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O
PEN a textbook on statistical signal processing (SSP) and thumb through the contents. Typically
we find stochastic processes, statistical independence, the Fourier transform, the Gaussian, Poisson,

Wishart distributions, and Wiener filtering among the topics. There is a distinct mathematical flavor to the
subject that is well-earned – radars, sonars, cellphones, and modems are testaments to the successful union
of mathematical theory and engineering practice.

Now fast forward a decade or maybe two. What new mathematical content will be added to these texts?
Will we find the new processes, counterparts of independence, transforms, distributions and algorithms
that are rapidly emerging from random matrix theory (RMT)? What engineering applications will serve as
testaments to their importance?

I believe that the body of knowledge we associate with random matrix theory is only a step or two
away from being distilled into useful engineering practice. The emergence of compelling paradigms for signal
processing is inevitable. Compressive sampling is the first with many more sure to follow. If the past is any
indicator of the future, there will be a strong synergy between the development of the theory and applica-
tions. In the coming years I look forward to working closely with students and colleagues on bridging this
gap between the requisite theory and its implementation, guided by a strong experimental emphasis.

A Fundamental Application-Independent Statistical Limit
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Figure 1: A signal “coverage” map in SNR versus number of signal-plus-noise snapshot phase space. In the
light zone, a signal can be reliably detected whereas in the dark zone a signal cannot be reliably detected.
The superimposed solid line demarcates the theoretically predicted boundary as derived in [1, 2].

The development and analysis of SSP algorithms using RMT has been my primary research focus [1, 2, 3,
4]. The detection problem in statistical signal processing can be succinctly formulated: Given m (possibly)
signal bearing, n×1 signal-plus-noise snapshot vectors (samples), y

1
, . . . ,ym and p statistically independent

n × 1 noise-only snapshot vectors z1, . . . , zp, can one reliably infer the presence of a signal? This problem
arises in the context of applications as diverse as radar, sonar, communications, bioinformatics, and machine
learning and is the critical first step before signal parameters are estimated.

In [1, 2] we prove that, in a sweeping application-independent sense, if the signal-to-noise ratio (SNR) is
below a critical value, that is a simple function of n, m and p, then reliable signal detection is not possible
(in an asymptotic sense). If, however, the SNR is above this critical value then our new, optimal random
matrix theory based algorithm will reliably detect the signal (see Figure 1) even at SNR’s close to the critical
value where widely used algorithms will invariably fail.

For this and other SSP problems, the role of RMT arises because the elements of the n-by-m (or n-by-p)
matrix, obtained by stacking the m signal-plus-noise (or p noise-only) snapshot vectors alongside each other,
are random variables. It is surprising that RMT tells us something new and unexpected about what can and
cannot be done for a problem that current textbooks present as “solved.” In recent years, however, RMT
has produced other such “surprises” [8, 9] that have fundamentally transformed core electrical engineering
theory and practice. This is just the beginning. The trend is accelerating. Larger forces are at play.
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Opportunities

Advances in VLSI technology are making sensors cheaper and easier to deploy. Consequently, the sensor
count in applications such as radar, sonar, communications, and ad-hoc networks continues to increase. The
associated deluge of data provides problems and opportunities. The problematic fact is that widely-used
classical multivariate “optimal” SSP algorithms are far from optimal when processing data from a large
number of sensors (as in the detection problem earlier). Simply put, the high dimensionality (= number of
sensors) of modern systems violates the fundamental assumption of low dimensionality that is hard-wired
into the derivation of most current algorithms. This provides us with a tremendous opportunity to use RMT
to solve high-dimensional SSP problems that arise in these applications [10].

In particular, I envision a prominent role for free probability theory [11] in designing new algorithms that
are optimal in high-dimensional settings. Free probability provides the natural probabilistic framework for
understanding the average behavior of high-dimensional random matrices. What makes it especially rele-
vant to our situation is its introduction of a new kind of non-linear convolution operators and corresponding
transforms that describe the behavior of random matrices in a manner analogous to how filtering of scalar
random variables is described by the familiar convolution operator and the Fourier transform. I have devel-
oped a computational theory and software package that, for the first time, allows users to make complicated
computations using free probability theory [5, 6]. This paves the way for designing optimal high-dimensional
algorithms. Our work [7] represents initial progress on that front. More will surely follow.

Testing these algorithms using real-world data sets and experiments will be critical and will ensure that
the algorithms we develop are relevant for engineering practice. Sharing these data sets with the broader
academic community will stimulate collaboration and provide concrete benchmarks. We can even take it
further with a Netflix Prize-like challenge in SSP. This would engage and energize the broader academic
community. Striving for a more perfect union of engineering theory and practice remains a worthy goal.

Random Matrix Theory Inspired Design Paradigms

The connection between random matrix theory and the statistical physics of interacting particle systems
intrigues me and suggests a possible engineering design paradigm. First, a brief detour.

The theory of stochastic processes provides us with a language for describing how random events occur.
In statistical physics terms, the occurrence times may be interpreted as locations of particles placed along
a line. The familiar Poisson process is characterized by the observation that the particles do not interact;
consequently, the probability of clustering (in time or space) is high. In some systems, however, such
clustering might be undesirable so that the particles will want to interact and repel each other. For example,
cars driving along a smoothly flowing freeway during rush hour will tend to interact and space themselves
out more evenly. Similarly, individually owned and operated commuter buses will tend to repel each other
to maximize ridership.

At the level of a single car (or bus), the nearest neighbor spacing depends on the idiosyncrasies of the
driver (or traffic) and is inherently random. Remarkably, real-world data for the examples mentioned suggests
that the average behavior is described by random matrix theory. Specifically, the resulting spacing statistic
matches the Gaudin distribution arising from random matrix theory that models this repulsion in interact-
ing particle systems. This and other distributions from random matrix theory, such as the Tracy-Widom
distribution for extreme values, are becoming increasingly important as they are starting to repeatedly show
up in myriad places in mathematics and physics [12].

This raises the obvious question: Is there some “natural” optimality criterion associated with these
distributions and processes? Research suggests that there might be a maximum entropy-like criterion except
that this mysterious entropy will necessarily be different from Shannon’s entropy. Indeed it must because
it will have to account for the interactions between the individual particles. There is much research to be
done on this front. I believe that this direction of research could prove fruitful and yield some interesting
answers to applications such as multi-agent stochastic optimization and robotic swarm coordination where
such a repulsive interaction might be beneficial.

I strongly believe that further development of RMT for SSP applications will not only provide interesting
solutions within SSP itself but will also provide new paradigms for core electrical engineering applications.
I look forward to embarking on this journey.
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