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Fundamental limit of sample generalized eigenvalue
based detection of signals in noise using relatively

few signal-bearing and noise-only samples
Raj Rao Nadakuditi and Jack W. Silverstein

Abstract

The detection problem in statistical signal processing canbe succinctly formulated: Givenm (possibly) signal
bearing,n-dimensional signal-plus-noise snapshot vectors (samples) andN statistically independentn-dimensional
noise-only snapshot vectors, can one reliably infer the presence of a signal? This problem arises in the context of
applications as diverse as radar, sonar, wireless communications, bioinformatics, and machine learning and is the
critical first step in the subsequent signal parameter estimation phase.

The signal detection problem can be naturally posed in termsof the sample generalized eigenvalues. The sample
generalized eigenvalues correspond to the eigenvalues of the matrix formed by “whitening” the signal-plus-noise
sample covariance matrix with the noise-only sample covariance matrix. In this article we prove a fundamental
asymptotic limit of sample generalized eigenvalue based detection of signals in arbitrarily colored noise when there
are relatively few signal bearing and noise-only samples.

Specifically, we show why when the (eigen) signal-to-noise ratio (SNR) is below a critical value, that is a simple
function of n, m and N , then reliable signal detection, in an asymptotic sense, isnot possible. If, however, the
eigen-SNR is above this critical value then a simple, new random matrix theory based algorithm, which we present
here, will reliably detect the signal even at SNR’s close to the critical value. Numerical simulations highlight the
accuracy of our analytical prediction and permit us to extend our heuristic definition of theeffective number of
identifiable signals in colored noise. We discuss implications of our result for the detection of weak and/or closely
spaced signals in sensor array processing, abrupt change detection in sensor networks, and clustering methodologies
in machine learning.

Index Terms

signal detection, random matrices, sample covariance matrix, Wishart distribution, multivariate F distribution

EDICS Category: SSP-DETC Detection; SAM-SDET Source detection

I. INTRODUCTION

The observation vector, in many signal processing applications, can be modelled as a superposition of a finite
number of signals embedded in additive noise. The model order selection problem of inferring the number of signals
present is the critical first step in the subsequent signal parameter estimation problem. We consider the class of
estimators that determine the model order,i.e., the number of signals, in colored noise from the sample generalized
eigenvalues of the signal-plus-noise sample covariance matrix and the noise-only sample covariance matrix pair. The
sample generalized eigenvalues [1] precisely correspond to the eigenvalues of the matrix formed by “whitening” the
signal-plus-noise sample covariance matrix with the noise-only sample covariance matrix (assuming that the number
of noise-only samples is greater than the dimensionality ofthe system so that the noise-only sample covariance
matrix is invertible).

Such estimators are used in settings where it is possible to find a portion of the data that contains only noise fields
and does not contain any signal information. This is a realistic assumption for many practical applications such
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as evoked neuromagnetic experiments [2]–[4], geophysicalexperiments that employ a “thumper” or in underwater
experiments with a wideband acoustic signal transducer where such a portion can be found in a data portion taken
before a stimulus is applied. In applications such as radar or sonar where the signals of interest are narrowband
and located in a known frequency band, snapshot vectors collected at a frequency just outside this band can be
justified as having the same noise covariance characteristics assuming that we are in the stationary-process-long-
observation-time (SPLOT) regime [5].

Our main objective in this paper is to shed new light on this age old problem of detecting signal in noise from
finite samples using the sample eigenvalues alone [6], [7]. We bring into sharp focus a fundamental statistical limit
that explains precisely when and why, in high-dimensional,sample size limited settings underestimation of the model
order is unavoidable. This is in contrast to works in the literature that use simulations, as in [8], to highlight the
chronically reported symptom of model order estimators underestimating the number of signals without providing
insight into whether a fundamental limit of detection is being encountered.

In recent work [9], we examined this problem in the white noise scenario. The main contribution of this paper is
the extension of the underlying idea to the arbitrary (or colored) noise scenario. Analogous to the definition in [9],
we define theeffective number of identifiable signals in colored noiseas the number of the generalized eigenvalues
of the population (true) signal-plus-noise covariance matrix and noise-only covariance matrix pair that are greater
than a (deterministic) threshold that is a simple function of the number of signal-plus-noise samples, noise-only
samples and the dimensionality of the system. Analogous to the white noise case, increasing the dimensionality of
the system, by say adding more sensors, raises the detectability threshold so that the effective number of identifiable
signals might actually decrease.

An additional contribution of this paper is the developmentof a simple, new, algorithm for estimating the number
of signals based on the recent work of Johnstone [10]. Numerical results are used to illustrate the performance of
the estimator around the detectability threshold alluded to earlier. Specifically, we observe that if the eigen-SNR
of a signal is above a critical value then reliable detectionusing the new algorithm is possible. Conversely, if the
eigen-SNR is below the critical value then the algorithm, correctly for the reason described earlier, is unable to
distinguish the signal from noise.

The paper is organized as follows. We formulate the problem in Section II and state the main result in Section
III. The effective number of signals is defined in Section III-A along with a discussion on its implications for
applications such as array processing, sensor networks andmachine learning. A new algorithm for detecting the
number of signals is presented in Section IV. Concluding remarks are offered in Section V. The mathematical
proofs of the main result are provided in Section VI.

II. PROBLEM FORMULATION

We observem samples (“snapshots”) of possibly signal bearingn-dimensional snapshot vectorsx1, . . . ,xm

where for eachi, the snapshot vector has a (real or complex) multivariate normal distribution,i.e., xi ∼ Nn(0,R)
and thexi’s are mutually independent. The snapshot vectors are modelled as

xi = Asi + zi for i = 1, . . . ,m, (1)

wherezi ∼ Nn(0,Σ), denotes ann-dimensional (real or complex) Gaussian noise vector wherethe noise covariance
Σ may be known or unknown,si ∼ Nk(0,Rs) denotes ak-dimensional (real or complex) Gaussian signal vector
with covarianceRs, and A is a n × k unknown non-random matrix. Since the signal and noise vectors are
independent of each other, the covariance matrix ofxi can hence be decomposed as

R = Ψ + Σ (2)

where
Ψ = ARsA

′, (3)

with ′ denoting the complex conjugate or real transpose. Assumingthat the matrixA is of full column rank,i.e., the
columns ofA are linearly independent, and that the covariance matrix ofthe signalsRs is nonsingular, it follows
that the rank ofΨ is k. Equivalently, then − k smallest eigenvalues ofΨ are equal to zero.
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If the noise covariance matrixΣ were known apriori and was non-singular, a “noise whitening” transformation
may be applied to the snapshot vectorxi to obtain the vector

x̃i = Σ
−1/2

xi, (4)

which will also be normally distributed with covariance

RΣ := Σ
−1/2

RΣ
−1/2 = Σ

−1
Ψ + I. (5)

Denote the eigenvalues ofRΣ by λ1 ≥ λ2 ≥ . . . ≥ λn. Recalling the formulation of the generalized eigenvalue
problem [1][Section 8.7], we note that the eigenvalues ofRΣ are exactly the generalized eigenvalues of the regular
matrix pair(R̂, Σ̂). Then, assuming that the rank ofΣ

−1
Ψ is alsok, it follows that the smallestn− k eigenvalues

of RΣ or, equivalently, the generalized eigenvalues of the matrix pair (R,Σ)), are all equal to1 so that

