhead must be made in both standards
and products.

The decoding uses soft decisions from the output of the demodulator. The ability to use like-
lihood information (i.e., soft decisions) from the demodulator is one reason for the use of con-
volutional codes and Viterbi decoding. Viterbi decoding uses this information in a natural way,
whereas, for some other coding and decoding techniques, this can be unnatural and difficult. All
of the major standards use convolutional codes, terminated at the end of each voice segment,
and decode with the Viterbi algorithm. It is worth noting that channel measurements are useful
in generating good likelihood inputs to the Viterbi decoder.

The final step in the encoding process is to interleave the 576 output bits from the encoder
corresponding to a given voice segment. Correspondingly, the first step in the decoding process
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is to de-interleave the bits (actually the soft decisions) coming out of the demodulator. It can
be seen without analysis that if the noise coming into a Viterbi decoder is highly correlated,
then the Viterbi decoder, with its short constraint length, is more likely to make a decoding
error than if the noise is independent. The next subsection will show that the noise from the
demodulator is in fact highly correlated, and thus the interleaving breaks up this correlation.
Figure 9.16 summarizes this channel encoding process.

8.6 Kbps
172 b/seg.

� 12 bit
Error det.

� 8 bit Conv.
terminator

9.6 Kbps
192 b/seg.

� Convolutional
Encoder

28.8 Kbps
576 b/seg.
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28.8 Kbps
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�

Figure 9.16: Block diagram of Channel Encoding

9.9.3 Viterbi decoding for fading channels

In order to get some sense of why the above convolutional code with Viterbi decoding will not
work very well if the coding is followed by straight-forward binary modulation, suppose the pulse
position modulation of Subsection 9.6.1 is used and the channel is represented by a single tap
with Rayleigh fading. The resulting bandwidth is well within typical values of Fcoh, so the single
tap model is reasonable. The coherence time is typically at least a msec, but in the absence of
moving vehicles, it could easily be more than 20 msec.

This means that an entire 20 msec. segment of voice could easily be transmitted during a
deep fade, and the convolutional encoder, even with interleaving within that 20 msec. would
not be able to decode successfully. If the fading is much faster, the Viterbi decoder, with
likelihood information on the incoming bits, would probably work fairly successfully, but that is
not something that can be relied upon.

There are only three remedies for this situation. One is to send more power when the channel is
faded. As shown in Exercise 9.11, however, if the input power compensates completely for the
fading (i.e., the input power at time m is 1/|gm|2), then the expected input power is infinite.
This means that, with finite average power, deep fades for prolonged periods cause outages.

The second remedy is diversity, in which each codeword is spread over enough coherence band-
widths or coherence-time intervals to achieve averaging over the channel fades. Using diversity
over several coherence-time intervals causes delays proportional to the coherence time, which is
usually unacceptable for voice. Diversity can be employed by using a bandwidth larger than
the coherence frequency (this can be done using multiple taps in the tapped delay line model or
multiple frequency bands).

The third remedy is the use of variable rate transmission. This is not traditional for voice, since
the voice encoding traditionally produces a constant rate stream of input bits into the channel,
and the delay constraint is too stringent to queue this input and transmit it when the channel
is good. It would be possible to violate the source/channel separation principle and have the
source produce “important bits” at one rate and “unimportant bits” at another rate. Then
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when the channel is poor, only the important bits would be transmitted. Some cellular systems,
particularly newer ones, have features resembling this.

For data, however, variable rate transmission is very much a possibility since there is usually not
a stringent delay requirement. Thus, data can be transmitted at high rate when the channel is
good and at low rate or zero rate when the channel is poor. Newer systems also take advantage
of this possibility.

9.9.4 Modulation and demodulation

The final part of the high level block diagram of the IS95 transmitter is to modulate the output
of the interleaver before channel transmission. This is where spread spectrum comes in, since
this 28.8 Kbps data stream is now spread into a 1.25 MH bandwidth. The bandwidth of the
corresponding received spread waveform will often be broader than the coherence frequency,
thus providing diversity protection against deep fades. A rake receiver will take advantage of
this diversity. Before elaborating further on these diversity advantages, the mechanics of the
spreading is described.

The first step of the modulation is to segment the interleaver output into strings of length 6,
and then map each successive 6-bit string into a 64-bit binary string. The mapping maps each
of the 64 strings of length 6 into the corresponding row of the H6 Hadamard matrix described
in Section 8.6.1. Each row of this Hadamard matrix differs from each other row in 32 places
and each row, except the all zero row, contains exactly 32 ones and 32 zeros. It is thus a binary
orthogonal code.

Suppose the selected word from this code is mapped into a PAM sequence by the 2-PAM map
{0, 1} −→ {+a,−a}. These 64 sequences of binary antipodal values are called Walsh functions.
The symbol rate coming out of this 6 bit to 64 bit mapping is (64/6) ·28, 800 = 307, 200 symbols
per second.

