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Fundamental limit of sample generalized eigenvalue
based detection of signals in noise using relatively
few signal-bearing and noise-only samples

Raj Rao Nadakuditi and Jack W. Silverstein

Abstract

The detection problem in statistical signal processing lmarsuccinctly formulated: Givem (possibly) signal
bearing,n-dimensional signal-plus-noise snapshot vectors (sashpled N statistically independent-dimensional
noise-only snapshot vectors, can one reliably infer thaegree of a signal? This problem arises in the context of
applications as diverse as radar, sonar, wireless comiaions, bioinformatics, and machine learning and is the
critical first step in the subsequent signal parameter asitam phase.

The signal detection problem can be naturally posed in tefrtise sample generalized eigenvalues. The sample
generalized eigenvalues correspond to the eigenvaludseofntrix formed by “whitening” the signal-plus-noise
sample covariance matrix with the noise-only sample cavaeé matrix. In this article we prove a fundamental
asymptotic limit of sample generalized eigenvalue basééctien of signals in arbitrarily colored noise when there
are relatively few signal bearing and noise-only samples.

Specifically, we show why when the (eigen) signal-to-no&er(SNR) is below a critical value, that is a simple
function of n, m and N, then reliable signal detection, in an asymptotic sensaotspossible. If, however, the
eigen-SNR is above this critical value then a simple, nevdoam matrix theory based algorithm, which we present
here, will reliably detect the signal even at SNR’s closehte tritical value. Numerical simulations highlight the
accuracy of our analytical prediction and permit us to edtenr heuristic definition of theffective number of
identifiable signals in colored nois&Ve discuss implications of our result for the detection efaw and/or closely
spaced signals in sensor array processing, abrupt chateide in sensor networks, and clustering methodologies
in machine learning.

Index Terms

signal detection, random matrices, sample covariancebmatiishart distribution, multivariate F distribution

EDICS Category: SSP-DETC Detection; SAM-SDET Source detection

. INTRODUCTION

The observation vector, in many signal processing apjdica; can be modelled as a superposition of a finite
number of signals embedded in additive noise. The model @alection problem of inferring the number of signals
present is the critical first step in the subsequent signedrpater estimation problem. We consider the class of
estimators that determine the model order, the number of signals, in colored noise from the sample rgdined
eigenvalues of the signal-plus-noise sample covarian¢exiaand the noise-only sample covariance matrix pair. The
sample generalized eigenvalues [1] precisely correspmtiieteigenvalues of the matrix formed by “whitening” the
signal-plus-noise sample covariance matrix with the roisly sample covariance matrix (assuming that the number
of noise-only samples is greater than the dimensionalityhefsystem so that the noise-only sample covariance
matrix is invertible).

Such estimators are used in settings where it is possibladafportion of the data that contains only noise fields
and does not contain any signal information. This is a realessumption for many practical applications such
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as evoked neuromagnetic experiments [2]-[4], geophysigaériments that employ a “thumper” or in underwater

experiments with a wideband acoustic signal transduceraviigch a portion can be found in a data portion taken
before a stimulus is applied. In applications such as radaooar where the signals of interest are narrowband
and located in a known frequency band, snapshot vectorectedl at a frequency just outside this band can be
justified as having the same noise covariance charactsrisgisuming that we are in the stationary-process-long-
observation-time (SPLOT) regime [5].

Our main objective in this paper is to shed new light on this afgl problem of detecting signal in noise from
finite samples using the sample eigenvalues alone [6], [€]bvihg into sharp focus a fundamental statistical limit
that explains precisely when and why, in high-dimensiosatple size limited settings underestimation of the model
order is unavoidable. This is in contrast to works in therditere that use simulations, as in [8], to highlight the
chronically reported symptom of model order estimatorsenestimating the number of signals without providing
insight into whether a fundamental limit of detection isfgeencountered.

In recent work [9], we examined this problem in the white Baisenario. The main contribution of this paper is
the extension of the underlying idea to the arbitrary (oooedl) noise scenario. Analogous to the definition in [9],
we define theeffective number of identifiable signals in colored nasehe number of the generalized eigenvalues
of the population (true) signal-plus-noise covariancerixand noise-only covariance matrix pair that are greater
than a (deterministic) threshold that is a simple functiérthe number of signal-plus-noise samples, noise-only
samples and the dimensionality of the system. Analogoukdaomhite noise case, increasing the dimensionality of
the system, by say adding more sensors, raises the deliggthipeshold so that the effective number of identifiable
signals might actually decrease.

An additional contribution of this paper is the developmeind simple, new, algorithm for estimating the number
of signals based on the recent work of Johnstone [10]. Nwalerésults are used to illustrate the performance of
the estimator around the detectability threshold alludeeéarlier. Specifically, we observe that if the eigen-SNR
of a signal is above a critical value then reliable detectismg the new algorithm is possible. Conversely, if the
eigen-SNR is below the critical value then the algorithmirectly for the reason described earlier, is unable to
distinguish the signal from noise.

The paper is organized as follows. We formulate the probler8ection Il and state the main result in Section
lll. The effective number of signals is defined in SectiontAllalong with a discussion on its implications for
applications such as array processing, sensor networksnaigtiine learning. A new algorithm for detecting the
number of signals is presented in Section IV. Concludingamis are offered in Section V. The mathematical
proofs of the main result are provided in Section VI.

[I. PROBLEM FORMULATION

We observem samples (“snapshots”) of possibly signal bearinglimensional snapshot vectoss, ..., x,,
where for each, the snapshot vector has a (real or complex) multivariatenabdistribution,i.e., x; ~ N, (0, R)
and thex;’s are mutually independent. The snapshot vectors are heddas

X; = As; + z; fori=1,...,m, 1)

wherez; ~ N, (0,X), denotes am-dimensional (real or complex) Gaussian noise vector wiiereoise covariance

¥ may be known or unknowrs; ~ AN (0, R;) denotes &-dimensional (real or complex) Gaussian signal vector
with covarianceR;, and A is a n x k unknown non-random matrix. Since the signal and noise vecioe
independent of each other, the covariance matrix,ofan hence be decomposed as

R=U+3 @)

where
¥ = AR A’ 3

with / denoting the complex conjugate or real transpose. Assuthatghe matrixA is of full column rank,.e., the
columns ofA are linearly independent, and that the covariance matrith@fsignalsR, is nonsingular, it follows
that the rank of¥ is k. Equivalently, then — k& smallest eigenvalues oF are equal to zero.
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If the noise covariance matriX were known apriori and was non-singular, a “noise whitehimgnsformation
may be applied to the snapshot vectgrto obtain the vector

ii = 2_1/2Xi7 (4)
which will also be normally distributed with covariance
Ry =X /R V2 =2"'w 4+ 1L (5)

Denote the eigenvalues &x by \; > Ay > ... > \,. Recalling the formulation of the generalized eigenvalue
problem [1][Section 8.7], we note that the eigenvalueRgf are exactly the generalized eigenvalues of the regular
matrix pair (R, ). Then, assuming that the rank Bf-' W is alsok, it follows that the smallest — & eigenvalues

of Ry or, equivalently, the generalized eigenvalues of the mafair (R, X)), are all equal tal so that

/\k+1:>\k+2:...:/\n:>\:1, (6)

while the remainingt eigenvalueR's; of will be strictly greater than one.

