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Abstract

Sample eigenvalue based estimators are often used for estimating the number of high-dimensional signals
in colored noise when an independent estimate of the noise covariance matrix is available. We highlight a
fundamental asymptotic limit of sample eigenvalue based detection that brings into sharp focus why in the
large system, relatively large sample size limit, underestimation of the model order may be unavoidable for
weak/closely spaced signals. We discuss the implication of these results for the detection of two weak, closely
spaced signals and illustrate the accuracy of the predictions with numerical simulations.
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Extended Summary

1 Introduction

The observation vector, in many signal processing applications, can be modelled as a superposition of a
finite number of signals embedded in additive noise. Detecting the number of signals present becomes a key
issue and is often the starting point for the signal parameter estimation problem. When the signals and the
noise are assumed, as we do in this paper, to be samples of a stationary, ergodic Gaussian vector process,
the sample covariance matrix formed from m observations has the Wishart distribution [1]. We consider
the class of estimators, inspired by the seminal work of Wax and Kailath [2], that determine the number of
signals in colored noise from the generalized eigenvalues of the signal-plus-noise sample covariance matrix
and the noise-only sample covariance matrix pair.

Our main objective is to explain precisely when and why, in high-dimensional, sample size limited settings
underestimation of the model order is unavoidable. This is in stark contrast to works in the literature that use
simulations, as in [3], to highlight the chronically reported symptom of sample (generalized) eigenvalue based
estimators underestimating the number of signals without providing insight into whether a fundamental limit
of detection is being encountered.

This paper addresses this issue using the powerful tools for analyzing large random matrices developed
by Bai and Silverstein [4]. The main contribution of this paper is the introduction of the concept of effective
number of (identifiable) signals which brings into sharp focus a fundamental limit in the identifiability,
under sample size constraints, of closely spaced/low level signals using sample (generalized) eigenvalue based
detection techniques. This concept explains why, in the large system relatively large sample size limit, if the
signal level is below a threshold that depends on the noise covariance, sample size and the dimensionality of the
system, then reliable sample eigenvalue based detection is not possible. The fundamental undetectability, due
to insufficient samples, of weak/closely spaced signals using sample (generalized) eigenvalue based schemes
due to insufficient samples is only exacerbated by adding more sensors since the detectability threshold is
raised.

2 Problem formulation

We observe m samples (“snapshots”) of possibly signal bearing n-dimensional snapshot vectors x1, . . . ,xm

where for each i, xi ∼ Nn(0,R) and xi are mutually independent. The snapshot vectors are modelled as

xi = Asi + zi for i = 1, . . . ,m, (1)

where zi ∼ Nn(0,Σ), denotes an n-dimensional (real or complex) Gaussian noise vector where the noise
covariance Σ may be known or unknown, si ∼ Nk(0,Rs) denotes a k-dimensional (real or complex) Gaussian
signal vector with covariance Rs, and A is a n × k unknown non-random matrix.

Since the signal and noise vectors are independent of each other, the covariance matrix of xi can hence
be decomposed as

R = Ψ + Σ (2)

where
Ψ = ARsA′, (3)

with ′ denoting the conjugate transpose. Assuming that the matrix A is of full column rank, i.e., the columns
of A are linearly independent, and that the covariance matrix of the signals Rs is nonsingular, it follows
that the rank of Ψ is k. Equivalently, the n − k smallest eigenvalues of Ψ are equal to zero.

Consider the matrix,
RΣ := Σ−1R = Σ−1Ψ + I, (4)

whose eigenvalues we denote by λ1 ≥ λ2 ≥ . . . ≥ λn. Then assuming that the rank of Σ−1Ψ is also k, it
follows that the smallest n − k eigenvalues of RΣ are all equal to 1 so that

λk+1 = λk+2 = . . . = λn = λ = 1, (5)
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while the remaining k eigenvalues RΣ of will be strictly greater than one. Thus, if the true signal-plus-noise
covariance matrix R and the noise-only covariance matrix Σ were known apriori, the number of signals k
could be determined from the multiplicity of the smallest eigenvalue of RΣ. The problem in practice is
that the signal-plus-noise and the noise covariance matrices R are unknown so that such a straight-forward
algorithm cannot be used.