λk+1 = λk+2 = . . . = λn = λ = 1, (6)

while the remainingk eigenvaluesRΣ of will be strictly greater than one.
Thus, if the true signal-plus-noise covariance matrixR and the noise-only covariance matrixΣ were known

apriori, the number of signalsk could be trivially determined from the multiplicity of the eigenvalues ofRΣ

equalling one.
The problem in practice is that the signal-plus-noise and the noise covariance matricesR are unknown so that

such a straight-forward algorithm cannot be used. Instead we have an estimate the signal-plus-covariance matrix
obtained as

R̂ =
1

m

m∑

i=1

xix
′
i (7)

and an estimate of the noise-only sample covariance matrix obtained as

Σ̂ =
1

N

N∑

j=1

zjz
′
j (8)

wherexi for i = 1, . . . ,m are (possibly) signal-bearing snapshots andzj for j = 1, . . . ,N are independent noise-
only snapshots. We assume here that the number of noise-onlysnapshots exceeds the dimensionality of the system,
i.e., N > n + 1, so that the noise-only sample covariance matrixΣ̂, which has the Wishart distribution [11],
is non-singular and hence invertible with probability 1 [12, Chapter 3, pp. 97], [13, Chapter 7.7, pp. 272-276].
Following (5), we then form the matrix

R̂bΣ = Σ̂
−1

R̂, (9)

and compute its eigen-decomposition to obtain the eigenvalues ofR̂bΣ, which we denote bŷλ1 ≥ λ̂2 ≥ . . . ≥ λ̂n.
We note, once again, that the eigenvalues ofR̂bΣ are simply the generalized eigenvalues of the regular matrix pair
(R̂, Σ̂). Note that wheneverN < n, the signal-plus-noise sample covariance matrixR will be singular so that the
n − N generalized eigenvalues will equal zero,i.e., λ̂N+1 = λ̂N+2 = . . . = λ̂n = 0. Figure 1 illustrates why the
blurring of the sample eigenvalues relative to the population eigenvalues makes the problem more challenging.

In this paper, we are interested in the class of algorithms that infer the number of signals buried in arbitrary
noise from the eigenvalues of̂RbΣ

or R̂Σ alone. Such algorithms are widely used in practice and arisenaturally
from classical multivariate statistical theory [10] wherethe matrixR̂bΣ is referred to as the multivariate F matrix
[12], [14]. The information theoretical approach to model order estimation, first introduced by Wax and Kailath
[6], was extended to the colored noise setting by Zhao et al in[15] who prove consistency of their estimator in the
large sample size regime. Tam and Wu [16] performed a rate of convergence analysis of Zhao et al’s algorithm for
different choices of the penalty function; their does not yield any insight into the high dimensional, finite sample
setting.

Consequently, research has focussed on developing sophisticated techniques for improving performance of
eigenvalue based methods in the finite sample setting. Zhu etal [17] improve the performance of their eigenvalue
estimator by assuming a model for the noise covariance matrix. Stoica and Cedervall [18] improve the performance
of their estimator in two reasonable settings: one, where itis reasonable to assume that the noise covariance matrix
is block diagonal or banded and two, where the temporal correlation of the noise has a shorter length than the
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Fig. 1: The dimension of the “noise” subspace is equal to the multiplicity of the population eigenvalue equal to
one. When the population eigenvalues are known, then detecting the number of signals becomes trivial. However,
estimating the number of signals from the sample generalized eigen-spectrum is considerably more challenging
because of the finite sample effects. Specifically, the finitenumber of noise-only and signal-plus-noise samples
induces a blurring in the sample eigenspectrum relative to the population eigenspectrum makes discrimination of
the “signal” from the “noise” challenging. The figure shows one random instance generated for an = 20 dimensional
system withN = 25 noise-only samples andm = 40 signal-plus-noise bearing samples.

signals. Other techniques in the literature exploit other characteristics of the signal or noise to effectively reducethe
dimensionality of the signal subspace and improve model order estimation given finite samples. See for example
[19], [20] and the references in [9].

Informally speaking, it is evident that performance of suchmodel order estimation algorithms is coupled to the
“quality” of the estimated signal-plus-noise and noise-only covariance matrices which in turn are dependent on
the number of snapshots used to estimate them, respectively. Researchers applying these techniques have noted
the absence of a mathematically rigorous, general purpose formula in the literature for predicting the minimum
number of samples needed to obtain “good enough” detection accuracy (see, for example [3][pp. 846]. A larger,
more fundamental question that has remained unanswered, till now, is whether there is a statistical limit being
encountered.

We tackle this problem head on in this paper by employing sophisticated techniques from random matrix theory
in [21]. We show that in an asymptotic sense, to be made precise later, that only the “signal” eigenvalues ofRΣ

that are above a deterministic threshold can be reliably distinguished from the “noise” eigenvalues. The threshold is
a simple, deterministic function of the the dimensionalityof the system, the number of noise-only and signal-plus-
noise snapshots, and the noise and signal-plus noise covariance, and described explicitly next. Note the applicability
of the results to the situation when the signal-plus-noise covariance matrix is singular.

III. M AIN RESULT

For a Hermitian matrixA with n real eigenvalues (counted with multiplicity), the empirical distribution function
(e.d.f.) is defined as

FA(x) =
Number of eigenvalues ofA ≤ x

n
. (10)

Of particular interest is the convergence of the e.d.f. ofR̂bΣ in the signal-free case, which is described next.
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Theorem 3.1:Let R̂bΣ denote the matrix in (9) formed fromm (complex Gaussian) noise-only snapshots andN

independent noise-only (complex Gaussian) snapshots. Then the e.d.f.F
bRbΣ(x) → FRΣ(x) almost surely for every

x, asm,n(m) → ∞, m,N(m) → ∞ andcm = n/m → c > 0 andc1
N = n/N → c1 < 1 where

dF (x) = max

(
0,

(
1 − 1

c

))
δ(x) +

(1 − c1)
√

(x − b1)(b2 − x)

2πx(xc1 + c)
I[b1,b2](x) dx, (11)

where

b1 =

(
1 −

√
1 − (1 − c)(1 − c1)

1 − c1

)2

, b2 =

(
1 +

√
1 − (1 − c)(1 − c1)

1 − c1

)2

, (12)

I[b1,b2](x) = 1 whenb1 ≤ x ≤ b2 and zero otherwise, andδ(x) is the Dirac delta function.
Proof: This result was proved in [14]. Whenc1 → 0 we recover the famous Marčenko-Pastur density [22].

The following result exposes when the “signal” eigenvaluesare asymptotically distinguishable from the “noise”
eigenvalues.