Thus, if the true signal-plus-noise covariance malRxand the noise-only covariance mat® were known
apriori, the number of signals could be trivially determined from the multiplicity of thegenvalues ofRx
equalling one.

The problem in practice is that the signal-plus-noise amdribise covariance matric&s are unknown so that
such a straight-forward algorithm cannot be used. Insteachave an estimate the signal-plus-covariance matrix
obtained as

. 1 &
R = m ; XiX; (7)
and an estimate of the noise-only sample covariance mabtiireed as
. 1
3= N Z zjz;- (8)
7=1
wherex; for i =1,...,m are (possibly) signal-bearing snapshots apdor j = 1,..., N are independent noise-

only snapshots. We assume here that the number of noisesoafshots exceeds the dimensionality of the system,
i.,e, N > n + 1, so that the noise-only sample covariance ma¥ixwhich has the Wishart distribution [11],
is non-singular and hence invertible with probability 1 [XZhapter 3, pp. 97], [13, Chapter 7.7, pp. 272-276].
Following (5), we then form the matrix ~ o

R =37'R, 9)

and compute its eigen-decomposition to obtain the eigeegabfRs, which we denote by\; > Ay > ... > A,,.
We note, once again, that the eigenvalueﬁ%f are simply the generalized eigenvalues of the regular mpair
(f{, f)). Note that wheneveN < n, the signal-plus-noise sample covariance maRixvill be singular so that the
n — N generalized eigenvalues will equal zei®, Ayi1 = Ayso = ... = A, = 0. Figure 1 illustrates why the
blurring of the sample eigenvalues relative to the popoagigenvalues makes the problem more challenging.

In this paper, we are interested in the class of algorithnas itifer the number of signals buried in arbitrary
noise from the eigenvalues @& or Rx alone. Such algorithms are widely used in practice and awgerally
from classical multivariate statistical theory [10] whethe matrixﬁi is referred to as the multivariate F matrix
[12], [14]. The information theoretical approach to modedler estimation, first introduced by Wax and Kailath
[6], was extended to the colored noise setting by Zhao et HIShwho prove consistency of their estimator in the
large sample size regime. Tam and Wu [16] performed a rat®mfergence analysis of Zhao et al’s algorithm for
different choices of the penalty function; their does nalgiany insight into the high dimensional, finite sample
setting.

Consequently, research has focussed on developing soptast techniques for improving performance of
eigenvalue based methods in the finite sample setting. Zlali[@7] improve the performance of their eigenvalue
estimator by assuming a model for the noise covariance xn&toica and Cedervall [18] improve the performance
of their estimator in two reasonable settings: one, wheieritasonable to assume that the noise covariance matrix
is block diagonal or banded and two, where the temporal [ative of the noise has a shorter length than the
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Fig. 1. The dimension of the “noise” subspace is equal to thitipticity of the population eigenvalue equal to
one. When the population eigenvalues are known, then degettte number of signals becomes trivial. However,
estimating the number of signals from the sample generhlgigen-spectrum is considerably more challenging
because of the finite sample effects. Specifically, the finilenber of noise-only and signal-plus-noise samples
induces a blurring in the sample eigenspectrum relativdvéopiopulation eigenspectrum makes discrimination of
the “signal” from the “noise” challenging. The figure showseaandom instance generated for & 20 dimensional
system with/V = 25 noise-only samples anek = 40 signal-plus-noise bearing samples.

signals. Other techniques in the literature exploit otheracteristics of the signal or noise to effectively redilme
dimensionality of the signal subspace and improve modetroegtimation given finite samples. See for example
[19], [20] and the references in [9].

Informally speaking, it is evident that performance of smebdel order estimation algorithms is coupled to the
“quality” of the estimated signal-plus-noise and noiséyorovariance matrices which in turn are dependent on
the number of snapshots used to estimate them, respectiResearchers applying these techniques have noted
the absence of a mathematically rigorous, general purpmseufa in the literature for predicting the minimum
number of samples needed to obtain “good enough” detectionracy (see, for example [3][pp. 846]. A larger,
more fundamental question that has remained unansweledpw, is whether there is a statistical limit being
encountered.

We tackle this problem head on in this paper by employing stighted techniques from random matrix theory
in [21]. We show that in an asymptotic sense, to be made @datsr, that only the “signal” eigenvalues Rfy;
that are above a deterministic threshold can be reliablndisished from the “noise” eigenvalues. The threshold is
a simple, deterministic function of the the dimensionatifythe system, the number of noise-only and signal-plus-
noise snapshots, and the noise and signal-plus noise aneariand described explicitly next. Note the applicabilit
of the results to the situation when the signal-plus-nos&tdance matrix is singular.

[1l. M AIN RESULT

For a Hermitian matrixA with n real eigenvalues (counted with multiplicity), the empatidistribution function

(e.d.f.) is defined as )
B Number of eigenvalues oA < z

n

FA(z) (10)

Of particular interest is the convergence of the e.d.ff{%f in the signal-free case, which is described next.
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Theorem 3.1:Let fii denote the matrix in (9) formed from (complex Gaussian) noise-only snapshots and

independent noise-only (complex Gaussian) snapshots fiieee.d.f.FRs(z) — F=(x) almost surely for every
x, asm, n(m) — oo, m, N(m) — oo ande¢,, = n/m — ¢ >0 andck, =n/N — ¢; < 1 where

dF(z) = max (0, <1 . %)) o) + L= 612)712((2 C_l Zl)c()bz - w)n[bhbz} () d, (11)
where ) )
- (1 ~ /1 _1(1_;@(1 - cl)> o (1 +4/1 _1(1_;0)(1 - cl)> | 12)

Iy, p,)(x) = 1 whenb; < x < by and zero otherwise, anilx) is the Dirac delta function.
Proof: This result was proved in [14]. When — 0 we recover the famous MarCenko-Pastur density [22].
[ |
The following result exposes when the “signal” eigenvalaes asymptotically distinguishable from the “noise”
eigenvalues. ~
Theorem 3.2:Let R denote the matrix in (9) formed from: (real or complex Gaussian) signal-plus-noise
snapshots andV independent (real or complex Gaussian) noise-only snapsbenote the eigenvalues Rfy. by
AL > A2 >0 > M\ > My = ...\ = 1. Letl; denote thej-th largest eigenvalue dRg. Then asy, m(n) — oo,
n, N(n) — oo ande,, = n/m — ¢ >0 andcy, =n/N — ¢; < 1 we have

