
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 7, JULY 2004 1901
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Abstract—A major challenge while communicating in dynamic
channels, such as the underwater acoustic channel, is the large
amount of time-varying inter-symbol interference (ISI) due to
multipath. In many realistic channels, the fluctuations between
different taps of the sampled channel impulse response are
correlated. Traditional least-squares algorithms used for adapting
channel equalizers do not exploit this correlation structure.
A channel subspace post-filtering algorithm is presented that
treats the least-squares channel estimate as a noisy time series
and exploits the channel correlation structure to reduce the
channel estimation error. The improvement in performance of
the post-filtered channel estimator is predicted theoretically and
demonstrated using both simulation and experimental data.
Experimental data is also used to demonstrate the improvement
in performance of a channel estimate-based decision feedback
equalizer that uses this post-filtered channel estimate to determine
the equalizer coefficients.

Index Terms—Adaptive equalization, channel estimate-based
decision feedback equalization, least-squares algorithms, multi-
path channel, reduced subspace methods, system identification,
underwater acoustic communication.

I. INTRODUCTION

T IME-VARYING intersymbol interference (ISI) due to
multipath is one of the major problems encountered while

communicating in dynamic channels [1]. Since it is generally
not possible to use universal precoding techniques that elim-
inate the effect of this ISI, active research has emphasized the
design of adaptive receiver algorithms that are able to track
and compensate for this time-varying ISI. Least-squares-based
algorithms [2], [3] are often used to track such time-varying
systems.

There is an extensive body of literature dealing with
the formulation and the analysis of commonly used
least-squares-based methods such as the exponentially
windowed recursive least-squares (EW-RLS) and the sliding
window recursive least-squares (SW-RLS) algorithms. For
such techniques, selecting an appropriate rate of adaptation
involves a tradeoff between the tracking error variance and
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the observation noise induced error variance [3]. In channels
with relatively short multipath responses and high received
signal-to-noise ratios (SNRs), in the absence of computational
constraints, optimal algorithm design using one of these
methods primarily involves selecting the appropriate rate of
adaptation based on the assumed channel-output model. On
the other hand, for channels with long multipath responses
and relatively low SNRs, merely varying the rate of adaptation
leads to unsatisfactory algorithm performance.

There have, however, been attempts at improving algorithm
performance by using techniques that exploit the characteristics
of the transmitted data or that of the channel itself. These
techniques can be broadly categorized into either subspace
methods [4]–[6], which exploit the low-rank nature of the
transmitted data covariance matrix or sparsing methods [7]–[9],
which exploit the sparse nature of the energetic taps of the
sampled channel impulse response. The method presented here
exploits a more general form of channel sparseness, that is, the
low-rank of the channel impulse response correlation matrix,
to improve algorithm performance.

The main result presented in this paper utilizes a different
paradigm introduced earlier in [10]–[12] while formulating and
implementing what will be referred to as the channel subspace
post-filtering (CSF) approach to adaptive least-squares estima-
tion. This approach exploits the correlations between the dif-
ferent taps of the sampled channel impulse response and any
low-rank nature of the channel subspace, that is, a consequence
of the correlated tap fluctuations in long multipath channels,
to improve the tracking performance of the channel estimator.
The resultant improved channel estimate is then used to deter-
mine the coefficients of a standard channel estimate-based deci-
sion feedback equalizer (DFE). As a result, the performance of
this DFE is improved as well. The CSF formulation is primarily
motivated by the need to improve the tracking performance of
classes of channels with low-rank multidimensional subspace
structures. However, it will also prove to be relevant when an-
alyzing and improving the tracking performance of single tap
least-squares algorithms.

The paper is organized as follows. Section II introduces a
simplified channel-output model that is used in the subsequent
analysis, whereas Section III presents the metrics for assessing
the performance of least-squares tracking algorithms. Sec-
tion IV introduces and analyzes the tracking performance of
the EW-RLS algorithm using an extended state space represen-
tation of an equivalent dynamic system. The EW-RLS channel
estimate is treated as a noisy time series and is post-filtered
using the channel subspace post-filtering (CSF) approach that
is presented in Section V. An analogously constructed but
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decidedly suboptimal post-filter, referred to as the abrupt rank
reduction (ARR) filter, is presented in Section VI. Section VII
analyzes the problem of channel order mismatch, where the
assumed number of taps when formulating the EW-RLS
algorithm is different from the actual number of taps in the true
channel model. It will be shown that the CSF approach remains
effective in such situations. Section VIII casts the CSF problem
into a familiar deterministic least-squares minimization
problem that leads to the development of an adaptive channel
subspace filtering (ACSF) algorithm. Section IX demonstrates
the improvement in channel estimator performance due to
the CSF approach on a single tap channel, a two-tap channel
with channel order mismatch, and on a low-rank multitap
channel, using simulated data. Experimental data is used in
Section X to demonstrate the improvement in channel estimator
performance due to the ACSF approach in a practical setting.
Section XI uses experimental data to show how these improved
ACSF channel estimates can also improve the performance of a
standard channel estimate-based DFE. Section XII summarizes
the main contributions of this paper.

