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The polynomial method for random matrices

N. Raj Rao∗ Alan Edelman†

January 16, 2006

Abstract

We define a class of “algebraically characterizable” random matrices. These are random matrices
for which the Stieltjes transform of the limiting spectral measure is an algebraic function. The famous
semi-circle law for Wigner matrices and the Marčenko-Pastur law for Wishart matrices are special cases.

The practical utility of this definition can be succinctly summarized: if a random matrix is shown
to be algebraic then its limiting spectral measure can be computed using a simple root-finding algo-
rithm. Furthermore, if the moments exist, then the corresponding moment generating function will be
differentiably finite so that we will often be able to enumerate them efficiently in closed form.

Algebraicity of a random matrix acts as a certificate of the computability of its limiting spectral
measure and moments. We specify the class of such random matrices by its generators and demonstrate
that the transforms of “free probability” that encode free additive and multiplicative convolution can
be expressed as bivariate resultants. We present a simple computational realization, a random matrix
“calculator” as it were, based on the “polynomial method” that finally allows researchers to harness the
power of free probability and infinite random matrix theory.

Key words Random matrices, stochastic eigen-analysis, free probability, algebraic functions, resul-
tants, D-finite series.

1. Introduction

We propose a powerful method that allows us to calculate the eigenvalue distributions of a large class of
random matrices. We see this method as allowing us to expand our reach beyond the well known special cases
such as the semi-circle law [27], the Marčenko-Pastur law [10], the McKay law [11] or their close cousins [4,14].
In particular, we encode transforms of the distribution as roots of a bivariate polynomial equation. Then
canonical operations on the random matrices become operations on the bivariate polynomials.

As a simple example, suppose we take the Wigner matrix, generated in MATLAB as:

G = randn(N)/sqrt(N); A = (G+G’)/sqrt(2);

whose eigenvalues in the N → ∞ limit follow the semicircle law, and the Wishart matrix which may be
generated as:

G = randn(N,2*N)/sqrt(2*N); B = G*G’;

whose eigenvalues in the limit follow the Marčenko-Pastur law. These laws have Stieltjes transforms mA(z)
and mB(z) that are roots of the equations LA

mz(m, z) = 0 and LB
mz(m, z) = 0, respectively, where LA

mz(m, z) ≡
m2 + z m + 1 and LB

mz(m, z) ≡ m2z − (−2 z + 1)m + 2. The sum and product of the random matrices have
eigenvalue distribution in the N → ∞ limit whose Stieltjes transform is a root of the bivariate polynomial

∗MIT Department of Electrical Engineering and Computer Science, Cambridge, MA 02139, raj@mit.edu
†MIT Department of Mathematics, Cambridge, MA 02139, edelman@math.mit.edu

1



The polynomial method 2

equations LA+B
mz (m, z) = 0 and LAB

mz (m, z) = 0, respectively, which can be calculated from LA
mz and LB

mz

alone as shown below.
To compute LA+B

mz , we use the algorithm in Table 9(c). First, we obtain the polynomials LA
rg(r, g) = r−g

and LB
rg(r, g) = (g − 2)r + 2 from LA

mz and LB
mz using the conversions labelled I and II in Table 4. Then we

compute LA+B
rg (r, g) ≡ LA

rg ⊞ r LB
rg = g2 − (2 + r) g − 2 + 2 r, using the definition of ⊞ r in the upper panel of

Table 6. Finally, the polynomial LA+B
mz (m, z) = m3 + (z + 2)m2 − (−2 z + 1)m + 2 can be obtained from

LA+B
rg using the conversions marked I and II in Table 4.

Similarly, to compute LAB
mz , we use the algorithm in Table 9(d). First, we obtain the polynomials

LA
sy(s, y) = y s2 − 1 and LB

sy(s, y) = (2 + y) s − 2 using the conversion labelled IV in Table 4. Then we

compute LAB
sy (s, y) ≡ LA

sy ⊠ s LB
sy =

(
4 y + 4 y2 + y3

)
s2 − 4, using the definition of the ⊠ s operator in the

lower panel of Table 6. Finally, the polynomial LAB
mz (m, z) = m4z2 − 2 m3z + m2 + 4 mz +4 can be obtained

from LAB
sy using the conversion labelled IV in Table 4.

Figure 1 plots the limiting eigenvalue distribution for the Wigner and Wishart matrices as well as their
sum and product. One does not have to stop there; in fact, so long as the limiting density is encoded by a
bivariate polynomial one has access to a whole catalog of transformations (see Tables 8 and 9) on random
matrices for which the eigenvalue distribution in the N → ∞ limit can be computed from LA

mz and LB
mz

alone.
In this article we demonstrate how by encoding probability densities as bivariate polynomials, and deriv-

ing the correct operational laws on this encoding, we can take advantage of powerful symbolic and numerical
techniques to compute these densities and their associated moments. In particular, for the example consid-
ered, algebraically extracting the roots of these polynomials using the cubic or quartic formulas would be of
no use. Our hope in presenting the software version of the catalog operations, encoded as a random matrix
“calculator” [12], alongside the mathematics is that readers will take the code as a starting point for their
own experimentation and develop additional applications of the theory on which our ideas are based.

2. Motivation

A random matrix is a matrix whose elements are random variables. Let AN be an N × N symmet-
ric/Hermitian random matrix. Its empirical distribution function (e.d.f.) is given by

FAN (x) =
Number of eigenvalues of AN ≤ x

N
. (2.1)

We are interested in the associated (discrete or normalized counting) probability measure

fAN
(x) :=

1

N

N∑

i=1

δ(x − λi), (2.2)

where λ1, λ2, . . . , λN are the eigenvalues (counting multiplicities) of AN and δ(·) is the Dirac delta function.
For a large class of random matrices, the empirical distribution function FAN converges in distribution

almost surely (or in probability) as N → ∞ to a non-random distribution function FA. Denote the cor-
responding spectral measure by fA. This predicted spectral measure tends to very well approximate the
eigenvalue distribution of “large enough” random matrices. In other words, the histogram of the eigenvalues
of a random matrix normalized to have area 1 when averaged over many trials or for one large random
matrix will be well approximated by this limiting spectral measure.

The limiting spectral measure can be encoded using the transforms listed in Table 1. The Cauchy/Stieltjes
transform is the most fundamental. The R and S transforms play a role in the computation of the limiting
spectral measure of the sum and product of random matrices respectively. The moment and eta transforms
are minor variations of the Stieltjes transform. Canonical random matrix operations can be expressed explic-
itly as transformations of the first four transforms. We encode these implicitly by deriving the operational
laws on the appropriate bivariate polynomials.
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(a) The limiting spectral measures of the Wigner and Wishart matrices.
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(b) The limiting spectral measures of the sum and product of independent Wigner
and Wishart matrices.

Figure 1: A representative computation using the random matrix calculator.
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3. Our Algebraic Framework

Notation 3.1 (Bivariate polynomial). Let Luv denote a bivariate polynomial of degree Du in u and Dv

in v:

Luv ≡ Luv(·, ·) =

Du∑

j=0

Dv∑

k=0

cjk uj vk =

Du∑

j=0

lj(v)uj . (3.1)

The scalar coefficients cjk are real valued.

Remark 3.2 (Irreducibility). Unless otherwise stated it will be understood that Luv(u, v) is “irreducible”
in the sense that the conditions:

• l0(v), . . . , lDu
(v) have no common factor involving v,

• lDu
(v) 6= 0,

• discL(v) 6= 0,

are satisfied, where discL(v) is the discriminant of Luv(u, v) thought of as a polynomial in v.

We are particularly focused on the root “curves,” u1(v), . . . , uDu
(v), i.e.,

Luv(u, v) = lDu
(v)

Du∏

i=1

(u − ui(v)) .

Informally speaking, when we refer to the bivariate polynomial Luv with roots ui(v) we are actually consid-
ering the equivalence class of rational functions with this set of root curves.

Remark 3.3 (Equivalence class). The equivalence class of Luv(u, v) may be characterized as functions
of the form Luv(u, v)g(v)/h(u, v) where h is relatively prime to Luv(u, v) and g(v) is not identically 0.

A few technicalities (such as poles and singular points) that will be catalogued later in Section 11. remain,
but this is sufficient for allowing us to introduce rational transformations of the arguments and continue to
use the language of polynomials.

Definition 3.4 (Atomic probability density). Let f(x) be a probability measure of the form:

f(x) =

K∑

i=1

pi δ(x − λi),

where the K atoms at λi ∈ R have (non-negative) weights pi subject to
∑

i pi = 1. We refer to f(x) as an
atomic probability density or atomic probability measure and say that f(x) ∈ Patom. Here Patom denotes the
class of atomic probability measures.

Remark 3.5. The probability measure in (2.2) is an atomic probability density.
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Definition 3.6 (Algebraic density). Let f(x) be a probability measure. Consider the Stieltjes transform,
m(z), which is a complex valued function defined on z ∈ C \ R as:

m(z) =

∫
1

x − z
f(x)dx for z ∈ C \ R. (3.2)

If there exists a bivariate polynomial Lmz such that Lmz(m(z), z) = 0 then we refer to f(x) as an algebraic
density or algebraic probability measure and say the f ∈ Palg. Here Palg denotes the class of algebraic prob-
ability measures.

Notation 3.7 (Region of support). Let SA denote the support of fA(x). Let Sδ
A and S−

A denote the
atomic and non-atomic components of the support, respectively. Thus SA = Sδ

A ∪ S−
A .

Definition 3.8 (Positive semi-definite algebraic density). Algebraic densities supported over the posi-
tive real axis are referred to as positive semi-definite. We denote the class of positive semi-definite densities
by P+

alg. Thus, if SA ⊂ [0,∞) then we say that fA(x) ∈ P+
alg.

Some examples of algebraic densities follow.

Example 3.9. An atomic probability density is an algebraic density since its Stieltjes transform is of the
form:

m(z) =

K∑

i=1

pi

λi − z
.

Example 3.10. The Cauchy distribution, which is the probability measure:

f(x) =
1

π(x2 + 1)
,

has a Stieltjes transform m(z) which is the zero of Lmz(m, z) ≡
(
z2 + 1

)
m2 + 2 z m + 1. Hence it is an

algebraic density.

It is often the case that algebraic densities, according to our definition, will also be algebraic functions
themselves. We conjecture that this is a necessary but not sufficient condition. We show that it is not
sufficient by providing the counter-example below.

Counter-example 3.11. The quarter circle law is the probability measure:

f(x) =

√
4 − x2

π
for x ∈ [0, 2].

Its Stieltjes transform given by:

m(z) = −
4 − 2

√
−z2 + 4 ln

(
− 2+

√
−z2+4
z

)
+ zπ

2π
,

is clearly not an algebraic function. Thus f(x) /∈ Palg.
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Let AN , for N = 1, 2, . . . be a sequence of N × N random matrices with real eigenvalues. Let FAN denote
the e.d.f., as in (2.1). Suppose FAN converges weakly to FA almost surely (or in probability) as N → ∞,
then we say that AN → A. Denote the corresponding limiting probability measure by fA.

Notation 3.12 (Mode of convergence). When necessary we highlight the mode of convergence thus: if

AN
a.s.−→ A then the convergence (in distribution) is almost surely; if AN

p−→ A then the convergence (in
distribution) is in probability. When the distinction is not made then it is to be assumed that the results hold
for both modes of convergence.

Remark 3.13. The element A above is not to be interpreted as a matrix. There is no convergence in the
sense of an ∞×∞ matrix. We associate with each A, a probability measure fA.

Definition 3.14 (Atomic random matrix). If fA ∈ Patom then we say that AN is an atomic random
matrix. We represent this as AN → A ∈ Matom where Matom denotes the class of atomic random matrices.

Definition 3.15 (Algebraic random matrix). If fA ∈ Palg then we say that AN is an algebraically
characterizable random matrix (often suppressing the word characterizable for brevity). We represent this
as AN → A ∈ Malg where Malg denotes the class of algebraic random matrices. Note that by definition,
Matom ⊂ Malg.

Remark 3.16. When we label a random matrix AN as algebraic, it is to be understood that we are charac-
terizing the sequence of random matrices AN .

Remark 3.17. It will be assumed that the random matrix transformations operate on and produce well-
defined symmetric/hermitian matrices with real eigenvalues. The conditions will be obvious from context.
Thus, for example, the matrix CN = AN × BN makes sense only if AN or BN or both are positive semi-

definite so that CN = A
1/2
N BNA

1/2
N or CN = B

1/2
N ANB

1/2
N . Here A

1/2
N denotes the symmetric square root

of AN .

Remark 3.18 (Proof by construction). In this article we prove existence of the bivariate polynomial by
construction. Thus, if AN → A ∈ Malg, we assume that LA

mz is known.