—Cl>\j—/\j—|—1—|—\/612/\j2—261>\j2—261>\j—|—/\j2—2/\j—|—1
Ajll-c—c 2o, . A >T1(c,er)
lj —
—cic+c+1+c1+2+c+c —cic
A <
Cl2+1—201 ’ J _T(C7CI)
for j =1,...,k and the convergence is almost surely and the threshi¢tde, ) is given by
1 — 1 — 24
T(e,e1) = +7 TC1+\/(2+7‘ TC1) 7'7 (13)
where
o (I+c)a+ \/5\/4oz —c+(1—c)??  (I+c)a+ a2 +c(l—cp)) (14)
N (1—c1)%c N (1—c1)%

anda =c+c; — cic.
Proof: The result follows from Theorem 6.5. The threshdl¢, ¢;) is obtained by solving the inequality

t>r
where forj =1,...,k, t, from [9], [23]-[25], is given by
1

1
Aj <1 + = 1>
andr is given by (31).

Note that wherr; — 0, T(c,¢1) — (1 + 4/c) so that we recover the results of Baik and Silverstein [24]. 8

t =
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Fig. 2: Plot of the minimum (generalized) Eigen-SNR reaaifequal toT(c,c;) — 1 whereT(c, ¢;) is given by
(13)) to be able to asymptotically discriminate between ‘thignal” and “noise” eigenvalue of the matrifli
constructed as in (9) as a function of the ratio of the nhumlfeseasors to snapshots for different valuesl p;
wherec; ~ Number of sensors/Number of noise-only snapshots. The gapelen the upper two lines and the
bottom most line represents the SNR loss due to noise conarimatrix estimation.

A. Effective number of identifiable signals

Theorem 3.2 brings into sharp focus the reason why, in tlgedaystem-relatively-large-sample-size limit, model
order underestimation is sometimes unavoidable. Thisvaitets our heuristic definition of theffective number of
identifiable signalselow:

kers(R, X)) = # Eigs. of S™'R > T(c,c;) & T (% %) . (15)
If we denote the eigenvalues Bts = 'R by A\; > Ao > ... > A\ > Ay = ... A\, = 1 then we define

the eigen-SNR of thg-th signal as\; — 1 then (15) essentially states that signals with eigen-Si$Rialler than
T(n/m,n/N) will be asymptotically undetectable.

Figure 2 shows the eigen-SNR threshil@:, c; ) —1 needed for reliable detection for different values as ationc
of ¢ for different values ofl /c;. Such an analytical prediction was not possible before ¢isalts presented in this
paper. Note the fundamental limit of detection in the sitratwhen the noise-only covariance matrix is known
apriori (solid line) and increase in the threshold eigerR3i¢eded as the number of snapshots available to estimate
the noise-only covariance matrix decreases.

B. Implications for array processing

Suppose there are two uncorrelated (hence, independgnglsiso thaR, = diag(c3;,03,). In (1) let A =
[viva]. In @ sensor array processing application, we thinkrp= v(6;) and vy = vo(62) as encoding the array
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manifold vectors for a source and an interferer with powefs and o2,, located atf; and 6, respectively. The
signal-plus-noise covariance matrix is given by

R = o%,viv] + 0dvovh + X (16)
whereX is the noise-only covariance matrix. The matRx; defined in (5) can be decomposed as

Ry = X7 'R =027 'viv] + =7 odyvovh + 1

so we that we can readily note thRf; has then — 2 smallest eigenvaluel; = ... = )\, = 1 and the two largest
eigenvalues
2 2, 2 2 2 2 _ g2 2)2 2 2 2
o2, lw | +02, |lu V(o3 a2 =02, [uz]2)® + 402,02, | (ur, w))
)\1:1+( &1 w|P® o [Juz[?) N (o& 52 ) 51052 17a)
2 2
2 2, 2 2 2 2 _ 52 2)2 2 2 2
o2 w2 +o2, ua]2) /(08 ]2 0%, l[ual|?)” + 402,02, (w1, )|
A2:1+( g1 [l 3 a2 |?) B (o8 S2 ) 51952 (17b)

2 2

respectively, wherer, := X~%/2y; andu,y := X~'/2v, . Applying the result in Theorem 3.2 allows us to express
the effective number of signals as

2 it T(2, %) <X
ke = {1 if A <T(Z,%) <M\ (18)
0 if A\ <T(Z,%).

Equation (18) captures the tradeoff between the identifialuif two closely spaced signals, the dimensionality
of the system, the number of available snapshots and thaeco$ithe angle between the vectersandv,. Note
that since the effective number of signals depends on tletste of the theoretical signal and noise covariance
matrices (via the eigenvalues Bfy;), different assumed noise covariance structures (AR(lgugewhite noise, for
example) will impact the signal level SNR needed for relabtietection in different ways.

C. Other applications

There is interest in detecting abrupt change in a systemdbasestochastic observations of the system using
a network of sensors. When the observations made at varensoss can be modeled as Gauss-Markov random
field (GMRF), as in [26], [27], then the conditional independe property of GMRF’s [28] is a useful assumption.
The assumption states that conditioned on a particularthgges, the observations at sensors are independent. This
assumption results in the precision matiie,, the inverse of the covariance matrix, having a sparsetsiiovith
many entries identically equal to zero.

Our results might be used to provide insight into the typesystemic changes, reflected in the structure of the
signal-plus-noise covariance matrix, that are undetéetabing sample generalized eigenvalue based estimators.
Specifically, the fact that the inverse of the noise-onlyaz@nce matrix will have a sparse structure means that
one can experiment with different (assumed) conditiondépendence structures and determine how “abrupt” the
system change would have to be in order to be reliably detacdang finite samples.

Spectral methods are popular in machine learning apmicauch as unsupervised learning, image segmentation,
and information retrieval [29]. Generalized eigenvalusdshtechniques for clustering have been investigated in
[30], [31]. Our results might provide insight when specthistering algorithms are likely to fail. In particular, we
note that the results of Theorem 3.2 hold even in situatiohere the data is not Gaussian (see Theorem 6.5) as
is commonly assumed in machine learning applications.
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IV. AN ALGORITHM FOR RELIABLE DETECTION OF SIGNALS IN NOISE

In [10], Johnstone proves that in the signal-free case, iheilmition of the largest eigenvalue fii, on
appropriate centering and scaling, can be approximatedder ®(n~2/3) by the Tracy-Widom law [32]-[34]. In
the setting where there are signals present, we expect, adfgopriate centering and scaling, the distribution of
the signal eigenvalues ‘ﬁi above the detectability threshold will obey a Gaussian laven@as those below the
detectability threshold will obey the Tracy-Widom law adlire signal-free case. An analogous results for the signal
bearing eigenvalues Ry was proved by Baik et al [23] and El Karoui [35]. Numerical estigations for (see
Figure 3) corroborate the accuracy of our asymptotic ptixtis and form the basis of Algorithm 1 presented below
for estimating the number of signals at (asymptotic) sigaiice levek. Theoretical support for this observation
remains incomplete.

