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Abstract

We study the process of information dispersal in a network with communication errors and
local error-correction. Specifically we consider a simple model where a single bit of information
initially known to a single source is dispersed through the network, and communication errors
lead to differences in the agents’ opinions on this information.

Naturally, such errors can very quickly make the communication completely unreliable,
and in this work we study to what extent this unreliability can be mitigated by local error-
correction where nodes periodically correct their opinion based on the opinion of (some subset
of) their neighbors. We analyze how the error spreads in the “early stages” of information
dispersal by monitoring the average opinion, i.e., the fraction of agents that have the correct
information among all nodes that hold an opinion at a given time. Our main results show
that even with significant effort in error-correction, tiny amounts of noise can lead the average
opinion to be nearly uncorrelated with the truth in early stages. We also propose some local
methods to help agents gauge when the information they have has stabilized.

1 Introduction
Societal knowledge is acquired by a collection of complex intertwined distributed processes involv-
ing agents that learn background facts, gather new data, make inferences, and communicate this
to other agents. Each one of these steps is susceptible to noise — so much so that in the absence
of error-correction mechanisms much of this knowledge could be totally flawed. Of course some
natural error-testing and correcting mechanisms are built into this network of complex processes
and this brings in large amounts of reliability to existing knowledge. But much of the design and
adoption of the mechanisms is based, at best, on empirical analysis and very little theory captures
these processes.

With this broader context in mind, in this paper we explore one corner of this space: The simple
spread of information in a society. We consider benign errors in this setting where errors creep
in when agents communicate a bit of information along. We consider a natural error correction
processes where agents simply check their information against that of their neighbors and (with
some probability) revise their information. This simple model allows us to ask questions of the
form: How much error-correction “effort” is necessary/sufficient to “protect” from a certain amount
of error? How does the structure of the network influence the prevalence of error? How can
individual agents aim to gain confidence in the correctness of the information they possess, at any
given moment of time?

We turn to our specific model next but as a teaser we describe some of the qualitative results we
obtain in our model. We find that expansion in networks can be harmful to correctness: Specifically
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in expanding networks while information is still spreading, most people that hold any information
actually hold information uncorrelated with the truth! And this holds even when the fraction of
errors is tiny and the effort in checking/correcting is overwhelming. But on the positive side, the
timing information that agents hold — “when did they first hear about this information?” and
“when did they last change their opinion” — can be very useful in helping the agents assessing the
quality of their information. With these potential results in mind we turn to our specific model.

1.1 Our Model
We describe our model formally in Section 2. Here we introduce the model less formally but
explain some of the choices. Two key principles we follow are: (1) Keep the model simple focusing
on the errors and correction; and (2) Avoid strategic considerations by assuming agents believe
the information they have at each point and transmit it to their neighbors. (I.e., the agents are
myopic.)

These choices may make the model more “optimistic” than some natural settings, but note that
this makes the negative results even more significant.

Turning to our model, we consider a locally finite graph G (G could be finite or countably
infinite) where a root vertex r is given a bit of “true” information f0(r) ∈ {0, 1}, and the eventual
goal is to disseminate this bit to the rest of the graph. All other nodes know they don’t know this
bit initially, indicated by setting f0(v) = ⊥ for every v 6= r. We refer to such a node as one with
no “opinion” on the truth.

While our model allows the communication graph to be arbitrary, actual communication only
happens in a directed spanning tree T whose edge directions are from the root outward. (We note
that keeping the communication graph acyclic is crucial to our analysis — we elaborate further
on this choice below.) There are two natural choices for selecting this tree T . The tree could be
somehow fixed in advance, independent of the actual information spread process. We refer to this
as the offline version, and this is the version we pursue in most of this paper. Another natural
choice, which we call the online version, would be to allow the tree to grow randomly, potentially
correlated with the information spread process. We discuss this option briefly in Section 9. In our
main model, T is a breadth-first (BFS) tree1 given in advance, where the path length from the root
to any node v equals to the distance between them in the original graph. (Our analysis can easily
extend to the setting of non BFS trees, with the caveat that any quantitive aspects depend on a
certain expansion measure of the tree T rather than the graph G. These two turn out to coincide
when the tree is a BFS tree.) Communication happens at discrete time steps along this tree, and
in particular at every time step an unopinionated node v checks whether its parent in T has an
opinion; if it does, v forms an opinion based on the opinion of the parent.

Now we turn to errors. Errors enter only when a previously unopinionated node is forming
an opinion, by talking to its parent in the rooted tree. The probability of this error is one of
the basic parameters of our model. The second parameter focuses on the error-correction where
in each step with some probability, an opinionated node checks its own opinion with that of its
parent and updates to the parent’s opinion if they disagree. The probability of this error-correction
(“fact-checking”) operation is the second basic parameter in our model and together these are the
main two parameters we consider. We stress that no errors happen during this error correction
phase. Obviously, we could have allowed some errors to creep also during a legitimate update step
where a node with an opinion differing from its parent updates to the wrong value, but this kind
of error can simply be modelled by a lower probability of an error-correction step. But crucially if
a parent and child agree on an opinion, the child does not update to a disagreeing opinion due to
communication error. This choice simplifies the underlying process. In particular once all nodes

1A breadth first (BFS) tree in a graph G with root r is any tree T satisfying the following: for every non-node
root v, the distance dG(r, v) between the root r and v in G is equal to the distance dT (r, v) between them in T .
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have an opinion equal to that of the root, then no further updates happen. This is the unique
fixed-point in the space of configurations and a goal could be to understand when this point is
reached, but most of our analysis aims to understand the opinions before this state is reached.

As mentioned, when designing the model we aimed for simplicity and fast convergence. Below
we describe why the model checks these two boxes.

• Simplicity. Having directed cycles in the information graph can lead to a persistence of errors.
This is the phenomenon that lies at the heart of many studies in “opinion dynamics” and forces
agents to start having beliefs in the truth. By picking a model which only communicates
information in the same direction – away from the root – we shy away from this more-studied
phenomenon which would add substantial complexity to our model. We could have picked
DAGs rather than trees, or other sophisticated error correction mechanisms, but these again
lead to more technical challenges and do not seem to provide a substantially different picture
on a conceptual level. Similarly the choice of working with the offline version is based on the
desire for simplicity. In an online version where the tree is allowed to grow randomly, the
structure and parameters of the tree itself can be complex to analyze. We elaborate more on
the challenges in Section 9. Staying with the offline model takes another potential source of
complexity out of our model.

• Fast convergence. As we demonstrate (see Section 8), slight modifications in the process –
for example, allowing a node to listen to all of its neighbors in the graph or in the tree during
error correction, rather than to a single fixed parent in the tree – may lead the convergence
rate of the process to be exponentially slower, which is arguably less realistic.

1.2 Our analysis
We describe our results more formally in Section 3. Here we give an informal description of the
nature of questions we are able ask and answer in our model.

In our simple model, information propagates in two “waves”. The first wave is the rumor frontier
where nodes become aware of the existence of a new fact. The second wave is the truth frontier
which is the connected subtree including the root where all nodes agree in opinion with the root.
Both frontiers make monotone progress. The former proceeds deterministically (due to our model
choice) whereas the latter is probabilistic and the main analytic task is to determine how fast this
frontier moves. Furthermore to study this speed it suffices to look at just the directed path and
we will focus on this case here (as well as in most of the paper).

It is easy to make a back of the envelope calculation that takes the two parameters of the model
and heuristically estimates the speed of the truth frontier. This would suggest a speed that depends
only on the second parameter (error-correction effort) and only needs the other parameter (error
probability) to be positive. But these heuristics are just that and a careful examination reveals
that in order to convert this to a formal analysis one needs to understand the pattern of opinions
in the nodes between the two frontiers. In particular it is possible for the truth frontier to make
massive jumps forward in a single step by swallowing a brief run of incorrect opinions sandwiched
between the truth frontier and another long run of opinions which accidentally happens to agree
with the truth. (Indeed our analysis shows that such events do happen in almost every run.)

In order to convert the heuristic analysis to a formal one, we introduce a more detailed model
that we call the “decoupled model” which tracks not only the current opinion of a node but also
where this opinion originated. (The decoupled model is similar to the coalescing random walk
representation of the “voter” model studied in [7, 13] and we elaborate on the relationship in
Section 1.3.) Speeds of the frontier movement in this model are easy to analyze but we still need
to analyze the “runs of opinions” in this model to get information about our original model. By
doing so we roughly observe the following phenomenon: The gap between the truth frontier and
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the rumor frontier grows linearly with time (with exactly the same constant as predicted by the
heuristic calculation!). At time t there are roughly

√
t alternations of opinions along the path from

the truth frontier to the rumor frontier. Furthermore a node at distance t′ from the rumor frontier
is expected to be in a run of length roughly

√
t′ — so the runs get shorter (or alternations become

more frequent) as one approaches the rumor frontier.
Converting the information on run lengths and speed of the truth frontier, especially from our

decoupled process, immediately translates to information about the opinions of nodes and their
correlation with the truth. Roughly each run outside the truth frontier has a random opinion
independent of the truth and of other runs. Since in expanding graphs most of the nodes are close
to the frontier, most of the nodes thus are part of small sets whose information is independent of
that of others. Thus with high probability, there is very little correlation between the truth and
the opinions of most nodes.

Finally, note that while nodes inside the rumor frontier are aware of this fact (by virtue of the
fact that their opinion is not ⊥) nodes within the truth frontier are not! So how can a node know
if its value is correct? Our analysis suggests a simple method: A node should count time since it
formed an opinion, and measure how recently it last changed its opinion. If the former is t0 and
the latter is t1 and t1 > ω̃(

√
t0), then its opinion is likely to be the truth, and if not the opinion

is likely to be uncorrelated with the truth. Thus there is a sharp transition in the confidence of a
node about its opinion.

We now briefly give pointers to where the results alluded to may be found in the paper. In
Section 2 we introduce our model formally. In Section 4 we describe the heuristic bound on the
speed of the truth frontier and prove it is a lower bound on the actual speed. In Section 5 we
introduce the “decoupled model”, show the equivalence of this model to our original one, and start
analyzing this model. In Section 6 we formally prove the upper bound on the speed of the truth
frontier. In this section we also describe how agents can estimate their confidence in their opinion.
All the analysis upto this point is on the path, though it also applies to branches in the more
general tree setting. In Section 7 we relate the results to general graphs and in particular to the
fraction of agents with the correct opinion. In Section 8 we show how slightly different choices of
model would lead to much slower convergence time.

1.3 Related Work
Without error correction, the model presented here on trees is identical to the well studied broadcast
model on the tree. For this model, without correction, it is well known that asymptotically half of
the nodes will take each of the two values [12]. Finer result regarding the lower order fluctuations
of the fraction of nodes taking each value were studied in [11]. More recently questions of root
reconstruction on trees deals with global estimators that can estimate the root value better than
random, given the information at all nodes sufficiently far away [2, 9, 8, 4, 3]. The phase transitions
proven for the existence of such estimators do not play any role in our results.

Work on noisy-computation considered how can one compute the value of f(x) where f is given
by a Boolean circuit, when one can only use noisy gates [21, 5]. The main result of the area is that
for small enough error rates this can be achieved for circuit of polynomial size with a logarithmic
blowup in the depth. The problem is similar to the problem we consider in that the goal is to
have no errors in computing f . However, the error correction performed is stronger as one uses
(the majority of) a number of bits at each gate. A related broadcast model where nodes compute
their values by computing the majority of a number of nodes in previous generations was studied
in [14].

There is a huge body of work studying opinion exchange dynamics and learning on networks.
Some of the main models in the area include the Voter model, the DeGroot model, SIR, SIS and
other epidemics models, and Bayesian and non-Bayesian learning models, see e.g. [10, 15, 16].
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The epidemics models, the Voter and the DeGroot model all assume that each agent has a
state/belief at the beginning of the process and opinion exchange results in agents updating their
opinion iteratively. This is different than the model studied here, where there is a new topic, where
initially most agents have no opinion. Furthermore, the basic interaction in most such models is
supposed to model persuasions, and infections while our model just focuses on information sharing
and error correction.