4. Main Results

The ability to describe the class of algebraic random matrices and the technique needed to compute the
associated bivariate polynomial is at the crux our investigation. In the theorems that follow, we accomplish
the former by cataloguing random matrix operations that preserve algebraicity of the limiting spectral
measure.

4.1 Deterministic transformations

We first consider some simple deterministic transformations on an algebraic random matrix AN that
produce an algebraic random matrix BN .
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Theorem 4.1. Let AN → A ∈ Malg. Then,

1. BN = (pAN + q IN )/(r AN + s IN ) → B ∈ Malg, if {−s/r} /∈ Sδ
A (see Notation 3.7),

2. AN = Xn,NX
′

n,N then BN = X
′

n,NXn,N → B ∈ Malg,

3. BN = diag(An, α IN−n) → B ∈ Malg,

4. An = diag(BN , α In−N ); BN → B ∈ Malg.

5. BN = (AN )
2 → B ∈ Malg,

Here α, p, q, r, and s are real-valued scalars, n/N → c > 0 as n, N → ∞ and IN is the N×N identity matrix.

Theorem 4.1.1 leads to the useful corollary below.

Corollary 4.1. Let AN → A ∈ Malg. Then,

1. BN = A−1
N → B ∈ Malg, if {0} /∈ Sδ

A

2. BN = αAN → B ∈ Malg,

3. BN = AN + α IN → B ∈ Malg.

A simple extension of Theorem 4.1.3 shows that a block diagonal random matrix CN constructed from
two algebraic random matrices AN and BN is also algebraic.

Theorem 4.2. Let AN → A ∈ Malg and BN → B ∈ Malg. Then, CM = diag(An,BN ) → C ∈ Malg.
Here M = n + N and n/N → c > 0 as n, N → ∞.

4.2 Stochastic transformations

Definition 4.3 (Gaussian-like random matrix). Let YN,L be an N ×L matrix with independent, iden-
tically distributed (i.i.d.) elements having zero mean, unit variance and bounded higher order moments. We
label the matrix GN,L = 1√

L
YN,L as a Gaussian-like random matrix.

We can generate a Gaussian-like random matrix in MATLAB as G = sign(randn(N/L))/sqrt(L).Gaussian-
like matrices are labelled thus because they exhibit the same limiting behavior in the N → ∞ limit as “pure”
Gaussian matrices generated as G = randn(N/L)/sqrt(L).
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Definition 4.4 (Wishart-like random matrix). Let GN,L be a Gaussian-like random matrix. We label
the matrix WN = GN,L×G′

N,L as a Wishart-like random matrix. Let cN = N/L. We denote a Wishart-like
random matrix thus formed by WN (cN ). The limiting spectral measure of the Wishart-like random matrix
is the Marčenko-Pastur law which is an algebraic density.

We now consider some simple stochastic transformations that “blur” the eigenvalues of AN by injecting
additional randomness. We show that canonical operations involving an algebraic random matrix, AN , and
Gaussian-like and Wishart-like random matrices produce an algebraic random matrix BN .

Theorem 4.5. Let AN → A
a.s.−→Malg. Then,

1. BN = AN + G
′

L,NTLGL,N
a.s.−→B ∈ Malg, if TL

a.s.−→T ∈ Matom,

2. BN = AN × WN(cN )
a.s.−→B ∈ Malg, if fA ∈ P+

alg,

3. BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)

′ a.s.−→B ∈ Malg, if fA ∈ P+
alg.

where A
1/2
N denotes a an N ×L matrix such that (A

1/2
N )(A

1/2
N )

′

= AN . Here s is a non-negative real-valued
scalar and cN = N/L → c > 0 as N, L → ∞.

Given two algebraic random matrices AN and BN , we can add and multiply them, provided we spin around
the eigenvectors of one of these matrices randomly, to obtain an algebraic random matrix CN .

Theorem 4.6. Let AN
p−→A ∈ Malg, BN

p−→B ∈ Malg and QN is an N × N Haar orthogonal/unitary
random matrix independent of AN and BN . Then,

1. CN = AN + QNBNQ
′

N

p−→C ∈ Malg

2. CN = AN × QNBNQ
′

N

p−→C ∈ Malg

Here multiplication makes sense only if the resulting matrix has real eigenvalues.

When both fA and fB in Theorem 4.6 are compactly supported, it is possible to strengthen the mode
of convergence to almost surely [9]. With careful analysis, we believe that it should be possible to derive
almost sure convergence when either or both of the densities are non-compact.

Definition 4.7 (Orthogonally/Unitarily invariant random matrix). If the joint distribution of the
elements of a random matrix AN is invariant under orthogonal/unitary transformations, it is referred to as
an orthogonally/unitarily invariant random matrix.

If AN (or BN ) or both are an orthogonally/unitarily invariant sequence of random matrices then Theorem
4.6 can be stated more simply.
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Corollary 4.2. Let AN
p−→A ∈ Malg and BN → B

p−→Malg be a orthogonally/unitarily invariant random
matrix independent of AN . Then,

1. CN = AN + BN
p−→C ∈ Malg

2. CN = AN × BN
p−→C ∈ Malg

Here multiplication makes sense only if the resulting matrix has real eigenvalues.

In the above corollary, the limiting spectral measure of CN is computed from the limiting spectral mea-
sure of AN and BN by free additive and multiplicative convolution respectively. Thus we may readily infer
the properties of algebraic densities have under free additive and multiplicative convolution.

Corollary 4.3. Algebraic densities form a semi-group under free additive convolution.

Corollary 4.4. Positive semi-definite algebraic densities form a semi-group under free multiplicative con-
volution.

5. The polynomial method and algebraic varieties

For a canonical random matrix operation, the computation of the transformed bivariate polynomial Lmz

relies on manipulations between various bivariate polynomials. In this article, the important interconnected
bivariate polynomials will turn out to be:

• Lmz(m, z), where m(z) is the Stieltjes transform,

• Lrg(r, g), where r(g) is the R transform and,

• Lsy(s, y), where s(y) is the S transform.

Each of the transforms encode information about the limiting spectral measure we are interested in. The
bivariate polynomials define each transform implicitly via the equation Luv(u, v) = 0 . Moreover, each bi-
variate polynomial, say Lmz, can be obtained from another bivariate polynomial, say Lrg, by a very simple
change of variables. The transformations between the polynomials, summarized in Table 4, is an important
component of our technique.

Definition 5.1 (Algebraic variety for algebraic random matrices). In algebraic terms, given polyno-
mials Lmz, Lrg, and Lsy, the algebraic variety, Valg, is defined as the set:

Valg(Lmz, Lrg, Lsy) := {a = [m, z, r, g, s, y]T ∈ C
6|Lmz(m, z) = Lrg(r, g) = Lsy(s, y) = 0}. (5.1)
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Example 5.2 (Algebraic variety for the Wigner matrix). The limiting spectral measure of the Wigner
matrix is given by the semi-circular law:

fA(x) =

√
4 − x2

2 π
for x ∈ [−2, 2]. (5.2)

The Stieltjes transform, m(z), of this density is a zero of the bivariate polynomial LA
mz ≡ m2 + m z + 1. The

R transform r(g) is a zero of the bivariate polynomial LA
rg ≡ r− g while the S transform s(y) is a zero of the

bivariate polynomial LA
sy ≡ s2 y−1. The bivariate polynomial equations define an algebraic variety as in (5.1).

Canonical random matrix transformations (summarized in Tables 8 9) are mapped into transformations
of the algebraic variety. This transformation, though not explicitly described in terms of the variety, involves
a sequence of steps that are captured in the example considered. First, we compute the projection onto C2

for the (m, z) or (r, g) or (s, y) coordinates. Then we compute the transformation of the appropriate bivari-
ate polynomial in this coordinate system. Finally, use the relationship between the bivariate polynomials to
compute the algebraic variety defined in C6.

The key idea is that some random matrix transformations, say AN 7−→ BN , can be most naturally
expressed as transformations of LA

mz 7−→ LB
mz; others as LA

rg 7−→ LB
rg while some as LA

sy 7−→ LB
sy. Hence we

manipulate the bivariate polynomials to the form needed to apply the appropriate operational law (which
we shall derive) and then reverse the transformations to obtain the bivariate polynomial LB

mz. Once we have
LB

mz the spectral measure and the associated moments can be readily computed.

6. Transform representations

6.1 The Stieltjes transform and some minor variations

The Stieltjes transform of the spectral measure fA(x) is given by

mA(z) =

∫
1

x − z
fA(x)dx for z ∈ C \ R. (6.1)

The Stieltjes transform as in (6.1) is well-defined for values of z ∈ C \ SA; particularly, it is real valued for
z ∈ R \ SA. If there are any atomic components in the region of support, i.e. Sδ

A 6= ∅, the Stieltjes transform
will have a pole at those values of z ∈ Sδ

A ⊂ R. The Stieltjes transform is discontinuous at other values of
z ∈ S−

A though its real part is continuous and given by a Cauchy principal value integral. This discontinuity
is a consequence of the fact that

lim
ξ→0+

Im mA(z + iξ) = − lim
ξ→0+

Im mA(z − iξ) for z ∈ S−
A

i.e. the Stieltjes transform is “double valued” in the region of support. The Stieltjes transform can also be
interpreted as an expectation with respect to the spectral measure fA(x) such that

mA(z) = EX

[
1

x − z

]
.

A natural consequence of this interpretation is that for any invertible function h(x) continuous over SA, the
Stieltjes transform mA(z) can also be written in terms of the random variable y = h(x) as:

mA(z) = EX

[
1

x − z

]
= EY

[
1

h〈−1〉(y) − z

]
(6.2)
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where h〈−1〉(x) is the inverse of h(x) with respect to composition i.e. h(h〈−1〉(x)) = x. Equivalently, the
expectation with respect to the measure on y can be expressed in terms of the measure on x as

EY

[
1

y − z

]
= EX

[
1

h(x) − z

]
. (6.3)

The well-known Stieltjes-Perron inversion formula [1] can be used to recover the probability measure from
the Stieltjes transform:

fA(x) =
1

π
lim

ξ→0+
ℑ mA(x + iξ). (6.4)

In a portion of the literature on random matrices, the Cauchy transform is defined as:

gA(z) =

∫
1

z − x
fA(x)dx.

The Cauchy transform is identical to the Stieltjes transform, as defined in (6.1), except for a sign change:

gA(z) = −mA(z). (6.5)

6.2 The moment transform

When the spectral measure fA(x) is compactly supported, the Stieltjes transform can also be expressed
as a “multipole” series expansion analytic about z = ∞ as:

mA(z) = −
∫

SA

∞∑

j=0

xj

zj+1
fA(x)dx = −1

z
−

∞∑

j=1

MA
j

zj+1
, (6.6)

where MA
j are the associated moments. The ordinary moment generating function, µA(z), is a power series

analytic about z = 0 defined as

µA(z) =
∞∑

j=0

MA
j zj , (6.7)

where MA
0 ≡ 1. The moment generating function, referred to as the moment transform, is related to the

Stieltjes transform as:

µA(z) = −1

z
mA

(
1

z

)
. (6.8)

Equivalently, the Stieltjes transform can be written in terms of the moment transform as:

mA(z) = −1

z
µA

(
1

z

)
. (6.9)

The eta transform, introduced by Tulino and Verdù in [22], is a minor variation of the moment transform.
It and can be written in terms of the Stieltjes transform as:

ηA(z) =
1

z
mA

(
−1

z

)
, (6.10)

while the Stieltjes transform can be written in terms of the eta transform as:

mA(z) = −1

z
ηA

(
−1

z

)
. (6.11)
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6.3 The R transform

The R transform is defined in terms of the Cauchy transform as:

rA(z) = g
〈−1〉
A (z) − 1

z
, (6.12)

where g
〈−1〉
A (z) is the functional inverse of gA(z) with respect to composition. It will often be more convenient

to use the expression for the R transform in terms of the Cauchy transform given by:

rA(g) = z(g) − 1

g
. (6.13)

The R transform can be written as a power series whose coefficients, KA
j , are known as the “free cumulants”.

For a combinatorial interpretation of free cumulants, see [18]. Thus the R transform is the (ordinary) free
cumulant generating function:

rA(g) =
∞∑

j=1

KA
j gj−1. (6.14)

6.4 The S transform

The S transform is relatively more complicated. It is defined as:

sA(z) =
1 + z

z
Υ

〈−1〉
A (z) (6.15)

where ΥA(z) can be written in terms of the Stieltjes transform mA(z) as:

ΥA(z) = −1

z
mA(1/z)− 1. (6.16)

This definition is quite cumbersome to work with because of the functional inverse in (6.15). It also places
a technical restriction (to enable series inversion) that MA

1 6= 0. We can, however, avoid this by expressing
the S transform algebraically in terms of the Stieltjes transform as shown next. We first plug in ΥA(z) into
the left-hand side of (6.15) to obtain

sA(ΥA(z)) =
1 + ΥA(z)

ΥA(z)
z.