Theorem 3.2:Let R̂bΣ denote the matrix in (9) formed fromm (real or complex Gaussian) signal-plus-noise
snapshots andN independent (real or complex Gaussian) noise-only snapshots. Denote the eigenvalues ofRΣ by
λ1 ≥ λ2 > . . . ≥ λk > λk+1 = . . . λn = 1. Let lj denote thej-th largest eigenvalue of̂RbΣ. Then asn,m(n) → ∞,
n,N(n) → ∞ andcm = n/m → c > 0 andc1

N = n/N → c1 < 1 we have

lj →





λj


1 − c − c

−c1 λj − λj + 1 +
√

c1
2λj

2 − 2 c1 λj
2 − 2 c1 λj + λj

2 − 2λj + 1

2c1 λj


 , λj > τ(c, c1)

− c1 c + c + 1 + c1 + 2
√

c + c1 − c1c

c1
2 + 1 − 2 c1

, λj ≤ τ(c, c1)

for j = 1, . . . , k and the convergence is almost surely and the thresholdT(c, c1) is given by

T(c, c1) =
1 + τ − τc1 +

√
(1 + τ − τc1)2 − 4τ

2
, (13)

where

τ =
(1 + c1)α +

√
α
√

4α − c1 + (1 − c1)2c2

(1 − c1)2α
=

(1 + c1)α +
√

α(2c1 + c(1 − c1))

(1 − c1)2α
(14)

andα = c + c1 − c1c.
Proof: The result follows from Theorem 6.5. The thresholdT(c, c1) is obtained by solving the inequality

t′ > τ

where forj = 1, . . . , k, t′, from [9], [23]–[25], is given by

t′ =
1

λj

(
1 +

c1

λj − 1

)

andτ is given by (31).
Note that whenc1 → 0, T(c, c1) → (1 +

√
c) so that we recover the results of Baik and Silverstein [24].
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Fig. 2: Plot of the minimum (generalized) Eigen-SNR required (equal toT(c, c1) − 1 whereT(c, c1) is given by
(13)) to be able to asymptotically discriminate between the“signal” and “noise” eigenvalue of the matrix̂RbΣ
constructed as in (9) as a function of the ratio of the number of sensors to snapshots for different values of1/c1

where c1 ≈ Number of sensors/Number of noise-only snapshots. The gap between the upper two lines and the
bottom most line represents the SNR loss due to noise covariance matrix estimation.

A. Effective number of identifiable signals

Theorem 3.2 brings into sharp focus the reason why, in the large-system-relatively-large-sample-size limit, model
order underestimation is sometimes unavoidable. This motivates our heuristic definition of theeffective number of
identifiable signalsbelow:

keff (R,Σ) = # Eigs. ofΣ−1
R > T(c, c1) ≈ T

( n

m
,

n

N

)
. (15)

If we denote the eigenvalues ofRΣ ≡ Σ
−1

R by λ1 ≥ λ2 > . . . ≥ λk > λk+1 = . . . λn = 1 then we define
the eigen-SNR of thej-th signal asλj − 1 then (15) essentially states that signals with eigen-SNR’ssmaller than
T(n/m,n/N) will be asymptotically undetectable.

Figure 2 shows the eigen-SNR thresholdT(c, c1)−1 needed for reliable detection for different values as a function
of c for different values of1/c1. Such an analytical prediction was not possible before the results presented in this
paper. Note the fundamental limit of detection in the situation when the noise-only covariance matrix is known
apriori (solid line) and increase in the threshold eigen-SNR needed as the number of snapshots available to estimate
the noise-only covariance matrix decreases.

B. Implications for array processing

Suppose there are two uncorrelated (hence, independent) signals so thatRs = diag(σ2
S1, σ

2
S2). In (1) let A =

[v1v2]. In a sensor array processing application, we think ofv1 ≡ v(θ1) andv2 ≡ v2(θ2) as encoding the array
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manifold vectors for a source and an interferer with powersσ2
S1 andσ2

S2, located atθ1 and θ2, respectively. The
signal-plus-noise covariance matrix is given by

R = σ2
S1v1v

′
1 + σ2

S2v2v
′
2 + Σ (16)

whereΣ is the noise-only covariance matrix. The matrixRΣ defined in (5) can be decomposed as

RΣ = Σ
−1

R = σ2
S1Σ

−1
v1v

′
1 + Σ

−1σ2
S2v2v

′
2 + I

so we that we can readily note thatRΣ has then− 2 smallest eigenvaluesλ3 = . . . = λn = 1 and the two largest
eigenvalues

λ1 = 1 +

(
σ2

S1 ‖u1 ‖2 +σ2
S2 ‖u2 ‖2

)

2
+

√(
σ2

S1 ‖u1 ‖2 −σ2
S2 ‖u2 ‖2

)2
+ 4σ2

S1σ
2
S2|〈u1,u2〉|2

2
(17a)

λ2 = 1 +

(
σ2

S1 ‖u1 ‖2 +σ2
S2 ‖u2 ‖2

)

2
−

√(
σ2

S1 ‖u1 ‖2 −σ2
S2 ‖u2 ‖2

)2
+ 4σ2

S1σ
2
S2|〈u1,u2〉|2

2
(17b)

respectively, whereu1 := Σ
−1/2

v1 andu2 := Σ
−1/2

v2 . Applying the result in Theorem 3.2 allows us to express
the effective number of signals as

keff =





2 if T
(

n
m , n

N

)
< λ2

1 if λ2 ≤ T
(

n
m , n

N

)
< λ1

0 if λ1 ≤ T
(

n
m , n

N

)
.

(18)

Equation (18) captures the tradeoff between the identifiability of two closely spaced signals, the dimensionality
of the system, the number of available snapshots and the cosine of the angle between the vectorsv1 andv2. Note
that since the effective number of signals depends on the structure of the theoretical signal and noise covariance
matrices (via the eigenvalues ofRΣ), different assumed noise covariance structures (AR(1) versus white noise, for
example) will impact the signal level SNR needed for reliable detection in different ways.

C. Other applications

There is interest in detecting abrupt change in a system based on stochastic observations of the system using
a network of sensors. When the observations made at various sensors can be modeled as Gauss-Markov random
field (GMRF), as in [26], [27], then the conditional independence property of GMRF’s [28] is a useful assumption.
The assumption states that conditioned on a particular hypothesis, the observations at sensors are independent. This
assumption results in the precision matrix,i.e., the inverse of the covariance matrix, having a sparse structure with
many entries identically equal to zero.

Our results might be used to provide insight into the types ofsystemic changes, reflected in the structure of the
signal-plus-noise covariance matrix, that are undetectable using sample generalized eigenvalue based estimators.
Specifically, the fact that the inverse of the noise-only covariance matrix will have a sparse structure means that
one can experiment with different (assumed) conditional independence structures and determine how “abrupt” the
system change would have to be in order to be reliably detected using finite samples.

Spectral methods are popular in machine learning applications such as unsupervised learning, image segmentation,
and information retrieval [29]. Generalized eigenvalue based techniques for clustering have been investigated in
[30], [31]. Our results might provide insight when spectralclustering algorithms are likely to fail. In particular, we
note that the results of Theorem 3.2 hold even in situations where the data is not Gaussian (see Theorem 6.5) as
is commonly assumed in machine learning applications.
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IV. A N ALGORITHM FOR RELIABLE DETECTION OF SIGNALS IN NOISE

In [10], Johnstone proves that in the signal-free case, the distribution of the largest eigenvalue of̂RbΣ
, on

appropriate centering and scaling, can be approximated to order O(n−2/3) by the Tracy-Widom law [32]–[34]. In
the setting where there are signals present, we expect, after appropriate centering and scaling, the distribution of
the signal eigenvalues of̂RbΣ

above the detectability threshold will obey a Gaussian law whereas those below the
detectability threshold will obey the Tracy-Widom law as inthe signal-free case. An analogous results for the signal
bearing eigenvalues of̂RΣ was proved by Baik et al [23] and El Karoui [35]. Numerical investigations for (see
Figure 3) corroborate the accuracy of our asymptotic predictions and form the basis of Algorithm 1 presented below
for estimating the number of signals at (asymptotic) significance levelα. Theoretical support for this observation
remains incomplete.