Among all the models in the preceding paragraph, the voter model [7] is the closest to the
model we study in this paper. In fact, if we consider a variant of our model where error correction
is performed with respect to a randomly chosen neighbor having an opinion, then after the initial
broadcast process, and excluding the root, the model behaves very much like the voter model. One
consequence of this fact is that the convergence time for simple graphs such as the binary tree, is
exponential in the radius of the graph, versus linear in our model, see Section 8.

We note further that our decoupled model and the coalescing random walk representation of
voter model are quite similar as representing they track the information backward using random
walks, see e.g. [13].

Some of the work on Bayesian learning with myopic agents in economics is also concentrated on
information aspects on networks. However, much of this work requires nodes to be computationally
unbounded, and has no realistic bounds on the time of convergence of the learning process [6]

The more computationally efficient models in the literature, those studying herding, allow nodes
to take action only once, and thus have no error-correction. Many of them also require each node
to observe all nodes preceding it in a fixed order [20, 1, 19].

There is also a huge body of work on misinformation on social networks, including popular
books, see for example [22, 18]. These works study topics such as large scale targeting, identifying
influencers, assimilation bias, the effect of surprise in spread and others. To the best of our
knowledge none of this work studies the effect of neutral communication errors and error correction
on misinformation.

2 Model Definition
We now turn to the formal definition of the model. Recall that the model is specified by three
structural parameters G, r and T and two numerical parameters a and b.

Definition 2.1 (Information spread with error correction). Fix two parameters a, b ∈ [0, 1]. Let
G = (V,E) be an undirected graph, let r ∈ V denote some root vertex, and let T be any BFS-tree
of G rooted at r. Consider the following process, proceeding in rounds.

• At any given round t ≥ 0, each vertex v ∈ V holds a label ft(v), which is one of three values:
1 (holds “correct” opinion), −1 (“incorrect” opinion), or ⊥ (no opinion).

• Initially, only the root holds an opinion (the correct one): f0(r) = 1, and f0(v) = ⊥ for
v 6= r. We also define a parent function p : V → V , where p(v) is the unique neighbor of v
that lies on the path from r to v in the tree T , and p(r) = r.

• Given the values of ft−1(v) for all v ∈ V , the update rule defining ft(·) is as follows.

– Before opinion formation. If ft−1(v) = ⊥ and the set Nt−1(v) := {u ∈ V : (u, v) ∈
E, ft−1(u) 6= ⊥} is empty, then ft(v) = ⊥.

– Initial opinion. If ft−1(v) = ⊥ and Nt−1(v) is non-empty, we set

ft(v) =

{
ft−1(p(v)) w.p. 1− a,
−ft−1(p(v)) w.p. a.
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– Opinion updates. If ft−1(v) 6= ⊥ then

ft(v) =

{
ft−1(p(v)) w.p. b,
ft−1(v)) w.p. 1− b.

Formally, thus, the Information Spread model, or simply “Spread Model”, is given by the random
variables {ft(v)}t∈N,v∈V , where ft(v) ∈ {−1,⊥, 1} for every t, v are generated as above. The model
is parameterized by (G, r, T, a, b) where G = (V,E) is a graph on a finite or countably infinite set
V , r ∈ V is the root vertex, T is a breadth-first search tree in G rooted at r, and a, b ∈ [0, 1] are
two real numbers.

We remark again that the process above is the “offline version” where a communication tree is
given in advance. The model can be adapted to the setting where the tree is chosen in an online
fashion — we discuss this model in Section 9.

Here, “errors” (or disagreements with the parent) are induced with probability a when a node
first forms an opinion, and correction (or being convinced by the parent) refers to the process
where a node may change its opinion to the parent’s opinion with some probability b in any given
round. For any b bounded away from zero, it is not hard to show (see, e.g., Lemmas 4.5 and 5.6)
that all but an arbitrary small constant fraction of the nodes converge to the correct opinion after
a number of rounds linear in the diameter of the graph.

Remark 2.2 (Fast convergence and alternative models). The model we propose is a simple ex-
ample where opinions converge quickly and with probability one to a consensus – in a number of
rounds at most linear in the diameter of the graph – despite having errors (or disagreements) in the
communication process. Such fast convergence is desirable as it arguably better describes opinion
formation and distribution in real world graphs, compared to processes where the convergence rate
is polynomial in the graph size.

We note that similar qualitative results hold for various extensions of the above model as well
as other fast converging models with errors; we describe a couple of these in more detail.

• In our model, each node v is assigned a fixed parent p(v) from which it subsequently receives
all incoming information. Another possible model with fast convergence properties would
be for v to continuously listen to all its neighbors that formed an initial opinion before v
itself; in our case, these are precisely all neighbors of v whose distance to r is smaller than
v’s distance. We note that the main phenomena arising in this paper, including the fact that
rumors spread much faster than reliable information, as well as their proofs, all extend to
this variant as long as appropriate conditions on the volume growth of the graph hold.

• Our model is synchronous, in that it proceeds in discrete rounds; however, essentially the
same behavior can be observed in analogous asynchronous models.

Remark 2.3 (A slower variant). One natural variant that leads to exponentially slower conver-
gence, is a model where at each round error correction is performed with respect to a randomly
chosen opinionated neighbor (instead of a fixed parent, as in our model). In Section 8 we show
that in this slightly modified model, for simple graphs such as the complete graph on n vertices
or the binary tree on n vertices the convergence time of the modified model is Θ(n), while our
process converges in time Θ(log n).

3 Results
All of the results we present in this section are for the model defined above (Definition 2.1) with
parameters 0 < a < 1/2 and 0 < b < 1, which we perceive as constants (that do not depend on
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the graph G). Perhaps the most interesting regime is when a (the error probability) is a small
constant and b (the correction probability) is much larger. In particular, all of our results hold for
this regime.

Our analysis begins with the simplest tree, that is the (directed) path Pn with n being finite or
∞, where we prove that the truth frontier moves at speed b+ o(1). Recall that the truth frontier
(see Definition 4.4) refers here to the furthest point from the root whose opinion is (i) correct, and
(ii) guaranteed to be correct for the rest of the process.

Theorem 3.1 (Location of the Truth Frontier in the path; see Lemma 4.5 and Theorem 6.2).
Consider our process with fixed parameters 0 < a < 1/2 and 0 < b < 1 on the (directed) path Pn.
The distance of the truth frontier from the root after round t is min{(b± o(1))t, n} with probability
1− e−tΘ(1)

. The o(1) term tends to zero at a polynomial rate as t→∞.

The lower bound is easy; the upper bound requires a much more intricate analysis of the typical
behavior of nodes “just beyond” the truth frontier. In general graphs, the behavior of our process
along any particular branch is equivalent to a process with the same parameters over the path, see
Lemma 5.6. Therefore, as a corollary of the above theorem, we obtain tight bounds on the typical
progress of the truth frontier along any fixed branch of the tree, see Corollary 6.3.

We then proceed with a much finer analysis of runs of consecutive values (+1 or −1) between
the truth frontier and the rumor frontier in paths. This analysis allows us to show that nodes
between the two frontiers change their opinion quite often.

Theorem 3.2 (length of runs; see Theorem 6.4). Consider our model with fixed parameters 0 <
a < 1/2 and 0 < b < 1 over a graph G with root r and let v 6= r be a vertex in the graph. For
any ε > 0, there exists a constant C = C(a, b, ε), which does not depend on G, r, v, so that with
probability at least 1− ε, the following holds. In the first q rounds after v forms an initial (non-⊥)
opinion, if the truth frontier has not reached v during these q rounds, then the longest consecutive
streak of rounds in which v does not change its opinion is of length at most

Ca,b,ε · q1/2 · (log q)3/2.

In fact, the proof of Theorem 6.4 allows nodes who keep a record of all opinions that they held,
to estimate quickly and accurately if they have converged to the correct value without knowing
anything about the graph or the opinion of other nodes:

Corollary 3.3 (When to stop; see Corollary 6.5). Consider a one-player game in the same setting
as in Theorem 6.4, where an agent is located at vertex v, knows a, b in advance, and can only
observe the opinions of v throughout the process; The agent does not have any information about
the graph G or the root r. The agent has the ability to end the game after any round of the process.
Its goal is to end the game as soon as possible after the truth frontier has reached v. For any
ε > 0, there exists a strategy for the agent with success probability 1− ε to end the game no more
than Ca,b,ε

√
t(log t)3/2 rounds after the truth frontier has reached v, where t is the total number of

rounds that v has been holding a non-⊥ opinion so far.

We next turn to studying the bias of the process. One of the main motivations for studying this
model was trying to understand what fraction of the informed nodes hold the correct opinion. The
opinion bias (Definition 7.2) measures this fraction, where a bias of 1 indicates that all nodes are
correct, and a bias of 0 corresponds to opinions being uncorrelated with the truth. We first show
that in expectation, graph expansion leads to the latter situation, where opinions are uncorrelated
with the truth. We let VG(x, t) denote the volume (number of vertices) of the ball of radius t
around x. The following result bounds the expected bias in terms of the volume growth:
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Theorem 3.4 (Expected bias towards correct opinion; see Theorem 7.3). Consider our model
with fixed parameters 0 < a < 1/2 and 0 < b < 1 over a graph G with root r. The expected bias of
the process at time t satisfies(

1− e−t
Θ(1)
)
·
VG
(
r, bt−Θ

(
t1−C

))
VG(r, t)

≤ E[λG,r(t)] ≤
VG
(
r, bt+ Θ

(
t1−C

))
VG(r, t)

+ e−t
Θ(1)

where C > 0 is an absolute constant.

Among other examples, Theorem 7.3 implies that

• For the path rooted at 0, the expected bias is b+ o(1).

• Fix d > 0. For the grid graph Zd, in d dimensions rooted at 0, the expected bias is bd + o(1).

• For the infinite binary tree, the expected bias is o(1).

The following two theorems show that in all of the examples above as well as in other exam-
ples, the opinion bias is concentrated around its expected value. Interestingly, we have different
statements and proofs in the polynomial and super-polynomial growth cases:

Theorem 3.5 (Concentration for super-polynomial volume growth; see Theorem 7.7). Consider
our model over a graph G = (V,E) with root r and fixed parameters 0 < a < 1/2, 0 < b < 1,
and let T be the communication tree of the process, rooted at r. Let t ∈ N and suppose that the
following two conditions hold for constants 0 < c ≤ C and 0 < c′ < 1−b and a function ω : N→ N.

• ω(x·(b+c′))
ω(x) converges to zero as x→∞.

• VG(v, x) ≤ C · xω(x) for every v ∈ Bt,G(r) and x ≤ t− dG(r, v).

• VG(r, x) ≥ c · xω(x) for every x ≤ t.

Then the opinion bias λG,r(t) is o(1) with probability 1 − o(1), where the o(1) terms tend to zero
as t → ∞. Furthermore, if we replace the C · xω(x) and c · xω(x) upper and lower bounds with
expressions of the form Cex

Ω(1)

and cex
Ω(1)

respectively (and ignore the first bullet), then the o(1)

terms are of the form e−t
Θ(1)

.

Examples of graphs with super-polynomial volume growth include the aforementioned binary
tree, as well as various small-world models aiming to capture real world social interactions.

We note that for the phrasing of the theorem to make sense, the graph G has to be infinite:
the third bullet requires that VG(r, t)→∞ as t→∞. For example, one can think of a small world
model that expands with time t (and satisfies the well behaved volume growth conditions), and
argue that as t→∞, the opinion bias at time t converges to zero.

Real world graphs are finite, however; what would be the interpretation in this case? Suppose
that G is a finite graph that (intuitively) exhibits super polynomial growth up to some radius t0
around the root r, where we think of t0 as large compared to the (fixed) parameters a, b. The
theorem implies that in most rounds up to time t0, the opinion bias will typically be close to zero.