To get some idea of why these Walsh functions are used, let xk
1, . . . , xk

64 be the kth Walsh
function, amplified by a factor a, and consider this as a discrete-time baseband input. For
simplicity, assume flat fading with a single channel tap of amplitude g. Suppose that baseband
WGN of variance N0/2 (per real and imaginary part) is added to this sequence, and consider
detecting which of the 64 Walsh functions was transmitted. Let Es be the expected received
energy for each of the Walsh functions. The non-coherent detection result from (9.59) shows
that the probability that hypothesis j is more likely than k, given that xk(t) is transmitted, is
1/2 exp[−Es

2N0
]. Using the union bound over the 63 possible incorrect hypotheses, the probability

of error, using non-coherent detection and assuming a single tap channel filter, is

Pr(e) ≤ 63
2

exp
[−Es

2N0

]
. (9.79)

The probability of error is not the main subject of interest here, since the detector output is
soft decisions that are then used by the Viterbi decoder. However, the error probability lets us
understand the rationale for using such a large signal set with orthogonal signals.

If coherent detection were used, the analogous union bound on error probability would be
63Q(

√
Es/N0). As discussed in Section 9.6.2, this goes down exponentially with Es in the

same way as (9.79), but the coefficient is considerably smaller. However, the number of addi-
tional dB required using non-coherent detection to achieve the same Pr(e) as coherent detection
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decreases almost inversely with the exponent in (9.79). This means that by using a large number
of orthogonal functions (64 in this case), we make the exponent in (9.79) large in magnitude,
and thus approach (in dB terms) what could be achieved by coherent detection.

The argument above is incomplete, because Es is the transmitted energy per Walsh function.
However, 6 binary digits are used to select each transmitted Walsh function. Thus, Eb in this
case is Es/6 and (9.79) becomes

Pr(e) ≤ 63 exp(−3Eb/N0). (9.80)

This large signal set also avoids the 3 dB penalty for orthogonal signaling rather than antipodal
signaling that we have seen for binary signal sets. Here the cost of orthogonality essentially
lies in using an orthogonal code rather than the corresponding biorthogonal code with 7 bits of
input and 128 codewords28, i.e., a factor of 6/7 in rate.

A questionable issue here is that two codes (the convolutional code as an outer code, followed
by the Walsh function code as an inner code) are used in place of a single code. There seems to
be no clean analytical way of showing that this choice makes good sense over all choices of single
or combined codes. On the other hand, each code is performing a rather different function.
The Viterbi decoder is eliminating the errors caused by occasional fades or anomalies, and the
Walsh functions allow non-coherent detection and also enable a considerable reduction in error
probability because of the large orthogonal signal sets rather than binary transmission.

The modulation scheme in IS95 next spreads the above Walsh functions into an even wider
bandwidth transmitted signal. The stream of binary digits out of the Hadamard encoder29 is
combined with a pseudo-noise (PN) sequence at a rate of 1228.8 kbps, i.e., four PN bits for each
signal bit. In essence, each bit of the 307.2 kbps stream out of the Walsh encoder is repeated
four times (to achieve the 1228.8 kbps rate) and is then added mod-2 to the PN sequence. This
further spreading provides diversity over the available 1.25 MH bandwidth.

The constraint length here is n = 42 binary digits, so the period of the cycle is 242 − 1 (about
41 days). We can ignore the difference between simplex and orthogonal, and simply regard each
cycle as orthogonal to each other cycle. Since the cycle is so long, however, it is better to simply
approximate each cycle as a sequence of iid binary digits. There are several other PN sequences
used in the IS-95 standard, and this one, because of its constraint length, is called the “long PN
sequence.” PN sequences have many interesting properties, but for us it is enough to view them
as iid but also known to the receiver.

The initial state of the long PN sequence is used to distinguish between different cell phones, and
in fact this initial state is the only part of the transmitter system that is specific to a particular
cell phone.

The resulting binary stream, after adding the long PN sequence, is at a rate of 1.2288 Mbps.
This stream is duplicated into two streams prior to being quadrature modulated onto a cosine
and sine carrier. The cosine stream is added mod-2 to another PN-sequence (called the in-phase
or I-PN) sequence at rate 1.2288 Mbps, and the sine stream is added mod-2 to another PN
sequence called the quadrature or Q-PN sequence. The I-PN and Q-PN sequences are the same
for all cell phones and help in demodulation.

28This biorthogonal code is called a (64, 7, 32) Reed Muller code in the coding literature
29We visualized mapping the Hadamard binary sequences by a 2PAM map into Walsh functions for simplicity.

For implementation, it is more convenient to maintain binary (0,1) sequences until the final steps in the modulation
process are completed.
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The final part of modulation is for the two binary streams to go through a 2-PAM map into
digital streams of ±a. Each of these streams (over blocks of 256 bits) maintains the orthogonality
of the 64 Walsh functions. Each of these streams is then passed through a baseband filter with
a sharp cutoff at the Nyquist bandwidth of 614.4 KH. This is then quadrature modulated onto
the carrier with a bandwidth of 614.4 KH above and below the carrier, for an overall bandwidth
of 1.2288 MH. Note that almost all the modulation operation here is digital, with only the
final filter and modulation being analog. The question of what should be done digitally and
what in analog form (other than the original binary interface) is primarily a question of ease of
implementation.