This can be rewritten in terms of mA(z) using the relationship in (6.16) as:

sA(−1

z
m(1/z) − 1) =

z m(1/z)

m(1/z) + z

or, equivalently:

sA(−z m(z) − 1) =
m(z)

z m(z) + 1
. (6.17)

We now define y(z) in terms of the Stieltjes transform as y(z) = −z m(z) − 1. It is clear that y(z) is an
invertible function of m(z). The right hand side of (6.17) can be rewritten in terms of y(z) as:

sA(y(z)) = −m(z)

y(z)
=

m(z)

z m(z) + 1
. (6.18)

Equation (6.18) can be rewritten to obtain a simple relationship between the Stieltjes transform and the S
transform:

mA(z) = −y sA(y) (6.19)
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Noting that y = −z m(z) − 1 and m(z) = −y sA(y) we obtain that:

y = z y sA(y) − 1

or, equivalently

z =
y + 1

y sA(y)
. (6.20)

7. Bivariate polynomials

We define more formally six interconnected bivariate polynomials denoted by Lmz, Lgz, Lrg, Lsy, Lµz,
and Lηz. We assume that Luv(u, v) is a bivariate polynomial of the form in (3.1). The main protagonist of
the transformations we describe in this article is the bivariate polynomial Lmz which implicitly defines the
Stieltjes transform m(z) via the equation Lmz(m, z) = 0. Starting off with this polynomial we can obtain
the polynomial Lgz using the relationship in (6.5) as

Lgz(g, z) = Lmz(−g, z). (7.1)

Perhaps we should explain our abuse of notation. Given any one polynomial, all six polynomials exist. The
two letter subscripts not only tell us which of the six polynomials we are focusing on, it provides a convention
of which dummy variables we will use. The first letter in the subscript represents the transform; the second
letter is a mnemonic for the variable associated with the transform that we use consistently in our software
and this article. With this notation in mind, we can obtain the polynomial Lrg from Lgz using (6.13) as:

Lrg(r, g) = Lgz

(
g, r +

1

g

)
. (7.2)

Similarly, we can obtain the bivariate polynomial Lsy from Lmz using the expressions in (6.19) and (6.20) to
obtain the relationship

Lsy = Lmz

(
−y s,

y + 1

sy

)
. (7.3)

Based on the transforms discussed in Section 6. we can derive transformations between additional pairs
of bivariate polynomials depicted by the bidirectional arrows in Figure 2 and listed in the third column
of Table 4. Specifically, the expressions in (6.8) and (6.11) can be used to derive the transformations
between Lmz and Lµz and Lmz and Lηz respectively. The fourth column of Table 4 lists the MATLAB
function, implemented using its Maple based Symbolic Toolbox, corresponding to the bivariate polynomial
transformations depicted in Figure 2. In the MATLAB functions, the function irreducLuv(u,v) listed in
Table 7. that ensures that the resulting bivariate polynomial is irreducible by clearing the denominator and
making the resulting polynomial square free.
Example: Let f(x) be an atomic probability measure:

f(x) = 0.5 δ(x) + 0.5 δ(x − 1). (7.4)

The Stieltjes transform of f(x) is:

m(z) =
0.5

0 − z
+

0.5

1 − z
,

which can be written as the solution to the equation:

m(0 − z)(1 − z) − 0.5(1 − 2z) = 0,

thereby allowing us to identify the bivariate polynomial Lmz(m, z) as simply:

Lmz(m, z) ≡ m(2 z − 2 z2) − (1 − 2z). (7.5)
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Legend 

I

III

VI

V

II
IV

Lµz

Lrg Lsy

LmzLgz

Lηz

m(z) ≡ Stieltjes transform
g(z) ≡ Cauchy transform
r(g) ≡ R transform
s(y) ≡ S transform
µ(z) ≡ Moment transform
η(z) ≡ Eta transform

Figure 2: The six interconnected bivariate polynomials; transformations between the polynomials, indicated
by the labelled arrows, are given in Table 4.

We can obtain the bivariate polynomial Lgz(g, z) by applying the transformation in (7.1) to the bivariate

polynomial LA
mz given by (7.5) so that

Lgz(g, z) = −g(2 z − 2 z2) − (1 − 2z). (7.6)

Similarly, we can just as easily obtain the bivariate polynomial Lrg(r, g) from Lgz by applying the transfor-
mation in (7.2). On doing so, we first obtain the intermediate function:

−g

(
2

(
r +

1

g

)
− 2

(
r +

1

g

)2
)

−
(

1 − 2

(
r +

1

g

))

which on simplification gives us the bivariate polynomial:

Lrg(r, g) = −1 + 2 gr2 + (2 − 2 g) r. (7.7)

The bivariate polynomial Lsy(s, y) can be obtained from Lmz by applying the transformation in (7.3). On

doing so, we first obtain the intermediate function:

(−s y)

(
2

y + 1

sy
− 2

(
y + 1

sy

)2
)

−
(

1 − 2
y + 1

sy

)

which on simplification gives us the bivariate polynomial:

LA
sy(s, y) = (1 + 2 y) s − 2 − 2 y. (7.8)

Table 3 tabulates all the bivariate polynomial encodings for the density in (7.4), the semi-circle law and the
Marčenko-Pastur law.
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Transform Notation Utility
Stieltjes transform m(z) Encodes spectral measure
Cauchy transform g(z) Same as above (different sign convention)

R transform r(g) Sum of random matrices
S transform s(y) Product of random matrices

Moment transform µ(z) Ordinary moment generating function
Eta transform η(z) Wireless communications

Table 1: Transforms of the limiting spectral measure.

Procedure MATLAB Code
function Luv = irreducLuv(Luv,u,v);

Simplify and clear the denominator L = numden(simplify(expand(Luv)));

L = Luv / maple(’gcd’,L,diff(L,u));

Make square free L = simplify(expand(L));

L = Luv / maple(’gcd’,L,diff(L,v));

Simplify Luv = simplify(expand(L));

Table 2: Making Luv irreducible.

L Bivariate Polynomials
Lmz m(2 z − 2 z2) − (1 − 2z)
Lgz −g(2 z − 2 z2) − (1 − 2z)
Lrg −1 + 2 gr2 + (2 − 2 g) r
Lsy (1 + 2 y) s − 2 − 2 y
Lµz (−2 + 2 z)µ + 2 − z
Lηz (2 z + 2) η − 2 − z

(a) The atomic measure in (7.4).

L Bivariate Polynomials
Lmz czm2 − (1 − c − z)m + 1
Lgz czg2 + (1 − c − z) g + 1
Lrg (cg − 1) r + 1
Lsy (cy + 1) s − 1
Lµz µ2zc− (zc + 1 − z)µ + 1
Lηz η2zc + (−zc + 1 − z) η − 1

(b) The Marčenko-Pastur law.

L Bivariate polynomials

Lmz m2 + m z + 1
Lgz g2 − g z + 1
Lrg r − g
Lsy s2 y − 1
Lµz µ2z2 − µ + 1
Lηz z2η2 − η + 1

(c) The semi-circle law.

Table 3: Bivariate polynomial encodings of some algebraic probability measures.
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ConversionLabel MATLAB Code

III

II

I

V

syms m eta z

Lmz = irreducLuv(Lmz,m,z);

VI

IV

Transformation

function Lmz = Lrg2Lmz(Lrg)

function Lrg = Lgz2Lrg(Lgz)

syms m z r g
Lgz = Lrg2Lgz(Lrg);
Lmz = Lgz2Lmz(Lgz);

function Lrg = Lmz2Lrg(Lmz)
syms m z r g
Lgz = Lmz2Lgz(Lmz);
Lrg = Lgz2Lrg(Lgz);

syms r g z
Lrg = subs(Lgz,g,r+1/g);
Lrg = irreducLuv(Lrg,r,g);

function Lmz = Lsy2Lmz(Lsy)
syms m z s y
Lmz = subs(Lsy,s,m/(z*m+1));
Lmz = subs(Lmz,y,-z*m-1);

Lmz = irreducLuv(Lmz,m,z);
Lmz = subs(Lmz,eta,-z*m);
Lmz = subs(Letaz,z,-1/z);

function Lsy = Lmz2Lsy(Lmz)

Letaz = subs(Letaz,m,z*eta);
Letaz = irreducLuv(Letaz,eta,z);

function Lmz = Lgz2Lmz(Lgz)
syms m g z
Lmz = subs(Lgz,g,-m);

function Lgz = Lmz2Lgz(Lmz)
syms m g z
Lgz = subs(Lmz,m,-g);

function Lgz = Lrg2Lgz(Lrg)
syms r g z
Lgz = subs(Lrg,r,z-1/g);
Lgz = irreducLuv(Lgz,g,z);

syms m z s y
Lsy = subs(Lmz,m,-y*s);
Lsy = subs(Lsy,z,(y+1)/y/s);
Lsy = irreducLuv(Lsy,s,y);

syms m myu z
Lmyuz = subs(Lmz,z,1/z);

Lmyuz = irreducLuv(Lmyuz,myu,z);

function Lmz = Letaz2Lmz(Letaz) 

syms m myu z

function Lmyuz = Lmz2Lmyuz(Lmz)

Lmz = irreducLuv(Lmz,m,z);

function Lmz = Lmyuz2Lmz(Lmyuz)

function Letaz = Lmz2Letaz(Lmz)
syms m eta z
Letaz = subs(Lmz,z,-1/z);

Lmyuz = subs(Lmyuz,m,-myu*z);

Lmz = subs(Lmyuz,z,1/z);
Lmz = subs(Lmz,myu,-m*z);

Lmz
⇀↽ Lηz

Lmz
⇀↽ Lµz

Lmz
⇀↽ Lsy

Lmz
⇀↽ Lgz

Lgz
⇀↽ Lrg

L
mz

= L
gz

(−m, z)

L
gz

= L
mz

(−g, z)

L
gz

= L
rg

(z − 1

g
, z)

L
rg

= L
gz

(g, r +
1

g
)

L
mz

= L
sy

(
m

z m + 1
,−z m − 1)

L
sy

= L
mz

(−y s,
y + 1

s y
)

L
mz

= Lηz(−z m,−1

z
)

Lηz = L
mz

(z η,−1

z
)

Lmz
⇀↽ Lrg L

mz
⇀↽ L

gz
⇀↽ L

rg

Lµz
= L

mz
(−µ z,

1

z
)

L
mz

= Lµz
(−mz,

1

z
)

Table 4: Transformations between the different bivariate polynomials. As a guide to MATLAB notation,
the command syms declares a variable to be symbolic while the command subs symbolically substitutes
every occurrence of the second argument in the first argument with the third argument. Thus, for example,
the command y=subs(x-a,a,10) will yield the output y=x-10 if we have previously declared x and a to be
symbolic using the command syms x a.
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8. Algebraic operations on algebraic functions

Algebraic functions are closed under addition and multiplication. Hence we can add (or multiply) two al-
gebraic functions and obtain another algebraic function. We show, using purely matrix theoretic arguments,
how to obtain the polynomial whose zeros are the sum (or product) of two algebraic functions without
ever actually computing the roots. In Section 9.1 we interpret this computation using the concept of resul-
tants [21] from elimination theory.

Definition 8.1 (Companion Matrix). The companion matrix Ca(x) to a monic polynomial

a(x) ≡ p0 + p1 x + . . . + an−1 xn−1 + xn

is the n × n square matrix

Ca(x) =




0 . . . . . . . . . −a0

1 · · · · · · · · · −a1

0
.

.

. −a2

.

.

.

.

.

.

.

.

.

0 . . . . . . 1 −an−1




with ones on the sub-diagonal and the last column given by the negative coefficients of a(x).

Remark 8.2. The eigenvalues of the companion matrix are equal to the roots of a(x). This is intimately
related to the observation that the characteristic polynomial of the companion matrix equals a(x), i.e.,

a(x) = det(x In − Ca(x)).

Consider the bivariate polynomial Luv as in (3.1). By treating it as a polynomial in u whose coefficients
are polynomials in v:

Luv(u, v) ≡
Du∑

j=0

lj(v)uj , (8.1)

we can create a companion matrix Cu
uv whose characteristic polynomial as a function of u is the bivariate

polynomial Luv. The companion matrix Cu
uv is the Du ×Du matrix in Table 5.