The next theorem concerns graphs with polynomial growth, with the prime example being the
d-dimensional grid (for any fixed dimensionality d).

Theorem 3.6 (Concentration for polynomial volume growth; see Theorem 7.8). Consider our
model with parameters a ∈ (0, 1/2) and b ∈ (0, 1) over a graph G with root r at some time t > 0.
Let c > 0 be an arbitrary small constant. Suppose that for every s < s′ ≤ t with s′ − s ≤ t0.5+c, it
holds that VG(r, s′)− VG(r, s) = o(VG(r, t)), where the o(·) term tends to zero as t→∞. Then the
opinion bias at time t, λG,r(t), is within ±o(1) of its expectation with probability 1− o(1).
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Other biases The results above characterize scenarios where the opinion bias is close to 0 or
some other fixed value. We note that for finite graphs, growth of balls always stops. Thus for finite
graph Theorem 7.3 provides only partial information about the bias of the process.

For example, hypothetically it is possible, even in a graph with an initial exponential volume
growth around the root, that at the time when the last node in the graph receives an initial piece
of information, almost all nodes already have the correct opinion.

To understand why this might be true, consider a binary tree on n nodes rooted at r and fix
v to be one of the nodes of the leaves. Attach a path of length g(n) to v and call the resulting
tree T , where g(n)� log n. Note that at the time when the last node obtains information in this
process, all the nodes in the original binary tree have the correct information. Thus if g(n) � n,
at this time the bias is 1 − o(1). Similarly if we choose g(n) = cn, then by the time n + log2(n)
nodes receive information, almost all of them will have the correct information.

It is not clear if such a pathological tree can be the BFS tree of finite bounded degree expanders.

4 Paths and Trees: Model and Basic Observations
As discussed in Section 2, our model for general graphs G (with root r) can be reduced to an
information spread model over a directed tree, where the tree is picked among all BFS trees of G
rooted at r. We now shift our focus toward these directed rooted trees. Consider an arbitrary
fixed rooted tree T whose edges are directed from the root r outward. Thus, each node v 6= r has
a unique parent p(v). For convenience, we now redefine (and later proceed to analyze) the part in
Definition 2.1 concerning trees.

Definition 4.1 (Information spread on rooted tree). Fix parameters a, b ∈ [0, 1] and a tree T
with root r. Each node v has a label ft(v) at any time t, which is one of three values: +1 (holds
"correct" opinion), −1 (holds “incorrect” opinion), or ⊥ (no opinion). The root is always marked
by 1, that is, ft(r) = 1 for all t, and any other node v is initially marked by ⊥, that is, f0(v) = ⊥.

The process proceeds in rounds, where in each round, each node v 6= r may listen to its parent in
the tree p(v) and change its opinion accordingly. The transition rule for round t > 0 is as follows.
If v does not have an opinion but its parent does, that is, ft−1(v) = ⊥ 6= ft−1(p(v)), then

ft(v) =

{
ft−1(p(v)) w.p. 1− a,
−ft−1(p(v)) w.p. a.

If v already has an opinion, that is, ft−1(v) 6= ⊥, we set

ft(v) =

{
ft−1(p(v)) w.p. b,
ft−1(v)) w.p. 1− b.

Otherwise (if ft−1(v) = ft−1(p(v)) = ⊥), we have ft(v) = ⊥.

Note that it is impossible for a node with an opinion to return to a “no opinion” state, but that
a node can generally flip its opinion multiple times. Now, one may ask what is the typical dynamic
of opinions in such a model. First, does the process eventually converge to the correct opinion?
for example, given any fixed v, does the probability that ft(v) = 1 tend to one as t → ∞? The
answer to the latter question is positive. This follows using the next observations, whose proof is
immediate from the definition of the process.

Observation 4.2. Let r = v0 → v1 → . . .→ vi = v be the unique path from the root to a node v,
and suppose that ft(vj) = 1 for all 0 ≤ j ≤ i. Then ft′(vj) = 1 for all t′ ≥ t.
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Observation 4.3. Let r = v0 → v1 → . . .→ vi = v be the unique path from the root to a node v,
and suppose that ft(vj) ∈ {−1, 1} for all 0 ≤ j ≤ i. Then ft′(vj) ∈ {−1, 1} for all t′ ≥ t.

Equipped with the above observations, we can define two types of frontiers: the rumor frontier,
which marks the collection of furthest nodes from the root that currently hold a (non-⊥) opinion;
and the truth frontier, which marks the collection of furthest nodes that hold the correct opinion
and will continue to hold it for the rest of the process. Formally, the definition is as follows.

Definition 4.4 (Rumor and Truth Frontiers). Consider the rooted information spread process on
a tree T = (V,E) with root r and let t > 0. The rumor frontier after round t is the collection of
all nodes v ∈ V with ft(v) 6= ⊥ and that either (i) have a (child) node u ∈ V with p(u) = v, which
satisfies ft(u) = ⊥, or (ii) do not have children. Formally, the Rumor Frontier at time t, denoted
Rt, of the spread process {ft(v)}, is given by

Rt = {v ∈ V | ft(v) ∈ {−1, 1} and ∃u ∈ V s.t. ft(u) = ⊥ and v = p(u)}.

The truth frontier after round t is the collection of all nodes v satisfying the following: the shortest
path r = v0 → v1 → . . .→ vi = v from r to v satisfies ft(v0) = ft(v1) = . . . = ft(vi) = 1, whereas
either (i) there exists a child node u ∈ V with p(u) = v and ft(u) 6= 1, or (ii) v has no children.
Formally, the Truth Frontier at time t, denoted Ft, of the spread process {ft(v)}, is the unique set
which satisfies the condition:

Ft = {r} ∪ {v ∈ V \ {r} | ft(v) = 1 and p(v) ∈ Ft and ∃u ∈ V s.t. ft(u) 6= 1 and v = p(u)}.

Observe that both the rumor frontier and the truth frontier always progress away from the
root. Clearly, the rumor frontier after round i contains all nodes at distance exactly i from the
root, but at what rate does the truth frontier move? is the rumor frontier substantially faster than
the truth frontier? how do opinions typically behave between these two frontiers?

The rooted path A special case of particular importance is that of a rooted path, which may
either refer to the finite path

Pn = u0 → u1 → . . .→ un

where the root is r = u0, or the infinite path with the same root:

P∞ = u0 → u1 → . . .→ un → . . .

In general, the results for paths in this paper apply both to the finite or the infinite path, where
in the finite case we typically think of n as a large parameter, whereas the model parameters α
and β are thought of as fixed (independent of n). The following simple lemma provides a lower
bound on the speed of the truth frontier for the rooted path Pn, where n can be finite or ∞. Note
that in this case, both the truth frontier and the rumor frontier at any given time are of the form
{vi} for some i (possibly different between the two frontiers), and with slight abuse of notation we
sometimes write that the node vi is the frontier.

Lemma 4.5 (Lower bound for truth frontier). Fix a, b ∈ (0, 1). Consider the spread process {ft(v)}
associated with parameters (Pn, r,Pn, a, b), where n may be finite or infinite. For every t, the truth
frontier Ft is a singleton, and Ft = {vi} where the distribution of i dominates min{Bin(t−1, b), n}.2

In particular, i ≥ min{(b − o(1))t, n} with probability 1 − e−tΘ(1)

. The o(1) term tends to zero at
a polynomial rate as t→∞.

For completeness we provide the proof of this easy lemma below.
2For two real valued random variables X and Y , we say that X dominates Y if for every v it holds that

Pr[X ≥ v] ≥ Pr[Y ≥ v].
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Proof. Consider a different process on the path with values 1 and ⊥. At time 0, v0 has the value
1 and all other nodes the value ⊥. At step t of the process, let i(t) be the maximal value where
vi = 1. Then let vi+1 = 1 with probability b and vi+1 = ⊥ with probability 1− b. All other nodes
do not change. It is clear that i(t) ∼ Bin(t, b). It is also clear that the truth frontier in the process
ft dominates i(t− 1). The second statement of the lemma follows from Chernoff bound.

The above arguments cannot easily yield an upper bound on the truth frontier, as there might
exist additional mechanisms which accelerate the progress of this frontier in our process. Indeed,
it may be the case that the current truth frontier meets and “swallows” consecutive runs of nodes
holding a +1 value, thereby substantially pushing the truth frontier forward. In fact, it is not
clear a priori whether the rumor and truth frontier are separated at all. In the next subsection, we
conduct a thorough analysis of the process. We show, among other results, that the lower bound
on the truth frontier speed is in fact tight (up to lower order terms); along the way, we obtain
interesting characterizations of the behavior of nodes that lie between the truth frontier and the
rumor frontier at a given time.

5 The Decoupled Framework and its Analysis
At the core of our analysis is an object called a run. In the directed path, this is a collection of
consecutive nodes along the path that all have the same opinion at a given time. The more general
definition in trees involves a connected component of nodes having the same value.

Definition 5.1 (Connectivity-based run). Consider the spread process {ft(v)}t,v with parameters
(G, r, T, a, b). The run containing v at time t, denoted runt(v), is defined as the maximal connected
component of T satisfying ft(v) = ft(u) for every u ∈ runt(v). The value of runt(v) is defined as
ft(v).

Clearly, the truth frontier does not equal the rumor frontier at a given time in the process if
and only if a (−1)-valued run exists at this point.

How do runs form and evolve throughout the process? How likely are they to survive and
what is their typical structure? addressing such questions is essential to understand our spread
process. Unfortunately, the behavior and structure of each particular run in our process is heavily
dependent on the behavior of other runs, and the dependencies seem difficult to analyze. Among
other challenges, it is not immediately clear how to analyze the fact that runs can “swallow” one
another along the process.

In order to mitigate these issues and simplify the analysis, we establish results showing that (i)
our spread process is equivalent to a “decoupled” model with its own version of the truth frontier,
and a modified notion of runs which can evolve with time, but do not merge; and (ii) while the
behavior of any particular run is heavily dependent upon other events throughout the process, this
can be mitigated by considering intermediate frontiers, that lie between the truth and the rumor
frontier. As we show, frontiers whose starting points are separated away are unlikely to merge
quickly, which implies that at least one (decoupled) run survives between them.

5.1 The decoupled model
One feature of runs in our spread process over a tree (Definition 4.1) is that they can merge with
time, a feature that is seemingly difficult to analyze. Consider for instance the case where T is
the rooted path r = v0 → . . . → vn and observe some point in the process where there are three
consecutive runs of lengths 100, 1, 100 (note that their corresponding values are either +1,−1,+1
or the symmetric −1,+1,−1). If the single node u in the central run changes its opinion in the
current round to the parent’s opinion (with probability b), while its child does not change its opinion
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(with probability 1− b), then the two long runs merge into a longer run of length at least 200. To
overcome this, we propose and analyze another tree model in which runs do not merge and the
value associated with a run is independent from those of other runs (for example, two consecutive
runs in the path may have the same value, but are still considered separate runs). In the modified
model, instead of updating a node’s own opinion to its parent’s with some probability, the node
may decide (with a different probability) to pick its updated value as a result of an independent
coin flip.

Definition 5.2 (Information spread process over tree with explicit decoupled runs). Fix param-
eters α, β ∈ [0, 1] and a tree T . As in Definition 4.1, each (non-root) node v has a fixed parent
p(v). Additionally, every node holds an opinion gt(v) ∈ {+1,−1,⊥} at time t. As before, the root
always has opinion +1, and at time t = 0, all other nodes have opinion ⊥ initially. In addition,
we maintain the following information:

• A collection Z̄ = Z0, Z1, Z2, . . . where Z0 = 1 and the other Zi values are picked independently
and uniformly at random from {−1, 1}. Intuitively, Zi is the value of run number i, where
smaller i corresponds to an older run, and the first run always represents the correct value.
For convenience, we set Z∞ = ⊥.