A block diagram of the modulator is shown in Figure 9.17.
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Figure 9.17: Block diagram of Source and Channel Encoding

Next consider the receiver. The fixed PN sequences that have been added to the Walsh functions
do not alter the orthogonality of the signal set, which now consists of 64 functions, each of length
256 and each (viewed at baseband) containing both a real and imaginary part. The received
waveform, after demodulation to baseband and filtering, is passed through a Rake receiver
similar to the one discussed earlier. The Rake receiver here has a signal set of 64 signals rather
than 2. Also, the channel here is viewed not as taps at the sampling rate, but rather as 3 taps
at locations dynamically moved to catch the major received paths.

As mentioned before, the detection is non-coherent rather than coherent.

The output of the rake receiver is a likelihood value for each of the 64 hypotheses. This is
then converted into a likelihood value for each of the 6 bits in the inverse of the 6 bit to 64 bit
Hadamard code map.

One of the reasons for using an interleaver between the convolutional code and the Walsh function
encoder is now apparent. After the Walsh function detection, the errors in the string of 6 bits
from the detection circuit have highly correlated errors. The Viterbi decoder does not work well
with bursts of errors, so the interleaver spreads these errors out, allowing the Viterbi decoder to
operate with noise that is relatively independent from bit to bit.

9.9.5 Multiaccess Interference in IS95

A number of cell phones will use the same 1.2288 MH frequency band in communicating with the
same base station, and other nearby cell phones will also use the same band in communicating
with their base stations. We now want to understand what kind of interference these cell phones
cause for each other. Consider the detection process for any given cell phone and the effect of
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the interference from the other cell phones.

Since each cell phone uses a different phase of the long PN sequence, the PN sequences from the
interfering cell phones can be modeled as random iid binary streams. Since each of these streams
is modeled as iid, the mod-2 addition of the PN stream and the data is still an iid stream of
binary digits. If the filter used before transmission is very sharp (which it is, since the 1.2288
MH bands are quite close together), the Nyquist pulses can be approximated by sinc pulses. It
also makes sense to model the sample clock of each interfering cell phone as being uniformly
distributed. This means that the interfering cell phones can be modeled as being wide sense
stationary with a flat spectrum over the 1.2288 MH band.

The more interfering cell phones there are in the same frequency band, the more interference
there is, but also, since these interfering signals are independent of each other, we can invoke
the central limit theorem to see that this aggregate interference will be approximately Gaussian.

To get some idea of the effect of the interference, assume that each interfering cell phone is
received at the same baseband energy per information bit given by Eb. Since there are 9600
information bits per second entering the encoder, the power in the interfering waveform is then
9600Eb. This noise is evenly spread over 2,457,600 dimensions per second, so is (4800/2.4576×
106)Eb = Eb/512 per dimension. Thus the noise per dimension is increased from N0/2 to
(N0/2 + kEb/512) where k is the number of interferers. With this change, (9.80) becomes

Pr(e) ≤ 63
2

exp
[ −3Eb

N0 + kEb/256

]
. (9.81)

In reality, the interfering cell phones are received with different power levels, and because of this,
the system uses a fairly elaborate system of power control to attempt to equalize the received
powers of the cell phones being received at a given base station. Those cell phones being received
at other base stations presumably have lower power at the given base station, and thus cause
less interference. It can be seen that with a large set of interferers, the assumption that they
form a Gaussian process is even better than with a single interferer.

The factor of 256 in (9.81) is due to the spreading of the waveforms (sending them in a bandwidth
of 1.2288 MH rather than in a narrow band. This spreading, of course, is also the reason why
appreciable numbers of other cell phones must use the same band. Since voice users are typically
silent half the time while in a conversation, and the cell phone need send no energy during these
silent periods, the number of tolerable interferers is doubled.

The other types of cellular systems (GSM and TDMA) attempt to keep the interfering cell
phones in different frequency bands and time slots. If successful, this is, of course, preferable to
CDMA, since there is then no interference rather than the limited interference in (9.81). The
difficulty with these other schemes is that frequency slots and time slots must be reused by
cell phones going to other cell stations (although preferably not by cell phones connected with
neighboring cell stations). The need to avoid slot re-use between neighboring cells leads to very
complex algorithms for allocating re-use patterns between cells, and these algorithms cannot
make use of the factor of 2 due to users being quiet half the time.

Because these transmissions are narrow band, when interference occurs, it is not attenuated by
a factor of 256 as in (9.81). Thus the question boils down to whether it is preferable to have a
large number of small interferers or a small number of larger interferers. This, of course, is only
one of the issues that differ between CDMA systems and narrow band systems. For example,
narrow band systems cannot make use of rake receivers, although they can make use of many
techniques developed over the years for narrow band transmission.
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9.10 Summary of Wireless Communication

Wireless communication differs from wired communication primarily in the time-varying nature
of the channel and the interference from other wireless users. The time-varying nature of the
channel is the more technologically challenging of the two, and has been the primary focus of
this chapter.

Wireless channels frequently have multiple electromagnetic paths of different lengths from trans-
mitter to receiver and thus the receiver gets multiple copies of the transmitted waveform at
slightly different delays. If this were the only problem, then the channel could be represented
as a linear time-invariant (LTI) filter with the addition of noise, and this could be treated as a
relatively minor extension to the non-filtered channels with noise studied in earlier chapters.