Algorithm 1
Input: Eigenvaluesbλj for j = 1, . . . , n of bRbΣ

1. Initialization: Set significance levelα ∈ (0, 1)
2. Computeτα := TW−1

{R,C}(1 − α) from Table II
3. Setk = 0
4. Computeµ{R,C}[n − k, m] andσ{R,C}[n − k, m] from Table I(a)

5. Is
log mλ̂k+1/N − µ{R,C}[n − k, m − k, N ]

σ{R,C}[n − k, m − k, N ]
≥ τα?

6. If yes, then go to step 9
7. Otherwise, incrementk.
8. If k < min(n, m), go to step 3. Else go to step 9.
9. Returnbk = k

Figure 4 illustrates the accuracy of the predicted statistical limit and the ability of the proposed algorithm to
reliably detect the presence of the signal at this limit. Figure 5 highlights how far away from this limit the classical
algorithm of Zhao et al [15] is for various choices of the penalty functions considered in [36].

In the special setting where the noise covariance matrix is known apriori, the results of Baik et al [23], El
Karoui [35] and Ma [37] form the basis of Algorithm 2 presented below for estimating the number of signals at
(asymptotic) significance levelα.

We compare our algorithm to the classical information theoretic estimator proposed by Zhao et al in [15].
Define κλ̂ = {#λ̂j > 1}. Then for a choice of the penalty functionCm+N that satisfies the conditions
limm+N→∞ Cm+N/(m + N) → 0 and limm+N→∞ Cm+N/ log log(m + n) → ∞, the algorithm follows:

k̂ = min(I(0, Cm+N ), I(1, Cm+N ), . . . , I(n,Cm+N )), (19a)

where

I(q, Cm+N ) = −
n∑

j=1+min(q,κλ̂)

n

2

[
m

m + N
log λ̂j − log

(
N

m + N
+

m

m + N
λ̂j

)]
+

Cm+N

2
q(2n − q + 1), (19b)

k̂ = min{I(0, Cm+N ), I(1, Cm+N ), . . . , I(n,Cm+N )}. (19c)
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xi ∈ R

(√
n − 1

2 +
√

m − 1
2

)2 (√
n − 1

2 +
√

m − 1
2

)


 1√
n − 1

2

+
1√

m − 1
2




1/3

-

xi ∈ C

(
1

σ
1/2
n,m−1

+
1

σ
1/2
n−1,m

)(
1

µn,m−1σ
1/2
n,m−1

+
1

µn−1,mσ
1/2
n−1,m

)−1

(1 + γn,m)

(
1

σn,m−1
+

γn,m

σn−1,m

)
µn,m =

(√
n + 1

2 +
√

m + 1
2

)2

σn,m =
(√

n + 1
2 +

√
m + 1

2

)(
1√
n+ 1

2

+ 1√
m+ 1

2

)1/3

γn,m =
µn,m−1σ

1/2
n−1,m

µn−1,mσ
1/2
n,m−1

(b) Algorithm 2

TABLE I: Parameters for signal detection algorithms.
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α 1 − α TW−1

R
(1 − α) TW−1

C
(1 − α)

0.990000 0.010000 -3.89543267306429 -3.72444594640057
0.950000 0.050000 -3.18037997693774 -3.19416673215810
0.900000 0.100000 -2.78242790569530 -2.90135093847591
0.700000 0.300000 -1.91037974619926 -2.26618203984916
0.500000 0.500000 -1.26857461658107 -1.80491240893658
0.300000 0.700000 -0.59228719101613 -1.32485955606020
0.100000 0.900000 0.45014328905825 -0.59685129711735
0.050000 0.950000 0.97931605346955 -0.23247446976400
0.010000 0.990000 2.02344928138015 0.47763604739084
0.001000 0.999000 3.27219605900193 1.31441948008634
0.000100 0.999900 4.35942034391365 2.03469175457082
0.000010 0.999990 5.34429594047426 2.68220732168978
0.000001 0.999999 6.25635442969338 3.27858828203370

TABLE II: The third and fourth column show the percentiles ofthe Tracy-Widom real and complex distribution
respectively corresponding to fractions in the second column. The percentiles were computed inMATLAB using
software provided by Folkmar Bornemann for the efficient evaluation of the real and complex Tracy-Widom
distribution functionsF TW

{R,C}(x). The percentiles are computed using thefzero command inMATLAB . The
accuracy of the computed percentiles is about±5 × 10−15 in absolute error terms.

Algorithm 2
Input: Eigenvaluesbλj for j = 1, . . . , n of bRΣ

1. Initialization: Set significance levelα ∈ (0, 1)
2. Computeτα := TW−1

{R,C}(1 − α) from Table II
3. Setk = 0
4. Computeµ{R,C}[n − k, m] andσ{R,C}[n − k, m] from Table I(b)

5. Is
mλ̂k+1 − µ{R,C}[n − k, m]

σ{R,C}[n − k, m]
≥ τα?

6. If yes, then go to step 9
7. Otherwise, incrementk.
8. If k < min(n, m), go to step 3. Else go to step 9.
9. Returnbk = k
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Noise−only

Signal−plus−noise: σ2 = 0.5

(a) Hereσ2 = 0.5, so thatλ1 = 1 + σ2 = 1.5 < T(320160, 320960) = 3.4365.
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Noise−only

Signal−plus−noise: σ2 = 5

(b) Hereσ2 = 5, so thatλ1 = 1 + σ2 = 6 > T( 320

160
, 320

960
) = 3.4365

Fig. 3: In (a), for the setting described in Theorem 3.2 we setn = 320, m = 160, N = 960, σ2 = 0.5, and w.l.o.g.
Σ = I, R = diag(λ1 = 1 + σ2, 1, . . . , 1) and compare the the empirical cdf of the largest eigenvalue of R̂bΣ

with
the largest eigenvalue of̂RbΣ

with R = I, i.e., in the noise-only case, over1000 Monte-Carlo trials. In (b), we plot
the empirical cdf but now withσ2 = 5.
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Fig. 4: A heat map of the log probability of signal detection using Algorithm 1 in Section IV, with the significance
level α set at0.01, in (eigen) SNR versus number of sensors to number of signal-plus-noise snapshots phase
space. In this example, for the setting described in Theorem3.2 we setn = 320, N = 960 and w.l.o.g.Σ = I,
R = diag(λ1 = 1 + SNR, 1, . . . , 1) and evaluated Prob(k̂ = 1) over 1000 Monte-Carlo trials and a grid of100
equally spaced points in the -5 dB to 15 dB (eigen) SNR range and 100 equally spaced points in thec1 = n/m
space by settingm = n/c1. The values of the colormap at each of the100 × 1000 faces were interpolated across
each line segment and face to obtain the above plot. In the dark zone (upper half of the plot) a signal can be
reliably detected whereas in the lighter zone (lower half ofthe plot) the signal is statistically indistinguishable from
noise as evidenced from the probability of detection being close to the significance level. The superimposed solid
black line demarcates the theoretically predicted threshold while the superimposed solid red line is the theoretically
predicted threshold in the setting where the noise covariance matrix is perfectly known. The gap between the two
lines thus represents the SNR loss due to noise covariance matrix estimation.
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(c) Cm+N = 0.5 log(m+N
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Fig. 5: A heat map of the log probability of signal detection using the algorithm (19) in Section IV, for different choicesof the penalty functionCm+N ,
in (eigen) SNR versus number of sensors to number of signal-plus-noise snapshots phase space. We are in the same setting as in Figure 4 except that we
plot Prob(̂k ≥ 1) over 1000 Monte-Carlo trials and a grid of50 equally spaced points in the 0 dB to 20 dB (eigen) SNR range and50 equally spaced
points in thec1 = n/m space by settingm = n/c1. The values of the colormap at each of the50 × 50 faces were interpolated across each line segment
and face to obtain the above plot. The superimposed solid black line demarcates the theoretically predicted threshold as in Figure 4.
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V. CONCLUSION