• A counter, countt, initialized to count0 = 1; the value of countt at any given time t is
the amount of values from the sequence Z̄ observed so far, that is, the number of runs we
have ever had.

• For each node v at time t, we define a function origint(v), which maps v to an index j such
that gt(v) = Zj. Initialize origin0(r) = 0 and origin0(v) = ∞ for all v 6= r. This is a
mapping from a node to the run it currently belongs to.

The update rule for any t ≥ 0 is defined as follows:

1. For any node v with gt(v) = gt(p(v)) = ⊥, we set gt+1(v) = ⊥ and origint+1(v) =∞.

2. Fix an arbitrary ordering over all nodes v with gt(v) = ⊥ and gt(p(v)) 6= ⊥. For any such v
(sequentially according to the ordering):

• For j = countt, we set

gt+1(v) =

{
gt(p(v)) w.p. 1− α,
Zj w.p. α.

• In the first case, we set origint+1(v) = origint(p(v)), meaning that by taking the last
value of p(v), node v joins the same run that p(v) has most recently been in. We also
set countt+1 = countt.

• The second case corresponds to the creation of a new run; we subsequently set origint+1(v) =
countt and countt+1 = countt + 1.

3. For any node v already having an opinion, i.e., gt(v) 6= ⊥,

gt+1(v) =

{
gt(p(v)) w.p. β,
gt(v) w.p. 1− β,

where in the first case we set origint+1(v) = origint(p(v)) (that is, v joins the parent’s
run) and in the second case we set origint+1(v) = origint(v) (meaning that v remains in
the same run).
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Formally thus a decoupled process has parameters (G, r, T, α, β) and is given by (g = {gt(v)}t,v, Z =
{Z`}`,count = {countt}t,origin = {origint(v)}t,v) with t, ` ∈ N, v ∈ V and with gt(v) ∈
{−1,⊥, 1}, Z` ∈ {−1, 1}, countt ∈ N and origint(v) ∈ N for every `, t, v.

Definition 5.3 (Decoupled run). For a decoupled process (g, Z,count,origin) as given in Def-
inition 5.2 x and `, t ∈ N, the `-th run at time t, denoted R`(t), is defined as the collection of
all nodes v with origint(v) = `. The creation time of R` is the minimum t for which R`(t) is
non-empty.

In the next observation we state a few basic properties of decoupled runs. To this end, let us
recall some standard notions on trees. The branch leading to a node u is the unique simple path
in the tree from the root r to u. Any node v 6= u on this path is said to be an ancestor of u, and
correspondingly, u is a descendent of v.

Lemma 5.4 (Properties of decoupled runs). For every sequence of parameters (G, r, T, α, β) and
decoupled process (g, Z,count,origin) with these parameters, and every t ∈ N and v ∈ V , the
following hold:

• gt(v) = Z` where ` = origint(v).

• For every ancestor u of v, it holds that origint(u) ≤ origint(v).

• For every t′ > t, we have origint′(v) ≤ origint(v).

• The induced subgraph of the tree T on R`(t) is not necessarily connected. However, the
intersection of R`(t) with any branch of T is connected.

The proof of most statements follows in a straightforward manner from the model definition
and is thus omitted. To see the first statement of the last part, observe for example that it may be
possible for two nodes u, v with p(u) = p(v) = w to both have the same origin at time t as that of
their parent w, whereas w may at some time t′ ≥ t take a different origin; it follows that at time
t′, these nodes u, v will be in a run not containing w.

Note that in the new model, runs are created only at the rumor frontier, whereas each node
v moves with time to runs that are older and older (until eventually joining the first run, which
happens once the truth frontier passes by v). Unlike connectivity-based runs, neighboring decou-
pled runs may hold the same value. While the new model is quite a bit more complicated to define
than the original one, we show that it is (a) equivalent to the original model, in the sense that the
corresponding probabilistic processes can be coupled; and that (b) its description is sufficiently
expressive for us to be able to carefully track the behaviour of runs throughout the process. The
next lemma formally states the equivalence as a coupling between the processes.

Lemma 5.5 (Equivalence between models). For every parameter setting (G, r, T, a, b) with 0 ≤
a ≤ 1/2 there is a coupling between the spread process {ft(v)}t,v with parameters (G, r, T, a, b)
and the decoupled process (g, Z,count,origin) with parameters (G, r, T, α = 2a, β = b) satisfying
gt(v) = ft(v) for all t and v.

Proof. In both models, the value of the root always equals one; furthermore, in both models, if v
and p(v) have the same value at time t, then v will still hold that value in time t+ 1.

By induction, it remains to consider two situations: one where p(v) has an opinion and v has
no opinion at time t; and another where they hold contrasting (non-⊥) opinions at time t. In
the first situation, the probability in the original model for ft+1(v) = ft(p(v)) is 1 − a. In the
second model, we have gt+1(v) = gt(p(v)) either if (i) v picks its parent’s value with probability
1− α = 1− 2a, or (ii) v picks a new value, Zcount, with probability 2a, and the said value equals
gt(p(v)) with probability 1/2 (independently of the rest of the process). Therefore, the probability
for gt+1(v) = gt(p(v)) is 1− 2a+ 2a · 1/2 = 1− a.
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In the situation where ft(v) = −ft(p(v)) 6= ⊥, the first model sets ft+1(v) = ft(p(v)) with
probability b, while the second model does so with probability β = b.

Note that the truth frontier of the decoupled process (which consists at time t of every node v
that satisfies origint(v) = 0 and origint(u) > 0 for some neighbor u of v) is dominated by the
truth frontier of the original process. The proof is similar to that of Lemma 4.5.

5.2 Runs and Their Characteristics
We now turn to address the aforementioned fundamental questions about (decoupled) runs: what
is their probability to survive? what is their typical structure along the process?

The following lemma clarifies the importance of the rooted path example, not just as an illus-
trative special case, but as a way to analyze the behavior along any specific branch in a (possibly
complicated) tree T . The lemma asserts that, when considering a general tree T , the behavior of
runs along any particular branch B of the tree is in a sense isomorphic to their behavior over the
rooted path P|B| (where |B| is the number of edges in the branch).

Lemma 5.6. Let r → vi1 → vi2 → . . . → vim be a branch of a rooted tree T on which we run
the decoupled model (Definition 5.2) with parameters α and β. Consider another instantiation of
the same model (with parameters α, β) when run on the rooted path Pm with vertices u0 → u1 →
. . . → um, and let t > 0. For every pair 0 ≤ j < j′ ≤ m, the probability that vij and vij′ are in
the same (decoupled) run after round t in the branch setting is equal to the probability that uj and
uj′ are in the same (decoupled) run after round t in the path setting. The results also hold when
m =∞, i.e., when the branch and path are both infinite.

The lemma is quite trivial. We include a formal proof for completeness sake.

Proof. We prove by induction that there is a coupling between the two settings, where each state
of the branch (first setting) is coupled to a state of the path (second setting) so that the following
holds: vij and vij′ belong to same run in T after round time t if and only if uj and uj′ belong to
the same run in Pm after round t. The base case is trivial, as at time t = 0, in both settings the
root is in run 0 and all other nodes are in run ∞ (recall that this means that their origin is ∞,
and their value is ⊥).

Now suppose the validity of the statement after t rounds and fix such a coupled pair of a branch
state and a path state. In particular, both the branch and the path contain at this point the same
number ` = `t of runs with the same lengths. Denote these runs in the branch, ordered from the
root outward, by R1

B , . . . , R
`
B , and the corresponding runs in the path by R1

P , . . . , R
`
P . For every

0 ≤ j ≤ m, observe that vij has an opinion if and only if uj has one. Consider all possible cases:

• If vij is in the same run as vij−1 (and so also uj and uj−1 satisfy this), then vij and uj will
remain in their current run at time t+ 1.

• If vij is the first node in its run RkB , where k <∞ (that is, vij already has an opinion) then
its probability to move to the previous run is Rk−1

B is β, and otherwise vij remains in the
same run RBk . The same is true for uij – its current run is RkP , and it moves backward to
Rk−1
P with probability β, and otherwise stays. Finally, if vij is the first node in the ∞ run

(which means that so is uj), then vij joins run Rk−1
B with probability 1 − α, and otherwise

forms a new run. The same is true for uj .

Therefore, the distribution over run structure after round t + 1 is identical for both settings,
provided that at time t the runs had the same structure. This completes the inductive proof.
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We next wish to analyze the typical structure of runs over a rooted path Pn. With the help of
Lemma 5.6, this will later on allow us to argue that opinions of vertices which are far away from
each other in the tree are nearly uncorrelated.

Decoupled runs as random walks Consider a typical run R` in our decoupled model over
the path Pn = v0 → v1 → . . . → vn (or P∞) with root v0. How likely is it to survive? how large
can it become? Note first that a new run R` is created at the rumor frontier with probability α
in each round t ≤ n (independently of the model behavior so far). In the first phase after having
been created, the far end of the run is the rumor frontier of the process; thus, it adds an element
each round with probability 1− α. On the near end of the rumor frontier, the first element of the
run has probability β in each round to take its parent opinion and leave the current run.

Now, consider the first phase for R` as completed in the first time (after this particular run’s
formation) that a no-opinion node at the rumor frontier forms a new run; this is a probability α
event in each round. It is not hard to see that the probability for the run to survive this phase
is 1 − αβ. Condition on this event. In the second phase of the run, in each round the first node
of it can join the previous run (thus leaving R`) with probability β, while the first node after the
run joins R` with probability β. This means, effectively, that the run length assuming it reaches
the second phase is distributed according to a uniform random walk over the line (with nonzero
probability, specifically 1 − 2β(1 − β) to remain at the same location). The initial location of
the walk is some positive value (which with large constant probability is bounded by C/α for an
absolute constant C), and we consider the run as killed as soon as the walk has reached the origin,
i.e., the value 0, during the process.

The following lemma summarizes the above discussion on lengths of runs as random walks.

Lemma 5.7 (Run length as random walk). Fix α, β ∈ (0, 1). Consider the decoupled process
(g, Z,count,origin) with parameters (Pn, r,Pn, α, β), where n may be finite or ∞. For ` > 0,
suppose that the run R` has creation time t0. Then all of the following hold.

• Write z` = |R`(t1)|, where t1 is the creation time of the next run, R`+1. Then E[z`] = O(1).
Moreover, z` > 0 with probability bounded away from zero. Finally, z` < n0.1 with probability
1− exp

(
−nΘ(1)

)
.

• Conditioning on the event that z` > 0, the distribution of |R`(t)| for t1 ≤ t ≤ n is equal
to that of an unbiased random walk on N ∪ {0} with the following properties: (i) the walk
starts at z` at time t1; (ii) in any given time, it either increases by one with probability c′,
decreases by one with the same probability c′, or stays put; and (iii) if the walk reaches 0 at
some point, it terminates.

Unbiased or uniform random walks over the line are among the most well studied objects in
the probability theory literature. It is well known, see e.g. [17], that the probability of a uniform
random walk starting (say) at location O(1) to reach 0 in m rounds is 1 − Θ(

√
m), and that

conditioning on this not happening, the largest value that the walk will reach is typically of order
Θ(
√
m). This is easy to see with logarithmic correction since with high probability the walk will

never reach C
√
m logm and then one can use Gamblers Ruin.

For fixed α, β, our information spread process over Pn runs for O(n) rounds, and since a new
run is created typically every constant number of rounds, the above reasoning suggests that in
intermediate steps of the process (after Θ(n) steps have passed and with Θ(n) steps left to go),
typically Θ̃(

√
n) runs of length up to Õ(

√
n) should exist.

However, this naive reasoning does not take into account the dependencies between the behav-
iors of different runs; an actual analysis of these dependencies seems non-trivial. For example, if R`
is known to survive after a certain amount of steps, how does it effect the structure and behavior
of its neighboring run R`+1?
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5.3 Intermediate frontiers
With this in mind, we circumvent the need to analyze dependencies between individual runs by
considering large enough unions of consecutive runs. Unlike individual runs, these unions have
the useful property that they are very likely to survive and roughly maintain the same length
throughout the process. In what follows we provide tools to bound the rates at which the starting
points of each of these runs (which we call intermediate frontiers) progress with time.