II. SYSTEM AND CHANNEL MODEL

A simplified time-varying first-order Gauss–Markov model1

for system identification [2] is used as the channel model.
The unknown dynamic system is modeled as a transversal
filter whose tap-weight vector (i.e., discrete time impulse
response) evolves according to a first-order Markov process
written in vector form as

(1)

where is a possibly complex scalar, the underscore denotes
vectors, and all vectors are column vectors. The time-
varying channel impulse response at time is represented by
the vector with the process noise vector having a
correlation matrix . The output of the
system is given by

(2)

where the superscript represents the conjugate trans-
pose (Hermitian), the received data is , de-
notes the white transmitted data with correlation matrix

, and denotes additive
white, Gaussian observation noise with a variance of . If

, (1) and (2) collectively describe a time-varying system
with stationary statistics.

If denotes an estimate of the true channel impulse
response obtained using data up to time , then the
predicted data at time , is given by

. The corresponding prediction error
is given by

(3)

1This model has been chosen since it greatly simplifies the theoretical anal-
ysis that is to be presented in Sections IV and V. This resulting simplification
facilitates the derivation of closed-form analytical expressions for the perfor-
mance metrics that are to be introduced in Section III.

The prediction error is used to the adapt the weights of the
channel estimate . Throughout the remainder of
this paper, for notational simplicity, is used to denote

. Additionally, possibly time-varying quantities
are explicitly described using a functional dependence on the
time index (e.g., ), whereas the omission of the time
dependence is used to implicitly denote time-invariant quanti-
ties (e.g., ). It is assumed that the process noise vector ,
the input (data) vector , the observation noise , and
the initial channel impulse response are independent
of one another for all , , and . Without loss of generality,
an assumption is made that the number of taps in the unknown
system is the same as the number of taps in the adaptive
filter used to model and track this system. In Section VII,
it will be shown that the proposed approach remains effective
even when there is a channel order mismatch between the as-
sumed and true channel model. These assumptions will be used
in Sections III–XI when analyzing the tracking performance of
the EW-RLS algorithm.

III. CRITERIA FOR TRACKING PERFORMANCE ASSESSMENT

The channel estimation error vector, which is also referred to
as the tracking error vector, may be defined as

(4)

The relationship between the channel estimation error vector
and the prediction error, assuming the linear channel output
model given in (2), can be written as

(5)

Substituting the expression for the channel estimation error
vector given in (4) results in

(6)

The mean-square channel estimation error is defined as

(7)

In the subsequent analysis, it is assumed that is large enough
for any initialization transient of the least-squares algorithm to
have passed. Equation (7) may be alternately written as

(8)

where is the correlation matrix of the error vector
defined as

(9)

An additional metric , which is the cross cor-
relation matrix of the error vector and the channel
estimate vector , is defined as

(10)
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The orthogonality principle states that if , the
channel estimate is not a minimum mean-square error estimate
of the true channel impulse response.

The mean-square signal prediction error can also be ex-
pressed in terms of the mean-square channel estimation error

using (6) such that

(11)

The transmitted data vector is assumed to be independent
of the channel impulse response vector , previous samples
of the transmitted data vector , and the additive observation
noise for . It is thus also independent
of previous samples of the received data , given by (2), for

. Hence, by the definition of and
the expression for the channel estimation error vector in (4), the
transmitted data vector is independent of . The
second equality in (11) follows from this fact. Equation (11),
which expresses the relationship between the channel estima-
tion error variance and the mean-square prediction error, states
that a reduction in channel estimation error leads to a corre-
sponding scaled decrease in the prediction error. In a realistic
scenario where the true channel impulse response is unknown,
it is difficult to ascertain the true channel estimation error. The
mean-square prediction error can therefore be used as a surro-
gate for the mean-square channel estimation error in gauging the
performance of an adaptive algorithm. This equivalence will be
used later on to replace an unobservable cost function expressed
in terms of the channel estimation error with an observable cost
function expressed in terms of the prediction error.

The mean-square channel estimation error can be expressed
as a sum of two components

(12)

where the first term is referred to as the
tracking error variance, and is referred
to as the observation noise induced error variance. The terms
in depend on the dynamics of the time-varying channel,
whereas the terms in depend on the observation noise
variance. Separating these error terms, as above, provides in-
sight into the tradeoff involved when designing a least-squares
algorithm to track a time-varying system. This decomposition
is similar to that in [2].

For a given adaptive algorithm, best performance is achieved
by selecting a rate of adaptation that balances the improvement
due to any reduction in the tracking error variance with
any resultant deterioration due to an increase in the observation
noise induced error variance . Section IV formally intro-
duces a commonly used least-squares tracking algorithm, uses
an extended state space framework to theoretically analyze its

tracking performance in terms of the channel estimation error,
and provides a basis for evaluating the improvement in its per-
formance due to channel subspace post-filtering.

IV. EW-RLS ALGORITHM AND ITS TRACKING PERFORMANCE

The exponentially windowed least-squares estimate of
the channel impulse response is given by

(13)

where is a positive constant close to but less than 1. The recur-
sive update equation for such a least-squares algorithm is given
by

(14)

where the superscript denotes complex conjugation, is
an adaptation gain vector, and the prediction error is
defined as in (3). The adaptation gain vector may be computed
as

for (15)

Subtracting (1) from (14) and using the definition of the channel
estimation error vector in (4) results in

(16)

Substituting the expressions for and
to rearrange the terms results in

(17)

Equations (1) and (17) together form a coupled state space
system that models the dynamics of the unknown system as
well as that of the channel estimation error “system.” Since
their dynamics are coupled, their behavior in steady state
may be analyzed by studying the dynamics of the equivalent
extended state space system in steady state. Assuming that

reduces (17) to the form given in [2] and [3]. Consider
the augmented vector

(18)

Combining (1) and (17), the extended state space system gov-
erning the evolution of may be described as

(19)
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The system may be rewritten as

(20)

where and are given by

(21)

(22)

Equation (20) is a stochastic difference equation in the aug-
mented vector , where the system matrix is a random
quantity. From [3], so that

. Thus

(23)

The direct averaging method [13] may be used to study the con-
vergence behavior of such a stochastic difference equation in
an average sense. Based on this method, the solution of the sto-
chastic difference (20), operating under the assumption of and

close to 1, is related to the solution of another stochastic dif-
ference equation whose system matrix is equal to the ensemble
average given in (23).