The problem that makes wireless communication truly different is the fact that the different
electromagnetic paths are also sometimes moving with respect to each other, thus giving rise to
different Doppler shifts on different paths.

Section 9.3 showed that these multiple paths with varying Doppler shifts lead to an input/output
model which, in the absence of noise, is modeled as a linear time-varying (LTV) filter h(τ, t),
which is the response at time t to an impulse τ seconds earlier. This has a time varying system
function ĥ(f, t) which, for each fixed t, is the Fourier transform of h(τ, t). These LTV filters
behave in a somewhat similar fashion to the familiar LTI filters. In particular, the channel input
x(t) and noise-free output y(t) are related by the convolution equation, y(t) =

∫
h(τ, t)x(t−τ) dτ .

Also, y(t), for each fixed t, is the inverse Fourier transform of x̂(f)ĥ(f, t). The major difference
is that ŷ(f) is not equal to x̂(f)ĥ(f, t) unless ĥ(f, t) is non-varying in t.

The major parameters of a wireless channel (at a given carrier frequency fc) are the Doppler
spread D and the time spread L. The Doppler spread is the difference between the largest and
smallest significant Doppler shift on the channel (at fc). It was shown to be twice the bandwidth
of |ĥ(fc, t)| viewed as a function of t. Similarly, L is the time spread between the longest and
shortest multipath delay (at a fixed output time t0). It was shown to be twice the ‘bandwidth’
of |ĥ(f, t0)| viewed as a function of f .

The coherence time Tcoh and coherence frequency Fcoh were defined as Tcoh = 1
2D and Fcoh =

1
2L . Qualitatively, these parameters represent the duration of multipath fades in time and the
duration over frequency respectively. Fades, as their name suggests, occur gradually, both in
time and frequency, so these parameters represent duration only in an order-of-magnitude sense.

As shown in Section 9.4, these bandpass models of wireless channels can be converted to baseband
models and then converted to discrete time models. The relation between the bandpass and
baseband model is quite similar to that for non-fading channels. The discrete time model relies
on the sampling theorem, and, while mathematically correct, can somewhat distort the view of
channels with a small number of paths, sometimes yielding only one tap, and sometimes yielding
many more taps than paths. Nonetheless this model is so convenient for acquiring insight about
wireless channels that it is widely used, particularly among those who dislike continuous-time
models.

Section 9.5 then breaks the link with electromagnetic models and views the baseband tapped
delay line model probabilistically. At the same time, WGN is added. A one-tap model cor-
responds to situations where the transmission bandwidth is narrow relative to the coherence
frequency Fcoh and multitap models correspond to the opposite case. We generally model the
individual taps as being Rayleigh faded, corresponding to a large number of small independent
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paths in the corresponding delay range. Several other models, including the Rician model and
non-coherent deterministic model, were analyzed, but physical channels have such variety that
these models only provide insight into the types of behavior to expect. The modeling issues are
quite difficult here, and our point of view has been to analyze the consequences of a few very
simple models.

Consistent with the above philosophy, Section 9.6 analyzes a single tap model with Rayleigh
fading. The classical Rayleigh fading error probability, using binary orthogonal signals and no
knowledge of the channel amplitude or phase, is calculated to be 1/[2 + Eb/N0]. The classical
error probability for non-coherent detection, where the receiver knows the channel magnitude
but not the phase, is also calculated and compared with the coherent result as derived for non-
faded channels. For large Eb/N0, the results are very similar, saying that knowledge of the phase
is not very important in that case. However, the non-coherent detector does not use the channel
magnitude in detection, showing that detection in Rayleigh fading would not be improved by
knowledge of the channel magnitude.

The conclusion from this study is that reasonably reliable communication for wireless channels
needs diversity or coding or needs feedback with rate or power control. With Lth order diversity
in Rayleigh fading, it was shown that error probability tends to 0 as (Eb/4N0)−L for large
Eb/N0. If the magnitude of the various diversity paths are known, then the error probability
can be made still smaller.

Knowledge of the channel as it varies can be helpful in two ways. One is to reduce the error
probability when coding and/or diversity are used, and the other is to exercise rate control or
power control at the transmitter. Section 9.7 analyzes various channel measurement techniques,
including direct measurement by sending known probing sequences and measurement using rake
receivers. These are both widely used and effective tools.

Finally, all of the above analysis and insight about wireless channels is brought to bear in Section
9.9, which describes the IS95 CDMA cellular system. In fact, this section illustrates most of the
major topics throughout this text.

9A Appendix: Error probability for non-coherent detection

Under hypothesis U=(a, 0), |V0| is a Rician random variable R which has the density30

fR(r) =
r

WN0/2
exp

{
−r2 + a2g2

WN0

}
I0

(
rag

WN0/2

)
, r ≥ 0, (9.82)

where I0 is the modified Bessel function of zeroth order. Conditional on U=(0, a), |V1| has the
same density, so the likelihood ratio is

f [(|v0|, |v1|) |U=(a, 0)]
f [(|v0|, |v1|) |U=(0, a)]

=
I0(2|v0|ag/WN0)
I0(2|v1|ag/WN0)

. (9.83)

I0 is known to be monotonic increasing in its argument, which verifies that the maximum
likelihood decision rule is to choose U=(a, 0) if |v0| > |v1| and choose U=(0, a) otherwise.