Instead, one estimates the signal-plus-covariance matrix using m snapshots as

R̂ =
1
m

m∑
i=1

xix′
i (6)

and the noise-only sample covariance matrix

Σ̂ =
1
N

N∑
j=1

zjz′j (7)

where xi for i = 1, . . . , m are (possibly) signal-bearing snapshots and zj for j = 1, . . . , N are noise-only
snapshots. We then form the matrix

R̂Σ̂ = Σ̂−1R̂ (8)

and perform inference on the eigenvalues of R̂Σ̂. There are many techniques (e.g., [5, 6, 7]in the literature for
inferring the number of signals from the eigenvalues of R̂Σ̂. There is no explanation in the signal processing
literature of why, when m = O(n), and m = O(N) which is increasingly the case in many state-of-the-art
sonar and radar array processing systems, underestimation of the model order is unavoidable. We fill this
void in this paper using results from large random matrix theory [4].

3 Asymptotic identifiability criterion and the effective number of
signals

A central object in the study of large random matrices is the empirical distribution function (e.d.f.) of the
eigenvalues, which for an arbitrary matrix A with n real eigenvalues (counted with multiplicity), is defined
as

FA(x) =
Number of eigenvalues of A ≤ x

n
. (9)

For a broad class of random matrices, the sequence of e.d.f.’s can be shown to converge in the n → ∞ limit
to a non-random distribution function [8]. Of particular interest is the convergence of the e.d.f. of R̂Σ̂ in
the signal-free case, which is described next.

Theorem 1. Let R̂Σ̂ denote the matrix in (8) formed from m (complex Gaussian) noise-only snapshots and
N independent noise-only (complex Gaussian) snapshots. Then the e.d.f. F R̂Σ̂(x) → FRΣ(x) almost surely
for every x, as m,n(m) → ∞, m,N(m) → ∞ and cm = n/m → c > 0 and c1

N = n/N → c1 < 1 where

dFW (x) = max
(

0,

(
1 − 1

c

))
δ(x) +

√
(x − a−)(a+ − x)
2π(c1x2 + cx)

I[a−,a+](x) dx, (10)

where

a± =
− c1 c + c + 1 + c1 ± 2

√
c + c1 − c1c

c1
2 + 1 − 2 c1

(11)

with a± = λ(1 ± √
c)2, I[a,b](x) = 1 when a ≤ x ≤ b and zero otherwise, and δ(x) is the Dirac delta

function.

Proof. This result was proved in [9]. When c1 → 0 we recover the famous Marčenko-Pastur density [10].

The following result exposes when the “signal” eigenvalues are asymptotically distinguishable from the
“noise” eigenvalues.
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Theorem 2. Let R̂Σ̂ denote the matrix in (8) formed from m (complex Gaussian) signal-plus-noise snapshots
and N independent (complex Gaussian) noise-only snapshots. Denote the eigenvalues of RΣ by λ1 ≥ λ2 >

. . . ≥ λk > λk+1 = . . . λn = 1. Let lj denote the j-th largest eigenvalue of R̂Σ̂. Then as n,m(n) → ∞,
n,N(n) → ∞ and cm = n/m → c > 0 and c1

N = n/N → c1 < 1 we have

lj →




λj


1 − c − c

−c1 λj − λj + 1 +
√

c1
2λj

2 − 2 c1 λj
2 − 2 c1 λj + λj

2 − 2λj + 1

2c1 λj


 if λj > τ(c, c1)

− c1 c + c + 1 + c1 + 2
√

c + c1 − c1c

c1
2 + 1 − 2 c1

if λj ≤ τ(c, c1)

for j = 1, . . . , k and the convergence is almost surely and the threshold τ(c, c1) is given by

τ(c, c1) =

(
c1

2 + c1
√

c + c1 − c1 c −√
c + c1 − c1 c − 1

)
c − c1

2 − 2 c1
√

c + c1 − c1 c − c1

((c1 − 1) c − c1) (c1 − 1)2
. (12)

Proof. This follows from applying the techniques in [11]. The threshold is obtained by solving the equation

τ

(
1 − c − c

−c1 τ − τ + 1 +
√

c1
2τ2 − 2 c1 τ2 − 2 c1 τ + τ2 − 2 τ + 1

2c1 τ

)

=
−2 c1 c + 2 c + 2 + 2 c1 + 4

√
c + c1 − c1 c

2 (c1
2 + 1 − 2 c1)

.