More specifically, the stochastic difference equation in (20)
may be replaced with another stochastic difference equation de-
scribed as

(24)

Generally, the notation in (24) should be different from that in
the original difference equation in (20). However, for the sake
of notational convenience, this has not been done here. The cor-
relation matrix is given by

(25)

where the expectation is taken with respect to the transmitted
data vector , the process noise vector , and the ob-
servation noise . The correlation matrix

in steady state is given by

(26)

where is substituted from (23). The correlation matrix
of the augmented vector under steady state can also

be written in terms of its submatrices as

(27)

where , ,
, and are the corresponding

correlation submatrices. For notational convenience, will

be used in place of to represent the channel esti-
mation error vector given in (4). The correlation matrix of
the augmented vector under steady state can be written as

(28)

It is assumed that the additive observation noise is zero
mean and uncorrelated with both the transmitted data vector

and the process noise vector . Furthermore, the
independence between the Gaussian additive noise and
the transmitted data vector is exploited in deriving the ex-
pression [3]

(29)

so that in (28) can be written as

(30)
By expanding terms on the right-hand side of (26) and relating
them to the corresponding terms of the resultant submatrices on
the left-hand side of the expression, the following relationships
are obtained:

(31)

(32)

(33)

(34)

Combining (31) through (34) and eliminating common terms
results in

(35)

(36)

where the underbraced terms in (36) represent the aforemen-
tioned tracking error variance and the observation
noise-induced error variance terms, respectively.
Recalling that , it is apparent by in-
spection that for nontrivial cases, . By
the orthogonality principle, this indicates that the channel esti-
mate is not optimal in a mean-square sense. An optimal
post-filter may thus be constructed, as detailed in Section V, for
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which expressions for and will prove to be useful.
These may be written in terms of and as

(37)

(38)

where the fact that follows from . After
substituting (31), (35), and (36) into (37) and (38), the following
simplified expressions are obtained:

(39)

(40)

The steady state mean-square channel estimation error
expressed in (36) captures the inherent tradeoff between
tracking error variance and the observation noise-induced
error variance when a rate of adaptation is chosen.
Furthermore, the channel estimate and the channel
impulse response vector are correlated, and their cross
correlation matrix is given by (39).

V. CHANNEL SUBSPACE POST-FILTERING

The EW-RLS channel estimate (13) may be treated as a noisy
time series so that from (4)

(41)

This noisy channel estimate can be post-filtered so that

(42)

where is the post-filtered channel estimate, and is the
post-filter. The optimal filter is given by

(43)

Let the eigenvalue decomposition of be given by
, where the columns of are the eigenvectors

of , and is a diagonal matrix. Since from (31),
, the eigenvectors of the process noise

correlation matrix are also the eigenvectors of the channel
correlation matrix . In adition, given the assumption

, examination of (39) and (40) makes it apparent
that the columns of are also the eigenvectors of the matrices

and . Hence, the post-filter can be expressed
in terms of these eigenvectors as , where

diag . The post-filter is referred
to as a channel subspace filter (CSF) because its eigenvectors

are the same as those of the channel correlation matrix.
The CSF coefficients, which are the diagonal elements of ,
are given by

(44)

where , is the channel
impulse response energy corresponding to the th eigenvector,
and . From (44), it may be noted that
for real , is also real. For complex , however, is gen-
erally complex. The post-filter may thus have
complex eigenvalues and is, hence, non-Hermitian for complex

and Hermitian for real . The CSF coefficients depend on
the parameters and , the observation noise energy , and
the energy distribution in channel subspaces (subspace profile).
This Wiener channel subspace filter weights the subspaces with
higher energy more favorably than subspaces with lower energy
and eliminates the observation noise error associated with any
null subspaces. In general, the CSF coefficients shape the ampli-
tude and phase of the subspaces, thereby compensating for the
EW-RLS algorithm-induced amplitude and phase distortion.

The correlation matrix of the channel estimation error after
post-filtering is given by

(45)

is diagonalized by the eigenvectors so that
, where the diagonal elements of the matrix are

(46)

where . The channel estimation error of the CSF
algorithm is . From (36), the eigen-
vectors also diagonalize the EW-RLS channel estimation
error correlation matrix . The equivalent diagonal matrix for
the unfiltered EW-RLS estimate has diagonal elements

(47)

where . The channel estimation error of the
EW-RLS algorithm is . Equations (42),
(46), and (47) will be used in Section IX to compute the optimal
theoretical channel estimation error and compare them with the
simulation results.