The analysis of intermediate frontiers we conduct here serves a central role in the proofs of
essentially all main results in this paper. Specifically, we prove two lemmas characterizing the
behavior of intermediate frontiers and the interaction between them. In Lemma 5.9 we show
that these intermediate frontiers progress at a rate that is highly concentrated around its mean
(specifically, the progress rate over τ rounds is typically βτ ±O(

√
τ)). In Lemma 5.10, we use this

to show that frontiers whose creation times differ by τ are unlikely to meet within roughly the first
≈ τ2 rounds after the creation of either of them.

Definition 5.8 (k-frontier of a path). Let (g, Z,count,origin) be the decoupled process with
parameters (Pn, r,Pn, α, β) where n is either finite or ∞. For t, k ∈ N we define the k-frontier of
the process, denoted σk(t), to be:

σk(t) = max{i ∈ N | i ≤ n, ∃j ∈ {0, . . . , k} s.t. vi ∈ Rj(t)}.

Finally, for 0 ≤ t < t′ we define the k-frontier growth in [t, t′] to be the quantity ∆k(t, t′) =
σk(t′)− σk(t).

Equivalently, the k-frontier is the largest index of a node in Rj , for the largest j ≤ k for which
Rj is non-empty at time t.

Thus, the 0-frontier in the decoupled tree model (Definition 5.2) is a lower bound for the truth
frontier in the original tree model (Definition 4.1). The rumor frontier at time t corresponds to
the `-frontier for the maximum ` for which σ`(t) 6= σ`−1(t), and we say in this case that the index
of the rumor frontier is `. We consider the k-frontiers for 0 < k < ` as intermediate frontiers and
use concentration bound on the progress of certain frontiers to prove the main results.

The next technical lemma asserts that the progress rate of frontiers is highly concentrated. For
simplicity, the statement is given for the infinite path P∞.

Lemma 5.9 (Progress rate of k-frontiers). For every decoupled process (g, Z,count,origin)
with parameters (P∞, r,P∞, α, β) and for every k, s, t ∈ N with 0 ≤ s < t we have E[∆k(s, t)] =
µ+O

(
1
α

)
where µ := β(t− s). Moreover for every 0 < δ ≤ µ we have

Pr

(∣∣∣∣∆k(s, t)− µ
∣∣∣∣ > δ

√
µ+

δ2

3α
+ 1

)
< 2 exp

(
−δ

2

3

)
.

Furthermore if the index of the rumor frontier at time s is larger than k then E[∆k(s, t)] = µ and
the above bound improves to

Pr

(∣∣∣∣∆k(s, t)− µ
∣∣∣∣ > δ

√
µ

)
< exp

(
−δ

2

3

)
.

The above lemma implies, in particular, that in P∞, that a frontier that was in location l at
time t0 will typically be in location

l + βτ ±O(
√
τ)

at time t0 + τ . In the finite case, i.e., when considering the finite path Pn, the behavior is similar
but capped at location n: specifically, as long as l+βτ ≤ n−Θ(

√
τ), the same result holds for Pn;

once this is not true anymore, the location of the frontier is typically between n−Θ(
√
τ) and n.

16



Proof of Lemma 5.9. Consider first the case where index of the truth frontier at time s is not k,
that is, that the k-frontier is not the rumor frontier. In this case, the probability for the k-frontier
to increase by one in any given round is β, and so ∆k(s, t) ∼ Bin(t− s, β), with mean µ = β(t− s)
(note that the O(1/α) term in the statement of the lemma is simply zero here). From a standard
multiplicative Chernoff bound, we have

Pr(|∆k(s, t)− µ| > δ
√
µ) < exp

(
−δ

2

3

)
,

which completes the proof for the first case.
In the case that Rk is the rumor frontier, denote by s′ > s the first round in which a subsequent

non-∞ run, Rk+1, is formed. Then s′ − s is distributed according to the geometric distribution
Geom(α), and so

Pr(s′ − s > ζ) = (1− α)ζ ≤ exp(−αζ).

Setting ζ = δ2/3α we get a probability bound of exp(−δ2/3). Condition on the last event not
holding, that is, on s′− s ≤ ζ. In this case, the k-frontier starts by increasing by one in each of the
first s′−s−1 rounds; then, it stays at the same location for one round; and in the remaining t−s′
rounds, the increase is ∆k(s′, t) ∼ Bin(t− s′, β). The initial s′− s rounds contribute at most ζ + 1
to the deviation, and the analysis of the subsequent t− s′ rounds is similar to the first case.

Keeping frontiers disjoint. How many disjoint intermediate frontiers will we see at time t?
Here, the k-frontier and k′-frontier are disjoint at time t if σk(t) 6= σk′(t). Lemma 5.9 indicates
that the k-frontier for each k is with high probability in location within ±Õ(

√
t) of its expected

location as was measured when the run Rk was first created.
On the other hand, a new run is created typically every roughly ≈ 1/α rounds of the process,

and in particular, such intermediate frontiers are densely created at different points throughout
the process. Intuitively, these facts may suggest that there are roughly, perhaps up to lower order
terms, ≈

√
t disjoint intermediate frontiers at time t, of distance up to ≈

√
t from each other.3

The next lemma suggests that this picture is indeed largely accurate. For ease of reading, the
function ω(m) in the statement of the lemma can be thought of as, say, polylog(m) or m0.1. We
did not try to optimize the dependence in α or β in the proof.

Lemma 5.10 (Condition for frontiers to remain disjoint). Fix α, β ∈ (0, 1) and a non-decreasing
function ω : N → N that satisfies ω(m) ≤ O(m0.5−c) for an absolute constant c > 0. There
exist C = Cα,β > 0 and C ′ = C ′β > 0 which satisfy the following for the decoupled process
(g, Z,count,origin) with parameters (P∞, r,P∞, α, β). Let 0 ≤ s < s′ ≤ t − Cα,β, and let k, k′
be the indices of the rumor frontier after rounds s, s′ respectively. If

s′ − s > C ′β · ω(t− s) ·
√
t− s (1)

then with probability at least 1− 4e−(ω(t−s))2

, it holds that

σk(t) = s+ β(t− s)± 4ω(t− s)
√
β(t− s) and σk′(t) = s′ + β(t− s′)± 4ω(t− s)

√
β(t− s),

and
σk′(t)− σk(t) > ω(t− s) ·

√
t− s > 0.

Again, a similar result holds for the finite path Pn (for large n and fixed α, β) as long as the
expected location of either frontier is not very close to n.

3For frontiers that were created more recently – at round s = t− o(t), where t is the current round number – the
distance between neighboring disjoint frontiers that we can hope to obtain is of order ≈

√
t− s.

17



Proof. Apply Lemma 5.9 twice, once for each of the pairs (s, t) and (s′, t). Take δ =
√

3 · ω(t− s).
It follows that with probability at least 1− 4 exp(−δ2/3) = 1− 4 exp

(
−(ω(t− s))2

)
, the following

two statements hold as long as t− s′ is large enough (as a function of α and β):

σk(t) = s+ β(t− s)± 2δ
√
β(t− s) and σk′(t) = s′ + β(t− s′)± 2δ

√
β(t− s).

Subtracting the former from the latter, we conclude that

σk′(t)− σk(t) ≥ (1− β)(s′ − s)− 4δ
√
β(t− s) > 0

where the last inequality holds if

s′ − s > 4
√
β

1− β
· δ ·
√
t− s.

Setting C ′ = 4
√

3β
1−β +

√
3 completes the proof.

Showing that large collections of disjoint intermediate frontiers exist at all times throughout the
process is a central argument in our proofs. Concretely, if there exist at least k different frontiers
(including the first one, i.e., the decoupled truth frontier) at some time t, then there are k−1 runs
between the decoupled truth frontier and the rumor frontier. By bounding k and analyzing the
characteristics of these runs we can conclude, among other results, that the actual truth frontier
is not far from the decoupled one. This result is proved next.

6 The Truth Frontier and When it Arrives

6.1 Upper Bound for Truth Frontier
Consider the original process over a tree T (Definition 4.1) at time t and recall our lower bound of
(1− o(1))bt for the truth frontier at time t, Lemma 4.5. We now prove a matching upper bound,
by leveraging the equivalence between the original model and the decoupled one (Lemma 5.5),
picking a collection of sufficiently far intermediate frontiers that are nonetheless relatively close to
the truth frontier, and showing that with high probability a (−1)-run survived at time t between
at least one couple of neighboring frontiers.

Lemma 6.1. Fix α, β ∈ (0, 1) and 0 < c < 1/2. The following holds for the decoupled process
(g, Z,count,origin) with parameters (P∞, r,P∞, α, β). With probability at least 1−e−(1+o(1))t2c ,
there are Ωα,β(t0.5−c) disjoint frontiers that at time t are in locations

βt + Cβ · ω(t)
√
t · i ± O(ω(t)

√
t),

for a constant Cβ depending on β, and i = 0, 1, . . . ,Θα,β(t0.5−c).

Proof. The proof follows from Lemma 5.10. by taking ω(m) = mc and picking a sequence
s0, s1, . . . , sl as follows:

si = i · C ′β · ω(t)
√
t+ 1,

where C ′β is as in the aforementioned lemma, and l is the maximum possible for which sl ≤ t/2.
Note that l = Ωα,β(t0.5−c). Now applying Lemma 5.10 with parameters s = si, s

′ = si+1 and t
for i = 0, 1, . . . , l, and taking a union bound over all applications of the lemma, we get that the
frontiers k0, . . . , kl which constitute the rumor frontier at times s0, . . . , sl are all disjoint at time t;
Furthermore, the location of every frontier ki at time t is

σki = si + β(t− si) ± O(ω(t)
√
t) = βt + (1− β)si ± O(ω(t)

√
t).

Note that the union bound is over a number of events polynomial in t, which goes into the o(1)
term in the probability expression.
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We are now ready to prove the matching upper bound on the truth frontier for the original
tree spread process (Definition 4.1).

Theorem 6.2 (Upper bound for truth frontier). Fix a ∈ (0, 1/2) and b ∈ (0, 1). Consider the
original spread process with parameters (Pn, r,Pn, a, b), with n being finite or∞. The truth frontier
after round t is the singleton {vi}, where i ≤ min{(b+ o(1))t, n} with probability 1− e−tΘ(1)

. The
o(1) term tends to zero at a polynomial rate as t→∞.

Proof. Consider the case that n = ∞. The case of finite n requires an easy modification to be
described later.

We apply Lemma 5.5 and consider the decoupled model with α = 2a and β = b at time t. Now
apply Lemma 6.1 with (say) ω(m) = m0.1. With probability at least 1− e−tΘ(1)

, there are Ω(t0.4)
disjoint frontiers at time t, out of which at least t0.2 are in location at most βt+O(t0.8). Consider
any of the runs between the (i − 1)-frontier and the i-frontier for i ≤ t0.2. By definition of the
decoupled model, the value associated with the run is −1 with probability 1/2, independently of
any other randomness in the process. Therefore, there exists at least one (−1)-run among these
with probability at least 1 − 2−t

0.2

. Conditioning on this event, the truth frontier of the coupled
original process is bounded by βt+O(t0.8), which completes the proof.

To handle the case where n is finite, we note that if n ≤ t+O(t0.8) then the statement is trivial
(as the truth frontier cannot be larger than n), and otherwise, the above proof works word-for-word
by “imagining” that the process runs over P∞ and discarding any frontier that crosses n.

The last theorem combined with Lemmas 4.5 and 5.6 immediately yields the following corollary
about the behavior of the process along any particular branch in general graphs.