By symmetry, the probability of error is the same for either hypothesis, and is given by

Pr(e) = Pr
{
|V0|2 ≤ |V1|2) | U=(a, 0)

}
= Pr

{
(|V0|2 > |V1|2) | U=(0, a)

}
. (9.84)

30See, for example, Proakis, [17], p. 304.
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This can be calculated by straightforward means without any reference to Rician rv’s or Bessel
functions. We calculate the error probability, conditional on hypothesis U=(a, 0), and do this
by returning to rectangular coordinates. Since the results are independent of the phase φi of Gi

for i = 0 or 1, we will simplify our notation by assuming φ0 = φ1 = 0.

Conditional on U=(a, 0), |V1|2 is just |Z1|2. Since the real and imaginary parts of Z1 are iid
Gaussian with variance WN0/2 each, |Z1|2 is exponential with mean WN0. Thus, for any x ≥ 0,

Pr(|V1|2 ≥ x | U=(a, 0)) = exp
(
− x

WN0

)
. (9.85)

Next, conditional on hypothesis U=(a, 0) and φ0 = 0, we see from (9.57) that V0 = ag + Z0.
Letting V0,re and V0,im be the real and imaginary parts of V0, the probability density of V0,re and
V0,im, given hypothesis U=(a, 0) and φ0 = 0 is

f(v0,re, v0,im | U=(a, 0)) =
1

2πWN0/2
exp

(
−

[v0,re − ag]2 + v2
0,im

WN0

)
. (9.86)

We now combine (9.85) and (9.86). All probabilities below are implicitly conditioned on hy-
pothesis U=(a, 0) and φ0 = 0. For a given observed pair v0,re, v0,im, an error will be made if
|V1|2 ≥ v2

0,re + v2
0,im. Thus,

Pr(e) =
∫∫

f(v0,re, v0,im |U=(a, 0)) Pr(|V1|2 ≥ v2
0,re + v2

0,im) dv0,re dv0,im

=
∫∫

1
2πWN0/2

exp

(
−

(v0,re − ag)2 + v2
0,im

WN0

)
exp

(
−

v2
0,re + v2

0,im

WN0

)
dv0,re dv0,im.

The following equations combine these exponentials, “complete the square” and recognize the
result as simple Gaussian integrals.

Pr(e) =
∫∫

1
2πWN0/2

exp

(
−

2v2
0,re − 2agv0,re + a2g2 + 2v2

0,im

WN0

)
dv0,re dv0,im

=
1
2

∫∫
1

2πWN0/4
exp

(
−

(v0,re − 1
2ag)2 + v2

0,im + 1
4a2g2

WN0/2

)
dv0,re dv0,im

=
1
2

exp
(
− a2g

2WN0

) ∫∫
1

2πWN0/4
exp

(
−

(v0,re − 1
2ag)2 + v2

0,im

WN0/2

)
dv0,re dv0,im.

Integrating the Gaussian integrals,

Pr(e) =
1
2

exp
(
− a2g2

2WN0

)
. (9.87)
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9.E Exercises

9.1. (a) Eq. (9.6) is derived under the assumption that the motion is in the direction of the line
of sight from sending antenna to receiving antenna. Find this field under the assumption
that there is an arbitrary angle φ between the line of sight and the motion of the receiver.
Assume that the time range of interest is small enough that changes in (θ, ψ) can be ignored.
(b) Explain why, and under what conditions, it is reasonable to ignore the change in (θ, ψ)
over small intervals of time.

9.2. Eq. (9.10) is derived under the assumption that r(t) ≈ r0 . Derive an expression for the
received waveform for general r(t). Hint: Express each term in (9.9) as the sum of two
terms, one the approximation used in (9.10) and the other a correction term. Interpret
your result.

9.3. (a) Let r1 be the length of the direct path in Figure 9.4. Let r2 be the length of the reflected
path (summing the path length from the transmitter to ground plane and the path length
from ground plane to receiver). Show that as r increases, r2 − r1 is asymptotically equal to
b/r for some constant r; find the value of b. Hint: Recall that for x small,

√
1 + x ≈ (1+x/2)

in the sense that [
√

1 + x − 1]/x → 1/2 as x → 0.
(b) Assume that the received waveform at the receiving antenna is given by

Er(f, t) =
� [α exp{2πi[ft − fr1/c]]

r1
− � [α exp{2πi[ft − fr2/c]]

r2
. (a)

Approximate the denominator r2 by r1 in (a) and show that Er ≈ β/r2 for r−1 much
smaller than c/f . Find the value of β.
(c) Explain why this asymptotic expression remains valid without first approximating the
denominator r2 in (a) by r1.

9.4. Evaluate the channel output y(t) for an arbitrary input x(t) when the channel is modeled
by the multipath model of (9.14). Hint: The argument and answer are very similar to that
in (9.20), but you should think through the possible effects of time-varying attenuations
βj(t).