Algorithm 1

Input: Eigenvalues\; for j = 1,...,n of Rg

1. Initialization: Set significance level € (0,1)

2. Computer. := TW ', (1 — a) from Table Ii

3. Setk =0

4. Computepigr ¢y [n — k,m] andog c}[n — k,m] from Table I(a)

5 Is logmAp1/N — pyrcy[n — k,m —k, N] S
owcyn —k,m—k,N]

6. If yes, then go to step 9

7. Otherwise, incremerit.

8. If & < min(n,m), go to step 3. Else go to step 9.

9. Returnk = k

Figure 4 illustrates the accuracy of the predicted statistimit and the ability of the proposed algorithm to
reliably detect the presence of the signal at this limit.ulFég5 highlights how far away from this limit the classical
algorithm of Zhao et al [15] is for various choices of the gdgn&unctions considered in [36].

In the special setting where the noise covariance matrixniswk apriori, the results of Baik et al [23], El
Karoui [35] and Ma [37] form the basis of Algorithm 2 presahteelow for estimating the number of signals at
(asymptotic) significance level.

We compare our algorithm to the classical information te&orestimator proposed by Zhao et al in [15].
Define x5 = {#S\j > 1}. Then for a choice of the penalty functiofi,,, that satisfies the conditions
limy 4 N—oo Crntn/(m + N) — 0 andlim,,+ N o0 Crnt-n/ log log(m + n) — oo, the algorithm follows:

k =min(I(0, Cposn), I(1, Congnv ), - - I(1, Crs i), (19a)
where
- n m ~ N m o~ CranN
I(q,Crnsn) = — — log A; — 1 : on —q+1), (19b
(¢, Cmi ) > 2[m+NogAg 0g<m+N+m+NAJ>}+ 5—a(2n—q+1), (19b)

j=1+min(q,rs)

k= min{I(0, Cpusn ) I(1, Coog)s - - I(n, o) }- (19¢)
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. aln,m, N oran,m, N Related parameters
Scenario fug-y s m, N (y[n,m, N] p
1/3 R | min(n,m)—0.5
v+ ¢ 16 1 By =2sinThyERReR
x; €R 2log tan 5~ . _ —
2 (N +m —1)? sin*(y + ¢) singsiny 6 = 2sin~! / max(n,m)—0.
m+N-—1
N := min(n,m)
9wl N+0.5
- ug U __ N+05
Uy + N-1 ny 2sin 2N+N —n+|m—n|+1
T TS 2 —
N N-1 . - 5
x; € C 1 1 T 1 5= 9sin 1 ~N+|m n|+0.5
2N+N —n+|m—n|+1
= T P 1/3
™~ TN-1 TN TN-1 S [ _ 16 f 1 }
N (2N+N —n+|m—n|+1)2 sin? (¢ +75) sin ¢ sinyy
] ~ — N N
uy = 2log tan -
(a) Algorithm 1
Scenario Arguments pgyn,m] ogyn,m] Related parameters
1/3
2
x;i € R ( n—1+ m—%) ( n—1+ m—%) ;4——1 -
e A W RN
2
. MPnm = (‘/n + % +4/m+ %)
1 1 1 L Yn,m 1/3
x; €C + + L+ Ynm < +—‘> Onm = (/45 +y/m+3 ( L+ A >
() ) ] Cvr e m= (Yt i e ymad) (g + v

(b) Algorithm 2

TABLE |: Parameters for signal detection algorithms.
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«

11—«

TW; '(1—a)

TW:'(1—a)

0.990000
0.950000
0.900000
0.700000
0.500000
0.300000
0.100000
0.050000
0.010000
0.001000
0.000100
0.000010
0.000001

0.010000
0.050000
0.100000
0.300000
0.500000
0.700000
0.900000
0.950000
0.990000
0.999000
0.999900
0.999990
0.999999

-3.89543267306429
-3.18037997693774
-2.7824279056953(
-1.91037974619926
-1.26857461658107
-0.59228719101613
0.45014328905825
0.97931605346955
2.02344928138015
3.27219605900193
4.35942034391365
5.34429594047426

6.25635442969338

-3.72444594640057
-3.19416673215810
-2.90135093847591
-2.26618203984916
-1.80491240893658
-1.3248595560602(
-0.59685129711735
-0.23247446976400
0.47763604739084
1.31441948008634
2.03469175457082
2.68220732168978

3.27858828203370

TABLE II: The third and fourth column show the percentilestbé Tracy-Widom real and complex distribution
respectively corresponding to fractions in the secondmaluThe percentiles were computedMATLAB using
software provided by Folkmar Bornemann for the efficientlestion of the real and complex Tracy-Widom
distribution functionng];gf‘(’c}(x). The percentiles are computed using theer o command inMATLAB . The

accuracy of the computed percentiles is aba@tx 10~ in absolute error terms.

Algorithm

2

Input: Eigenvalues\; for j =1,...,n of Rs

. Setk =

Is

. Computer, :=T

0

~1
Wik

. Initialization: Set significance levet € (0, 1)
(1 — ) from Table Il

> 7a?

. Computeyig cy[n — k,m] andog cy[n — k, m] from Table I(b)
mAei1 — pgr.cyn — k,m]
U{]R,C} [n — k, m]

. If yes, then go to step 9

. Otherwise, incremerit.

. If kK < min(n,m), go to step 3. Else go to step 9.
. Returnk = k

11
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Empirical CDF

0.4

0.3

0.2

Noise-only
0.1

—— Signal-plus-noise: ?=05| |

| | | | | |
0.5 0.55 0.6 0.65 0.75 0.8 0.85 0.9

0.7
X (= Test Statistic)

(a) Hereo? = 0.5, so that\; = 1 + o2 = 1.5 < T(320160, 320960) = 3.4365.

Empirical CDF

0.4

0.3

0.2

Noise-only

o — Signal-plus-noise: o?=5}—

| |
0.5 0.6 0.7 0.8 0.9 1 11 1.2 13
X (= Test Statistic)

(b) Hereo? =5, so thath; =1+ 0% =6 > T(32, 220) = 3.4365

Fig. 3: In (a), for the setting described in Theorem 3.2 wenset 320, m = 160, N = 960, o2 =0.5, ang w.l.o.g.