VI. SUBOPTIMAL CHANNEL SUBSPACE POST-FILTERING

The channel subspace post-filter is the solution to the MMSE
problem formulated in (43). This post-filter can be expressed
in terms of the eigenvectors and the channel subspace
filtering coefficients given in (44). The optimal post-filter
is thus characterized by the channel subspace filtering co-
efficients, which, as discussed earlier, weight the subspaces
with higher energy more heavily than subspaces with lower
energy and compensate for amplitude and phase distortion. For
a low-rank channel, a simplified but suboptimal filter may be
considered.

Consider such a low-rank channel where has only
significant eigenvalues and , i.e., significant energy is
limited to an dimensional subspace. A suboptimal post-filter,



1906 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 7, JULY 2004

referred to as the abrupt rank reduction (ARR) filter, may be
constructed in such a manner that only the channel subspaces
with significant eigenvalues are retained so that

(48)

where diag . The ARR channel

estimation error vector has a corre-
lation matrix . This correlation matrix is diagonalized by the
eigenvectors so that , where the elements
of the diagonal matrix are

for (49)

for (50)

The ARR channel estimation error is
. Any improvement in channel estimation error using

this filter is the result of the elimination of any observation
noise-induced error variance associated with the null subspace
of the channel impulse response correlation matrix. The
ARR filter is simply a projection onto a reduced-dimensional
subspace.

VII. CHANNEL ORDER MISMATCH

The criteria for assessing tracking performance were intro-
duced in Section III, with the assumption that the number of taps
in the adaptive filter used to model the unknown channel was the
same as the number of taps in the true channel. When this as-
sumption does not hold, there is a channel order mismatch. If the
number of taps in the adaptive filter is greater than the number
of taps in the true channel model, there in an overestimation of
the channel order. Conversely, when the number of taps in the
adaptive filter is less than the number of taps in the true channel
model, there is an underestimation of the channel order. This
section analyzes both these situations and shows that the CSF
approach is applicable even when there is overestimation or un-
derestimation of the channel order.

A. Overestimation of Channel Order

When there is an overestimation of the channel order, the
channel model in (1) may be written as

(51)

where, if the number of taps in the assumed channel model is
, the augmented vectors and may be

viewed, without loss of generality, as the vectors and
appended by an column vector of zeros ,
respectively. In vector notation, , and

. The channel output in (2) be alter-
nately expressed as

(52)

where, by inspection, . The correla-
tion matrix can be expressed as .
The eigenvectors of the augmented process correlation ma-
trix may be expressed in terms of the eigenvectors of
the true process correlation matrix as

(53)

Similarly, it is easy to verify that the first eigenvalues of
are identical to those of , whereas the remaining
eigenvalues are identically equal to zero, i.e.,

for and for . Applying
the formulas from Section V yields

(54)

(55)

and

(56)

for . The channel estimation error of the
CSF algorithm is . Note that

for . Furthermore, from (55)
and (56), , whereas
for . By comparing (47) and (56), it is
apparent that overestimation of the channel order results in an
increased EW-RLS channel estimation error because of the
observation noise-induced error variance associated with the

extra taps. Equation (46) and (56) imply, however, that
the CSF post-filter, to within the limits of the direct averaging
method, improves the EW-RLS channel estimator performance
by eliminating the observation noise-induced error variance
due to these extra taps and by compensating for the EW-RLS
algorithm-introduced phase and magnitude distortion.

B. Underestimation of Channel Order

When the channel order has been underestimated, the channel
model in (1) may be equivalently represented as

(57)

where if the number of taps in the assumed channel model is
, then the modified underestimated vectors

and in (57) may be viewed, without loss of gen-
erality, as the first elements of the vectors and ,

respectively. In vector notation,

and , where and are the
residual taps of the true channel impulse response
vector and the process noise vector , respectively.
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The process correlation matrix can be expressed in terms
of its submatrices as

(58)

where ,
, and are the

corresponding correlation submatrices. The channel correlation
matrix can also be expressed as

(59)

where the correlation submatrices are analogously defined as
in (58). Using the notational decomposition of the channel
impulse response vector into the underestimated and
residual vector introduced above, the channel output in (2) may
be written as

(60)

where , and and
are, respectively, the samples of the data vector

associated with the taps of the
underestimated channel impulse response vector and its
residual , respectively.

Recalling that the additive white Gaussian observation noise
is uncorrelated with and , it is clear that

is also uncorrelated with and independent of , ,
, and as well. Furthermore, since the elements

of the data vector are assumed to be independent and
uncorrelated, , and it can readily be verified that

. Hence, , as defined,

is independent and uncorrelated with the term
in (60). It is therefore the equivalent additive white Gaussian
observation noise for the underestimated channel response
vector , whose channel model is embedded in (57). Its
variance can be shown to be given by

(61)

The channel estimation error vector is given by

(62)

where , and is the residual true
channel impulse response vector defined earlier. The formula of
Section V can be applied to the reduced order system described
in (57) and (60), resulting in a filter that reduces the estimation
error in (62). Channel order underestimation leads to
an increase in the equivalent observation noise, reflected in

(61), which adversely impacts the performance of the EW-RLS
algorithm by increasing the observation noise induced error
variance. While the CSF algorithm improves the performance
of the EW-RLS algorithm by weighting the subspaces with
higher energy more favorably than the subspaces with lower
energy, this improvement is diminished by the constant offset
term , due to the untracked taps of the true channel
impulse response. The energy in these untracked taps, relative
to the energy in the taps that are being tracked, ultimately
determines the extent to which the CSF algorithm can improve
the performance of the EW-RLS algorithm.