When c1 → 0 we recover the results in [11, 12, 13].

This motivates our definition of the effective number of identifiable signals which is equal to

keff (R,Σ) = # Eigenvalues of Σ−1R > τ
( n

m
,

n

N

)
(13)

The theorems above suggest that when the effective number of signals is less than the true number of
signals then model order underestimation is (asymptotically) unavoidable. Figure 1 shows the eigen-SNR
threshold (τ(c, c1)) needed for reliable detection for different values as a function of c for different values
of c1. Such an analytical prediction was not possible before the results presented in this paper. Note the
fundamental limit of detection in the situation when the noise-only covariance matrix is known apriori (solid
line) and increase in the threshold eigen-SNR needed as the number of snapshots available to estimate the
noise-only covariance matrix decreases.

4 Implications for array processing applications

Suppose there are two uncorrelated (hence, independent) signals so that Rs = diag(σ2
S1, σ

2
S2). In (1) let

A = [v1v2]. In a sensor array processing application, we think of v1 ≡ v(θ1) and v2 ≡ v2(θ2) as encoding
the array manifold vectors for a source and an interferer with powers σ2

S1 and σ2
S2, located at θ1 and θ2,

respectively. The signal-plus-noise covariance matrix is given by

R = σ2
S1v1v′

1 + σ2
S2v2v′

2 + Σ (14)

where Σ is the noise-only covariance matrix. The matrix RΣ defined in (4) can be decomposed as

RΣ = Σ−1R = σ2
S1Σ

−1v1v′
1 + Σ−1σ2

S2v2v′
2 + I

so we that we can readily note that RΣ has the n − 2 smallest eigenvalues λ3 = . . . = λn = 1 and the two
largest eigenvalues

λ1 = 1 +

(
σ2

S1 ‖u1 ‖2 +σ2
S2 ‖u2 ‖2

)
2

+

√
(σ2

S1 ‖u1 ‖2 −σ2
S2 ‖u2 ‖2)2 + 4σ2

S1σ
2
S2|〈u1,u2〉|2

2
(15a)
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λ2 = 1 +

(
σ2

S1 ‖u1 ‖2 +σ2
S2 ‖u2 ‖2

)
2

−
√

(σ2
S1 ‖u1 ‖2 −σ2

S2 ‖u2 ‖2)2 + 4σ2
S1σ

2
S2|〈u1,u2〉|2

2
(15b)

respectively, where u1 := Σ−1/2v1 and u2 := Σ−1/2v2 . Applying the result in Proposition 2 allows us to
express the effective number of signals as

keff =




2 if τ
(

n
m , n

N

)
< λ2

1 if λ2 ≤ τ
(

n
m , n

N

)
< λ1

0 if λ1 ≤ τ
(

n
m , n

N

)
(16)

Equation (16) captures the tradeoff between the identifiability of two closely spaced signals, the dimen-
sionality of the system, the number of available snapshots and the cosine of the angle between the vectors
v1 and v2. Note that since the effective number of signals depends on the structure of the noise covariance
matrix (via the eigenvalues of RΣ), different assumed noise covariance structures (AR(1) versus white noise,
for example) will impact the signal level SNR needed for reliable detection in different ways. We shall discuss
this in further detail in our proposed presentation.
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Figure 1: Plot of the minimum (generalized) Eigen-SNR required (given by (12)) to be able to asymptotically
discriminate between the “signal” and “noise” eigenvalue of the matrix R̂Σ̂ constructed as in (8) as a function
of the ratio of the number of sensors to snapshots for different values of c1 ≈Number of sensors/Number of
noise-only snapshots.
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