12

> =1, R=diag)\ =1+021,...,1) and compare the the empirical cdf of the largest eigenvalug o with
the largest eigenvalue &g with R =1, i.e, in the noise-only case, oveé000 Monte-Carlo trials. In (b), we plot

the empirical cdf but now witlr? = 5.
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#Sensors = 320, #Noise-only Snapshots = 960, Prob(False Detection | No Signal) = 0.01

#Sensors/#Signal-plus-Noise Snapshots

Fig. 4: A heat map of the log probability of signal detectising Algorithm 1 in Section 1V, with the significance
level o set at0.01, in (eigen) SNR versus number of sensors to number of signakoise snapshots phase
space. In this example, for the setting described in Thed@&mwe setn = 320, N = 960 and w.l.o.g.3 =1,

R = diagA; = 1+ SNR1,...,1) and evaluated Prob(= 1) over 1000 Monte-Carlo trials and a grid of00
equally spaced points in the -5 dB to 15 dB (eigen) SNR rangkla6 equally spaced points in thg = n/m
space by setting: = n/c;. The values of the colormap at each of tr# x 1000 faces were interpolated across
each line segment and face to obtain the above plot. In thie ztame (upper half of the plot) a signal can be
reliably detected whereas in the lighter zone (lower halhef plot) the signal is statistically indistinguishablerfr
noise as evidenced from the probability of detection beilogecto the significance level. The superimposed solid
black line demarcates the theoretically predicted thriesivbile the superimposed solid red line is the theoretjcall
predicted threshold in the setting where the noise coveeianatrix is perfectly known. The gap between the two
lines thus represents the SNR loss due to noise covariantcix restimation.



#Sensors = 320, #Noise-only Snapshots = 960 #Sensors = 320, #Noise-only Snapshots = 960

1010g ) SNR (dB)
o
5
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#Sensors/iSignal-plus-noise Snapshots #Sensors/iSignal-plus-noise Snapshots

NOILD313d d3svd INTVANIOIT dIZITVEIANIO FT1dINVS

(@) Cryn = 0.65v/m + N /log(m + N) (b) Crgyn = 0.5log(m + N)

#Sensors = 320, #Noise-only Snapshots = 960

0
-05
-15
-2
-25
0.2 0.4 06 8 2 14 16 18 2

0. 1 1 ;
#Sensors/#Signal-plus-noise Snapshots

20y

S

10l0g ,, SNR (dB)

(€) Crmin = 0.5log ()
Fig. 5: A heat map of the log probability of signal detectising the algorithm (129) in Section IV, for different choicesthe penalty functiorC,, ; ,
in (eigen) SNR versus number of sensors to number of sigonahmise snapshots phase space. We are in the same sstiimdrigure 4 except that we
plot Prob¢: > 1) over 1000 Monte-Carlo trials and a grid of0 equally spaced points in the 0 dB to 20 dB (eigen) SNR range5anequally spaced
points in thec; = n/m space by settingn = n/c;. The values of the colormap at each of #iex 50 faces were interpolated across each line segment
and face to obtain the above plot. The superimposed solikbiae demarcates the theoretically predicted threshslthaigure 4.

IRy
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V. CONCLUSION

Figure 4 captures the fundamental statistical limit en¢exad when attempting to discriminate signal from noise
using finite samples. Simply put, a signal whose eigen-SNbtisw the detectability threshold cannot be reliably
detected while a signal above the threshold can be. In gstBnch as wireless communications and biomedical
signal processing where the signal power is controllakle, results provide a prescription for how strong it needs
to be so that it can be detected. If the signal level is barkbva the threshold, simply adding more sensors might
actually degrade the performance because of the increasehsionality of the system. If, however, either due
to clever signal design or physics based modeling, we are @bteduce (or identify) the dimensionality of the
subspace spanned by signal, then according to Figure 4 thetalility threshold will also be lowered. With VLSI
advances making sensors easier and cheaper to deploy, sultsrdemonstrate exactly why the resulting gains
in systemic performance will more than offset the effort wil Wwave to invest in developing increasingly more
sophisticated dimensionality reduction techniques. Wstdeding the fundamental statistical limits of technigjue
for signal detection in the setting where the noise-only gansovariance matrix is singular remains an important
open problem.
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VI. APPENDIX
A. Mathematical preliminaries

Let for i,j = 1,2,..., X;; be a collection of complex valued i.i.d. random variableshwdX;; = 0 and
E|X;1/? = 1. For positive integers, andm let X,, = (X;;), i = 1,2,...,n, j = 1,2,...,m. Assume for each
T,, is ann x n Hermitian nonnegative definite matrix. The matrix

B, = (1/m)TY2X,X*T}/?

n-—mn

whereTi/2 is any Hermitian square root dF,,, can be viewed as a sample covariance matrix, formed fiom
samples of the random vectﬂﬁ/2X.1 with X.; denoting the first column aX,,, which hasT,, for its population
covariance matrix. When andm are both large and on the same order of magnit®le will not be nearT,,
due to an insufficient number of samples required for suchige ldimensional random vector. However, there exist
results on the eigenvalues &,. They are limit theorems as — oo with m = m(n) and¢, = n/m — ¢, which
provide information on the eigenvalues®f,. One result [38] is on thempirical distribution functiore.d.f.), F B,

of the eigenvalues aB,,, which throughout the paper, is defined for any Hermitiar n matrix A as

FA(z) = (1/n)(number of eigenvalues of A z).

The limit theorem is expressed in terms of tB#eltjes transfornof the limiting e.d.f. of theF'®’s, where for
any distribution function (d.f.Y7 its Stieltjes transformyn, is defined to be

mg(z):/AiZdG()\), 2eCt={z€C:32>0}
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There exists a one-to-one correspondence between thibulistn functions (d.f.’s) and their Stieltjes transforms

due to the inversion formula .

G(b) — G(a) = liH(l) Smea(z + w)dz,
v— a
for a,b continuity points ofG.
The limit theorem allows th&',, to be random, only assuming as— oo, the convergence df’» to a nonrandom
a.s.

proper probability distribution functiod,,, i.e., H, = F'» % H. The theorem states that with probability one,
asn — oo, FB» —p F, whereF is nonrandom, with Stieltjes transform = mpg(z), z € C* satisfying the

equation .
e / t(1—c—czm) — de(t)’ (20)

which is unique in the sefm € C : —1=¢ 4+ em € C*}.

It is more convenient to work with the eigenvalues of thex m matrix (1/m)X;,T,X,, whose eigenvalues
differ from those ofB,, by |[n — m| zero eigenvalues. Indeed, wiflh denoting the indicator function on the sét
we have the exact relationship

FU/mXTnXe () =(1- Cn))I[OpO)(x) + CnFBn (z)

—p= (1= )jp00) (@) + cF(z) = FoH (2)

almost surely, implying

mpen(z) = —(1—c)/z + cmp(z). (21)
Upon substitutingn z-.= into (20) we find that for € C* m = mp..=(2) solves the equation
1 A
z_—E+c/1+)\de(>\), (22)

and is unique inC*™. Thus we have an explicit inverse fotp., .

Qualitative properties of"“’ have been obtained in [39], most notably the fact that(@mc) F* has a
continuous derivative. The paper [39] also shows how imtisreutside the support @< can be determined from
the graph of (22) fom € R.

