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ABOUT THE LOWER BOUNDS FOR THE MULTIPLE TESTING

PROBLEM

YANNICK BARAUD

Abstract. Given an observed random variable X, consider the problem of re-
covering its distribution among a finite family of candidate ones. The two-point
inequality, Fano’s lemma and more recently an inequality due to Venkataramanan
and Johnson (2018) allow to bound the maximal probability of error over the family
from below. The aim of this paper is to give a very short and simple proof of all
these results simultaneously and improve in passing the inequality of Venkatara-
manan and Johnson.

1. Introduction

Consider a finite family P = {P0 = p0 · µ, . . . , PN = pN · µ} of N + 1 > 2
distinct probabilities dominated by a measure µ on a measurable space (E, E) and
an observation X drawn from an unknown probability P⋆ that belongs to P . A
very basic but important problem in Statistics is to recover P⋆ among P with a
probability of error that we wish as small as possible. Given an estimator “T (X) with
values J = {0, . . . , N}, we evaluate its maximal risk by the quantity

sup
j∈J

Pj

î“T (X) 6= j
ó

= 1 − inf
j∈J

Pj

î“T (X) = j
ó

= 1 − R(“T ,P )

and the minimax risk associated to the family P is merely

inf
T̂ (X)

sup
j∈J

Pj

î“T (X) 6= j
ó

= 1 − sup
T̂ (X)

inf
j∈J

Pj

î“T (X) = j
ó

= 1 − R(P )

where inf
T̂ (X)

and sup
T̂ (X)

refer respectively to the infimum and the supremum over

all estimators “T (X) with values in J . The problem of calculating the minimax risk
is a difficult task in general and in most situations only upper and lower bounds
can be established. In the present paper, we focus on the problem of bounding the
minimax risk from below or equivalently that of bounding the quantity R(P ) from
above (which is more convenient). To tackle this problem, the basic approach is to

replace the infimum by a mean: for all estimators “T (X),

R(“T ,P ) = inf
j∈J

Pj

î“T (X) = j
ó
6

1

N + 1

N∑

j=0

Pj

î“T (X) = j
ó

= B(“T ,P ).
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so that

(1) R(P ) 6 B(P ) = sup
T̂ (X)

B(“T ,P ).

It is therefore enough to bound B(P ) from above, what we shall do.

When N = 1, the problem reduces to that of testing between the two simple
hypotheses “P⋆ = P0” and “P⋆ = P1”. Denoting by ‖P0 − P1‖ the total variation
distance between P0 and P1, that is

‖P0 − P1‖ =
1

2

∫

E
|p1 − p0| dµ =

∫

E
(p1 − p0)+ dµ

where (x)+ = max{x, 0} denotes the positive part of x, it is well known from Le
Cam (1973) that

2(1 − B(P )) = inf
T̂ (X)

î
P0

î“T (X) = 1
ó

+ P1

î“T (X) = 0
óó

= 1 − ‖P0 − P1‖(2)

which implies

(3) B(P ) 6
1

2
(1 + ‖P0 − P1‖) .

Inequality (3) (which is actually an equality) shows that the problem of discriminating
correctly between the probabilities P0 and P1 is impossible when their total variation
distance is too small. It is also well-known that the infimum in (2) is reached for a

maximum likelihood estimator, that is any random variable “T ⋆(X) that satisfies

“T ⋆(X) =





1 if p1(X) > p0(X)

0 if p1(X) < p0(X).

For N > 2, an alternative and celebrated bound is known as Fano’s Lemma. It is
based on the Kullback-Leibler divergence (KL-divergence for short). We recall that
the KL-divergence between the probabilities P = p · µ and Q = q · µ is defined as

K(P, Q) =





∫
E p log (p/q) dµ when P ≪ Q

+∞ otherwise.

One the one hand, the KL-divergence has the drawback to be possibly infinite (while
the total variance distance remains always bounded by 1), on the other hand it
possesses good properties with respect to product measures (which is the common
situation when one observes a sample X = (X1, . . . , Xn)): if P = P ⊗n and Q = P ⊗n

K(P, Q) = nK(P, Q).

Unfortunately there is no such connection for the total variation distance which makes
it unattractive.
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The following version of Fano’s Lemma can be found in Ibragimov and Has’minskii (1981)
page 325

(4) R(P ) 6
K̃ + log 2

log N
with K̃ =

1

N + 1

N∑

j=0

K
Ä
Pj, P

ä
, P =

1

N + 1

N∑

j=0

Pj.

The proof is not very long but requires to know some Information Theory. It is
however expected that the quantity log N in the denominator could be replaced by
log(N + 1). This of course makes no difference for large values of N but leads to a
slight improvement when these values are moderate. A step in this direction is due
to Lucien Birgé (2005) who suggested this new version of Fano’s lemma:

(5) R(P ) 6 κ ∨

(
(1 + 1/N)K

log(N + 1)

)
with K =

1

N + 1

N∑

j=0

K(Pj, P0)

and κ = 0.7. Pascal Massart (2007) proved an analogue of Lucien Birgé’s result
with a (worse) constant κ ≈ 0.84 but a (slightly) shorter proof. Both proofs are
moderately long and use the variational formula of the KL-divergence.