9.5. (a) Consider a wireless channel with a single path having a Doppler shift D1. Assume that
the response to an input exp{2πift} is yf (t) = exp{2πit(f + D1)}. Evaluate the Doppler
spread D and the midpoint between minimum and maximum Doppler shifts ∆. Evaluate
ĥ(f, t), |ĥ(f, t)|, ψ̂(f, t) and |ψ̂(f, t)| for ψ̂ in (9.24). Find the envelope of the output when
the input is cos(2πft).
(b) Repeat part (a) where yf (t) = exp{2πit(f + D1)} + exp{2πitf}.

9.6. (a) Bandpass envelopes: Let yf (t) = e2πiftĥ(f, t) be the response of a multipath channel
to e2πift and assume that f is much larger than any of the channel Doppler shifts. Show
that the envelope of �[yf (t)] is equal to |yf (t)|.
(b) Find the power (�[yf (t)])2 and consider the result of lowpass filtering this power wave-
form. Interpret this filtered waveform as a short-term time-average of the power and relate
the square root of this time-average to the envelope of �[yf (t)].
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9.7. Equations (9.34) and (9.35) give the baseband system function and impulse response for
the simplified multipath model. Rederive those formulas using the slightly more general
multipath model of (9.14) where each attenuation βj can depend on t but not f .

9.8. It is common to define Doppler spread for passband communication as the Doppler spread
at the carrier frequency and to ignore the change in Doppler spread over the band. If fc is 1
gH and W is 1 mH, find the percentage error over the band in making this approximation.

9.9. This illustrates why the tap gain corresponding to the sum of a large number of potential
independent paths is not necessarily well approximated by a Gaussian distribution. Assume
there are N possible paths and each appears independently with probability 2/N . To make
the situation as simple as possible, suppose that if path n appears, its contribution to a
given random tap gain, say G0,0, is equiprobably ±1, with independence between paths.
That is,

G0,0 =
N∑

n=1

θnφn,

where φ1, φ2, . . . , φN are iid random variables taking on the value 1 with probability 2/N
and taking on the value 0 otherwise and θ1, . . . , θN are iid and equiprobably ±1.
(a) Find the mean and variance of G0,0 for any N ≥ 1 and take the limit as N → ∞.
(b) Give a common sense explanation of why the limiting rv is not Gaussian. Explain why
the central limit theorem does not apply here.
(c) Give a qualitative explanation of what the limiting distribution of G0,0 looks like. If
this sort of thing amuses you, it is not hard to find the exact distribution.

9.10. Let ĝ(f, t) be the baseband equivalent system function for a linear time-varying filter, and
consider baseband inputs u(t) limited to the frequency band (−W/2,W/2). Define the
baseband limited impulse response g(τ, t) by

g(τ, t) =
∫ W/2

−W/2
ĝ(f, t) exp{2πifτ} df.

a) Show that the output v(t) for input u(t) is

v(t) =
∫

τ
u(t − τ)g(τ, t) dτ.

b) For the discrete-time baseband model of (9.41), find the relationship between gk,m and
g(k/W, m/W). Hint: it is a very simple relationship.
c) Let G(τ, t) be a random variable whose sample values are g(τ, t) and define

R(τ, t′) =
1
W

E{G(τ, t)G∗(τ, t + t′)}.

What is the relationship between R(τ, t′) and R(k,∆) in (9.46)?
d) Give an interpretation to

∫
τ R(τ, 0)dτ and indicate how it might change with W. Can

you explain, from this, why R(k,∆) is defined using the scaling factor W?
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9.11. (a) Average over gain in the non-coherent detection result in (9.59) to rederive the Rayleigh
fading error probability.
(b) Assume narrow-band fading with a single tap Gm. Assume that the sample value of the
tap magnitude, |gm| is measured perfectly and fed back to the transmitter. Suppose that
the transmitter, using pulse position modulation, chooses the input magnitude dynamically
so as to maintain a constant received signal to noise ratio. That is, the transmitter sends
a/|gm| instead of a. Find the expected transmitted energy per binary digit.

9.12. Consider a Rayleigh fading channel in which the channel can be described by a single
discrete-time complex filter tap Gm. Consider binary communication where, for each pair
of time-samples, one of two equiprobable signal pairs is sent, either (a, a) or (a,−a). The
output at discrete times 0 and 1 is given by

Vm = UmG + Zm ; m = 0, 1.

The magnitude of G has density f(|g|) = 2|g| exp{−|g|2}; |g| ≥ 0. G is is the same for
m = 0, 1 and is independent of Z0 and Z1, which in turn are iid circularly symmetric
Gaussian with variance N0/2 per real and imaginary part. Explain your answers in each
part.

(a) Consider the noise transformation

Z ′
0 =

Z1 + Z0√
2

; Z ′
1 =

Z1 − Z0√
2

.

Show that Z ′
0 and Z ′

1 are statistically independent and give a probabilistic characterization
of them.
(b) Let

V ′
0 =

V1 + V0√
2

; V ′
1 =

V1 − V0√
2

.