Figure 4 captures the fundamental statistical limit encountered when attempting to discriminate signal from noise
using finite samples. Simply put, a signal whose eigen-SNR isbelow the detectability threshold cannot be reliably
detected while a signal above the threshold can be. In settings such as wireless communications and biomedical
signal processing where the signal power is controllable, our results provide a prescription for how strong it needs
to be so that it can be detected. If the signal level is barely above the threshold, simply adding more sensors might
actually degrade the performance because of the increased dimensionality of the system. If, however, either due
to clever signal design or physics based modeling, we are able to reduce (or identify) the dimensionality of the
subspace spanned by signal, then according to Figure 4 the detectability threshold will also be lowered. With VLSI
advances making sensors easier and cheaper to deploy, our results demonstrate exactly why the resulting gains
in systemic performance will more than offset the effort we will have to invest in developing increasingly more
sophisticated dimensionality reduction techniques. Understanding the fundamental statistical limits of techniques
for signal detection in the setting where the noise-only sample covariance matrix is singular remains an important
open problem.
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VI. A PPENDIX

A. Mathematical preliminaries

Let for i, j = 1, 2, . . ., Xij be a collection of complex valued i.i.d. random variables with EX1 1 = 0 and
E|X1 1|2 = 1. For positive integersn andm let Xn = (Xij), i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Assume for eachn
Tn is ann × n Hermitian nonnegative definite matrix. The matrix

Bn ≡ (1/m)T1/2
n XnX

∗
nT

1/2
n ,

whereT
1/2
n is any Hermitian square root ofTn, can be viewed as a sample covariance matrix, formed fromm

samples of the random vectorT
1/2
n X·1 with X·1 denoting the first column ofXn, which hasTn for its population

covariance matrix. Whenn andm are both large and on the same order of magnitude,Bn will not be nearTn,
due to an insufficient number of samples required for such a large dimensional random vector. However, there exist
results on the eigenvalues ofBn. They are limit theorems asn → ∞ with m = m(n) andcn ≡ n/m → c, which
provide information on the eigenvalues ofTn. One result [38] is on theempirical distribution function(e.d.f.),FBn ,
of the eigenvalues ofBn, which throughout the paper, is defined for any Hermitiann × n matrix A as

FA(x) ≡ (1/n)(number of eigenvalues of A≤ x).

The limit theorem is expressed in terms of theStieltjes transformof the limiting e.d.f. of theFBn ’s, where for
any distribution function (d.f.)G its Stieltjes transform,mG, is defined to be

mG(z) =

∫
1

λ − z
dG(λ), z ∈ C

+ ≡ {z ∈ C : ℑz > 0}.
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There exists a one-to-one correspondence between the distribution functions (d.f.’s) and their Stieltjes transforms,
due to the inversion formula

G(b) − G(a) = lim
v→0

∫ b

a
ℑmG(x + iv)dx,

for a, b continuity points ofG.
The limit theorem allows theTn to be random, only assuming asn → ∞, the convergence ofF Tn to a nonrandom

proper probability distribution functionHn, i.e., Hn ≡ F Tn
a.s.−→ H. The theorem states that with probability one,

as n → ∞, FBn →D F , whereF is nonrandom, with Stieltjes transformm = mF (z), z ∈ C
+ satisfying the

equation

m =

∫
1

t(1 − c − czm) − z
dH(t), (20)

which is unique in the set{m ∈ C : −1−c
z + cm ∈ C

+}.
It is more convenient to work with the eigenvalues of them × m matrix (1/m)X

′

nTnXn, whose eigenvalues
differ from those ofBn by |n−m| zero eigenvalues. Indeed, withIA denoting the indicator function on the setA
we have the exact relationship

F (1/m)X∗

nTnXn(x) = (1 − cn))I[0,∞)(x) + cnFBn(x)

→D= (1 − c))I[0,∞)(x) + cF (x) ≡ F c,H(x)

almost surely, implying
mF c,H (z) = −(1 − c)/z + cmF (z). (21)

Upon substitutingmF c,H into (20) we find that forz ∈ C
+ m = mF c,H (z) solves the equation

z = − 1

m
+ c

∫
λ

1 + λm
dH(λ), (22)

and is unique inC+. Thus we have an explicit inverse formF c,H .
Qualitative properties ofF c,H have been obtained in [39], most notably the fact that on(0,∞) F c,H has a

continuous derivative. The paper [39] also shows how intervals outside the support ofF c,H can be determined from
the graph of (22) form ∈ R.

Let SG denote the support of the d.f.G, S′
G its complement, and definexc,H = xc,H(m) to be (22) withm ∈ R.

Intuitively, on S′
F c,H mF c,H is well defined and increasing. Therefore it is invertible oneach interval inS′

F c,H , its
inverse, namelyxc,H , is also increasing. The details are stated in the following.

Lemma 6.1 (Theorems 4.1, 4.2 of [39]):If x ∈ S′
F c,H , thenm = mF c,H satisfies (1)m ∈ R\{0}, (2) −m−1 ∈

S′
H , and (3) d

dmxc,H(m) > 0. Conversely, ifm satisfies (1)–(3), thenx = xc,H(m) ∈ S′
F c,H .

In simple termsS′
F c,H is comprised of the range of values wherexc,H is increasing.

Another result which will be needed later is the following.
Lemma 6.2 (Theorem 4.3 of [39]):Suppose eachm contained in the interval[m1,m2] satisfies (1) and (2) of

Lemma 6.1, and d
dmxc,H(mi) ≥ 0 for i = 1, 2. Then d

dmxc,H(m) > 0 for all m ∈ (m1,m2).
Limiting eigenvalue mass at zero is also derived in [39]. It is shown that

F (0) =

{
H(0), c(1 − H(0)) ≤ 1,

1 − c−1, c(1 − H(0)) > 1.
(23)

B. Support of eigenvalues

Since the convergence in distribution ofFBn only addresses how proportions of eigenvalues behave, understanding
the possible appearance or non-appearance of eigenvalues in S′

F c,H requires further work.
The question of the behavior of the largest and smallest eigenvalues whenTn = I has been answered by Yin,

Bai, and Krishnaiah in [40], and Bai and Yin in [41], respectively, under the additional assumptionE|X1 1|4 < ∞:
the largest eigenvalue andmin(n,m)th largest eigenvalue of(1/m)XnX

∗
n converge a.s. to(1+

√
c)2 and(1−√

c)2

respectively, matching the support,[(1−√
c)2, (1 +

√
c)2] of F on (0,∞). More onF whenTn = I will be given

later.
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For generalTn, restricted to being bounded in spectral norm, the non-appearance of eigenvalues inS′
F c,H has

been proven by Bai and Silverstein in [42]. Moreover, the separation of eigenvalues across intervals inS′
F c,H ,

mirrors exactly the separation of eigenvalues over corresponding intervals inS′
H [43]. The results are summarized

below.
Theorem 6.1:Assume additionallyE|X1 1|4 < ∞ and theTn are nonrandom and are bounded in spectral norm

for all n.
Let F cn,Hn denote the “limiting” e.d.f. associated with(1/m)X∗

nTnXn, in other words,F cn,Hn is the d.f. having
Stieltjes transform with inverse (22), wherec,H are replace bycn,Hn.