Cu
uv MATLAB code




0 . . . . . . . . . −l0(v)/lDu(v)
1 · · · · · · · · · −l1(v)/lDu(v)

0
. . . −l2(v)/lDu(v)

...
. . .

...
0 . . . . . . 1 −lDu−1(v)/lDu(v)




function Cu = Luv2Cu(Luv,u)
Du = double(maple(’degree’,Luv,u));
LDu = maple(’coeff’,Luv,u,Du);
Cu = sym(zeros(Du))+diag(ones(Du-1,1),-1));

for Di = 0:Du-1
Cu(Di+1,Du) = -maple(’coeff’,Lt,u,Di)/LDu;

end

Table 5: The companion matrix Cu
uv, with respect to u, of the bivariate polynomial Luv given by (8.1).

Remark 8.3. Analogous to the univariate case, the characteristic polynomial det(u I − Cu
uv) = Luv(u, v),

where the equality is understood to be with respect to the equivalence class of Luv. The “eigenvalues” (eigen-
functions to be exact) of Cuv are the roots of the algebraic equation Luv(u, v) = 0; specifically we obtain the
algebraic function u(v).
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Definition 8.4 (Kronecker product). If Am (with entries aij) is an m × m matrix and Bn is a n × n
matrix then the Kronecker or tensor product of Am and Bn, denoted by Am ⊗ Bn, is the mn × mn matrix
defined as:

Am ⊗ Bn =




a11Bn . . . a1nBn

.

.

.

.

.

.

.

.

.

am1Bn . . . amnBn




Theorem 8.5. If αi and βj are the eigenvalues of Am and Bn respectively, then

1. αi + βj is an eigenvalue of (Am ⊗ In) + (Im ⊗ Bn),

2. αi βj is an eigenvalue of Am ⊗ Bn,

for i = 1, . . . , m, j = 1, . . . , n.

Corollary 8.1. Let u1(v) be a root of the algebraic function L1
uv, or equivalently an eigenvalue of the D1

u×D1
u

companion matrix Cu1
uv. Let u2(v) be a root of the algebraic function L2

uv, or equivalently an eigenvalue of
the D2

u × D2
u companion matrix Cu2

uv. Then

1. u3(v) = u1(v) + u2(v) is an eigenvalue of the matrix Cu3
uv =

(
Cu1

uv ⊗ ID2
u

)
+
(
ID1

u
⊗ Cu2

uv

)
,

2. u3(v) = u1(v)u2(v) is an eigenvalue of the matrix Cu3
uv = Cu1

uv ⊗ Cu2
uv.

Equivalently u3(v) is the root of the algebraic function L3
uv = det(u I− Cu3

uv).

We represent the binary addition and multiplication operators on the space of algebraic functions by the
symbols ⊞ u and ⊠ u respectively. Addition and multiplication are defined as in Table 6. Note that the
subscript ‘u’ in ⊞ u and ⊠ u provides us with an indispensable convention of which dummy variable we are
using. Table 7 illustrates the ⊞ and ⊠ operations on a pair of bivariate polynomials. No human need try
and replicate these by hand. The Du +1×Dv +1 matrix Tuv lists only the coefficients cij for the term ui vj

in the polynomial Luv(u, v). Note that the indexing for i and j starts with zero.

Operation: L1
uv, L

2
uv 7−→ L3

uv Matlab Code

L3
uv = L1

uv ⊞ u L2
uv ≡ det(u I − Cu3

uv), where

Cu3
uv =





2Cu1

uv if L1
uv = L2

uv,

(Cu1
uv ⊗ ID2

u
) + (ID1

u
⊗ Cu2

uv) otherwise.

function Luv3 = L1plusL2(Luv1,Luv2,u)
Cu1 = Luv2Cu(Luv1,u);
if (Luv1 == Luv2)

Cu3 = 2*Cu1;
else

Cu2 = Luv2Cu(Luv2,u);
Cu3 = kron(Cu1,eye(length(Cu2))) + ..

+kron(eye(length(Cu1)),Cu2);
end
Luv3 = det(u*eye(length(Cu3))-Cu3);

L3
uv = L1

uv ⊠ u L2
uv ≡ det(u I − Cu3

uv), where

Cu3
uv =





Cu3
uv = (Cu1

uv)
2

if L1
uv = L2

uv,

Cu3
uv = Cu1

uv ⊗ Cu2
uv otherwise.

function Luv3 = L1timesL2(Luv1,Luv2,u)
Cu1 = Luv2Cu(Luv1,u);
if (Luv1 == Luv2)

Cu3 = Cu2̂;
else

Cu2 = Luv2Cu(Luv2,u);
Cu3 = kron(Cu1,Cu2);

end
Luv3 = det(u*eye(length(Cu3))-Cu3);

Table 6: Formal and computational description of the ⊞ u and ⊠ u operators acting on the bivariate poly-
nomials L1

uv(u, v) and L2
uv(u, v) where Cu1

uv and Cu2
uv are their corresponding companion matrices

constructed as in Table 5 and ⊗ is the matrix Kronecker product.
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Luv Tuv Cu
uv Cv

uv

L1
uv ≡ u2v + u (1 − v) + v2

1 v v2

1

u

u2




· · 1

1 −1 ·

· 1 ·







0 −v

1
−1 + v

v




[
0 −u

1 −u2 + u

]

L2
uv ≡ u2

(
v2 − 3 v + 1

)
+ u (1 + v) + v2

1 v v2

1

u

u2




· · 1

1 1 ·

1 −3 1







0
−v2

v2 − 3 v + 1

1
−1 − v

v2 − 3 v + 1







0
−u2 − u

u2 + 1

1
3u2 − u

u2 + 1




L1
uv ⊞ u L2

uv

1 v v2 v3 v4 v5 v6 v7 v8

1

u

u2

u3

u4




· · 2 −6 11 −10 18 −8 1

2 · 2 −8 4 · · · ·

5 · 1 −4 2 · · · ·

4 · · · · · · · ·

1 · · · · · · · ·




L1
uv ⊠ u L2

uv

1 v v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

1

u

u2

u3

u4




· · · · · · · · · · 1 −6 11 −6 1

· · · · · −1 3 · −3 1 · · · · ·

· · 1 −4 10 −6 7 −2 · · · · · · ·

−1 · 1 · · · · · · · · · · · ·

1 · · · · · · · · · · · · · ·




L1
uv ⊞ v L2

uv L2
uv ⊠ v L2

uv

1 v v2 v3 v4

1

u

u2

u3

u4

u5

u6

u7

u8




· · · · 1

· · 4 · ·

· · 1 −4 ·

· −8 6 · ·

1 −2 3 · ·

8 −12 · · ·

3 2 · · ·

2 · · · ·

−1 · · · ·




1 v v2 v3 v4

1

u

u2

u3

u4

u5

u6

u7

u8

u9

u10




· · · · 1

· · · · ·

· · −2 1 ·

· · · −4 ·

1 1 −9 3 ·

2 −3 7 · ·

3 · · · ·

4 · −1 · ·

3 −1 1 · ·

2 3 · · ·

1 · · · ·




Table 7: Examples of ⊞ and ⊠ operations on a pair of bivariate polynomials, L1
uv and L2

uv.
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syms m z

LmzB = irreducLuv(temp_pol,m,z);

function LmzB = AgramG(LmzA,c,s)

MATLAB code

Deterministic Transformations

syms m z

‘‘Translate’’

‘‘Scale’’

‘‘Invert’’

‘‘Mobius’’

‘‘Augmentation ’’

Stochastic Transformations

temp_pol = subs(temp_pol,z,z1/alpha);

‘‘Add

‘‘Multiply
Wishart’’

syms m z

syms m z z1

Atomic Wishart ’’

LmzB = irreducLuv(temp_pol,m,z);

syms m z

Transpose’’

‘‘Projection/

Operation

function LmzB = AtimesWish(LmzA,c)

function LmzB = mobiusA(LmzA,p,q,r,s)

LmzB = irreducLuv(temp_pol,m,z);
temp_pol = subs(temp_pol,m,((m/beta)-r)/(s-r*alpha));
temp_pol = subs(LmzA,z,-alpha);
alpha = ((q-s*z)/(p-r*z);beta=1/(p-r*z);

LmzB = mobiusA(LmzA,0,1,1,0);
function LmzB = invA(LmzA)

LmzB = mobiusA(LmzA,1,alpha,0,1);
function LmzB = shiftA(LmzA,alpha)

function LmzB = scaleA(LmzA)
LmzB = mobiusA(LmzA,alpha,0,0,1);
function LmzB = projectA(LmzA,c,alpha)

mb = (1-(1/c))*(1/(alpha-z))+m/c;
temp_pol = subs(LmzA,m,mb);
LmzB = irreducLuv(temp_pol,m,z);

function LmzB = augmentA(LmzA,c,alpha)

function LmzB = AplusWish(LmzA,c,p,lambda)

alpha = z-c*sum(p.*(lambda./(1+lambda*m)));
temp_pol = subs(LmzA,z,z-alpha);
LmzB = irreducLuv(temp_pol,m,z);

temp_pol = subs(temp_pol,z1,z); % Replace dummy variable

alpha = (1-c-c*z1*m); temp_pol = subs(LmzA,m,m*alpha);

syms m z
mb = (1-(1/c))*(1/(alpha-z))+m/c;
temp_pol = subs(LmzA,m,mb);
LmzB = irreducLuv(temp_pol,m,z);

temp_pol = subs(subs(LmzA,m,m/alpha),z,beta);
alpha = (1+s*c*m); beta = alpha*(z*alpha+s*(c-1));‘‘Grammian’’×

with
∑

i pi = 1.

LB
mz

(m, z)

LA
mz(m, z − α)

where αm = c
∑d

i=1
pi λi

1+λi m ,

LA
mz

(m, z − αm),

LA
mz

(
(1 − 1

c
)

1

α − z
+

m

c
, z

)

where αm,z = (1 − c − c z m).

LA
mz

(
αm,z m,

z

αm,z

)
,

LA
mz

(
α m, z

α

)

and βz = 1/(p − r z).

where αz = (q − s z)/(p− r z),

LA
mz

(
−z − z2 m, 1

z

)

LA
mz

(
m − βz r

βz s − βz r αz
,−αz

)
,

A−1

pA+q I

r A+s I

A + α I

αA

[
A 0
0 αI

] Size of A

Size of B
→ c > 1

Size of A

Size of B
→ c < 1

B

A + G
′

TG

A× W(c)

LA
mz

(
m

αm
, α2

m z + αm s(c − 1)

)
,

where αm = 1 + s c m.

(A1/2 +
√

sG)

(A1/2 +
√

sG)′

A =

[
B 0
0 αI

]

Table 8: Operational laws on the bivariate polynomial encodings (and their computational realization in
MATLAB) corresponding to a class of deterministic and stochastic transformations. The Gaussian-like
random matrix G is an N × L, the Wishart-like matrix W(c) = GG

′

where N/L → c > 0 as N, L → ∞,
and the matrix T is a diagonal atomic random matrix.
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Operational Law MATLAB Code

LA
mz

ւ ց
LA

mz(2m
√

z,
√

z) LA
mz(−2m

√
z,−√

z)
ց ւ

⊞m

↓
LB

mz

function LmzB = squareA(LmzA)

syms m z

Lmz1 = subs(LmzA,z,sqrt(z));

Lmz1 = subs(Lmz1,m,2*m*sqrt(z));

Lmz2 = subs(LmzA,z,-sqrt(z));

Lmz2 = subs(Lmz2,m,-2*m*sqrt(z));

LmzB = L1plusL2(Lmz1,Lmz2,m);

LmzB = irreducLuv(LmzB,m,z);

(a) LA
mz 7−→ LB

mz for A 7−→ B = A2.

Operational Law MATLAB Code

LA
mz LB

mz

↓ ↓
LA

mz(
m
c , z) LB

mz(
m

1−c , z)

ց ւ
⊞m

↓
LC

mz

function LmzC = AblockB(LmzA,LmzB,c)

syms m z mu

LmzA1 = subs(LmzA,m,m/c);

LmzB1 = subs(LmzB,m,m/(1-c));

LmzC = L1plusL2(LmzA1,LmzB1,m);

LmzC = irreducLuv(LmzC,m,z);

(b) LA
mz, L

A
mz 7−→ LC

mz for A, B 7−→ C = diag(A, B) where Size of A/ Size of C → c.

Operational Law MATLAB Code
LA

mz LB
mz

↓ ↓
LA

rg LB
rg

ց ւ
⊞ r

↓
LC

rg

↓
LC

mz

function LmzC = AplusB(LmzA,LmzB)

syms m z r g

LrgA = Lmz2Lrg(LmzA);

LrgB = Lmz2Lrg(LmzB);

LrgC = L1plusL2(LrgA,LrgB,r);

LmzC = Lrg2Lmz(LrgC);

(c) LA
mz, L

B
mz 7−→ LC

mz for A,B 7−→ C = A + QBQ
′

.