Give a probabilistic characterization of (V ′
0 , V

′
1) under U=(a, a) and underU=(a,−a).

(c) Find the log likelihood ratio Λ(v′0, v
′
1) and find the MAP decision rule for using v′0, v

′
1

to choose Ũ=(a, a) or (a,−a).
(d) Find the probability of error using this decision rule.
(e) Is the pair V0, V1 a function of V ′

0 , V
′
1? Why is this question relevant?

9.13. Consider the two-tap Rayleigh fading channel of Example 9.8.1. The input U = U0, U1, . . . ,
is one of two possible hypotheses, either u0 = (

√
Eb, 0, 0, 0) or u1 = (0, 0,

√
Eb, 0) where

U	 = 0 for  ≥ 4 for both hypotheses. The output is a discrete time complex sequence
V = V0, V1, . . . , given by

Vm = G0,mUm + G1,mUm−1 + Zm.

For each m, G0,m and G1,m are iid and circularly symmetric complex Gaussian rv’s with
G0,m ∼ CN (0, 1/2) for m both 0 and 1. The correlation of G0,m and G1,m with m is
immaterial, and can be assumed uncorrelated. Assume that the sequence Zm ∼ CN (0, N0)
is a sequence of iid circularly symmetric rv’s. The signal, the noise, and the channel taps are
all independent. As explained in the example, the energy vector X = (X0, X1, X2, X3)T,
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where Xm = |Vm|2 is a sufficient statistic for the hypotheses u0 and u1. Also, as explained
there, these energy variables are independent and exponential given the hypothesis. More
specifically, define α = 1

Eb/2+N0
and β = 1

N0
. Then, given U = u0, the variables X0 and

X1 each have the density αe−αx and X 2 and X 3 each have the density βe−βx, all for x ≥ 0.
Given U = u1, these densities are reversed.
(a) Give the probability density of X conditional on u0.
(b) Show that the log likelihood ratio is given by

LLR(x ) = (β − α)(x0+x1−x2−x3).

(c) Let Y0 = X0 + X1 and let Y1 = X2 + X3. Find the probability density and the
distribution function for Y0 and Y1 conditional on u0.
(d) Conditional on U = u0, observe that the probability of error is the probability that Y1

exceeds Y0. Show that this is given by

Pr(e) =
3α2β + α3

(α + β)3
=

4 + 3Eb
2N0(

2 + Eb
2N0

)3 ,

Hint: To derive the second expression, first convert the first expression to a function of
β/α. Recall that

∫ ∞
0 e−ydy =

∫ ∞
0 ye−ydy = 1 and

∫ ∞
0 y2e−ydy = 2.

(e) Explain why the assumption that Gk,i and Gk,j are uncorrelated for i �= j was not
needed.

9.14. (Lth order diversity) This exercise derives the probability of error for Lth order diversity
on a Rayleigh fading channel. For the particular model described at the end of Section 9.8,
there are L taps in the tapped delay line model for the channel. Each tap k multiplies the
input by Gk,m ∼ CN (0, 1/L), 0 ≤ k ≤ L−1. The binary inputs are u0 = (

√
Eb, 0, . . . , 0

and u1 = (0, . . . , 0,
√

Eb, 0, . . . , 0), where u0 and u1 contain the signal at times 0 and L
respectively.
The complex received signal at time m is Vm =

∑L−1
k=0 Gk,mUm−k + Zm for 0 ≤ m ≤ 2L−1,

where Zm ∼ CN (0, N0) is independent over time and independent of the input and channel
tap gains. As shown in Section 9.8, the set of energies, Xm = |Vm|2, 0 ≤ m ≤ 2L−1 are
conditionally independent, given either u0 or u1, and constitute a sufficient statistic for
detection; the ML detection rule is to choose u0 if

∑L−1
m=1 Xm ≥

∑2L−1
m=L Xm and choose

u1 otherwise. Finally, conditional on u0, X0, . . . , XL−1 are exponential with mean N0 +√
Eb/L. Thus for 0 ≤ m < L, Xm has the density α exp(−αXm) where α = 1

Eb/L+N0
.

Similarly, for L ≤ m < 2L, Xm has the density β exp(−βXm) where β = 1
N0

.
(a) The following parts of the exercise demonstrate a simple technique to calculate the
probability of error Pr(e) conditional on either hypothesis. This is the probability that the
sum of L iid exponential rv’s of rate α is less than the sum of L iid exponential rv’s of rate
β = N0. View the first sum, i.e.,

∑L−1
m=0 Xm (given u0) as the time of the Lth arrival in

a Poisson process of rate α and view the second sum,
∑2L−1

m=L Xm, as the time of the Lth
arrival in a Poisson process of rate β (see Figure 9.18). Note that the notion of time here
has nothing to do with the actual detection problem and is strictly a mathematical artifice
for viewing the problem in terms of Poisson processes.
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�X0 X1 X2

XL XL+1 XL+2

Figure 9.18: A Poisson process with interarrival times {Xk; 0 ≤ k < L}, and another with
interarrival times {XL+�; 0 ≤  < L}. The combined process can be shown to be a Poisson
process of rate α + β.