Let S¢ denote the support of the d@, S;, its complement, and define. i = z. z(m) to be (22) withm € R.
Intuitively, on S%...» mp-= is well defined and increasing. Therefore it is invertibleeach interval inS%. ., its
inverse, namely:. g, is also increasing. The details are stated in the following

Lemma 6.1 (Theorems 4.1, 4.2 of [39]f: = € S, thenm = mp..n satisfies (1)m € R\{0}, (2) —m™! €
Sy, and (3)%95071{(771) > 0. Conversely, ifm satisfies (1)—(3), them = z. g (m) € Speu.

In simple termsS”.. ., is comprised of the range of values whefgy is increasing.

Another result which will be needed later is the following.

Lemma 6.2 (Theorem 4.3 of [39]Buppose eacin contained in the intervalm;, ms] satisfies (1) and (2) of
Lemma 6.1, and-x i (m;) > 0 for i = 1,2. Then L a. y(m) > 0 for all m € (my, mo).

Limiting eigenvalue mass at zero is also derived in [39]sIshown that

| H(©0), c(1-H(©0) <1,
FO= {1 —ct (11— H(0) > 1. @3)

B. Support of eigenvalues

Since the convergence in distribution8f~ only addresses how proportions of eigenvalues behaverstadeing
the possible appearance or non-appearance of eigenvalés j; requires further work.

The question of the behavior of the largest and smallesne&ees wheril',, = I has been answered by Yin,
Bai, and Krishnaiah in [40], and Bai and Yin in [41], respeely, under the additional assumpti&hX;|* < oc:
the largest eigenvalue amdgin(n, m)™ largest eigenvalue dfl /m)X,, X% converge a.s. tél ++/c)? and (1 —/c)?
respectively, matching the suppaiit] — v/c)2, (1 ++/c)?] of F on (0,00). More onF whenT,, = I will be given
later.
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For generall’,, restricted to being bounded in spectral norm, the non-apee of eigenvalues ifiy.. , has
been proven by Bai and Silverstein in [42]. Moreover, theasation of eigenvalues across intervals f. .,
mirrors exactly the separation of eigenvalues over comeding intervals inS’; [43]. The results are summarized
below.

Theorem 6.1:Assume additionalfg| X |* < co and theT,, are nonrandom and are bounded in spectral norm
for all n.

Let !~ denote the “limiting” e.d.f. associated with /m)X* T, X,,, in other words /= is the d.f. having
Stieltjes transform with inverse (22), wheteH are replace by, H,,.

Assume the following condition:

« (*) Interval [a,b] with a > 0 lies in an open interval outside the supportfsf~ for all largen.

ThenP(no eigenvalue oB,, appears ina,b] for all largen) = 1.

Forn x n Hermitian non-negative definite matrix, let )\g‘ denote the:!" largest eigenvalue od.. For notational
convenience, defingf' = oo and 2, ; = 0.

(i) If ¢(1 — H(0)) > 1, thenzg, the smallest value in the support 8, is positive, and with probability 1,
ABn 20 asn — oco.

(i) If ¢(1—H(0)) <1,0rc(l—H(0)) > 1 butla,b] is not contained if0, x|, thenmpg..=(b) < 0, and for all
n large there is an indek, for which

Al > —1/mpen(b) and A", < —1/mpen(a). (24)
ThenP(A\”" > b and A", | < a for all largen) = 1.
Proof: See proof of Theorems 1.1 in [42], [43]). [ |

The behavior of the extreme eigenvalues bfm)X,, X" leads to the following corollary of Theorem 6.1.

Corollary 6.2: If >\1T" converges to the largest number in the suppoﬂoithenAf’" converges a.s to the largest
number in the support of. If AI» converges to the smallest number in the supporfiofthenc < 1 (¢ > 1)
implies A\~ (A%l/m)X:LT"X") converges a.s. to the smallest number in the suppoft oF ).

In Theorem 6.1, Case (i) applies when> m, whereby the rank oB,, would be at mostn, the conclusion
asserting, that with probability 1, for atl large, the rank is equal to.. From Lemma 6.1, Case (ii) of Theorem
6.1 covers all intervals i%"..» on (0, co0) resulting from intervals oti—oco,0) wherez,. g is increasing. For alh
large z., p, is increasing ofmge..m. (@), mpe..m, (b)], which, from inspecting the vertical asymptotesaQf #,
and Lemma 6.1, must be due to the existenceof A", satisfying (24).

Theorem 6.1 easily extends to randd, independent of X;; : ¢, > 1} with the aid of Tonelli's Theorem
[44, pp. 234], provided the condition (*) oja, b] is strengthened to:

o (**) With probability 1 for all n large|a, b] (nonrandom) lies in an open interval outside the suppoftofi-.
Indeed, letI" denote the probability space generatiig, }, X the probability space generatifd;; : i,j > 1}. Let
their respective measures be denotedPhyP x, the product measure ¢h x X by Pr. x. Consider, for example
in case (ii), we define

A={AP">band\’, < afor all largen}.

Let t € T' be an element of the event defined in (**). Then by TheoremIG{¢,z)) = 1 for all x contained in
a subset ofX having probability 1. Therefore, by Tonelli’'s theorem

P(4) = [ Latt.o)Prox((t.a)) = [ [ / u(u@d&@)} aPr(t) = [ 1dPp(e) = 1.

Consider now case (ii) of Theorem 6.1 in terms of the corredpw interval outside the support éf and the
H,’s. By Lemma 6.1 and condition (*), we have the existence of an0 such tha) ¢ [mpe.=(a)—e€, mpe.r (b)+e€],
and for alln large

d 1 Am)?
%.Z'cm[{n (m) = W <1 — Cp, / (1(4_7)\7)/”)26”;[”()\)) > O, m e [ch,H(CL) — €7ch,H(b) + 6]. (25)

Lett, = —1/mpen(a), ty = —1/mpu(b). Then by Lemma 6.1 we have the existence ofan 0 for which
ta —€ >0and[t, —€,t, + €] C Sy for all n large. Moreover, by (25) we have for all large

)\2
Cp, / den()\) < 1, t e [ta — 6/,tb + 6/]. (26)
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Necessarily\/" > t, + ¢ and /", | < t, — €.

Notice the steps can be completely reversed, that is, biegiath an intervallt,, t;], with ¢, > 0, lying in an
open interval inS%; for all n large and satisfying (26) for som& > 0, will yield [a,b], with a = z. g(—1/t,),
b=xc.u(—1/tp), satlsfylng condition (*). Case (i) applies, sin@e b] is within the range ofc. x(m) for m < 0.
If ¢(1— H(0)) > 1, then we would have > z.