Operational Law MATLAB Code
LA

mz LB
mz

↓ ↓
LA

sy LB
sy

ց ւ
⊠ s

↓
LC

sy

↓
LC

mz

function LmzC = AtimesB(LmzA,LmzB)

syms m z s y

LsyA = Lmz2Lsy(LmzA);

LsyB = Lmz2Lsy(LmzB);

LsyC = L1timesL2(LsyA,LsyB,s);

LmzC = Lsy2Lmz(LsyC);

(d) LA
mz, L

B
mz 7−→ LC

mz for A, B 7−→ C = A× QBQ
′

.

Table 9: Operational laws on the bivariate polynomial encodings for some canonical random matrix trans-
formations. The operations ⊞ u and ⊠ u are defined in Table 6.
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9. Operational laws on the bivariate polynomials

Tables 8 and 9 summarize the random matrix transformations and the corresponding operational laws on
the bivariate polynomials. This demonstrates that the algebraicity of the limiting measures is preserved when
an algebraic random matrix is canonically transformed. Section 10. details the proofs. We now highlight
the connection between the ⊞ and ⊠ operations, resultants and free convolution of algebraic probability
measures.

9.1 The resultant connection

Definition 9.1 (Resultant). Given a polynomial

a(x) ≡ a0 + a1 x + . . . + an−1 xn−1 + anxn

of degree n with roots αi, for i = 1, . . . , n and a polynomial

b(x) ≡ b0 + b1 x + . . . + bm−1 xm−1 + bmxm

of degree m with roots βj, for j = 1, . . . , m, the resultant is defined by:

Res x (a(x) , b(x)) = αm
n βn

m

n∏

i=1

m∏

j=1

(βj − αi).

The resultant is given by the determinant of the Sylvester matrix formed using just the coefficients of
the associated polynomials. For our purpose, the ⊞ u and ⊠ u operations can be expressed in terms of
resultants. Suppose we are given two bivariate polynomials LA

uv and LB
uv. By using the definition of the

resultant and treating the bivariate polynomials as polynomials in u whose coefficients are polynomials in v,
it can be shown that:

LC
uv(t, v) = LA

uv ⊞ u LB
uv ≡ Res u

(
LA

uv(t − u, v) , LB
uv(u, v)

)
, (9.1)

and

LC
uv(t, v) = LA

uv ⊠ u LB
uv ≡ Res u

(
uDA

u LA
uv(t/u, v) , LB

uv(u, v)
)

, (9.2)

where DA
u is the degree of LA

uv with respect to u. Fast algorithms for computing the resultant are available
through Maple’s resultant command. In Maple, the computation LC

uv = LA
uv ⊞ u LB

uv may be performed as:

LuvC = subs(t=u,resultant(subs(u=t-u,LuvA),LuvB,u));

The computation LC
uv = LA

uv ⊠ u LB
uv can be performed via the sequence of commands:

DuA = degree(LuvA,u);

LuvC = subs(t=u,resultant(simplify(u^DuA*subs(u=t/u,LuvA)),LuvB,u));

There is an explicit connection between resultants and the free convolution of algebraic probability measures.

9.2 Connection with free convolution

First, a quick word on “freeness” and “free probability”. There is a whole mathematics of free probability
emerging as a counterpart to classical probability. Some good references are [9, 26]. These references and
even the name “free probability” are worthy of some introduction.

We begin with a viewpoint on classical probability. If we are given probability densities fX and fY for
random variables X and Y respectively, and if we know that X and Y are independent, we can compute the
moments of X + Y , and XY , for example, from the moments of X and Y .
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Free additive convolution fA+B = fA ⊞ fB LA+B
rg = LA

rg ⊞ r LB
rg

Free multiplicative convolution fA×B = fA ⊠ fB LA×B
sy = LA

sy ⊠ s LB
sy

Table 10: Free convolution of two algebraic probability measures can be expressed as the resultant of a pair
of bivariate polynomials.

Our viewpoint on free probability is similar. Given two random matrices, AN and BN with limiting
spectral measures fA and fB, we would like to compute the limiting spectral measure for AN + BN and
ANBN in terms of the moments of fA and fB.

Of course, (suppressing the subscript N for brevity) A and B do not commute so we are in the realm of
non-commutative algebra. Since all possible products of A and B are allowed we have the “free” product,
i.e., all words in A and B are allowed. (We recall that this is precisely the definition of the free product in
algebra.) The theory of free probability allows us to compute the moments of these products in the limit
of large matrices so long as at least one of A or B has what amounts to eigenvectors that essentially are
uniformly distributed with Haar measure. Speicher’s work [19] places these moment computations in an
elegant combinatorial context.

Consequently, the limiting spectral measure of the sum of two “free” random matrices is obtained by
the free additive convolution of the individual limiting spectral measures. Similarly, where the product has
real eigenvalues, the spectral measure of the product of two “free” random matrices is the free multiplicative
convolution of the individual spectral measures. It turns out that the free convolution of algebraic probability
measures is also an algebraic probability measure. The convolution can be expressed as a resultant of the
appropriate bivariate polynomial as summarized in Table 9.2. For additional examples see [17].

10. Proofs

We now prove the operational laws on the bivariate polynomials and the associated mode of convergence.
The continuous mapping theorem, stated below, follows from well-known facts about the convergence of
probability measures [3].

Theorem 10.1 (Continuous mapping theorem). Let AN → A. Let fA and Sδ
A denote the corre-

sponding limiting spectral measure and the atomic component of the support, respectively. Consider the
mapping y = h(x) continuous everywhere on the real line except on the set of its discontinuities denoted
by Dh. If Dh ∩ Sδ

A = ∅ then BN = h(AN ) → B. The associated non-random d.f., FB is given by
FB(y) = FA

(
h〈−1〉(y)

)
. The associated probability measure is simply its distributional derivative.

10.1 AN 7−→ BN = (pAN + q IN)/(r AN + s IN)

Here we have h(x) = (p x + r)/(q x + s) which is continuous everywhere except at x = −s/r for s and
r not simultaneously zero. From Theorem 10.1, unless fA(x) has an atomic component at −s/r, BN → B.
The Stieltjes transform of fB can be expressed as:

mB(z) = EY

[
1

y − z

]
= EX

[
r x + s

p x + q − z(r x + s)

]
. (10.1)
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Equation (10.1) can be rewritten as

mB(z) =

∫
r x + s

(p − r z)x + (q − s z)
fA(x)dx =

1

p − r z

∫
r x + s

x + q−s z
p−r z

fA(x)dx. (10.2)

With some algebraic manipulations, we can rewrite (10.2) as

mB(z) = βz

∫
r x + s

x + αz
fA(x)dx = βz

(
r

∫
x

x + αz
fA(x)dx + s

∫
1

x + αz
fA(x)dx

)

= βz

(
r

∫
fA(x)dx − r αz

∫
1

x + αz
fA(x)dx + s

∫
1

x + αz
fA(x)dx

)
.

(10.3)

where βz = 1/(p − r z) and αz = (q − s z)/(p − r z). Using the definition of the Stieltjes transform and the
identity

∫
fA(x)dx = 1, we can express mB(z) in (10.3) in terms of mA(z) as simply

mB(z) = βz r + (βz s − β r αz)mA(−αz). (10.4)

Equation (10.4) can, equivalently, also be rewritten as

mA(−αz) =
mB(z) − βz r

βz s − βz r αz
. (10.5)

Equation (10.5) can be expressed as an operational law on LA
mz as simply:

LB
mz(m, z) = LA

mz((m − βz r)/(βz s − βz r αz),−αz). (10.6)

This proves that BN → B ∈ Malg.

10.2 An = Xn,NX
′

n,N , An 7−→ BN = X
′

n,NXn,N

Here Xn,N is an n × N matrix, so that An and BN are n × n and N × N sized matrices respectively.
Let cN = n/N . When cN < 1, BN will have N − n eigenvalues of magnitude zero while the remaining n
eigenvalues will be identically equal to the eigenvalues of An. Thus, the e.d.f. of BN is related to the e.d.f.
of An as

FBN (x) =
N − n

N
I[0,∞) +

n

N
FAn(x)

= (1 − cN )I[0,∞) + cN FAn(x).
(10.7)

where I[0,∞) is the indicator function that is equal to 1 when x ≥ 0.
Similarly, when cN > 1, An will have n − N eigenvalues of magnitude zero while the remaining N

eigenvalues will be identically equal to the eigenvalues of BN . Thus the e.d.f. of An is related to the e.d.f.
of BN as

FAn(x) =
n − N

n
I[0,∞) +

N

n
FBN (x)

=

(
1 − 1

cN

)
I[0,∞) +

1

cN
FBN (x).

(10.8)

Equation (10.8) is simply (10.7) rearranged; so we do not need to differentiate between the case when cN < 1
and cN > 1.
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Thus, as n, N → ∞ with cN = n/N → c, if FAn converges in distribution almost surely (or in probability)
to a non-random d.f. FA, then FBN will also convergence in distribution almost surely (or in probability)
to a non-random d.f. FB related to FA by:

FB(x) = (1 − c)I[0,∞) + c FA(x). (10.9)

From (10.9), it is evident that the Stieltjes transform of the limiting spectral measures is related as:

mA(z) = −
(

1 − 1

c

)
1

z
+

1

c
mB(z). (10.10)

Rearranging the terms on either side of (10.10) allows us to express mB(z) in terms of mA(z) as:

mB(z) = −1 − c

z
+ c mA(z). (10.11)

Equation (10.11) can be expressed as an operational law on LA
mz as simply:

LB
mz(m, z) = LA

mz

(
−
(

1 − 1

c

)
1

z
+

1

c
m, z

)
. (10.12)

Thus BN → B ∈ Malg.

10.3 Matrix Subspace Augmentation/Projection

Consider the statement of Theorems 4.1.3 and 4.1.4. By defining c = n/N we can easily derive, as we
did above, that mA(z) can be written in terms of mB(z) as simply

mA(z) =

(
1

c
− 1

)
1

α − z
+

1

c
mA(z). (10.13)

This allows us to express LB
mz(m, z) in terms of LA

mz(m, z) using the relationship in (10.13) as simply

LB
mz(m, z) = LA

mz

(
−
(

1

c
− 1

)
1

α − z
+

1

c
m, z

)
. (10.14)

This proves that BN → B ∈ Malg.

10.4 AN 7−→ BN = A2
N

Here we have h(x) = x2 which is continuous everywhere. From Theorem 10.1, unless fA(x) has an atomic
component at −s/r or s and r are simultaneously zero, BN → B. The Stieltjes transform of fB can be
expressed as:

mB(z) = EY

[
1

y − z

]
= EX

[
1

x2 − z

]
. (10.15)

Equation (10.15) can be rewritten as:

mB(z) =
1

2
√

z

∫
1

x −√
z
fA(x)dx − 1

2
√

z

∫
1

x +
√

z
fA(x)dx =

1

2
√

z
mA(

√
z) − 1

2
√

z
mA(−√

z). (10.16)

Equation (10.16) can be expressed as an operational law on the bivariate polynomial LA
mz as simply:

LB
mz(m, z) = LA

mz(2m
√

z,
√

z)⊞m LA
mz(−2m

√
z,
√

z). (10.17)

This proves that BN → B ∈ Malg.
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10.5 AN 7−→ BN = AN + G
′

L,N TL GL,N

We prove that BN
a.s.−→B ∈ Malg by constructing LB

mz using the following theorem by Marčenko-
Pastur [10] and Silverstein [15].

Theorem 10.2. Assume that GN,L is an N ×L Gaussian-like random matrix. Let AN
a.s.−→A be an N ×N

symmetric/Hermitian random matrix and TL
a.s.−→T be an L×L diagonal atomic random matrix respectively.

If GN,L, AN and TL are independent then BN = AN + G
′

N,LTLGN,L
a.s.−→B, as cN = N/L → c for

N, L → ∞,. The Stieltjes transform, mB(z) of the unique spectral measure fB satisfies

mB(z) = mA

(
z − c

∫
x fT (x)dx

1 + xmB(z)

)
. (10.18)

Let TL be an atomic matrix with d atomic masses of weight pi and magnitude λi for i = 1, 2, . . . , d. From
Theorem 10.2, mB(z) can be written in terms of mA(z) as simply

mB(z) = mA

(
z − c

d∑

i=1

pi λi

1 + λi mB(z)

)
. (10.19)

where we have substituted fT (x) =
∑d

i=1 pi δ(x − λi) into (10.18) with
∑

i pi = 1.
Equation (10.19) can be expressed as an operational law on the bivariate polynomial LA

mz as simply:

LB
mz(m, z) = LA

mz(m, z − αm). (10.20)

where αm = c
∑d

i=1 pi λi/(1 + λi m). This proves that BN
a.s.−→B ∈ Malg.