VIII. ADAPTIVE CHANNEL SUBSPACE FILTERING ALGORITHM

The CSF approach described above relies on explicit knowl-
edge of the system parameters for the assumed channel model in
(1). In a realistic scenario, even if the simplistic channel model
in (1) were assumed to be valid, the parameters , , , and

are unknown or, as in some instances, not directly observ-
able. Merely the received data and the transmitted data

are known. From (11), it is clear that minimization of the
unobservable mean-square channel estimation error also min-
imizes the observable mean-square prediction error. The CSF
formulation in (43) expressed as a minimization of an unobserv-
able cost function can hence be rewritten as a minimization of
an observable cost function

(63)

In a realistic scenario of unknown channel system parameters,
the MMSE formulation in (63) is the basis for a deterministic
least-squares problem expressed as

(64)

where is the weighting function, and is the es-
timated post-filter. If , then (64) takes on an
EW-RLS form. For the remainder of this section and the dis-
cussions that follow, it will be assumed that only
for and 0 elsewhere. Equation (64) thus
takes on an SW-RLS form, which is written as

(65)

where is the length of the averaging window. This SW-RLS
form was chosen for convenience.

Since is an matrix, even for moderate to large
, the formulation in (65) would require an unreasonably

large number of samples of for the solution to
converge. The number of parameters to be estimated can be
reduced by exploiting the fact that for the channel model in (1),
the channel estimate correlation matrix in (40) has the same
eigenvectors as the CSF filter computed as .
If the channel estimate time series were used to estimate
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eigenvectors ,2 then the post-filter, which is written as
, could be computed using an estimate

of the CSF coefficients that form the diagonal matrix .
The modal decomposition of can be used to express the
least-squares problem in (65) in terms of the required CSF
coefficients such that we have (66), shown at the bottom of
the page, where is the th column of the estimated
eigenvector matrix and the .
Equation (66) is a least-squares problem that can be solved for
a given . In several communications applications, it may be
necessary to minimize the -step prediction error. A more
general way of writing (66) is thus (67), shown at the bottom of
the page. In the communications system application of interest
here, if there are samples per transmitted data symbol,
then . Regardless of the value of used to calculate
the optimal post-filter , the notation
will be used.

The deterministic least-squares problem posed in (67) con-
stitutes the basis for an adaptive CSF algorithm. However, the
intended use of such an ACSF algorithm in low-rank channels
and the sensitivity of subspace-based methods in such channels
motivates a desire to introduce the channel rank as an addi-
tional parameter for the proposed ACSF algorithm. In low-rank
channels, from (44), a number of the CSF coefficients will have
an expected weight of zero. Thus, if the presumed rank of the
channel is , then only the corresponding CSF coefficients
will have to be estimated, whereas the remaining coeffi-
cients will be assigned zero weight. To fulfill this criterion, (67)
can be rewritten as (68), shown at the bottom of the page. This

2This could be done by first computing the (unnormalized) channel
estimate sample correlation matrix R (n j n�1) = ĥ(k)ĥ (k),
then computing the eigenvalue (or singular value) decomposition, yielding
eigenvectors Û(n).

equation can be solved for a given and and forms the basis
for the proposed ACSF algorithm. Tables I and II summarize a
proposed causal and noncausal ACSF algorithm.3 Regardless of
the causality of the solution, introducing the following variables
allows (68) to be posed as traditional least-squares problem

(69)

(70)

where it may be recalled that is the conjectured rank of the
channel and that the operation denotes an element-by-el-
ement multiplication of the adjacent vectors. Using these vari-
ables, the deterministic least-squares problem can be posed as
(71), shown at the bottom of the page, whose conjectured rank

dependent solution is given by

(72)

where and are computed as

(73)

(74)

3Following the notation introduced earlier, use of the time index n denotes
functional time dependence, whereas its omission denotes functional time in-
variance. To maintain generality, the time index n will be retained for the re-
mainder of this section.

diag
diag

(66)

diag
diag

(67)

diag
diag

(68)

(71)
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TABLE I
SUMMARY OF CAUSAL ACSF ALGORITHM

TABLE II
SUMMARY OF NONCAUSAL ACSF ALGORITHM

The ACSF coefficient vector , as given in (72),
can be calculated using an RLS algorithm using and

as its inputs. The estimated ACSF is computed as
. In experimental

scenarios, the performance of the ACSF algorithm versus
can be evauated using the rank- -dependent ACSF

prediction error metric . Here,

, and
depends on the rank used to compute the ACSF post-filter

. For the channel model in (1), it is reasonable to expect
this rank to correspond to the true rank of the channel. The
noncausal ACSF algorithm introduced is a benchmark for eval-
uating the performance of the practically implementable causal
ACSF algorithm. The causal and noncausal ARR algorithms
are similar to their ACSF variants, with the exception that
the rank- -dependent filtering coefficients are, by definition,
identically equal to 1, with the remaining filtering coefficients
equal to 0.

IX. SIMULATION RESULTS

The models for the time-varying system described in (1)
and (2) were used to generate data used in the simulations.
Equiprobable BPSK symbols were used to generate samples
of the transmitted data vector . For multitap simulations,
the eigenvectors of the correlation matrix were chosen
randomly. The performance metrics for the simulations were
calculated on a single channel realization using a large number
of generated samples of received data . Only the samples
of the channel estimate vector corresponding to the steady-state
regime of the EW-RLS algorithm, i.e., after the transient phase

of the algorithm was assumed to have been completed, were
used for these performance evaluations. The ACSF algorithm,
when used for comparison, refers to the noncausal variant
described in Table II.