C. Behavior of spiked eigenvalues

Suppose now th&',,’s are altered, where a finite number of eigenvalues aresipggsed between the previously
adjacent elgenvalue}s ., and /\Z; It is clear that the limiting/" will remain unchanged. However, the graph
of ¢, m, on (— 1/)\Z 1 1/)\3;") will now contain vertical asymptotes. If the graph remainsreéasing on two
intervals for alln Iarge each one between successive asymptotes, then bexfaliseorem 6.1, with probability
one, eigenvalues of the nel;,, will appear inS’. . for all n large.

Theorem 6.3 below shows this will happen when a “sprinklent™/spiked” eigenvalue lies itit,, ;). Theorem
6.4 provides a converse, in the sense that any isolatedweilyenof B,, must be due to a spiked eigenvalue, the
absence of which corresponds to case (ii) of Theorem 6.1.

Theorem 6.3, below, allows the number of spiked eigenvaloegow with n, provided it remains(n).

Theorem 6.3:Assume in additon to the assumptions in Theorem 6.1 oXt)jeand T, :

(a) There are = o(n) positive eigenvalues df’',, all converging uniformly tat’, a positive number. Denote by
H,, the e..d.f. of then — ¢ other eigenvalues drf’,,.

(b) There exists positive, < t;, contained in an intervala, 3) with o > 0 which is outside the support dt,
for all large n, such that for these

A2 ~
Cn/den(/\) <1

fort =t,,tp.
(C) t/ € (tavtb)'

Supposek?l", .. -7)‘3:7413—1 are the eigenvalues stated in (a). Then, with probability on
A

Proof: Form € [—1/t,, —1/ty] N {—1/t’}c, we have

1 13 A n—1¢ A
ZTe, H,(M) = —— ¢ | — + dHp, (A
a(m) == I ey

no = n 14+ Am

By considering continuity points off in («, 3) we see that{ is constant on this interval, and consequently,
this interval is also contained ifi};.

Because of (b) we havgach (m) >0 for m = —1/t,, —1/t, (recall (25),(26)).

By Lemma 6.2 we therefore havg-x.. ;7 (m) > 0 for allm e (—1/t,, —1/tp). Thus we can findt,, t,] C [ta, s
andé > 0, such that’ € (¢,,t,) and for alln large g, (m) =0 forallm e [-1/t,, —1/t].

It follows that for any positive: sufficiently small there exist positiv& with ¢’ < ¢, such that, for allh large,
both[-1/t' —e —¢',—1/t' — ¢, and[-1/t' + ¢, —1/t' + e + ']

« 1) are contained in—1/¢t,, —/t,], and

e 2) %xcmm (m) > 0 for all m contained in these two intervals.
Therefore, by Lemma 6.1, for alk large, [z, m, (— 1/t’ —e—0),xe, m,(—1/t' — €)] and [z, g, (—1/t' +
€), xcm i, (—1/t' + €+ 0')] lie outside the support af+#». Letay, = zo y(—1/t' — e — 28'), by, = ey (—1/t' —
e—20), ap = zeu(—1/t' + e+ 18), andbp = ¢ (- 1/t’ + e+ 28'). Then for alln large

[CLL,bL] C (qu(—l/t/ — € — %5/),1%07]{(—1/25/ — € — %5/))
Clwe, m, (—1/t' —e =), e, m,(—1/t' —€)] (28)



SAMPLE GENERALIZED EIGENVALUE BASED DETECTION 19

and

lar,br] C (zeu(—1/t' + €+ %5’),1’0,]{(—1/75, + €+ %5/))
C [xe, m, (—1/t' +€),2c, b, (-1/t' +e+d")]. (29)

It follows then thafar, by], [ar, br] €ach lie in an open interval ifi’.., ., for all n large. Moreovemmn ge.= (bgr) <
0. Therefore, case (ii) of Theorem 6.1 applies and we have
PO\ <ap and A’ , , >by forall nlarge = 1.
Therefore, considering a countable collectionesfconverging to zero, we conclude that, with probability 1
nh_’IgO/\B; = JLIEO/\fM | = xeu(—1/t) = (27).
[

Theorem 6.4:Assume, besides the assumptions in Theorem 6.1, there igemvalue ofB,, which converges in
probability to a nonrandom positive numbaf,e S%.. Let interval{a, b] € S}, with a > 0, be such thad’ € (a,b),
and lett, = —1/mep(a), t' = =1/meg(N), tp = —1/m¢ g (b) (finite by Lemma 6.1). The < t, < ¢’ < t;,
implying (c) of Theorem 6.3. Let = ¢(n) denote the number of eigenvaluesBf contained inft,, t,] and letH,,
denote the e.d.f. of the other— ¢ eigenvalues ofl',,. Then? = o(n) and (b) of Theorem 6.3 is true. ffremains
bounded, then (a) of Theorem 6.3 also holds.

Proof: By Lemma 6.1]t,, ;] € S, and for a suitable positive z. g is increasing ofm. i (a)—e, me g (b)+
e], which does not contain 0.

Thereforet, <t < t. If ¢(1 — H(0)) > 1, that is, case (i) of Theorem 6.1 holds, then- z, sincex is the
almost sure limit ofAZ» so \' cannot be smaller than it, and necessargyc Sr. Thereforem, g (b) < 0, so that
0 < tg.

It must be the case that onlyn) eigenvalues ot,, lie in [t,, 3], Since otherwisét,,¢,] would not be outside
the support ofH. We have thenH,, —, H asn — oo, so from the dominated convergence theorem we have
i, g (m) — g p(m) for all m € [me g (a) — €, mem(b) + €, implying for all n large jx, 4 (m) >0
for all m € [mc g(a), mcm(b)]. Therefore (b) is true

We assume now thatis bounded. Suppose (a) does not hold. Then we could find a&guesce{n;} of the
natural numbers for whicld’ = ¢'(n) of the ¢ eigenvalues converge tota+ ¢/, the remaining/ — ¢/, if positive,
eigenvalues remaining a positive distarceom t'. Replace{T,,} with {T/,} which matches the original sequence
whenn = n; and forn # n;, T] has¢ eigenvalues equal td, with the remaining? — ¢, again, if positive,
eigenvalues ofl}, at leastd away from¢’. Then we have by Theorem 6.1, (27), withreplaced byt’, holding
for ¢ of the eigenvalues ofl/m)T/,"/?X, X* T2, Thus, on{n,}, we have the almost sure convergence/ of
eigenvalues oB,, to z. y(—1/t') € [a,b] which, because:. ;(—1/t) is an increasing function, does not equal
N =z, g(—1/t'). This contradicts the assumption of convergence in prdibatw eigenvalues to only one number,
namely ). Therefore (a) holds. |

D. Behavior of extreme eigenvalues

Consider nowt’ lying on either side of the support df. Let 5\21“ and ;\ﬁa" denote, respectively, the smallest
and largest numbers in the supporti@f, Notice thatg, (t) = ¢, [ ﬁdﬁn(t) is decreasing for > A\, and
if Amin > 0, g, is increasing or(0, \™).