10.6 AN 7−→ BN = AN × WN(cN)

We prove that BN
a.s.−→B ∈ Malg by constructing LB

mz from LA
mz using the following theorem by Bai and

Silverstein [2, 15].

Theorem 10.3. Assume that WN (cN ) is an N × N Wishart-like random matrix. Let AN
a.s.−→A be an

N × N random Hermitian non-negative definite matrix. If WN(cN ) and AN are independent, then BN =

AN ×WN(cN )
a.s.−→B as cN → c. The Stieltjes transform, mB(z) of the unique spectral measure fB satisfies

mB(z) =

∫
fA(x)dx

{1 − c − c z mB(z)}x − z
. (10.21)

By rearranging the terms in the numeration and denominator, (10.21) can be rewritten as

mB(z) =
1

1 − c − c z mB(z)

∫
fA(dτ)

τ − z
1−c−c z mB(z)

. (10.22)

Let αm,z = 1 − c − c z mB(z) so that (10.22) can be rewritten as

mB(z) =
1

αm,z

∫
fA(x)dx

x − (z/αm,z)
. (10.23)

We can express mB(z) in (10.23) in terms of mA(z) as simply

mB(z) =
1

αm,z
mA(z/αm,z). (10.24)
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Equation (10.24) can, equivalently, also be rewritten as

mA(z/αm,z) = αm,z mB(z). (10.25)

Equation (10.25) can be expressed as an operational law on the bivariate polynomial LA
mz as simply:

LB
mz(m, z) = LA

mz(αm,z m, z/αm,z). (10.26)

This proves that BN
a.s.−→B ∈ Malg.

10.7 AN 7−→ BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)′

We prove that BN
a.s.−→B ∈ Malg by constructing LB

mz from LA
mz using the following theorem by Dozier

and Silverstein [6].

Theorem 10.4. Assume that GN,L is an N ×L Gaussian-like random matrix. Let AN
a.s.−→A be an N ×N

symmetric/Hermitian random matrix independent of GN,L, AN . Let A
1/2
N denote an N × L matrix. If s is

a positive real-valued scalar then BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)

′ a.s.−→B, as cN = N/L → c for
N, L → ∞. The Stieltjes transform, mB(z) of the unique spectral measure fB satisfies

mB(z) = −
∫

fA(x)dx

z {1 + s c mB(z)} − x
1+s c mB(z) + s (c − 1)

. (10.27)

By rearranging the terms in the numerator and denominator, (10.27) can be rewritten as

mB(z) =

∫ {1 + s c mB(z)} fA(x)dx

x − {1 + s c mB(z)}(z {1 + s c mB(z)} + (c − 1) s)
. (10.28)

Let αm = 1+s c mB(z) and βm = {1+s c mB(z)}(z {1+s c mB(z)}+(c−1) s), so that β = α2
m z+αm s(c−1).

Equation (10.28) can hence be rewritten as

mB(z) = αm

∫
fA(x)dx

x − βm
. (10.29)

Using the definition of the Stieltjes transform in (6.1), we can express mB(z) in (10.29) in terms of mA(z)
as simply

mB(z) = αm mA(βm)

= αm mA(α2
m z + αm(c − 1)s).

(10.30)

Equation (10.30) can, equivalently, be rewritten as

mA(α2
m z + αm(c − 1)s) =

1

αm
mB(z). (10.31)

Equation (10.31) can be expressed as an operational law on the bivariate polynomial Lmz as simply:

LB
mz(m, z) = LA

mz(m/αm, α2 z + αm s(c − 1)). (10.32)

This proves that BN
a.s.−→B ∈ Malg.
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10.8 An,BM 7−→ CN = diag(An,BM)

Let CN be an N × N block diagonal matrix formed from the n × n matrix An and the M × M matrix
BM . Let cN = n/N . The e.d.f. of CN is then simply:

FCN = cN FAn + (1 − cN )FBM .

Let n, M → ∞ and n/N → c. If FAn and FBM converge in distribution almost surely (or in probability) to
non-random d.f.’s FA and FB respectively, then FCN will also converge in distribution almost surely (or in
probability) to a non-random d.f. FC given by:

FC = c FA + (1 − c)FB. (10.33)

The Stieltjes transform of the spectral measure fC can hence be written in terms of the Stieltjes transforms
of the measures fA and fB as:

mC(z) = c mA(z) + (1 − c)mB(z) (10.34)

Equation (10.34) can be expressed as an operational law on the bivariate polynomial LA
mz(m, z) as simply:

LC
mz = LA

mz

(m

c
, z
)

⊞m LB
mz

(
m

1 − c
, z

)
. (10.35)

This proves that CN → C ∈ Malg.

10.9 AN ,BN 7−→ BN = AN + QNBNQ
′

N

We prove that CN
p−→C ∈ Malg by constructing LC

mz from LA
mz and LB

mz using the following theorem by
Voiculescu [23].

Theorem 10.5. Let AN
p−→A and BN

p−→B be N × N hermitian random matrices. Let QN be a Haar

distributed unitary/orthogonal matrix independent of AN and BN . Then CN = AN + QNBNQ′
N

p−→C.
The associated spectral measure fC is the unique probability measure obtained by the free additive convolution
of the measures fA and fB. Thus fC = fA ⊞fB where ⊞ denotes free additive convolution which is linearized
by the R transform so that

rC(g) = rA(g) + rB(g). (10.36)

Equation (10.36) can be expressed as an operational law on the bivariate polynomials LA
rg and LB

rg as simply:

LC
rg = LA

rg ⊞ r LB
rg (10.37)

If Lmz exists then so does Lrg and vice-versa. This proves that CN
p−→B ∈ Malg and shows that the

free additive convolution of algebraic probability measures produces an algebraic probability measure. Thus
algebraic densities form a semi-group under free additive convolution.

10.10 AN ,BN 7−→ BN = AN ×QNBNQ
′

N

We prove that CN
p−→C ∈ Malg by constructing LC

mz from LA
mz and LB

mz using the following theorem by
Voiculescu [24, 25].
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Theorem 10.6. Let AN
p−→A and BN

p−→B be N × N hermitian random matrices. Let QN be a Haar

distributed unitary/orthogonal matrix independent of AN and BN . Then CN = AN × QNBNQ
′

N

p−→C if
CN has real eigenvalues. The associated spectral measure fC is the unique probability measure obtained by
the free multiplicative convolution of the measures fA and fB. Thus fC = fA ⊠ fB where ⊠ denotes free
multiplicative convolution which can be expressed in terms of the S transform as

sC(y) = sA(y) + sB(y). (10.38)

Equation (10.38) can be expressed as an operational law on the bivariate polynomials LA
sy and LB

sy as simply:

LC
sy = LA

sy ⊠ s LB
sy (10.39)

If Lmz exists then so does Lsy and vice versa. This proves that BN
p−→B ∈ Malg and shows that the free

multiplicative convolution of algebraic probability measures, where defined, produces an algebraic proba-
bility measure. Thus positive semi-definite algebraic densities form a semi-group under free multiplicative
convolution.

11. Interpreting the root curves of the bivariate polynomial

Consider a bivariate polynomial LA
mz. Let Dm be the degree of LA

mz(m, z) with respect to m and lk(z),
for k = 0, . . . , Dm, be polynomials in z that are the coefficients of mk. For every z along the real axis, there
are at most Dm solutions to the polynomial equation LA

mz(m, z) = 0. The roots of the bivariate polynomial
LA

mz define a locus of points (m, z) in C × C referred to as a complex algebraic curve. Since the limiting
density is over R, we may simply focus on real values of z.

For each z ∈ R, there will be Dm values of m “almost always” except at values of z corresponding to
singularities of LA

mz(m, z). A singularity occurs at z = z0 if:

• There is a reduction in the degree of m at z0 so that there are less than Dm roots for z = z0. This
occurs when lDm

(z0) = 0. Poles of LA
mz(m, z) occur if some of the m-solutions blow up to infinity.

• There are multiple roots of LA
mz at z0 so that some of the values of m coalesce.

The singularities constitute the so-called exceptional set of LA
mz(m, z). Singularity analysis, in the context

of algebraic functions, is a well studied problem [8] from which we know that the singularities of LA
mz(m, z)

are constrained to be branch points.
A branch of the algebraic curve LA

mz(m, z) = 0 is the choice of a locally analytic function mj(z) defined
outside the exceptional set of LA

mz(m, z) together with a connected region of the C × R plane throughout
which this particular choice mj(z) is analytic. These properties of singularities and branches of algebraic
curve are helpful in determining the atomic and non-atomic component of the spectral measure from LA

mz.
We note that, as yet, we do not have a fully automated algorithm for extracting the limiting spectral measure
from the bivariate polynomial. Development of efficient computational algorithms along the lines described
would be of great benefit.

11.1 The atomic component

If there are any atomic components in the limiting spectral measure, they will necessarily manifest
themselves as poles of LA

mz(m, z). This follows from the definition of the Stieltjes transform in (6.1). As
mentioned, the poles are located at the roots of lDm

(z) which may be computed in Maple as:

> Dm := degree(LmzA,m);

> lDmz := coeff(LmzA,m,Dm);

> poles := solve(lDmz=0,z);
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We can then compute the Puiseux expansion about each of the poles at z = z0. This can be computed in
Maple using the algcurves package as:

> with(algcurves):

> puiseux(Lmz,z=pole,m,1);

For the pole at z = z0, we inspect the Puiseux expansions for branches with leading term 1/(z0 − z). An
atomic component in the limiting spectrum occurs if and only if the coefficient of such a branch is lesser
than or equal one. This constraint ensures that the branch is associated with the Stieltjes transform of a
valid probability measure.

Of course, as is often the case with algebraic curves, pathological cases can be easily constructed. For
example, more than one branch of the Puiseux expansion might correspond to a candidate atomic component,
i.e., they might have weights with the prescribed conditions. In our experimentation, whenever this has
happened it has been possible to eliminate the spurious ones by matrix theoretic arguments.

Sometimes it is possible to encounter a double pole at z = z0 corresponding to two valid weights. In
such cases, empirical evidence suggests that the branch with the largest coefficient (less than one) is the
“right” Puiseux expansion. A argument for picking the “right” atomic weight, based purely on the theory
of algebraic curves might be easily answered by experts.

11.2 The non-atomic component

The probability measure can be recovered from the Stieljtes transform by applying the inversion formula
in (6.4). Thus, given the bivariate polynomial LA

mz, we can compute all Dm roots along z ∈ R (except at
poles or singularities). The non-atomic component of the spectral measure is simply the imaginary part
of the “right root” normalized by π. In MATLAB, the Dm roots can be computed using the sequence of
commands:

The limiting spectral measure can be, generically, be analytically expressed nicely when Dm = 2. When
using root-finding algorithms, for Dm = 2, 3, the “right root” can often be easily identified; the imaginary
branch will always appear with its complex conjugate. The density is just the scaled positive imaginary
component. In MATLAB, the command imag(roots(sym2poly(Lmz)))/pi will often suffice (except at
poles).

When Dm = 4 onwards, except when LA
mz is bi-quadratic, there is no choice but to manually identify

the “right root” among the numerically computed Dm roots. When the underlying spectral measure is
compactly supported, the boundary points will be singularities of the algebraic curve. In particular, when
the probability measure is compact and the boundary points are not poles, they occur at points where some
values of m coalesce. These points are the roots of the discriminant of LA

mz, computed in Maple as:

> PossibleBoundaryPoints = solve(discrim(LmzA,m),z);

We suspect that “nearly all” compactly supported algebraic random matrices will exhibit a “square root”
behavior near boundary points at which there are no poles; this would extend the results in [16]. In the
generic case, this will occur whenever the boundary points correspond to locations where two branches of
the algebraic curve coalesce.

Irrespective of whether the encoded probability measures is compactly supported or not, the −1/z be-
havior of the real part of Stieltjes transform (the principal value) as z → ±∞ helps identify the correct
root. In our experience, while multiple root curves might exhibit this behavior, invariably only one root will
have an imaginary branch that, when normalized, will correspond to a valid probability measure. Why this
always appears to be the case for the operational laws described is a bit of a mystery to us.