Corollary 6.3 (Truth frontier along tree branch). Fix a ∈ (0, 1/2) and b ∈ (0, 1). Consider the
original spread process with parameters (G, r, T, a, b), and let B be a branch of T (rooted at r) whose
length n may be finite or ∞. The intersection of the truth frontier with the branch B after round t
is a singleton {v}, where the distance between r and v satisfies dG(r, v) = min{(b± o(1))t, n} with
probability 1− e−tΘ(1)

. The o(1) term tends to zero at a polynomial rate as t→∞.

6.2 Stabilization of individual opinion: When am I correct?
Consider the spread process over a tree T with root r, and let v 6= r be some node. We know
that the opinion ft(v) converges to one as t → ∞, and with very high probability as soon as
t ≈ (1 + o(1))b · dT (r, v), where dT (r, v) is the distance between r and v in the tree.

However, it may not be entirely realistic to assume that each individual agent knows the
structure of the communication network, and in particular its distance from the root. Is there a
way for such an agent to infer, as soon as possible, once it has stabilized to the correct opinion in
a graph-independent way?

Our next set of results shows that the answer is positive. When a node v that received its initial
opinion tv rounds ago keeps the same opinion for some Θ̃

(√
tv
)
rounds, with high probability this

is because the opinion of v has converged to the correct one.

Theorem 6.4. Fix a ∈ (0, 1/2) and b ∈ (0, 1). Consider the original spread process with para-
maters (G, r, T, a, b) and let v 6= r be a vertex in the graph. For any ε > 0, there exists a constant
C = C(a, b, ε), which does not depend on G,T, r, v, so that with probability at least 1 − ε, the
following holds. In the first q rounds after v forms an initial (non-⊥) opinion, if the truth frontier
has not reached v during these q rounds, then the longest consecutive streak of rounds in which v
does not change its opinion is at most

Ca,b,ε · q1/2 · (log q)3/2.
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Proof. The main idea is as follows. We consider the decoupled model and analyze the typical
behavior of decoupled runs that go through v as the process evolves, as a function of the number
of rounds that v has a non-⊥ opinion so far. By bounding the size of the maximum decoupled run
that has gone through v up until any time of the process, and showing that with high probability
no more than O(log n) consecutive decoupled runs have the same opinion, we can bound with high
probability the behavior of runs in the original process as they go through v.

Let d denote the distance from r to v and recall that v receives its initial opinion at round

d. Define ω = ωβ,ε : N → N by ω(m) = 2
√

log 1
ε + log

C′β
β + logm. We pick round numbers

0 ≤ sl < sl−1 < . . . < s2 < s1 < d satisfying the following.

• s0 = d− C(5.10)
α,β , where C(5.10)

α,β is the corresponding constant depending on α and β defined
in the statement of Lemma 5.10.

• si for i > 0 is chosen as the maximum value for which si−1− si > C ′βω(d− si)
√
d− si, where

C ′β is as defined in Lemma 5.10. Take l to be the first value for which sl+1 < 0; reset sl to
0, delete sl+1 and stop the process.

For any 1 ≤ i ≤ l, let ki denote the index of the rumor frontier at time si.
Now for any i pick ti to be the minimum time t satisfying that si + β(t − si) − 4ω(t −

si)
√
β(t− si) ≥ d. Note that ti− ti−1 = Oα,β,ε(si−1− si). Similarly pick t′i as the maximum time

t satisfying si + β(t − si) + 4ω(t − si)
√
β(t− si) ≤ d. Note that both ti − t′i and ti − ti−1 are of

order Θα,β,ε(si−1 − si) = Θα,β,ε(
√

(d− si) · log(d− si)).
Apply Lemma 5.10 for all tuples (si, si−1, ti) and (si, si−1, t

′
i) and take a union bound over

all applications of the lemma, concluding that the statement of the lemma holds for all tuples
simultaneously with probability 1 − ε/2. Conditioning on the last event, the total number of
rounds between the time the ki-frontier reaches v and the time ki−1-reaches it is positive and
bounded by Oα,β,ε

(√
(d− si) · log(d− si)

)
.

So far, we have identified a collection of frontiers that all remain separated when they pass
through v, and the number of rounds that v spends between each pair of consecutive (decoupled)
frontiers is not too large. This means that each decoupled run passing through v is not very large
by itself. But it is still theoretically possible that streaks of decoupled runs all having the same
value (+1 or −1) will together form a large run in the original process. However, the remainder of
the proof shows that such long streaks are unlikely to exist.

Specifically, for any q, consider the first q rounds after v forms an initial opinion. In this time
frame, at most q frontiers go through v. For each pair of such consecutive frontiers ki−1 and ki,
pick an arbitrary decoupled run R(i) between them. Note that the value associated with this run is
uniformly picked from {−1, 1}. Therefore, with probability at least 1−ε/4q2, there is no collection
of more than

O

(
log

1

ε
+ log q

)
consecutive runs all holding the same value. Conditioning on this, and since each individual
decoupled run goes through v for at most Oα,β,ε

(
q1/2(log q)1/2

)
rounds, no run in the original

process (which may concatenate decoupled runs as long as they have the same opinion) goes
through v for more than Oα,β,ε

(
q1/2(log q)3/2

)
rounds during the first q rounds. The probability

of the union of all of these events is at least

1− ε

4
·
∞∑
q=1

1

q2
≥ 1− ε

2
,

which combined with the first part, completes the proof of the theorem.

20



Corollary 6.5. Consider a one-player game in the same setting as in Theorem 6.4, where an agent
is located at vertex v, knows a, b in advance, and can only observe the opinions of v throughout the
process; The agent does not have any information about the graph G, tree T , or root r. The agent
has the ability to end the game after any round of the process. Its goal is to end the game as soon
as possible after the truth frontier has reached v. For any ε > 0, there exists a strategy for the
agent with success probability 1 − ε to end the game no more than Ca,b,ε

√
t(log t)3/2 rounds after

the truth frontier has reached v, where t is the total number of rounds that v has been holding a
non-⊥ opinion so far.

We note that one cannot directly apply the statement of Theorem 6.4 to obtain the corollary,
as each application of the theorem would incur a failure probability of ε, and so a union bound
based argument would not immediately work here. However, the corollary immediately follows
from the proof of the theorem.

Proof of Corollary 6.5. In the proof of the theorem we implicitly show the following two state-
ments. (For simplicity, we omit dependencies in a, b, ε when not essential for the discussion.)

• With probability at least 1−ε/2 the following holds for all q simultaneously. Let q denote the
number of rounds since v formed an initial opinion. Then the decoupled run that v currently
belongs is either the truth frontier, or it will remain at v for at most O(

√
q · log q) rounds.

• Again, with probability at least 1 − ε/2 the following holds for all q simultaneously, where
again q is the amount of time since v formed an opinion. The maximum number of consecutive
decoupled runs with the same value passing through v during these q rounds is O(log q).

Let ttruth denote the number of rounds from the time in which v first forms an opinion until the
truth frontier reaches v. These statements together imply that for any q = 1, 2, . . . , ttruth, the
agent will not see the same value for more than O(q1/2(log q)3/2) consecutive rounds during the
first q rounds of the process since v formed an opinion. Thus, the agent’s strategy is very simple:
suppose that q ∈ N rounds have passed since v first formed an opinion, and maintain a counter
of the number of rounds since v last changed its opinion. If the value of the counter is more than
some Θ(q1/2(log q)3/2), then end the game.

7 Unreliability of Newly Formed Opinions
In this section we show that opinions in our process are unreliable, despite the fast convergence
and the use of an error correction mechanism. Specifically, for graphs in which the neighborhoods
around a vertex grow sufficiently quickly in terms of volume, the fraction of nodes holding the
correct opinion among all nodes with a non-⊥ opinion is 1/2± o(1).

7.1 Proofs in expectation
We start by proving the last statement in expectation over the randomness of the process. We state
and prove this shortly, but the main idea is as follows. Consider any particular branch in the tree.
With high probability, the truth frontier of the decoupled process advances at a rate of b ± o(1)
along this branch with high probability (Lemmas 4.5, 5.6 and Theorem 6.2). Conditioned on this
event, the opinion of any non-⊥ node that is further down the branch is uniformly distributed in
{1,−1}. Given the growth in volume of the graph, most nodes are close to the far end of their
branch, which proves the result.

We next formalize this reasoning, starting with a couple of definitions. The first definition, of
the volume growth of a graph (or a tree), refers to growth patterns in the sizes of balls around a
node v in the graph (or tree).
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Definition 7.1 (Volume growth). Let G = (V,E) be a locally finite graph, possibly directed, and
let v ∈ V . The ball of radius ρ around v in G is

Bρ,G(v) = {u ∈ V : dG(v, u) ≤ ρ},

where dG(v, u) is the length of the shortest (directed) path from v to u in G.
For a rooted tree T and a node v in the tree, we consider all edges of T as directed outward;

the definition of Bρ,T (v) is then given by setting G = T above and only considering directed paths
along the tree.

The volume sequence VG(v) of G around v is the sequence of non-negative integers

|B0,G(v)|, |B1,G(v)|, |B2,G(v)|, . . .

where we write VG(v, ρ) = |Bρ,G(v)|.

Observe that for an undirected graph G, root r and spanning tree T of G rooted at r as
generated by our process, it holds that Bρ,G(r) = Bρ,T (r) for any ball of radius ρ. In particular,
the volume sequence of G and T around r are identical. Note also that Bρ,T (v) ⊆ Bρ,G(v) with
equality if and only if v = r.

The second definition, of opinion bias, is closely related to the proportion of nodes holding the
correct opinion among all opinionated (non-⊥) nodes. For example, a bias of 1 means that all
nodes are correct; a bias of 0 means that the aggregated opinion is uncorrelated with the truth.

Definition 7.2 (Opinion bias). Consider any of the information spread processes, with parameters
a and b over a graph G = (V,E) with root r. Let ft(v) denote the opinion of node v at time t.
The opinion bias of the process at time t is defined as

λG,r(t) =
|{v ∈ V : ft(v) = 1} − {v ∈ V : ft(v) = −1}|

{v ∈ V : ft(v) 6= ⊥}
.

Note that the opinion bias is equivalently the mean of non-⊥ opinions across a single instance
of the process. We stress that this not an expectation over the randomness of the process, but
rather a quantity associated with a single instance.

Our main theorem connects the expected value of the opinion bias at a certain time (over the
randomness of the process) to the volume growth of the graph with respect to the root.

Theorem 7.3 (Expected bias towards correct opinion). Fix a ∈ (0, 1/2) and b ∈ (0, 1). The
expected bias of the original spread process with parameters (G, r, T, a, b) at time t satisfies(

1− e−t
Θ(1)
)
·
VG
(
r, bt−Θ

(
t1−C

))
VG(r, t)

≤ E[λG,r(t)] ≤
VG
(
r, bt+ Θ

(
t1−C

))
VG(r, t)

+ e−t
Θ(1)

where C > 0 is an absolute constant.

For convenience, when G or T are clear from context, we denote by d(r, v) the distance from r
to v in G or T (recall that these distances are equal as T is a BFS tree of G rooted at r).

Proof. As usual, we consider the decoupled process over T with α = 2a and β = b (see Lemma
5.5). let v ∈ V be any non-root node, and consider the branch from r to v in T . By Lemmas 4.5
and 5.6 and Theorem 6.2, the truth frontier along the branch is with probability 1 − e−tΘ(1)

in
location min{bt ± O(t1−c), d(r, v)} for some absolute constant c > 0. Define for any v ∈ Bt,G(r)
(i.e., for any node with a non-⊥ opinion) an indicator random variable Iv = Iv(t) which equals one
if the opinion of v at time t is ft(v) = 1, and zero if ft(v) = −1. We consider the different cases:
when d(r, v) is substantially smaller than the typical progress of the truth frontier, when d(r, v) is
much larger, and the in-between case.
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• If d(r, v) < bt − Θ(t1−c), then the probability that the truth frontier has reached v is very
high, at 1− e−tΘ(1)

. In this case,

E[Iv(t)] = Pr(Iv(t) = 1) ≥ 1 · Pr (truth frontier reached v) = 1− e−t
Θ(1)

.