Assume the following condition:
• (*) Interval [a, b] with a > 0 lies in an open interval outside the support ofF cn,Hn for all largen.

ThenP(no eigenvalue ofBn appears in[a, b] for all largen) = 1.
For n×n Hermitian non-negative definite matrixA, let λA

k denote thekth largest eigenvalue ofA. For notational
convenience, defineλA

0 = ∞ andλA
n+1 = 0.

(i) If c(1 − H(0)) > 1, thenx0, the smallest value in the support ofF c,H , is positive, and with probability 1,
λBn

m → x0 asn → ∞.
(ii) If c(1 −H(0)) ≤ 1, or c(1 −H(0)) > 1 but [a, b] is not contained in[0, x0], thenmF c,H(b) < 0, and for all

n large there is an indexin for which

λTn

in
> −1/mF c,H (b) and λTn

in+1 < −1/mF c,H (a). (24)

ThenP(λBn

in
> b andλBn

in+1 < a for all largen) = 1.
Proof: See proof of Theorems 1.1 in [42], [43]).

The behavior of the extreme eigenvalues of(1/m)XnX
∗
n leads to the following corollary of Theorem 6.1.

Corollary 6.2: If λTn

1 converges to the largest number in the support ofH, thenλBn

1 converges a.s to the largest
number in the support ofF . If λTn

n converges to the smallest number in the support ofH, then c ≤ 1 (c > 1)
implies λBn

n (λ(1/m)X∗

nTnXn

n ) converges a.s. to the smallest number in the support ofF (F c,H).
In Theorem 6.1, Case (i) applies whenn > m, whereby the rank ofBn would be at mostm, the conclusion

asserting, that with probability 1, for alln large, the rank is equal tom. From Lemma 6.1, Case (ii) of Theorem
6.1 covers all intervals inS′

F c,H on (0,∞) resulting from intervals on(−∞, 0) wherexc,H is increasing. For alln
large xcn,Hn

is increasing on[mF cn,Hn (a),mF cn,Hn (b)], which, from inspecting the vertical asymptotes ofxcn,Hn

and Lemma 6.1, must be due to the existence ofλTn

in
, λTn

in+1 satisfying (24).
Theorem 6.1 easily extends to randomTn, independent of{Xij : i, j ≥ 1} with the aid of Tonelli’s Theorem

[44, pp. 234], provided the condition (*) on[a, b] is strengthened to:
• (**) With probability 1 for all n large[a, b] (nonrandom) lies in an open interval outside the support ofF cn,Hn.

Indeed, letT denote the probability space generating{Tn}, X the probability space generating{Xij : i, j ≥ 1}. Let
their respective measures be denoted byPT ,PX , the product measure onT × X by PT×X . Consider, for example
in case (ii), we define

A = {λBn

in
> b andλBn

in+1 < a for all largen}.
Let t ∈ T be an element of the event defined in (**). Then by Theorem 6.1IA((t, x)) = 1 for all x contained in
a subset ofX having probability 1. Therefore, by Tonelli’s theorem

P(A) =

∫
IA(t, x)dPT×X ((t, x)) =

∫ [∫
IA(t, x)dPX (x)

]
dPT (t) =

∫
1dPT (t) = 1.

Consider now case (ii) of Theorem 6.1 in terms of the corresponding interval outside the support ofH and the
Hn’s. By Lemma 6.1 and condition (*), we have the existence of anǫ > 0 such that0 /∈ [mF c,H (a)−ǫ,mF c,H (b)+ǫ],
and for alln large

d

dm
xcn,Hn

(m) =
1

m2

(
1 − cn

∫
(λm)2

(1 + λm)2
dHn(λ)

)
> 0, m ∈ [mF c,H (a) − ǫ,mF c,H (b) + ǫ]. (25)

Let ta = −1/mF c,H (a), tb = −1/mF c,H (b). Then by Lemma 6.1 we have the existence of anǫ′ > 0 for which
ta − ǫ′ > 0 and [ta − ǫ′, tb + ǫ′] ⊂ S′

Hn
for all n large. Moreover, by (25) we have for alln large

cn

∫
λ2

(λ − t)2
dHn(λ) < 1, t ∈ [ta − ǫ′, tb + ǫ′]. (26)
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Necessarily,λTn

in
> tb + ǫ′ andλTn

in+1 < ta − ǫ′.
Notice the steps can be completely reversed, that is, beginning with an interval[ta, tb], with ta > 0, lying in an

open interval inS′
Hn

for all n large and satisfying (26) for someǫ′ > 0, will yield [a, b], with a = xc,H(−1/ta),
b = xc,H(−1/tb), satisfying condition (*). Case (ii) applies, since[a, b] is within the range ofxc,H(m) for m < 0.
If c(1 − H(0)) > 1, then we would havea > x0.

C. Behavior of spiked eigenvalues

Suppose now theTn’s are altered, where a finite number of eigenvalues are interspersed between the previously
adjacent eigenvaluesλTn

in+1 and λTn

in
. It is clear that the limitingF will remain unchanged. However, the graph

of xcn,Hn
on (−1/λTn

in+1,−1/λTn

in
) will now contain vertical asymptotes. If the graph remains increasing on two

intervals for alln large, each one between successive asymptotes, then because of Theorem 6.1, with probability
one, eigenvalues of the newBn will appear inS′

F c,H for all n large.
Theorem 6.3 below shows this will happen when a “sprinkled”,or “spiked” eigenvalue lies in(ta, tb). Theorem

6.4 provides a converse, in the sense that any isolated eigenvalue of Bn must be due to a spiked eigenvalue, the
absence of which corresponds to case (ii) of Theorem 6.1.

Theorem 6.3, below, allows the number of spiked eigenvaluesto grow with n, provided it remainso(n).
Theorem 6.3:Assume in additon to the assumptions in Theorem 6.1 on theXij andTn:
(a) There areℓ = o(n) positive eigenvalues ofTn all converging uniformly tot′, a positive number. Denote by

Ĥn the e..d.f. of then − ℓ other eigenvalues ofTn.
(b) There exists positiveta < tb contained in an interval(α, β) with α > 0 which is outside the support of̂Hn

for all largen, such that for thesen

cn

∫
λ2

(λ − t)2
dĤn(λ) ≤ 1

for t = ta, tb.
(c) t′ ∈ (ta, tb).

SupposeλTn

in
, . . . , λTn

in+ℓ−1 are the eigenvalues stated in (a). Then, with probability one

lim
n→∞

λBn

in
= · · · = lim

n→∞
λBn

in+ℓ−1 = t′
(

1 + c

∫
λ

t′ − λ
dH(λ)

)
. (27)

Proof: For m ∈ [−1/ta,−1/tb] ∩ {−1/t′}c, we have

xcn,Hn
(m) = − 1

m
+ cn


 1

n

in+ℓ−1∑

j=in

λTn

j

1 + λTn

j m
+

n − ℓ

n

∫
λ

1 + λm
dĤn(λ)


 .