Example: Consider the Marčenko-Pastur density encoded by Lmz given in Table 3(b). The Puiseux ex-
pansion about the pole at z = 0 (the only pole!), has coefficient (1 − 1/c) which corresponds to an atom
only when c > 1 (as expected using a matrix theoretic argument). Finally, the branch points at (1 ±√

c)2

correspond to boundary points of the compactly supported probability measure. Figure 11.2 plots the real
and imaginary parts of the algebraic curve for c = 2.
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(b) Imaginary component normalized by π. The positive component corresponds to the encoded probability
measure.

Figure 3: The real and imaginary components of the algebraic curve defined by the equation Lmz(m, z) = 0,
where Lmz ≡ czm2 − (1 − c − z)m + 1, which encodes the Marčenko-Pastur density. The curve is
plotted for c = 2. The −1/z behavior of the real part of the “right root” as z → ∞ is the generic
behavior exhibited by the real part of the Stieltjes transform of a valid probability measure.
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12. Enumerating the moments and free cumulants

In principle, the moments generating function can be extracted from a Puisuex expansion of the algebraic
function LA

µz about z = 0. When the moments of an algebraic probability measure exist, there is additional
structure in the moments and cumulants that allows us to enumerate them efficiently. For an algebraic prob-
ability measure, we conjecture that the moments of all order exist if and only if the measure is compactly
supported.

Definition 12.1 (Algebraic power series). Let R[[x]] denote the ring of formal power series in x with
real coefficients. A formal power series v ∈ R[[u]] is said to be algebraic if there exist polynomials in u,
P0(u), . . . , PDu

(u), not all identically zero, such that

P0(u) + P1(u)v + . . . + PDv
(u)vDv = 0.

The degree of v is said to be Dv.

Definition 12.2 (D-finite generating functions). Let v ∈ R[[u]]. If there exist polynomials p0(u), . . . , pd(u),
such that

pd(u)v(d) + pd−1(u)v(d−1) + . . . + p1(u)v(1) + p0(u) = 0, (12.1)

where v(j) = djv/duj. Then we say that v is a D-finite (short for differentiably finite) power series. The
algebraic function, v(u), is also referred to as a holonomic function.

Definition 12.3 (P-recursive coefficients). Let an for n ≥ 0 denote the coefficients of a D-finite power
series v. If there exist polynomials P0, . . . , Pe ∈ R[n] with Pe 6= 0, such that

Pe(n)an+e + Pe−1(n)an+e−1 + . . . + p0(n)an = 0,

for all n ∈ N, then the coefficients an are said to be P-recursive (short for polynomially recursive).

Theorem 12.4 (Stanley [20]). Let v ∈ R[[u]] be an algebraic power series of degree Dv. Then v is D-finite
and satisfies an equation (12.1) of order Dv.

Proposition 12.5. If fA ∈ Palg, and the moments exist, then the moment and free cumulant generating
functions are algebraic power series. Moreover, both generating functions are D-finite and the coefficients
are P-recursive.

Proof : If fA ∈ Palg, then LA
mz exists. Hence LA

µz and LA
rg exist, so that µA(z) and rA(g) are algebraic power

series. By Theorem 12.4 they are D-finite; the moments and free cumulants are hence P-recursive.

There are powerful symbolic tools available for enumerating the coefficients of algebraic power series.
The Maple based package gfun is one such example [13]. From the bivariate polynomial Lµz, we can obtain
the series expansion up to degree expansion degree by using the command:

> with(gfun):

> MomentSeries = algeqtoseries(Lmyuz,z,myu,expansion_degree,’pos_slopes’);

The option pos slopes computes only those branches tending to zero. Similarly, the free cumulants can be
enumerated from Lrg using the command:

> with(gfun):

> FreeCumulantSeries = algeqtoseries(Lrg,g,r,expansion_degree,’pos_slopes’);
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For computing expansions to a large order, it is best to work with the recurrence relation. For an algebraic
power series v(u), the first number of terms coefficients can be computed from Luv using the sequence of
commands:

> with(gfun):

> deq := algeqtodiffeq(Luv,v(u));

> rec := diffeqtorec(deq,v(u),a(n));

> p_generator := rectoproc(rec,a(n),list):

> p_generator(number_of_terms);

Example: Consider the Marčenko-Pastur density whose bivariate polynomials are listed in Table 3(b).
Using the above sequence of commands, we can enumerate the first five terms of the moment generating
function:

µ(z) = 1 + z + (c + 1) z2 +
(
3 c + c2 + 1

)
z3 +

(
6 c2 + c3 + 6 c + 1

)
z4 + O

(
z5) .

The moment generating function is a D-Finite power series and satisfies a second order differential equation:

−z + zc − 1 + (−z − zc + 1) µ (z) +
(
z3c2 − 2 z2c − 2 z3c + z − 2 z2 + z3) d

dz
µ (z) = 0,

with initial condition µ(0) = 1. The moments, Mn = a(n), themselves are P-recursive satisfying the
recursion: (

−2 c + c2 + 1
)
na (n) + ((−2 − 2 c)n − 3 c − 3) a (n + 1) + (3 + n) a (n + 2) = 0

with the initial conditions, a (0) = 1, a (1) = 1. The free cumulants can be analogously computed.

What we find rather remarkable is that for many complicated random matrices, it is often possible
to enumerate the moments in closed form even when the limiting spectral measure cannot. The linear
recurrence satisfied by the moments may be used to analyze their asymptotic growth. When using the
sequence of commands described, sometimes more than one solution might emerge. In such cases, we have
often found that one can identify the correct moments by checking for the positivity of even moments or the
condition µ(0) = 1. More sophisticated techniques might be needed for pathological cases. It might involve
verifying that the coefficients enumerated correspond to the moments a positive probability measure.

13. A natural encoding for free convolution

We recall that classical convolution can be expressed entirely as formal power series operations involving
the moment generating function. The exponential and ordinary moment generating functions are, with a
suitable transformation, simply the Laplace and Stieltjes transforms of the probability measures. Classical
additive convolution corresponds to the product of the (formal) exponential moment generating functions.
Classical multiplicative convolution corresponds to the coefficient-wise (or Hadamard) product of the (formal)
ordinary moment generating functions.

Differentiably finite formal power series are closed under multiplication and Hadamard product. More-
over, if the exponential generating function is D-finite then so is the ordinary generating function. Rational
generating functions correspond to probability measures for which the generating function can be written
in closed form. They are trivially D-finite. Classical convolution is thus most naturally encoded in the
transformations of the linear differential equations satisfied by the Laplace (or Stieltjes) transform. This
statement rings particularly true when the transforms cannot be written in closed form.

For free convolution, however, D-finiteness is not the right structure. This is because holonomic functions
are closed under functional inversion only when they are algebraic (or rational). The R and S transforms,
obtained by a functional inversion of the Stieltjes transform, are key ingredients of free convolution (see The-
orems 10.5, 10.6). Hence, even when the ordinary moment generating function is D-finite, the free cumulant
generating function (the R transform) will not be – unless it is also algebraic . When the measures being
convolved are algebraic, free convolution will also manifest itself as a transformation of the linear differen-
tial equations satisfied by the generating functions. Rather, the most natural encoding of free convolution
appears to be in the transformations of algebraic equations that the generating functions satisfy.
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14. Some applications

14.1 The Jacobi random matrix

The Jacobi matrix ensemble is defined in terms of two independent Wishart matrices W1(c1) and W2(c2)
as J = (I + W2(c2)W

−1
1 (c1))

−1. The subscripts are not to be confused for the size of the matrices. Listing
the computational steps needed to generate a realization of this ensemble, as in Table 11, is the easiest
way to identify the sequence of random matrix operations needed to obtain LJ

mz. We first start off with

Transformation Numerical MATLAB code Symbolic MATLAB code

Initialization
% Pick n, c1, c2
N1=n/c1; N2=n/c2;

% Define symbolic variables
syms m c z;

A1 = I A1 = eye(n,n); Lmz1 = m*(1-z)-1;

A2 = W1(c1) × A1

G1 = randan(n,N1)/sqrt(N1);
W1 = G1*G1’;
A2 = W1*A1;

Lmz2 = Antimerism(Lmz1,c1);

A3 = A
−1
2 A3 = inv(A2); Lmz3 = invA(Lmz2);

A4 = W2(c2) × A3

G2 = randan(n,N2)/sqrt(N2);
W2 = G2*G2’;
A4 = W2*A3;

Lmz4 = Antimerism(Lmz3,c2);

A5 = A4 + I A5 = A4+I; Lmz5 = shiftA(Lmz4,1);

A6 = A
−1
5 A6 = inv(A5); Lmz6 = invA(Lmz5);

Table 11: Sequence of MATLAB commands for generating a numerical realization, A6 of the Jacobi ensemble.
The functions used to generate the corresponding bivariate polynomials symbolically are listed in
Table 8

.

A1 = I. The bivariate polynomial that encodes f1, applying the definition of the Stieltjes transform in (6.1),
is simply:

L1
mz(m, z) ≡ (1 − z)m − 1. (14.1)

For A2 = W1(c1) × A1, we can use (10.26) to obtain the bivariate polynomial:

L2
mz(m,z) = z c1 m2 − (−c1 − z + 1) m + 1. (14.2)

For A3 = A−1
2 , from (10.6), we obtain the bivariate polynomial:

L3
mz(m, z) = z2c1m

2 + (c1 z + z − 1) m + 1. (14.3)

For A4 = W2(c2) × A3. We can use (10.26) to obtain the bivariate polynomial:

L4
mz(m,z) =

(
c1 z2 + c2 z

)
m2 + (c1 z + z − 1 + c2)m + 1. (14.4)

For A5 = A4 + I, from (10.6), we obtain the bivariate polynomial:

L5
mz(m, z) =

(
(z − 1)2 c1 + c2 (z − 1)

)
m2 + (c1 (z − 1) + z − 2 + c2)m + 1. (14.5)

Finally, for J = A6 = A−1
5 , from (10.6), we obtain the required bivariate polynomial:

LJ
mz(m, z) ≡ L6

mz(m,z) =
(
c1 z + z3c1 − 2 c1 z2 − c2 z3 + c2 z2)m2

+
(
−1 + 2 z + c1 − 3 c1 z + 2 c1 z2 + c2 z − 2 c2 z2

)
m − c2 z − c1 + 2 + c1 z. (14.6)

Using matrix theoretic arguments, it is clear that the random matrix ensembles A3, . . .A6 are defined only
when c1 < 1. There will be an atomic mass of weight (1 − 1/c2) at 1 whenever c2 > 1. The non-atomic
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Figure 4: The limiting spectral measure (solid line), fA6
(x), given by (14.7) with c1 = 0.1 and c2 = 0.625

is compared with the normalized histogram of the eigenvalues of a Jacobi matrix generated using
the code in Table 11 over 4000 Monte-Carlo trials with n = 100, N1 = n/c1 = 1000 and N2 =
n/c2 = 160.

component of the spectral measure will have a region of support, S− = (a−, a+). The limiting spectral
measure of each of these ensembles can be expressed as:

fAi
(x) =

√
(x − a−)(a+ − x)

2 π l2(x)
for a− < x < a+, (14.7)

for i = 2, . . . , 6, where a−, a+ , where the polynomials l2(x) are listed in Table 12. The moments for

l2(x) a±

A2 x c1 (1 ±√
c1)2

A3 x2 c1
1

(1 ∓√
c1)2

A4 c1x2 + c2x
1 + c1 + c2 − c1c2 ± 2

√
c1 + c2 − c1c2

(1 − c1)2

A5 c1(x − 1)2 + c2(x − 1)
c21 − c1 + 2 + c2 − c1c2 ± 2

√
c1 + c2 − c1c2

(1 − c1)2

A6

(
c1 x + x3c1 − 2 c1 x2 − c2 x3 + c2 x2

) (1 − c1)2

c21 − c1 + 2 + c2 − c1c2 ∓ 2
√

c1 + c2 − c1c2

Table 12: Parameters for determining the spectral measure using (14.7).

the general case when c1 6= c2 can be enumerated using the techniques described; they will be quite messy.
Instead, consider the special case when c1 = c2 = c. Using the tools described, the first four terms of the
moment series, µ(z) = µJ(z), can be computed directly from LJ

µz as:

µ(z) =
1

2
+

(
1

8
c +

1

4

)
z +

(
3

16
c +

1

8

)
z2 +

(
1

32
c2 +

3

16
c − 1

128
c3 +

1

16

)
z3 +

(
− 5

256
c3 +

5

64
c2 +

5

32
c +

1

32

)
z4 + O

(
z5
)
.