• If d(r, v) > bt+ Θ(t1−c), then the probability that the truth frontier reached v is very small,
at τ = e−t

Θ(1)

. When this event does not hold, the value of v is uniformly random in {−1, 1}
(see Definition 5.2). Thus,

E[Iv(t)] = 1 · τ +
1

2
· (1− τ) =

1

2
+ e−t

Θ(1)

≥ 1

2
.

• Otherwise, d(r, v) ∈ bt ± Θ(t1−c). Here 1/2 ≤ E[Iv] ≤ 1, where the first inequality holds
similarly to above: if the truth frontier has not reached a node v, then it is uniformly
distributed in {−1, 1}.

To complete the proof we may use the linearity of expectation, using the fact that

E[λG,r(t)] =

∑
v∈Bt(r) E[Iv(t)]

2VG(r, t)
− 1

2
.

It thus remains to give upper and lower bounds for
∑
v∈Bt(r) E[Iv(t)].

For the lower bound, note that there are VG(r, bt − Θ(t1−c)) nodes satisfying the condition of
the first bullet; they contribute (1 − e−tΘ(1)

) · VG(r, bt − Θ(t1−c)) to the sum. All other nodes in
Br(t) contribute to the sum at least 1/2, and the proof follows.

For the upper bound, trivially every node satisfying the conditions of either the first or the
third bullet contributes at most one to the numerator. There are up to VG(r, bt + Θ(t1−c)) such
nodes. Meanwhile, the contribution of every node satisfying the second condition is bounded by
1
2 + e−t

Θ(1)

. This completes the proof.

Polynomial versus super-polynomial growth. Ideally, one would hope that to have a pos-
itive bias which is as close to one as possible in all parts of the process, as this would mean that
the “average” node is more likely than not to hold the correct opinion. But is indeed the case for
graphs of interest? our results indicate that the answer is negative.

For the path Pn, our prior results show that the opinion bias at time t is b ± o(1) both with
high probability and in expectation. What can we say about other graphs? in particular, for what
graphs (and at what times) is the opinion bias typically o(1)? when is it typically close 1 (meaning
the opinions are reliable at any time throughout the process)?

Theorem 7.3 provides a rather clean characterization of the behavior of the opinion bias in
expectation. However, as we shall see later, the behavior in expectation does not give the full
picture; there exist graphs in which the opinion bias may deviate substantially from the expectation.

In any case, we now address the above questions, focusing on the expected opinion bias as a
function of the graph structure.

Remark 7.4 (Volume growth and finite graphs). When talking about graphs with any sort of
volume growth, say polynomial or exponential, it is convenient to think of the graph as an infinite
or very large finite object. In finite graphs, the growth rate eventually converges to 1, and is of
order 1 + o(1) already after a number of rounds that roughly equals the graph diameter divided
by b (this is true regardless of the choice of root r).

Thus, in finite graphs, the focus is more so on the earlier phases of the process, where very fast
volume growth is possible (and in fact common for many theoretical graph models and real world
graphs). In later parts of the process, the growth rate decreases, and consequently Theorem 7.3.
This is unsurprising, as in later stages, typically all nodes converge to the correct opinion and so
the bias converges to one.
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The story in the polynomial case. Consider any graph G and root r where VG(r, t) = Θ(tk)
for a fixed k > 0, i.e., a polynomial growth. The discrete grid in d dimensions is the most illustrative
example (with k = d). Here, the volume growth satisfies

VG(r, bt± t1−Θ(1)) = Θ(bk)VG(r, t),

and so the expected opinion bias is Θ(bk). In particular, if VG(r, t) = (c+o(1))tk for some absolute
constant c (which is the case for most graphs of interest in this regime, including the d-dimensional
grid), then the expected opinion bias at time t is (1± o(1))bk. In all cases, the o(1) term tends to
zero as t→∞.

That is, the expected opinion bias for graphs with polynomial growth is bounded away from
zero and one, and decays exponentially as a function of k.

The super-polynomial case. Many classes of graphs of interest, such as expanders and small
world models, exhibit a super-polynomial growth. That is, these graphs have a volume growth of
VG(r, t) = tω(1), where the ω(1) goes to infinity as t→∞. In this case,

VG(r, bt± t1−Θ(1)) = bω(1)VG(r, t),

and so by Theorem 7.3 the expected bias, of the form bω(1), tends to zero as t → ∞. In other
words, in graphs with super polynomial volume growth, the opinion of an “average” node at a
certain time is nearly uncorrelated to the correct opinion.

7.2 Concentration results and high probability proofs
While Theorem 7.3 holds in expectation for every graph G, there are examples of graphs where
the opinion bias is not well-concentrated around its expected value. Consider for example a binary
tree T of depth d, containing 2d+1 − 1 vertices; now add another 2d+2 vertices and connect them
all to the same leaf w in T , to form a star of this size. Observe the process at time t = d+ 1. The
volume growth of the process is exponential, and by the results of the previous subsection, the
expected opinion bias is o(1). But is it also o(1) with high probability? the answer is negative.

At time t = d+ 1, the additional star vertices all form their initial opinion, which with proba-
bility 1−a equals fd(w) and with probability a is −fd(w). Therefore, the opinion bias among these
nodes is either 2a− 1 or 1− 2a. From concentration results that we shall prove soon (Theorem 7.7
below), the other nodes at this time have with high probability opinion bias of o(1). Therefore,
the bias over all nodes is either a − 1/2 + o(1) or 1/2 − a + o(1), and in any case bounded away
from zero assuming a 6= 1/2.

A second moment approach. In order to prove concentration results for the opinion bias we
employ a second moment approach on the decoupled process. The idea is that a pair of nodes
u, v that are not likely to appear in the same (decoupled) run at time t have nearly uncorrelated
opinions at this time, as their opinions are independent from each other conditioned on u, v being
in different runs. The following useful lemma provides sufficient conditions for u, v to appear (with
very high probability) in different runs at time t, thus allowing us to prove that correlations are
weak between many pairs u, v.

Lemma 7.5. Fix 0 < α, β < 1 and c > 0. Consider the decoupled tree process (g, Z,count,origin)
with parameters (G, r, T, α, β) at some time t > 0, and let u, v be a pair of nodes in G. Further-
more, let w be the least common ancestor of u, v, denote by D its distance from r in T and let
δ = max{dT (w, u), dT (w, v)}. If

δ > β(t−D) + Ω
(
(t−D)0.5+c

)
,

then the probability that u and v are in the same run at time t is at most e−(t−D)Θ(1)

.
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Proof. Without loss of generality suppose that δ = dT (w, u). Let k denote the index of the rumor
frontier at w, when it initially formed an opinion at time D. It suffices to prove that under the
conditions of the lemma, as the k-frontier progresses along the branch containing w and u, its
probability to actually reach u is very small. This however follows immediately from Lemma 5.9
applied with parameters t(5.9) = t and s(5.9) = D, and δ(5.9) = Cα,β(t − D)c−0.5 for a suitable
constant Cα,β > 0.

With the above lemma in hand, we next show that the condition that most pairs of nodes are
in different runs at a time t is sufficient for concentration of the opinion bias λG,r(t). (Recall the
notion of origint(v) from Definition 5.2, the index of the decoupled run of v.)

Lemma 7.6. Consider the decoupled process (g, Z,count,origin) with parameters (G, r, T, α, β)
at time t. If

Pr
(u,v)∈Bt,G(r)2

(origint(u) = origint(v)) = o(1) (2)

where u, v are uniformly and independently picked from the ball Bt(r) of radius t around r, then
the opinion bias λG,r(t) is with probability 1− o(1) within ±o(1) of its expectation. Furthermore,
the statement still holds if we replace all occurrences of the o(1) term with suitable e−t

Θ(1)

terms.

Proof. The variance of λG,r(t) is

Var [λG,r(t)] =
4

(VG(r, t))2

∑
(u,v)∈Bt(r)×Bt(r)

Cov [It(u), It(v)] ,

where by definition we have

Cov [It(u), It(v)] = (Pr(It(u) = 1|It(v) = 1)− Pr(It(u) = 1)) · Pr(It(v) = 1). (3)

Without loss of generality, by symmetry we may assume that origint(u) ≥ origint(v) for u, v in
the last expression. Conditioning on origint(u) 6= origint(v) (which by (2) holds with probability
1− o(1)) we know that

Pr(It(u) = 1|It(v) = 1) = Pr(It(u) = 1) = 1/2,

and so the covariance in (3) is zero in this case. In any other case, the covariance is bounded by
one. Therefore, the variance is bounded by a constant times the probability in (2), and so it is
o(1) (and e−t

Θ(1)

if the o(1) is are of this form). The proof follows by Chebyshev inequality.

We can now apply the above two lemmas to graph classes of interest. The first result is for
graphs (and trees) with super-polynomial volume growth. The main idea is that a couple of nodes
are likely to be in the same run at time t only if they are both contained in some ball of radius
up to ≈ bt in the tree T generated in the process. When the volume growth is large enough, every
such ball is substantially smaller than the radius-t ball around the root (i.e., the collection of all
non-⊥ opinions).

Theorem 7.7 (Concentration for super-polynomial volume growth). Fix a ∈ (0, 1/2) and b ∈ (0, 1)
and consider the original process with parameters (G, r, T, a, b). Let t ∈ N and suppose that the
following two conditions hold for constants 0 < c ≤ C and 0 < c′ < 1−b and a function w : N→ N.

• The function ζ(x) := w(x·(b+c′))
w(x) converges to zero as x→∞.

• VT (v, x) ≤ C · xw(x) for every v ∈ Bt,G(r) and x ≤ t− dG(r, v).

• VG(r, x) ≥ c · xw(x) for every x ≤ t.
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Then the opinion bias λG,r(t) is o(1) with probability 1 − o(1), where the o(1) terms tend to zero
as t → ∞. Furthermore, if we replace the C · xw(x) and c · xw(x) upper and lower bounds with
expressions of the form Cex

Ω(1)

and cex
Ω(1)

respectively (and ignore the first bullet), then the o(1)

terms are of the form e−t
Θ(1)

.

Note that the second bullet in the theorem can be trivially replaced with a similar condition
about G (thus making the statement independent of the tree T ). The (stronger) condition is that
VG(v, x) ≤ C · xω(x) for every v ∈ Bt,G(r) and x ≤ t− dG(r, v).

Proof of Theorem 7.7. Consider the process at time t. From Lemma 7.6, it suffices to prove (2)
for the graph G. Pick u, v uniformly at random from Bt,G(r). With probability 1 − o(1), both
u and v are of distance more than (b + c′)t from r. Condition on this event and set c′′ = c′/2.
From Lemma 7.5, the probability that u, v are in the same run is o(1) unless they both belong to
some ball B = Bρ,T (w) where ρ = (b+ c′′)t. We show that the probability for this event to hold is
o(1) as well. Indeed, without loss of generality assume that dG(r, u) ≥ dG(r, v) and take w as the
unique node on the path from r to u of distance exactly ρ from u. Then the last event holds only
if v ∈ Bρ,T (w). The volume of this ball is bounded by

C · ρω(ρ) ≤ C · tω((b+c′′)·t) = o(tω(t)),

which proves the last claim. The final statement of the theorem follows by replacing all the o(1)

terms in the proof with suitable e−t
Θ(1)

terms.

The second result is for graphs with polynomial growth. The argument is quite different from
the super-polynomial case. The main idea is that pairs of nodes u, v that are very different in
terms of their distance from the root – specifically, the difference is much larger than ≈

√
t – are

unlikely to appear in the same run at time t. The amount of nodes with v that do not satisfy this
with respect to u is sublinear in the total volume.