By considering continuity points ofH in (α, β) we see thatH is constant on this interval, and consequently,
this interval is also contained inS′

H .
Because of (b) we haveddmxc,H(m) ≥ 0 for m = −1/ta,−1/tb (recall (25),(26)).
By Lemma 6.2 we therefore haveddmxc,H(m) > 0 for all m ∈ (−1/ta,−1/tb). Thus we can find[ta, tb] ⊂ [ta, tb]

andδ > 0, such thatt′ ∈ (ta, tb) and for alln large d
dmxcn,Ĥn

(m) ≥ δ for all m ∈ [−1/ta,−1/tb].
It follows that for any positiveǫ sufficiently small, there exist positiveδ′ with δ′ ≤ ǫ, such that, for alln large,

both [−1/t′ − ǫ − δ′,−1/t′ − ǫ], and [−1/t′ + ǫ,−1/t′ + ǫ + δ′]:
• 1) are contained in[−1/ta,−/tb], and
• 2) d

dmxcn,Hn
(m) > 0 for all m contained in these two intervals.

Therefore, by Lemma 6.1, for alln large, [xcn,Hn
(−1/t′ − ǫ − δ′), xcn,Hn

(−1/t′ − ǫ)] and [xcn,Hn
(−1/t′ +

ǫ), xcn,Hn
(−1/t′ + ǫ + δ′)] lie outside the support ofF cn,Hn. Let aL = xc,H(−1/t′ − ǫ− 2

3δ′), bL = xc,H(−1/t′ −
ǫ − 1

3δ′), aR = xc,H(−1/t′ + ǫ + 1
3δ′), andbR = xc,H(−1/t′ + ǫ + 2

3δ′). Then for alln large

[aL, bL] ⊂ (xc,H(−1/t′ − ǫ − 5
6δ′), xc,H(−1/t′ − ǫ − 1

6δ′))

⊂ [xcn,Hn
(−1/t′ − ǫ − δ′), xcn,Hn

(−1/t′ − ǫ)] (28)
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and

[aR, bR] ⊂ (xc,H(−1/t′ + ǫ + 1
6δ′), xc,H(−1/t′ + ǫ + 5

6δ′))

⊂ [xcn,Hn
(−1/t′ + ǫ), xcn,Hn

(−1/t′ + ǫ + δ′)]. (29)

It follows then that[aL, bL], [aR, bR] each lie in an open interval inS′
F cn,Hn for all n large. MoreovermF c,H (bR) <

0. Therefore, case (ii) of Theorem 6.1 applies and we have

P(λBn

in
< aR and λBn

in+ℓ−1 > bL for all n large) = 1.

Therefore, considering a countable collection ofǫ’s converging to zero, we conclude that, with probability 1

lim
n→∞

λBn

in
= lim

n→∞
λBn

in+ℓ−1 = xc,H(−1/t′) = (27).

Theorem 6.4:Assume, besides the assumptions in Theorem 6.1, there is an eigenvalue ofBn which converges in
probability to a nonrandom positive number,λ′ ∈ S′

F . Let interval[a, b] ∈ S′
F , with a > 0, be such thatλ′ ∈ (a, b),

and let ta = −1/mc,H(a), t′ = −1/mc,H(λ′), tb = −1/mc,H(b) (finite by Lemma 6.1). Then0 < ta < t′ < tb,
implying (c) of Theorem 6.3. Letℓ = ℓ(n) denote the number of eigenvalues ofTn contained in[ta, tb] and letĤn

denote the e.d.f. of the othern− ℓ eigenvalues ofTn. Thenℓ = o(n) and (b) of Theorem 6.3 is true. Ifℓ remains
bounded, then (a) of Theorem 6.3 also holds.

Proof: By Lemma 6.1,[ta, tb] ∈ S′
H , and for a suitable positiveǫ, xc,H is increasing on[mc,H(a)−ǫ,mc,H(b)+

ǫ], which does not contain 0.
Thereforeta < t′ < tb. If c(1 − H(0)) > 1, that is, case (i) of Theorem 6.1 holds, thena > x0, sincex0 is the

almost sure limit ofλBn
m so λ′ cannot be smaller than it, and necessarilyx0 ∈ SF . Thereforemc,H(b) < 0, so that

0 < ta.
It must be the case that onlyo(n) eigenvalues oftn lie in [ta, tb], since otherwise[ta, tb] would not be outside

the support ofH. We have thenĤn →D H as n → ∞, so from the dominated convergence theorem we have
d

dmxcn,Ĥn
(m) → d

dmxc,H(m) for all m ∈ [mc,H(a) − ǫ,mc,H(b) + ǫ], implying for all n large d
dmxcn,Ĥn

(m) > 0
for all m ∈ [mc,H(a),mc,H(b)]. Therefore (b) is true

We assume now thatℓ is bounded. Suppose (a) does not hold. Then we could find a subsequence{nj} of the
natural numbers for whichℓ′ = ℓ′(n) of the ℓ eigenvalues converge to at′ 6= t′, the remainingℓ − ℓ′, if positive,
eigenvalues remaining a positive distanced from t′. Replace{Tn} with {T′

n} which matches the original sequence
when n = nj and for n 6= nj, T

′
n has ℓ′ eigenvalues equal tot′, with the remainingℓ − ℓ′, again, if positive,

eigenvalues ofT′
n at leastd away from t′. Then we have by Theorem 6.1, (27), witht′ replaced byt′, holding

for ℓ′ of the eigenvalues of(1/m)T′
n

1/2
XnX

∗
nT ′

n
1/2. Thus, on{nj}, we have the almost sure convergence ofℓ

eigenvalues ofBn to xc,H(−1/t′) ∈ [a, b] which, becausexc,H(−1/t) is an increasing function, does not equal
λ′ = xc,H(−1/t′). This contradicts the assumption of convergence in probability to eigenvalues to only one number,
namelyλ′. Therefore (a) holds.

D. Behavior of extreme eigenvalues

Consider nowt′ lying on either side of the support of̂H. Let λ̂min
n and λ̂max

n denote, respectively, the smallest
and largest numbers in the support ofĤn Notice thatgn(t) ≡ cn

∫
λ2

(λ−t)2 dĤn(t) is decreasing fort > λ̂max
n , and

if λ̂min
n > 0, gn is increasing on(0, λ̂min

n ).
Therefore, if for alln large,t′ > λ̂max

n , it is necessary and sufficient to find ata ∈ (λ̂max
n , t′) for which g(ta) ≤ 1

in order for (27) to hold. Similarly, if for alln large t′ ∈ (0, λ̂min
n ), then it is necessary and sufficient to find a

tb ∈ (0, t′) for which gn(tb) ≤ 1 in order for (27) to hold. Notice ifc(1 − H(0)) > 1 then gn(t) > 1 for all
t ≤ λ̂min

n and alln large.
Let for d.f. G with bounded support,λmax

G denote the largest number inSG. If there is a τ > λmax
H for

which g(τ) = c
∫

λ2

(λ−t)2 dH(t) = 1, and if lim supn λ̂max
n < τ , then τ can be used as a threshold fort′ ∈

(lim supn λ̂max
n ,∞). Indeed, by the dominated convergence theorem,limn→∞ gn(t′) = g(t′). Therefore, ift′ > τ ,

conditions (b) and (c) of Theorem 6.3 hold, withta = τ , andtb any arbitrarily large number.