A. Single Tap Channel Simulation

A single tap channel was simulated with the following pa-
rameters: , SNR dB, and .
From (31), this corresponds to of about 30 dB4 and a noise
variance of about 25 dB. Channel estimates were generated
using the EW-RLS algorithm and post-filtered using a scalar
CSF filter that was computed using (44). Fig. 1 shows the agree-
ment between the theoretical and simulated results for the op-
timal performance of the EW-RLS, CSF, and ACSF algorithms.
The CSF algorithm improves performance by about 4 dB. The
ACSF algorithm matches the performance of the CSF algorithm
to within 0.1 dB. Fig. 2 shows the magnitude and phase of the
optimal CSF coefficients for this example.

For the parameter in this example, the channel dynamics
as described using (1) primarily consist of phase rotations. The
coherent averaging of the channel impulse response over the
equivalent averaging window [14] of the EW-RLS algorithm
introduces a phase and magnitude distortion in the channel
estimate. For smaller values of , of up to about 0.975, the
magnitude of the CSF coefficient is fairly close to 1, whereas

4Although dB is a logarithmic measure that is conventionally computed from
dimensionless quantities, it has been used dually in this paper to express the
magnitude of dimensionless quantities such as SNR and quantities such as vari-
ance and theoretical channel estimation error that are clearly not dimensionless.
Its use in this manner will be obvious from the context; in such situations, the
logarithmic dB measure computed as 10� log 10(�) is relative to a unit 1 mea-
sure of the relevant quantity.
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Fig. 1. Tracking performance of the EW-RLS, CSF, and ACSF algorithms on
data simulating a one tap channel.

Fig. 2. Channel subspace filtering coefficients for simulated one-tap channel
data.

its phase increases with . In this regime, the CSF algorithm
primarily compensates for the phase distortion due to the
coherent averaging of the EW-RLS algorithm. At higher values
of , the CSF algorithm needs to account for both the phase
distortion and the magnitude reduction in the channel estimate
caused by the averaging of the rotating phasor over a longer
window.

The minimum point in the performance curve for the CSF
algorithm occurs at a greater value of than that of the EW-RLS
algorithm, as seen in Fig. 1. At this higher value of , for the
EW-RLS algorithm, the observation noise-induced error vari-
ance decreases but cannot offset the increased tracking error
variance due to the greater phase and magnitude distortion in-
troduced by the larger coherent averaging window [14]. The
CSF algorithm is, however, able to compensate for this phase
and magnitude distortion and, hence, improve the overall per-
formance of the EW-RLS channel estimator. This constitutes
the basis for the improved performance of the CSF algorithm in

tracking channel dynamics composed of phase rotations. Sec-
tion IX-B analyzes the performance of the CSF algorithm when
there is a channel order mismatch.

B. Channel Order Mismatch Simulation

With the previous example in mind, a two tap channel was
simulated with the following parameters: ,
SNR dB, and . The eigenvalues
of the process correlation matrix are and

. As before, channel estimates were generated using the
EW-RLS algorithm and post-filtered using a CSF filter. How-
ever, unlike before, three sets of channel estimates were gener-
ated corresponding to an underestimation of the channel order
(with ), perfect estimation of the channel order (with

), and overestimation of the channel order (with ).
Fig. 3(a) shows the deterioration in EW-RLS tracking perfor-

mance due to overestimation and underestimation of the channel
order. Underestimation of the channel order results in a tracking
performance that is 5 dB worse relative to the tracking perfor-
mance of the tap EW-RLS algorithm. Overestimation of
the channel order, on the other hand, results in a 1.5-dB degrada-
tion in performance that is primarily due to the increased noise
in the subspace associated with the extra tap. At higher values
of , where the observation noise-induced error variance of the
EW-RLS algorithm decreases, the performance of the
tap EW-RLS algorithm gets increasingly closer to the perfor-
mance of the tap EW-RLS algorithm. At values of very
close to 1, where the observation noise-induced error variance
term vanishes the tap EW-RLS algorithm, the
tap EW-RLS algorithm and the tap EW-RLS algorithm
have the same channel estimation error of about 30.97 dB.
This is equal to the energy tr of the true channel impulse
response , indicating that all of the estimators are unable to
track the fluctuations in the channel impulse response.

Fig. 3(b) shows the improvement in performance due to the
CSF algorithm. There is also an excellent agreement between
the CSF and ACSF performance that is omitted from Fig. 3(b)
for clarity. The CSF algorithm applied to the tap
EW-RLS algorithm improves performance by about 0.6 dB.
It can also be seen that CSF algorithm applied to the
tap EW-RLS algorithm results in tracking performance very
close to the CSF post-filtered tap EW-RLS algorithm.
This improvement in performance is about 4 dB relative to the

tap EW-RLS algorithm and about 5 dB relative to the
tap EW-RLS algorithm. This improved performance

occurs at a higher value of , where the CSF algorithm is able
to compensate for the increased tracking error variance due to
the phase distortion induced by the EW-RLS algorithm.