Theorem 7.8 (Concentration for polynomial volume growth). Fix a ∈ (0, 1/2) and b ∈ (0, 1)
and consider the original process with parameters (G, r, T, a, b) at some time t > 0. Let c > 0 be
an arbitrary small constant. Suppose that for every s < s′ ≤ t with s′ − s ≤ t0.5+c, it holds that
VG(r, s′) − VG(r, s) = o(VG(r, t)), where the o(·) term tends to zero as t → ∞. Then the opinion
bias at time t, λG,r(t), is within ±o(1) of its expectation with probability 1− o(1).

The interpretation for finite graph is analogous to that discussed after Theorem 7.7.

Proof. From Lemma 7.6 it suffices to prove that the probability of a uniform pair of nodes u and
v to be in the same run at time t is o(1). From the statement of the lemma, the probability that
|dG(r, u)− dG(r, v)| ≤ t0.5+c is o(1). We now show that if this does not hold, then the probability
of u and v to be in the same run is o(1). Let w be the least common ancestor of u, v in the tree T
on which the process is run, and apply Lemma 5.9 with parameters s = 0, t, and

A central example of a graph with polynomial volume growth is the d-dimensional (hyper-)grid.
Here, a simple calculation shows that VG(r, t) ≈ 2d

(
t+d
d

)
for an infinite grid (or a finite grid when

the distance of r from any of its faces is at least t). It is straightforward to verify that the grid
satisfies the conditions of Theorem 7.8. In combination with Theorem 7.3, we conclude that the
opinion bias is bd + o(1) with probability 1− o(1), where both o(1) terms tend to zero as t→∞.
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8 A slower variant of our model
We briefly discuss here what happens in our model when instead of a choosing a BFS tree and
correcting with respect to a fixed parent, each node, other than the root, error corrects with respect
to a randomly chosen opinionated neighbor at each round. It is clear that this model will also
converge to all nodes holding the correct opinion as this is the only absorbing state of the Markov
chain defined by this process. However, we note that this model is exponentially slower to converge
compared to our model. We first formally define the model by defining the update rule for all nodes
different from the root.

• Given the values of ft−1(v) for all v ∈ V , the update rule defining ft(·) is as follows.

– Before opinion formation. If ft−1(v) = ⊥ and the set Nt−1(v) := {u ∈ V : (u, v) ∈
E, ft−1(u) 6= ⊥} is empty, then ft(v) = ⊥.

– Initial opinion. If ft−1(v) = ⊥ and Nt−1(v) is non-empty, we pick p(v) uniformly at
random from Nt−1(v), and set

ft(v) =

{
ft−1(p(v)) w.p. 1− a,
−ft−1(p(v)) w.p. a.

– Opinion updates. If ft−1(v) 6= ⊥ then we pick p(v) uniformly at random from
Nt−1(v), and set

ft(v) =

{
ft−1(p(v)) w.p. b,
ft−1(v)) w.p. 1− b.

The model defined above is a simple variant of the voter model [7]. Indeed using similar tech-
niques to the one used there, one can prove that the convergence time of the process is determined
by the volume of the graph instead of its diameter.

Lemma 8.1. Consider the process above on the complete graph on n vertices. Then with probability
Ω(a) the process converges in time Ω(n).

Of course, in our model on the complete graph the process converges in O(log n) steps.

Proof. For simplicity we will assume that when a node corrects it may choose at random to correct
by its own value. This corresponds to a O(1/n) change in the value of b.

Let Xt =
∑
ft(v). We are interested in the first time T where XT = n. Clearly X1 ∼

1 +Bin(n− 1, 1− a) which is concentrated around (1− a)n.
Moverover, since when a non-root node updates its expected value is Xt we get that:

E[Xt+1|Xt] ≤ 1 +Xt.

Therefore
E[Xan/4] ≤ an/4 + E[X1] ≤ (1− a/2)n

and thus
P [Xan/4 6= 1] ≥ 1

n
E[n−Xan/4] ≥ 0.4a

which completes the proof.

We can prove a similar proof for other graphs such as the full binary tree.

Lemma 8.2. Consider the process above on the full binary tree with n vertices. Then with proba-
bility Ω(a) the process converges in time Ω(n).
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Again in our model on the complete graph the process converges in O(log n) steps.

Proof. The proof is similar. Let h = log2(n) denote the height of the tree. At time h all nodes have
value 0 or 1 and the nodes at the last level performed no error correction. The results of [11, 12]
imply that with high probability at time h at most 3/4 of the leaves take the correct value.

Let X(t) =
∑
v d(v)fv(t). Then denoting the root by ρ

E[X(t+ 1)|f(t)] =
∑
v

d(v)E[fv(t+ 1)|f(t)] = d(ρ) +
∑
v 6=ρ

d(v)(1− b)fv(t) + b
∑
w∼v

fw(t)

≤ (1 + b)d(ρ) +
∑
v

d(v)fv(t) = X(t) + (1 + b)d(ρ)

This implies that X(t) − 2d(ρ)t is a super-martingale (goes down in expectation) and the proof
concludes as in Lemma 8.1.

We note that lemmas 8.1 and 8.2 can be strengthened to hold with probability 1− o(1) using
second moment or a stronger form of concentration.

9 Information Spread with Online Tree Selection
In this section we briefly discuss an alternate model where the tree T is not specified in advance,
but is a byproduct of the information spread process itself. A natural way of growing such a tree
is to let an unopinionated node v look at all its neighbors in G, and among the subset of these
that have an opinion at time t, pick one at random to be its parent. If none of the neighbors of
v has an opinion at time t, it does not pick a parent at time t. Once a node picks a parent, the
choice is not changed in future steps. This leads to a natural way to pick T randomly from G and
we refer to this as the online version.

As described above the tree chosen is a (random) BFS tree rooted at r. All results mentioned
in previous sections continue to hold, as long as T remains a BFS tree. However this equivalence
fails to hold if we do not require that unopinionated nodes must form an opinion if some neighbor
has an opinion. In this section we consider this model, where we have an an additional parameter
c, so that any such node v only forms an initial opinion with probability c, and otherwise remains
unopinionated. When c = 1 we get the model from the previous paragraph which is close in spirit
to our model from Definition 2.1, while for c < 1 we get a more general model. (We note thus that
to get new effects we really need both random growth of T and c < 1.)

We describe the model below and discuss it in the sequel.

Definition 9.1 (Information spread with error correction: Online tree selection). Fix three pa-
rameters a, b, c ∈ [0, 1]. Let G = (V,E) be an undirected graph and let r ∈ V denote some root
vertex. Consider the following process with parameters (G, r, a, b, c), proceeding in rounds.

• For every round t ≥ 0, each vertex v ∈ V holds a label ft(v) ∈ {+1,−1,⊥}. As before,
f0(r) = +1 and f0(v) = ⊥ for v 6= r.

• For every t ≥ 0 define a parent function pt : V → V ∪ {⊥}, where p0(r) = r and p0(v) = ⊥
for v 6= r. Parents never change once assigned: if pt−1(v) 6= ⊥ then pt(v) = pt−1(v).

• Given the values of ft−1(v) and pt−1(v) for all nodes v ∈ V , the update rule for ft(·) and
pt(·) is as follows. (The first and third bullets are essentially as in Definition 2.1.)

– Before opinion formation. If ft−1(v) = ⊥ and the set Nt−1(v) := {u ∈ V : (u, v) ∈
E, ft−1(u) 6= ⊥} is empty, then ft(v) = ⊥ and pt(v) = ⊥.
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– Picking parent and initial opinion. If ft−1(v) = ⊥ and Nt−1(v) is non-empty, we
act as follows. Pick w arbitrarily from Nt−1(v) and set

ft(v) =


ft−1(w) w.p. c · (1− a),

−ft−1(w) w.p. c · a,
⊥ w.p. 1− c.

In the first two cases (i.e., when ft(v) 6= ⊥), we set pt(v) = w and in the final case we
set pt(v) = ⊥.

– Opinion updates. If ft−1(v) 6= ⊥ then

ft(v) =

{
ft−1(pt(v)) w.p. b,
ft−1(v) w.p. 1− b.

Formally, the generalized spread model is given by the random variables {pt(v)}t∈N,v∈V ∪
{ft(v)}t∈N,v∈V , with pt(v) ∈ V ∪ {⊥} and ft(v) ∈ {−1,⊥,+1} for every t, v generated as above.

Which results carry over from our analysis of the offline case (which, as mentioned, also applies
for the case c = 1)? The speed of the rumor frontier now is c, while the speed of the truth frontier
is b as before, so the regime where one can hope to obtain similar results is when b < c.

A decoupled generalized process As in the original process, the fact that runs can merge
and therefore change their size rapidly seems difficult to analyze and it is better to work with
a decoupled model. It is not hard to prove that a decoupled model similar to Definition 5.2 is
analogous to the generalized model in Definition 9.1. For brevity, here we only quickly mention
the main modifications required to Definition 5.2 in this case.

• The model receives three parameters α, β, γ ∈ [0, 1]. It also receives G and the root r as
parameters (but no tree T ).

• Picking a parent is done exactly as in Definition 9.1, with parameter c replaced by γ. Specif-
ically, all nodes except for r start with no parent, and with probability γ choose and start
listening to a parent (which is fixed for the rest of the process) in any round where they are
still unopinionated but have an opinionated neighbor.

• The update rule is the same as in Definition 5.2, except that the second bullet is carried only
for unopinionated nodes that have just been linked to a parent in the current round.

As in Lemma 5.5, it is not hard to prove that this model is equivalent to that of Definition 9.1 with
the parameter setting α = 2a, β = b, γ = c. As before, we are interested in the setting where α, β
are constants bounded away from zero and one (which is equivalent to a ∈ (0, 1/2) and b ∈ (0, 1)).

Over the path Suppose first that the graph G is the rooted path Pn (where n is finite or
infinite). At any given round, the probability of the decoupled rumor frontier to progress by one
is γ, while the probability of any intermediate frontier to progress is β. It is standard to show,
then, that the rumor frontier at round t is with probability 1− e−tΘ(1)

at location γt±O(t0.6). On
the other hand, as soon as a certain frontier in the decoupled process becomes intermediate (i.e.,
separated from the rumor frontier), its behavior becomes as in the original process. In particular,
the tight bounds on the truth frontier (Lemma 4.5, Theorem 6.2, and Corollary 6.3) still apply.
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Convergence of individual opinion We shift our focus to the setting of a general graph G,
and first mention which results carry over easily from the case γ = 1. starting with those results
concerning when a node “knows” that it has the correct opinion (Theorem 6.4 and Corollary 6.5).
Since these results only depend on what happens after a node v forms its initial opinion (at which
time the path from r to v is fixed, and the progress of frontiers towards v is always at rate β), they
hold word for word in the general setting.

Tree structure in generalized model Matters become more complicated when trying to prove
results that crucially rely on the structure of the tree T formed along the process. For example,
write d = dG(r, v). In the path Pn, the node v typically forms an initial opinion at round ≈ d/γ
and the truth frontier arrives in v at time ≈ d/β. Do the same results still hold for general G?

The answer turns out negative: While the above reasoning gives an upper bound for any G, it is
not tight in general. Suppose for example that there are Cd disjoint paths of length exactly d from
r to v in G, where C = C(α, β, γ) is a large enough constant. Consider the rumor frontier along
each of them. For any such path P in which the predecessor of v is denoted uP , with probability
cd−1 both the rumor and truth frontiers will reach uP in exactly d−1 rounds. For C large enough,
with probability 0.99 this event will hold for at least one of the paths P. Conditioning on this
happening, v will typically receive an initial opinion at round d+O(1).

The above example demonstrates that progress of frontiers in the general case depends not only
on the distances of nodes from r in G, but also on the profile of paths leading up to each of the
nodes in G. We thus leave the following as an open question.

Question 9.2. What can we say about the typical structure of the communication tree T formed in
the generalized process, as a function of G? What parameters of the graph G may lead the opinion
bias to improve (increase) in the generalized process as compared to the case c = 1?
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