SAMPLE GENERALIZED EIGENVALUE BASED DETECTION 20

On the other hand, supposeλTn

in
, . . . , λTn

in+ℓ−1, whereℓ remains bounded, are the eigenvalues ofTn approaching
the interval(lim supn λ̂max

n , τ ]. Then by Theorem 6.4, for anyǫ > 0 with probability one, none ofλBn

in
, . . . , λBn

in+ℓ−1
can remain in(λmax

F + ǫ,∞) with for all n large.
Also, since the largestin + ℓ− 1 eigenvalues ofTn must beo(n) (otherwise,H would have additional mass on

[λmax
H ,∞)), λBn

in
, . . . , λTn

in+ℓ−1 must all converge a.s. toλmax
F .

Similar results can be obtained for the interval to the left of SF

As in Theorem 6.1 Tonelli’s Theorem can easily be applied to establish equivalent results whenTn’s are random
and independent ofX.

E. The eigenvalues of the multivariate F matrix

Let Yij be another collection of i.i.d. random variables (not necessarily having the same distribution as the
Xij ’s), with EY1 1 = 0, E|Y1 1| = 1, E|Y1 1|4 < ∞, and independent of theXij ’s.

We form then × N matrix Yn = (Yij), i = 1, 2, . . . , n, j = 1, 2, . . . ,N with N = N(n), n < N , and
c1
n ≡ n/N → c1 ∈ (0, 1) asn → ∞.

Let now Tn = ((1/N)YnY
∗
n)−1, whenever the inverse exists.

From Bai and Yin’s work [41] we know that with probability 1, for all n large,Tn exists withλTn

1 → (1−√
c1)

−2.
Wheneverλ(1/N)YnY∗

n
n = 0 defineTn to beI.

The matrixTn(1/N)XnX
∗
n, typically called a multivariateF matrix, has the same eigenvalues asBn. Its limiting

e.d.f. has density on(0,∞) given by

fc,c1
(x) =

(1 − c1)
√

(x − b1)(b2 − x)

2πx(xc1 + c)
b1 < x < b2,

where

b1 =

(
1 −

√
1 − (1 − c)(1 − c1)

1 − c1

)2

, b2 =

(
1 +

√
1 − (1 − c)(1 − c1)

1 − c1

)2

.

Whenc ∈ (0, 1], there is no mass at0, whereas forc > 1 F has mass(1 − (1/c)) at 0 [14].
We are interested in the effect on spikes on the right side of the support of theHn.
Because of the corollary to Theorem 6.1, we knowλBn

1 → b2 a.s. asn → ∞. We proceed in computing the
function

g(t) = c

∫
λ2

(λ − t)2
dH(t).

We will see that it is unnecessary to compute the limiting e.d.f. of Tn. It suffices to know the limiting Stieltjes
transform ofF (1/N)YnY ∗

n .
Let H1 denote the limiting e.d.f. ofF (1/N)YnY ∗

n . We have

g(t) = c

∫
(1/λ)2

(t − 1/λ)2
dH1(λ) = c

∫
1

(λt − 1)2
dH1(λ) = ct−2

∫
1

(λ − (1/t))2
dH1(λ)

= t−2 d

dx
mH1

(x)

∣∣∣∣
x=(1/t)

.

We use (22) to findmF
c1,I[1,∞) :

z = − 1

m
+ c1

1

1 + m
⇔ zm2 + (z + 1 − c1)m + 1 = 0.

⇔ m =
−z − 1 + c1 ±

√
(z + 1 − c1)2 − 4z

2z

(the sign depending on with branch of the square root is taken).

=
−z − 1 + c1 ±

√
(z − (1 −√

c1)2)(z − (1 +
√

c1)2)

2z
.
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From the identity in (21) we find that

mH1
(z) =

−z + 1 − c1 ±
√

(z − (1 −√
c1)2)(z − (1 +

√
c1)2)

2c1z
.

As mentioned earlier the support ofH1 is [(1 −√
c1)

2, (1 +
√

c1)
2]. We needg(t) for t > (1 −√

c1)
−2, so we

needmH1
(x) for x ∈ (0, (1 −√

c1)
2).

Since0 ∈ S′
H1

, mH1
(0) exists and is real, which dictates what sign is taken on(0, (1 − √

c1)
2). We find that,

on this interval

mH1
(x) =

−x + 1 − c1 −
√

(x − (1 −√
c1)2)(x − (1 +

√
c1)2)

2c1x
, (30)

and using the fact that the discriminant equalsx2 − 2x(1 + c1) + (1 − c1)
2,

d

dx
mH1

(x) = − 1

2c1x2

(
(1 − c1) +

x(1 + c1) − (1 − c1)
2

√
(x − (1 −√

c1)2)(x − (1 +
√

c1)2)

)
.

We therefore find that fort > (1 −√
c1)

−2

g(t) =
c

2c1

(
−(1 − c1) +

t(1 − c1)
2 − (1 + c1)√

(1 − t(1 −√
c1)2)(1 − t(1 +

√
c1)2)

)
.

We see that the equationg(t) = 1 leads to the following quadratic equation int:

(1 − c1)
2αt2 − 2(1 + c1)αt + α − c2 = 0, whereα = c1 + c − cc1,

giving us

t =
(1 + c1)α +

√
(1 + c1)2α2 − (1 − c1)2α(α − c2)

(1 − c1)2α
,

The positive sign in front of the square root being correct due to

(1 + c1)

(1 − c1)2
=

(1 + c1)

(1 −√
c1)2(1 +

√
c1)2

<
1

(1 −√
c1)2

.

Reducing further we find the threshold,τ , to be

τ =
(1 + c1)α +

√
α
√

4α − c1 + (1 − c1)2c2

(1 − c1)2α
=

(1 + c1)α +
√

α(2c1 + c(1 − c1))

(1 − c1)2α
. (31)

We now compute the right hand side of (27). We have fort′ ≥ τ

t′
(

1 + c

∫
λ

t′ − λ
dH(λ)

)
= t′

(
1 + c

∫
1/λ

t′ − 1/λ
dH1(λ)

)
= t′(1 + ct′

−1
mH1

(1/t′))

=
t′(2c1 + c(1 − c1)) − c − c

√
(1 − t′(1 −√

c1)2)(1 − t′(1 +
√

c1)2)

2c1
≡ λ(t′). (32)

A straightforward (but tedious) calculation will yieldλ(τ) = b2.
Using the results from the previous section, we have proved the following:
Theorem 6.5:Assume in addition to the assumptions in Theorem 6.1 on theXij

(a) theTn, possibly random, are independent of theXij, with F Tn →D H, a.s. asn → ∞, H being the limiting
e.d.f. ofF ((1/N)YnY ∗

n )−1

, defined above.
(b) Almost surely, there areℓ (remaining finite for each realization) eigenvalues ofTn converging to nonrandom

t′ > (1 −√
c1)

−2, asn → ∞. Denote byĤn the e.d.f. of then − ℓ other eigenvalues ofTn.
(c) With λ̂max

n defined to be the largest number in the support ofĤn, with probability one,lim supn λ̂max
n < τ

the threshold defined in (31).
SupposeλTn

in
, . . . , λTn

in+ℓ−1 are the eigenvalues stated in (b) of Theorem 6.3. Then, with the functionλ(·) defined
in (32), with probability one

lim
n→∞

λBn

in
= · · · = lim

n→∞
λBn

in+ℓ−1 =

{
λ(t′), if t′ > τ

b2, if t′ ∈ (lim supn λ̂max
n , τ ].

Note: From Theorem 6.3, whent′ > τ the result can allowℓ = o(n).
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