Show that Pr(e) is the probability that, out of the first 2L − 1 arrivals in the combined
Poisson process above, at least L of those arrivals are from the first process.
(b) Each arrival in the combined Poisson process is independently drawn from the first
process with probability p = α

α+β and from the second process with probability 1−p = β
α+β .

Show that

Pr(e) =
2L−1∑
	=L

(
2L − 1



)
p	(1 − p)2L−1−	.

(c) Express this result in terms of α and β and then in terms of Eb
LN0

.
(d) Use the result above to re-calculate Pr(e) for Rayleigh fading without diversity (i.e.,
with L = 1). Use it with L = 2 to validate the answer in Exercise 9.13.
(e) Show that Pr(e) for very large Eb/N0 decreases with increasing L as [Eb/(4N0)]L.
(f) Show that Pr(e) for Lth order diversity (using ML detection as above) is exactly the
same as the probability of error that would result by using (2L−1) order diversity, making
a hard decision on the basis of each diversity output, and then using majority rule to make
a final decision.

9.15. Consider a wireless channel with two paths, both of equal strength, operating at a carrier
frequency fc. Assume that the baseband equivalent system function is given by

ĝ(f, t) = 1 + exp{iφ} exp[−2πi(f + fc) τ2(t)]. (9.88)

(a) Assume that the length of path 1 is a fixed value r0 and the length of path 2 is
r0 + ∆r + vt. Show (using (9.88)) that

ĝ(f, t) ≈ 1 + exp{iψ} exp
[
−2πi

(
f∆r

c
+

fcvt

c

)]
. (9.89)

Explain what the parameter ψ is in (9.89); also explain the nature of the approximation
concerning the relative values of f and fc.
(b) Discuss why it is reasonable to define the multipath spread L here as ∆r/c and to
define the Doppler spread D as fcv/c.
(c) Assume that ψ = 0, i.e., that ĝ(0, 0) = 2. Find the smallest t > 0 such that ĝ(0, t) = 0.
It is reasonable to denote this value t as the coherence time Tcoh of the channel.
(d) Find the smallest f > 0 such that ĝ(f, 0) = 0. It is reasonable to denote this value of
f as the coherence frequency Fcoh of the channel.
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9.16. Union bound: Let E1, E2, . . . , Ek be independent events each with probability p.
(a) Show that Pr(∪k

j=1Ej) = 1 − (1 − p)k.

(b) Show that pk − (pk)2/2 ≤ Pr(∪k
j=1Ej) ≤ pk. Hint: One approach is to demonstrate

equality at p = 0 and then demonstrate the inequality for the derivitive of each term with
respect to p. For the first inequality, demonstrating the inequality for the derivitive can be
done by looking at the second derivitive.

9.17. (a) Let u be an ideal PN sequence, satisfying
∑

	 u	u
∗
	+k = 2a2nδk. Let b = u ∗ g for some

channel tap gain g . Show that ‖b‖2 = ‖2u‖2‖g‖2. Hint: One approach is to convolve b
with its matched filter b†. Use the commutativity of convolution along with u ∗ u†. b∗ as
g ∗u and look at the result of passing b through a filter matched to itself. (b) If u0 and u1

are each ideal PN sequences as in part (a), show that b0 = u0 ∗ g and b1 = u1 ∗ g satisfy
‖b0‖2 = ‖b0‖2.

9.18. This exercise explores the difference between a rake receiver that estimates the analog
baseband channel and one that estimates a discrete-time model of the baseband channel.
Assume that the channel is estimated perfectly in each case, and look at the resulting
probability of detecting the signal incorrectly.
We do this, somewhat unrealistically, with a 2-PAM modulator sending sinc(t) given H=0
and −sinc(t) given H=1. We assume a channel with two paths having an impulse response
δ(t)− δ(t−ε) where 0 < ε � 1. The received waveform, after demodulation from passband
to baseband is

V (t) = ±[sinc(t) − sinc(t − ε)] + Z(t),

where Z(t) is WGN of spectral density N0/2. We have assumed for simplicity that the
phase angles due to the demodulating carrier are 0.
(a) Describe the ML detector for the analog case where the channel is perfectly known at
the receiver.
(b) Find the probability of error Pr(e) in terms of the energy of the low pass received signal,
E = ‖sinc(t) − sinc(t−ε)‖2.
(c) Approximate E by using the approximation sinc(t−ε) ≈ sinc(t)−ε sinc′(t). Hint: recall
the Fourier transform pair u′(t) ↔ 2πifû(f).
(d) Next consider the discrete-time model where, since the multipath spread is very small
relative to the signaling interval, the discrete channel is modeled with a single tap g. The
sampled output at epoch 0 is ±g[1 − sinc(−ε)] + Z(0). We assume that Z(t) has been
filtered to the baseband bandwidth W = 1/2. Find the probability of error using this
sampled output as the observation and assuming that g is known.
(e) The probability of error for both the result in (d) and the result in (b) and (c) approach
1/2 as ε → 0. Contrast the way in which each result approaches 1/2.
(f) Try to explain why the discrete approach is so inferior to the analog approach here.
Hint: What is the effect of using a single tap approximation to the sampled low pass channel
model.
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