The main advantage of (5) lies in the fact that log N is now replaced by log(N + 1)
but it requires that a probability among {P0, . . . , PN}, named P0 here, dominates
all the others.

Very recently, Venkataramanan and Johnson (2018) established a new inequality
that provides an alternative to Fano’s Lemma. Their result is the following: for all
λ > 0 and all probability Q = q · µ that dominates P ,

(6) R(P ) 6 B(P ) 6
C(λ)

N + 1




N∑

j=0

∫

E
p1+λ

j q−λdµ




1/(1+λ)

,

with C(λ) = (1 + λ)λ−λ/(1+λ) > 1. The proof is quite short and requires very few
tools. A nice feature of their bound lies in the facts that it is possible to choose
the probability Q to make the computation as simple as possible and also the value
λ > 0 to optimize the bound. We refer the reader to their paper for further details
on the optimality of (6), in particular how it compares and improves Fano’s lemma,
and how it contextualizes in the literature on multiple testing.

In the next section we present a very simple approach that leads to a proof of (3),
an analogue of (4) and a (slight) improvement of (6), namely (6) with C(λ) = 1.

2. Our main result

The proof of the following result is postponed to the end of the section.

Theorem 1. For any probability Q = q · µ that dominates P ,

(7) 1 6 (N + 1)B(P ) = EQ

ñ
max
j∈J

pj

q
(X)

ô
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where EQ denotes the expectation with repect to Q. Moreover, for any function ϕ
that is convex, non-increasing and non-negative on R+,

(8) ϕ
Ä
(N + 1)B(P )

ä
6

N∑

j=0

EQ

ñ
ϕ

Ç
pj

q
(X)

åô
.

When N = 1, choose ϕ(u) = (u − 1)+ and Q = (P0 + P1)/2 that fulfil the
assumptions of our theorem. Inequalities (7) and (8) immediately leads to

2B(P ) − 1 6 ‖P0 − Q‖ + ‖P1 − Q‖ = ‖P1 − P0‖

and gives (3).

For N > 2, choose

ϕ = ϕ1l[1,+∞) with ϕ(u) = u log u − u + 1 for all u > 0.

It is easy to check that ϕ is non-negative, convex and satisfies ϕ(1) = 0, hence ϕ is
convex, non-decreasing and non-negative as required. Since ϕ 6 ϕ,

EQ

ñ
ϕ

Ç
pj

q
(X)

åô
6 EQ

ñ
ϕ

Ç
pj

q
(X)

åô
= K(Pj, Q) for all j ∈ J

and any Q that dominates P . Using (7) we derive that

ϕ
Ä
(N + 1)B(P )

ä
= ϕ

Ä
(N + 1)B(P )

ä

= (N + 1)
î
B(P ) log(N + 1) + ϕ

Ä
B(P )

äó
− N

> (N + 1)B(P ) log(N + 1) − N.

Taking Q = P, we deduce from Inequality (8) this analogue of Fano’s Lemma (4):

B(P ) 6
K̃ + N/(N + 1)

log(N + 1)
6

K̃ + 1

log(N + 1)
.

Finally taking for u, λ > 0, ϕ(u) = u1+λ we deduce from (8) that

Ä
(N + 1)B(P )

ä1+λ
6

N∑

j=1

∫

E
p1+λ

j q−λdµ,

for any probability Q = q · µ that dominates P , which implies (6) with C(λ) = 1.

Proof of Theorem 1. Obviously pj 6 maxj′∈J pj′ for all j ∈ J . Hence, for all esti-

mators “T (X) with values in J = {0, . . . , N},

B(“T ,P ) =
1

N + 1

N∑

j=0

Pj

î“T (X) = j
ó

=
1

N + 1

N∑

j=0

∫

E
1l

{T̂ (x)=j}
pj(x)dµ(x)

6
1

N + 1

N∑

j=0

∫

E
1l

{T̂ (x)=j}
max
j∈J

pj(x)dµ(x) =
1

N + 1

∫

E
max
j∈J

pj(x)dµ(x).
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This upper bound is sharp and achieved for any maximum likelihood estimator,
namely any estimator “T that satisfies

p
T̂ ⋆(x)

(x) = max
j∈J

pj(x) for µ-almost all x ∈ E.

Consequently, for any probability Q = q · µ that dominates P ,

(N + 1)B(P ) =
∫

E
max
j∈J

pj(x)dµ(x) =
∫

E
max
j∈J

pj

q
(x)q(x)dµ(x) = EQ

ñ
max
j∈J

pj

q
(X)

ô

which proves (7). Finally, the properties of the function ϕ (together with Jensen’s
inequality), lead to the following series of inequalities

ϕ
Ä
(N + 1)B(P )

ä
= ϕ

Ç
EQ

ñ
max
j∈J

pj

q
(X)

ôå
6 EQ

ñ
ϕ

Ç
max
j∈J

pj

q
(X)

åô

= EQ

ñ
max
j∈J

ϕ

Ç
pj

q
(X)

åô
6

N+1∑

j=0

EQ

ñ
ϕ

Ç
pj

q
(X)

åô
,

and finally to (8). �
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