The moment generating function satisfies the differential equation:

− 3 z + 2 + zc +
(
−6 z2 + z3 + 10 z + z3c2 − 2 z3c − 4

)
µ (z)

+
(
z4 − 5 z3 − 2 z4c + 8 z2 + z4c2 + 2 z3c − 4 z − z3c2

) d

dz
µ (z) = 0, with µ(0) = 1.
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The moments, a(n) = Mn, themselves are P-recursive and obtained by the recursion:

(
−2 c + c2 + 1 +

(
−2 c + c2 + 1

)
n
)
a (n) +

((
−5 + 2 c − c2

)
n − 11 + 2 c − c2

)
a (n + 1) + (26 + 8 n) a (n + 2)

+ (−16 − 4 n) a (n + 3) = 0, with a(0) = 1/2, a(1) = 1/8 c + 1/4, a(2) = 3/16 c + 1/8.

We can similarly compute the recursion for the free cumulants, a(n) = Kn+1, as:

nc2a (n) + (12 + 4 n) a (n + 2) = 0, with a(0) = 1/2, a(1) = 1/8 c.

14.2 Random compression of a matrix

Proposition 14.1. Let AN → A ∈ Palg. Let QN be an N × N Haar unitary/orthogonal random matrix.

Let Bn be the upper n × n block of QNANQ
′

N . Then Bn → B ∈ Palg as n/N → c for n, N → ∞.

Proof. Let PN be an N × N projection matrix:

PN ≡ QN

[
In

0N−n

]
Q

′

N .

By definition, PN is an atomic matrix so that PN → P ∈ Malg as n/N → c for n, N → ∞. Let B̃N =

PN ×AN . By Theorem 4.2, B̃N → B̃ ∈ Malg. Finally, from Theorem 4.1.2, we have that Bn → B ∈ Malg.

The proof above provides a prescription for computing the bivariate polynomial, LB
mz, explicitly as a function

of LA
mz and the compression factor c. For this particular application, however, one can use first principles [19]

to derive a more direct relationship in terms of the R transform:

rB(g) = rA(c g).

This translates into the operational law:

LB
rg(r, g) = LA

rg(r, c g). (14.8)

Example: Consider the atomic matrix AN half of whose eigenvalues are of magnitude one while the remain-
ing are of magnitude zero. Its limiting spectral measure is given by (7.4). From the bivariate polynomial,
LA

rg in Table 3(a) and (14.8), it can be show that the limiting spectral measure of Bn is encoded by:

LB
mz =

(
−2 cz2 + 2 cz

)
m2 − (−2 c + 4 cz + 1 − 2 z)m − 2 c + 2,

where n/N → c and n, N → ∞. Poles occur at z = 0 and z = 1. The leading terms of the Puiseux
expansion of the two branches about the poles at z = z0 are:

{(
z − z0

−2 c + 4 c2
+

1 − 2 c

2c

)
1

z − z0
,

2 c − 2

−1 + 2 c

}
.

It can be easily seen that when c > 1/2, the Puiseux expansion about the poles z = z0 will correspond to
an atom of weight w0 = (2c − 1)/2c. Thus the limiting spectral measure is:

fB(x) = max

(
2c − 1

2c
, 0

)
δ(x) +

1

π

√
(x − a−)(a+ − x)

2xc − 2 cx2
I[a−,a+] + max

(
2c − 1

2c
, 0

)
δ(x − 1), (14.9)

where a± = 1/2±
√
−c2 + c. Figure 14.2 compares the theoretical prediction in (14.9) with a Monte-Carlo

experiment for c = 0.4. From the associated bivariate polynomial:

LB
µz ≡ (−2 c + 2 cz) µ2 + (z − 2 − 2 cz + 4 c) µ − 2 c + 2,
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Figure 5: The limiting spectral measure (solid line) of the top 0.4N × 0.4N block of a randomly rotated
matrix is compared with the experimental histogram collected over 4000 trials with N = 200.
Half of the eigenvalues of the original matrix were of magnitude one while the remainder were of
magnitude zero.

we obtain two series expansions whose branches tend to zero. The first four terms of the series are given
by:

1 +
1

2
z +

1 + c

4
z2 +

3 + c

8
z3 + O

(
z4
)
, (14.10)

and,
c − 1

c
+

c − 1

2c
z −

(c − 1) (−2 + c)

4c
z2 −

(c − 1) (3 c − 4)

8c
z3 + O

(
z4
)
, (14.11)

respectively. Since c ≤ 1, the series expansion in (14.11) can be eliminated since µ(0) =
∫

fBdx
.
= 1. Thus

the coefficients of the series in (14.10) are the moments of the algebraic probability measure fB. A recursion
for the moments can be readily derived using the techniques developed earlier.

14.3 A Wishart random matrix with spatio-temporal correlations

Proposition 14.2. Assume An
p−→A ∈ P+

alg, BN
p−→B ∈ P+

alg and Gn,N is an n × N (pure) Gaussian

random matrix. Let Xn,N = A
1/2
n Gn,NB

1/2
N . Then Cn = Xn,NX

′

n,N

p−→C ∈ P+
alg.

Proof. Let Yn,N ≡ Gn,NB
1/2
N , Tn ≡ Yn,NY

′

n,N and T̃N = Y
′

n,NYn,N . Thus Cn = An×Tn ≡ A
1/2
n TnA

1/2
n .

The matrix Tn, as defined, is invariant under orthogonal/unitary transformations, though the matrix T̃N

is not. Hence, by Corollary 4.2, and since An → A ∈ Malg, CN → C ∈ Malg whenever Tn → T ∈ Malg.

From Theorem 4.1.2, Tn → T ∈ Malg if T̃N → T̃ ∈ Malg. The matrix T̃N = B
1/2
N G

′

n,NGn,NB
1/2
N is

clearly algebraic by application of Corollary 4.2 and Theorem 4.1 since BN is algebraic and G
′

n,NGn,N is
algebraic and unitarily invariant. Recall that the limiting density of W(cn) = Gn,NGn,N is given by the
Marčenko-Pastur density.

From a computational standpoint, the above proof provides a prescription for computing the bivariate
polynomial LC

mz using the following sequence of commands:

%%%% Assume LmzA and LmzB are given

> syms m z

> LmzW = c*z*m^2-(1-c-z)*m+1; %%%% Encoding of the Marcenko-Pastur density
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> LmzWt = transposeA(b,c);

> LmzTt = AtimesB(LmzWt,LmzB);

> LmzT = transposeA(LmzTt,1/c);

> LmzC = AtimesB(LmzA,LmzT);

In statistical applications, n is interpreted as the number of variables (spatial dimension) while N is the
number of measurements (temporal dimension). The matrices An and BN then model the spatial and tem-
poral covariance structure of the collected data. The “data availability parameter”, c, is (roughly speaking)
the ratio of the number of variables to the number of measurements. Thus the techniques developed allow
us to easily predict (and compute) the limiting spectrum for arbitrary algebraic spatio-temporal covariance
structures as a function of the data availability parameter.
Example: Assume the limiting spectral measures of An and BN is given by:

fA(x) = fB(x) = 0.5 δ(x − 2) + 0.5 δ(x − 1). (14.12)

The Stieltjes transform:

mA(z) = mB(z) ≡ 0.5

2 − z
+

0.5

1 − z
,

is a zero of the bivariate polynomial:

LA
mz = LB

mz ≡
(
−6 z + 2 z2 + 4

)
m + 2 z − 3.

Using the sequence of commands above, we can obtain the bivariate polynomial that encodes the limiting
spectral measure of Cn. This is given by:

LC
mz =

6∑

j=1

4∑

k=1

[
T

C
mz

]

jk
mj−1zk−1,

where:

TC
mz ≡




−18 c + 18 c2 18 c − 9 4 0

−108 c2 + 36 c + 72 c3 −112 c + 18 + 130 c2 −18 + 54 c 4

64 c2 + 64 c4 − 128 c3 72 c − 324 c2 + 288 c3 224 c2 − 112 c 36 c

0 64 c2 − 256 c3 + 192 c4 360 c3 − 216 c2 112 c2

0 0 192 c4 − 128 c3 144 c3

0 0 0 64 c4




.

Figure 6(a) plots the limiting spectral measure of Cn for different values of the data availability parameter.
Note how as c → 0, the limiting spectral measure will have two equally weighted atoms at 1.5 and 3. Figure
6(b) compares theory with experiment for c = 0.25. Using the sequence of commands described, we can
enumerate the first four terms, parameterized by c, of the moment generating function:

µC (z) = 1 +
9

4
z +

(
45

8
c +

45

8

)
z2 +

(
675

16
c +

243

16
c2 +

243

16

)
z3 +

(
3555

16
c2 +

1377

32
c3 +

3555

16
c +

1377

32

)
z4 + O

(
z5
)
.

Note how the moments explicitly capture the impact of the data availability parameter, c, on the limiting
distribution. This is remarkable, since, for this particular example, it is just not possible to express the
spectral measure in closed form.
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(a) The limiting spectral measure of Cn for different values of c. When c = 0.001 it means that there are
roughly 1000 times as many temporal measurements as there are spatial observations and so on.
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(b) The theoretical limiting spectral measure (solid line) for c = 0.25 is compared with the normalized
histogram of the eigenvalues of Cn collected over 4000 Monte-Carlo trials with n = 100 and N = 400.

Figure 6: A Wishart random matrix, Cn, with spatio-temporal correlations. The spatial and the temporal
covariance matrices have limiting eigenvalue distribution given by (14.12).
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Figure 7: Additive convolution of equilibrium measures corresponding to potentials V1(x) and V2(x).

14.4 Free additive convolution of equilibrium measures

Equilibrium measures are a fascinating topic within random matrix theory. They arise in the context of
research that examines why very general random models for random matrices exhibit universal behavior in
the large matrix limit. Suppose we are given a potential, V (x), then we consider a sequence of Hermitian,
unitarily invariant random matrices AN , the joint distribution of whose elements are of the form:

P (AN ) ∝ exp (−N Tr V (AN )) dAN ,

where dAN
.
=
∏

i≤j(dAN )ij . The equilibrium measure, when it exists, is the unique probability measure

that minimizes the logarithmic energy (see [5] for additional details). The resulting equilibrium measure
depends explicitly on the potential V (x) and can be explicitly computed for some potentials. In particular,
for potentials of the form V (x) = t x2m, the Stieltjes transform of the resulting equilibrium measure is an
algebraic function [5, Chp. 6.7, pp. 174-175]. In terms of the notation introduced earlier, the equilibrium
measure will always be an algebraic probability measure. Hence we can formally investigate the additive con-
volution of equilibrium measures corresponding to two different potentials. For V1(x) = x2, the equilibrium
measure is the (scaled) semi-circle law encoded by the bivariate polynomial:

LA
mz ≡ m2 + 2 m z + 2.

For V2(x) = x4, the equilibrium measure is encoded by the bivariate polynomial:

LB
mz ≡ 1/4 m2 + mz3 + z2 + 2/9

√
3.

Since AN and BN are unitarily invariant random matrices, if AN and BN are independent, then the
limiting spectral measure of CN = AN + BN can be computed from LA

mz and LB
mz. The limiting spectral

measure fC(x) is simply the free additive convolution of fA and fB. The MATLAB command LmzC =
AplusB(LmzA,LmzB); will produce the bivariate polynomial:

LC
mz = −9m4 − 54 m3z +

(
−108 z2 − 36

)
m2 −

(
72 z3 + 72 z

)
m − 72 z2 − 16

√
3.

Figure 14.4 plots the equilibrium measure for the potentials V1(x) = x2 and V2(x) = x4 as well as the
free additive convolution of these measures. The interpretation of the resulting measuring in the context of
potential theory is not clear. The matrix CN will no longer be unitarily invariant so it might not sense to
look for a potential V3(x) for which fC is an equilibrium measure. The tools and techniques developed in
this article might prove useful in further explorations.
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14.5 Other applications

There is often a connection between well-known combinatorial numbers and random matrices. For exam-
ple, the even moments of the Wigner matrix are the famous Catalan numbers. Similarly, if WN (c) denotes
the Wishart matrix with parameter c, other combinatorial correspondences can be easily established using
the techniques developed. For instance, the limiting moments of WN (1)− IN are the Riordan numbers, the
large Schröder numbers correspond to the limiting moments of 2WN(0.5) while the small Schröder numbers
are the limiting moments of 4WN(0.125). Combinatorial identities along the lines of those developed in [7]
might result from these correspondences.
We have successfully extended the techniques developed in this article to characterize a much broader class of
random matrices. In forthcoming work we describe how to modify these techniques to compute the limiting
distribution of the eigenvalues of commutators of algebraic random matrices, the singular values of the sums
of algebraic rectangular random matrices and the eigenvectors of the sums and products of algebraic random
matrices.
Documented MATLAB implementation of the polynomial method is available via the RMTool package [12]
from http://www.mit.edu/~raj/rmtool/; the examples considered in this article, along with many more,
appear there.
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