Therefore, if for alln large,t’ > A= it is necessary and sufficient to findae (A2, ¢') for which g(t,) < 1
in order for (27) to hold. Similarly, if for alln larget’ € (0, Xﬁin), then it is necessary and sufficient to find a
tp, € (0,¢") for which g¢,,(t,) < 1 in order for (27) to hold. Notice it:(1 — H(0)) > 1 theng,(t) > 1 for all
t < Amin and alln large.

Let for df G Wlth bounded supportA=®* denote the largest number ifi;. If there is ar > \j** for
which g(7) = cf H(t) = 1, and if limsup, A" < 7, then7 can be used as a threshold fér e

(limsup,, /\max 00). Indeed by the dominated convergence theorem, .. g,,(t') = g(¢'). Therefore, ift’ > ,
conditions (b) and (c) of Theorem 6.3 hold, with= 7, andt; any arbitrarily large number.
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On the other hand, supposén", e ,)\Z::M_l, where/ remains bounded, are the eigenvalueg'gfapproaching
the interval(lim sup,, \™**, 7]. Then by Theorem 6.4, for ary> 0 with probability one, none oj\i", e ,)\515_1

can remain in(Ax** + €, 00) with for all » large.

Also, since the largest, + ¢ — 1 eigenvalues ofl',, must beo(n) (otherwise,H would have additional mass on
[N, 00)), /\ﬁ", . ,)\Z:M_l must all converge a.s. R,

Similar results can be obtained for the interval to the |fiSe

As in Theorem 6.1 Tonelli's Theorem can easily be appliedstalgish equivalent results whér,’s are random
and independent oX.

E. The eigenvalues of the multivariate F matrix

Let Y;; be another collection of i.i.d. random variables (not neaél/ having the same distribution as the
Xi;'s), with EY 11 =0, E[Y11] =1, E|[Y11|* < oo, and independent of thX;;’s.

We form then x N matrix Y, = (Yj;), i« = 1,2,...,n, j = 1,2,...,N with N = N(n), n < N, and
ch =n/N — ¢ € (0,1) asn — oco.

Let nowT,, = ((1/N)Y, Y;)~!, whenever the inverse exists.

From Bai and Yin's work [41] we know that with probability Igifall » large, T,, exists with/\?" — (1—/e1) 2
Wheneven\\/VY=Y. _ o defineT,, to bel.

The matrixT,, (1/N)X,, X}, typically called a multivariaté” matrix, has the same eigenvalueds Its limiting
e.d.f. has density o0, c0) given by

(1= 1)/ (& = by) (b2 — )

2nx(zer + ¢)

) _(1—\/1—(1—6)(1—61)>2 ) _<1—|—\/1—(1—c)(1—61)>2
1= 5 2 = .

1—01 1—61

feer (z) =

b < x < by,

where

Whenc € (0, 1], there is no mass &, whereas for: > 1 F' has masg1l — (1/c¢)) at 0 [14].

We are interested in the effect on spikes on the right sidd@fsupport of theH,,.

Because of the corollary to Theorem 6.1, we knbﬁr — by a.s. asn — oo. We proceed in computing the
function

2
g(t) = c/(/\)_\it)de(t).

We will see that it is unnecessary to compute the limitingfeaf T,,. It suffices to know the limiting Stieltjes
transform of F(1/N)Y»Y.r,
Let H, denote the limiting e.d.f. o /N)Y=Y" We have

1/))? 1 1
g(t) :c/(t(_/ﬁdHﬂ)\) :c/mdf[l(/\) :Ct_Q/del(A)

We use (22) to findn gei.ry o) -

1 1

z2=——+40¢ s wmP+(z+1—c)m+1=0.
m 14+m
o m:—z—l—l—cli\/(z—l—l—c1)2—4z

2z
(the sign depending on with branch of the square root is faken

—z—1+ca+t/(z-01-a)?)(z- 1+ c)?)
2z '
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From the identity in (21) we find that
—ztl-a+/(z-(0-va))z-0+/a))

i (2) = 2c12 )
As mentioned earlier the support &f; is [(1 — \/c1)?, (1 + /c1)?]. We needy(t) for ¢ > (1 — \/e1)2, so we
needmy, (z) for z € (0, (1 — \/c1)?).
Since0 € Sy, mp, (0) exists and is real, which dictates what sign is taken(@r1 — Ve1)?). We find that,

on this interval . .
i (@) = e VT (;c;/a) N = eved, (30)

and using the fact that the discriminant equeds— 2z(1 + ¢1) + (1 — ¢1)?,
d 1 2(1+ec1)—(1—¢p)? )

dg (z) =  2cya2 <(1 melt Vi =0 —e)H) (e — 1+ /e)?)
We therefore find that fot > (1 — ,/c;)~2

_i (1—¢ t(1—61)2—(1+61)
=2, ( Y (= ey BT g @2)) ‘

We see that the equatigrit) = 1 leads to the following quadratic equationtn

(1—c)?at? —2(14c¢))at+a—c® =0, wherea =c¢; + ¢ — cey,

giving us
(1+c)a++/(1+e1)2a?—(1—c)2ala—c?)
- (1—c1)%c ’
The positive sign in front of the square root being correct tu
(1+c1) B (1—1-61) 1

= < .
(1—c)? (A=-ye)32l+yea)? 1= ya)?
Reducing further we find the threshold, to be
o (I+c)a+Va/da—c+ (1 —a)?  (I+a)a+ Va(e + (1 —cr)) (31)
B (1—c1)%c B (1—c1)%c '

We now compute the right hand side of (27). We havetfor

t <1+c/%dH(/\)> =t <1+c/%dH1(/\)> =t'(1+ct'""mp, (1/¢))

Y2 +c(l—c1))—c—c/A =1 — /a)?) (1 -t (1+ e1)?)
- 201

A straightforward (but tedious) calculation will yiels(7) = b,.

Using the results from the previous section, we have prokeddllowing:

Theorem 6.5:Assume in addition to the assumptions in Theorem 6.1 orXthe

(a) theT,,, possibly random, are independent of g, with F7» —p H, a.s. a3 — oo, H being the limiting
e.d.f. of F((/N)Y2Y)™ - defined above.

(b) Almost surely, there aré (remaining finite for each realization) eigenvaluesIbf converging to nonrandom
t' > (1—/e1)"2, asn — co. Denote byH,, the e.d.f. of then — ¢ other eigenvalues dF,,.

(c) With Xglax defined to be the largest number in the supporfigf with probability one lim sup,, Xglax <T
the threshold defined in (31).

Suppose)\fn", e ,)\'f"H_l are the eigenvalues stated in (b) of Theorem 6.3. Then, Wétunction\(-) defined
in (32), with probabilﬁy one

=\(t). (32)

A(t if ¢/
lim AP — = fim AP, = M) T )
n—oo ' n—oo " by, if t' € (limsup,, A 7].
Note: From Theorem 6.3, whef > 7 the result can allow = o(n).
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