It is insightful to compare the performance of the CSF
algorithm on the underestimated channel to the one tap example
presented earlier. As in the previous example, the minimum
point in the performance curve for the CSF algorithm applied
to the underestimated channel occurs at a larger value of than
that of the EW-RLS algorithm. As discussed earlier, at this
higher value of , for the EW-RLS algorithm, the observation
noise-induced variance decreases but is offset by the increased
tracking error variance due to the greater phase and magnitude
distortion introduced by the larger coherent averaging window.
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Fig. 3. Comparison of impact of channel order mismatch on performance of
EW-RLS and CSF algorithms.

The CSF algorithm compensates for this phase and magnitude
distortion and improves the overall performance of the
tap EW-RLS algorithm. While this improvement in estimator
performance relative to the tap in question is approximately
4 dB, from the previous example, the net improvement is
more than offset by the large offset term due to the untracked
tap. As a result, while the CSF algorithm still improves the
performance of the EW-RLS algorithm, the magnitude of the
improvement is diminished.

These simulations confirm that even when the channel order
is underestimated or overestimated, the CSF algorithm is able
to improve the performance of the EW-RLS algorithm. Sec-
tion IX-C analyzes the performance of the CSF algorithm in
tracking a multitap low-rank channel.

C. Multitap Channel Simulation

The time-varying channel impulse response vector was
modeled using a 35 tap transversal vector . The eigen-
values of the driving process, i.e., the diagonal elements of ,

determine the energy associated with each of the channel sub-
space eigenvectors. The correlation matrix was modeled
as having a rank of 5. The eigenvalues of the correlation ma-
trix were normalized so that the energy in the driving process
was unity, i.e., tr . The energy of the nonnull sub-
spaces, i.e., the nonzero eigenvalues of , were assigned to be

such that, as described
earlier, . The time-varying system was evolved
as (1) with the parameter . This resulted in the
time-varying channel impulse response having an energy
given by (31) as tr tr , which, for

corresponds to an an energy of about 30 dB. The
output of the system was generated using (2) with additive
Gaussian observation noise with a variance of , yielding
an SNR of 5 dB. Fig. 4 compares the performance of these al-
gorithms. The figure shows the theoretical values of channel es-
timation error computed with (47), (49), and (46) labeled as Th.
EW-RLS, Th. ARR, and Th. CSF, respectively.

The rank 5 ARR filter, as constructed, exploits only the re-
duced dimensionality of the channel. The rank 5 CSF filter,
on the other hand, implicitly exploits both the reduced dimen-
sionality of the channel as well as the correlation between the
channel estimate and the true channel impulse response. This is
manifested in the improved performance of the CSF filter for all
values of the tracking parameter , as evidenced in Fig. 4. It may
be noted that best performance is achieved at a smaller value of

. For this example, a smaller value of decreases the tracking
error variance and increases the observation noise-induced error
variance for the EW-RLS algorithm. When is real, it can be
shown from (44) that when only a magnitude correction
is needed. The rank 5 CSF algorithm improves the channel esti-
mation error by eliminating a major part of this increased obser-
vation noise-induced error variance associated with the null sub-
spaces and by weighting the subspaces with higher energy more
favorably than those with lower energy. The rank 5 ARR filter
is also able to achieve comparable performance by eliminating
this increased observation noise-induced error variance associ-
ated with the null subspaces. In this case, the performance of the
rank 5 ARR filter is comparable to that of the CSF filter, sug-
gesting that in some situations, the use of an ARR filter might
provide the expected gain in computational efficiency without
sacrificing too much algorithmic performance. Both the ARR
and the CSF algorithms improve the channel estimator perfor-
mance by about 3 dB.

Fig. 4 shows the agreement between predicted (Th. EW-RLS,
Th. ARR, and Th. CSF) and realized channel estimation error
(Sim. EW-RLS, Sim. ARR, and Sim. CSF) as well as the equiv-
alence between the ACSF (Sim. ACSF) and the CSF (Sim.
CSF) solutions. This figure also shows the mismatch between
the predicted performance and the simulation performance
for smaller values of , where the assumptions of the direct
averaging method begin to break down.

Fig. 5 demonstrates that the performance of the ACSF algo-
rithm is sensitive to eigenvector estimation errors. Here, for a
given 50 000-point data window, the eigenvectors used to deter-
mine the ACSF solution are computed using an estimate of the
channel estimate correlation matrix composed of 50 000, 500,
100, and 50 equally spaced channel estimates, respectively. It
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Fig. 4. Tracking performance of the EW-RLS, CSF, and ACSF algorithms on
multitap channel simulated data. The curves from top to bottom at � = 0:975

are Sim. EW-RLS, Th. EW-RLS, Sim. ARR, Sim. ACSF, Sim CSF, Th. ARR,
and Th. CSF, respectively.

can be seen that there is a deterioration in algorithm perfor-
mance of approximately 1.2 dB. While a rigorous analysis of
the performance of the ACSF algorithm is beyond the scope of
this paper, simulation results such as Fig. 5 suggest that eigen-
vector estimation errors do indeed affect the performance of the
ACSF algorithm.

X. RESULTS ON EXPERIMENTAL DATA

The ACSF algorithm presented earlier was used to process
experimental data collected in acoustic communication experi-
ments [15]. This section presents the results of processing this
data over a range of operating channel conditions. This will
serve to demonstrate that even though a simplified theoretical
channel model was initially used to formulate the algorithm, an
ACSF algorithm is able to exploit the assumed channel subspace
structure to improve the performance of the overall channel es-
timator.

The received signal with a carrier frequency of 2.25 kHz was
sampled, brought to baseband, lowpass filtered, and downsam-
pled to a rate of 2.5 kHz corresponding to two baseband sam-
ples per transmitted data symbol interval. The baseband sam-
ples were processed to compensate for any Doppler shift [16].
A 88 tap model was used to represent the time-varying base-
band channel impulse response. Fig. 6 shows the magnitude of
a sample baseband channel impulse response estimate generated
using the EW-RLS algorithm with . The ACSF coef-
ficients were computed using , whereas its performance
was evaluated using . Fig. 7(a) shows the improvement
in performance obtained by using an ACSF approach. The rank
3 ACSF solution is within 0.1 dB of the best performing rank
75 ACSF solution. Fig. 7(b) shows the performance versus
curve and demonstrates the 9-dB improvement in performance
due to the rank 7 ACSF algorithm. It can also be seen that both
the causal and noncausal processing demonstrate this improved
performance. Fig. 7(a) shows that the tracking performance of
the rank 3 ACSF filter is comparable with the rank 88 ACSF
filter. The rank 7 ARR filter achieves a performance gain of

Fig. 5. Effect of eigenvector estimation errors on performance of ACSF
algorithm using multitap channel simulated data.

Fig. 6. Magnitude of a sample baseband channel impulse response estimate.

about 1.5 dB. This demonstrates that the ACSF coefficients used
to compute the post-filter achieves the additional 7.5 dB of per-
formance gain by compensating for the magnitude and phase
distortion due to coherent averaging. Fig. 8 compares the mag-
nitude and phase of the ACSF coefficients computed using an a
priori assumed rank of 3 and 88, respectively. Since the rank 3
ACSF coefficients in Fig. 8 have a magnitude close to 1 and a
phase of about rad (or about ), the performance
gain is primarily due to a phase compensation, rather than a
magnitude correction. This is similar to the single tap channel
example presented in Section IX.

The improvement due to the ACSF approach is a result
of exploiting both the reduced dimensionality of the channel
subspace and the correlation between the channel estimate
and the true channel impulse response. Hence, despite the
relative computational efficiency of the ARR algorithm, its
performance degradation relative to the ACSF algorithm is
severe. The performance of the causal and the noncausal
versions of the ACSF algorithm are within 1 dB of each other.
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Fig. 7. Channel estimator performance on experimental data.

Fig. 8. Channel subspace filtering coefficients.

Improvement in estimator performance on additional channels
is demonstrated in [12].

XI. APPLICATION TO A CHANNEL ESTIMATE-BASED DFE

Prior work [17] has shown that the performance of channel
estimate-based DFEs is adversely affected by channel estima-
tion errors. This suggests that improved channel estimation due
to the CSF approach would lead to improved performance of
the channel estimate-based DFE. The details of the channel es-
timate-based DFE are omitted here for the sake of brevity. The
performance of the standard channel estimate based DFE [18]
in Section XI-A is compared on experimental data, where the
DFE feedforward and feedback taps are computed using either
ACSF post-filtered or (unfiltered) EW-RLS channel estimates.

A. DFE Performance on Experimental Data

The channel estimate-based DFE algorithm was used to
process the same experimental data used in Section X. Fig. 6
shows the magnitude of one of the sampled complex baseband
channel impulse response estimates that was generated using
this data. For the experimental results presented, the channel
estimates were obtained using the EW-RLS algorithm. The
channel estimate time series is postprocessed using the ACSF
algorithm as described earlier. The postprocessed channel
estimate is used to compute the coefficients of the feedback
and the feedforward filter, as in [18].

Fig. 9(a) compares the equalizer performance, i.e., the soft
decision error in dB, of a channel estimate based DFE using
post-filtered channel estimates and conventional EW-RLS
channel estimates. Fig. 9(b) compares these channel esti-
mate-based DFEs in terms of the number of incorrect decoded
symbols. For this data set, 3200 quadrature phase-shift keying
(QPSK) data symbols were transmitted at a rate of 1250
symbols/s and subsequently decoded. The performance of the
ACSF post-filtered channel estimate-based DFE, configured
using 40 feedback and 24 feedforward taps (ten anticausal and
14 causal taps, respectively), is demonstrably superior to that
of the conventional EW-RLS channel estimate-based DFE.

XII. CONCLUSION

A channel subspace post-filtering algorithm has been pre-
sented that treats the least-squares channel estimate as a noisy
time series and exploits the correlation structure of the channel
subspace to improve the tracking performance of the EW-RLS
tracking algorithm. This improvement in performance has been
demonstrated both analytically and using simulation data. An
adaptive CSF algorithm has been proposed that has been ob-
served to closely match the performance of the CSF algorithm
in the simulations presented. The simulation results suggest that
the CSF approach is useful in channels with moderate to low
SNRs, where there is either significant phase rotation, a channel
order mismatch, or an inherent reduced dimensionality of the
channel subspace. Although the channel model in (1) was fairly
simplistic, experimental data demonstrates the applicability of
the CSF approach on practical channels. A channel estimate-
based DFE that uses these post-filtered channel estimates to de-
termine the equalizer coefficients was shown to have improved
performance on the same experimental data. Additional results
in [10] and [11] show that the ACSF algorithm improves the
performance of the SW-RLS channel estimation algorithm on
the same experimental data presented here.
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Fig. 9. Performance on experimental data.
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