
Adversarially Robust Streaming via Dense–Sparse Trade-offs

Omri Ben-Eliezer∗

MIT
omrib@mit.edu

Talya Eden
MIT

talyaa01@gmail.com

Krzysztof Onak
Boston University

krzysztof@onak.pl

Abstract

A streaming algorithm is adversarially robust if it is guaranteed to perform correctly even
in the presence of an adaptive adversary. The development and analysis of such algorithms
have been a very active topic recently, and several sophisticated frameworks for robustification
of classical streaming algorithms have been developed. One of the main open questions in this
area is whether efficient adversarially robust algorithms exist for moment estimation problems
(e.g., F2-estimation) under the turnstile streaming model, where both insertions and deletions
are allowed. So far, the best known space complexity for streams of length m, achieved using
differential privacy (DP) based techniques, is of order Õ(m1/2) for computing a constant-factor
approximation with high constant probability (the Õ notation hides here terms polynomial
in logm and log n, where n is the universe size). In this work, we propose a new simple
approach to tracking moments by alternating between two different regimes: a sparse regime, in
which we can explicitly maintain the current frequency vector and use standard sparse recovery
techniques, and a dense regime, in which we make use of existing DP-based robustification
frameworks. The results obtained using our technique break the previous m1/2 barrier for
any fixed p. More specifically, our space complexity for F2-estimation is Õ(m2/5) and for F0-
estimation, i.e., counting the number of distinct elements, it is Õ(m1/3).

All existing robustness frameworks have their space complexity depend multiplicatively on
a parameter λ called the flip number of the streaming problem, where λ = m in turnstile
moment estimation. The best known dependence in these frameworks (for constant factor
approximation) is of order Õ(λ1/2), and it is known to be tight for certain problems. Again, our
approach breaks this barrier, achieving a dependence of order Õ(λ1/2−c(p)) for Fp-estimation,
where c(p) > 0 depends only on p.

∗Work partially conducted while the author was at Harvard University.

1

1 Introduction

Streaming algorithms are an integral part of the modern toolbox for large-scale data analysis.
A streaming algorithm observes a stream of data updates that arrive one by one, and is required
to compute some global function of the data using a small amount of space (memory) and with an
efficient running time.

Most of the literature on streaming algorithms implicitly assumes that the stream updates do
not depend on previous outputs of the algorithm or on the randomness produced by the algorithm.
This assumption may not be realistic in many situations: for example, when the data is chosen by
a malicious adversary in response to previous outputs, or when data characteristics change based
on previous outcomes in some complicated or unpredictable way. As a result, the last couple of
years have seen substantial progress in the systematic investigation of adversarially robust streaming
algorithms [BEY20, BEJWY20, HKM+20, WZ20, ABED+21, KMNS21, BHM+21, ACSS21], which
preserve their correctness guarantees even for adaptively chosen data and are thus especially suitable
for these interactive settings.

There is already a wide range of problems and settings for which the best known adversarially
robust streaming algorithms are almost as efficient as their classical, non-robust counterparts. The
flip number [BEJWY20] of a streaming problem, an algorithmic stability parameter which counts
how many times the output value may change by a multiplicative factor of 1 + α as the stream
progresses, plays a central role in many of these results [HKM+20, WZ20, KMNS21, ACSS21].
When the flip number λ is small, the generic methods developed in these works can turn a classical
streaming algorithm into an adversarially robust one with only a small overhead (linear in λ or
better) in the space complexity. This is especially useful in the insertion only streaming model,
where elements are only added to the stream, but may not be deleted from it. Many important
streaming problems, such as Fp-estimation, distinct elements, entropy estimation, and various
others, all have flip number of λ = O(α−1 logm) for insertion-only streams of length m. Under
the standard assumption that m = poly(n), where n is the size of the universe of all possible data
elements, and building on additional known results from the streaming literature, one can then
obtain adversarially robust insertion-only (1±α)-approximation algorithms with space complexity
poly(1/α, log n).

The situation in the turnstile streaming model, which allows both insertions and deletions,
is more complicated. The most popular technique for turnstile streams in the classical regime,
linear sketching, is provably not adversarially robust [HW13]. Furthermore, the flip number can
be very large, potentially even Θ(m). The best known robustification methods in this regime
[HKM+20, ACSS21], based on differential privacy, have a multiplicative O(

√
λ) dependence in the

flip number (for constant ε). Therefore, they induce a space overhead of Ω̃(
√
m) compared to the

best non-robust algorithms.
A separation result of Kaplan, Mansour, Nissim and Stemmer [KMNS21] shows that indeed

the
√
λ-type dependence in the flip number is tight for some streaming problems; specifically, they

show this for a variant of the Adaptive Data Analysis problem in the context of bounded-space
computation. We note, however, that the lower bound of [KMNS21] does not apply to many core
problems in the streaming literature, for which no separation between the classical oblivious and
adversarially robust settings is known. In particular, this is the case for Fp-estimation, in which
the goal is to approximate

∑
i |vi|p, the p-th moment of a frequency vector v ∈ Zn. This gives rise

to the following question, widely regarded as one of the central open questions on adversarially

2

robust streaming.1

What is the adversarially robust space complexity of Fp-estimation in the turnstile streaming model?

In this work we show that a combination of existing building blocks from the literature (with
slight modifications and simplifications) can yield a substantially improved space complexity for
the above problem. Our results hold when deletions are allowed, as long as each update increases or
decreases the frequency of a single element by 1 (or more generally, by a bounded integer amount).
We also allow frequencies of elements to become negative in the process, which is known as the
general turnstile streaming model.

2 Overview of Our Contribution

2.1 Our results

We give an Fp-estimation algorithm that breaks the
√
m (or

√
λ) space barrier. We now state a

simplified version of the main result, focusing just on on the dependence on the stream length m
and domain size n, whenever it is polynomial. For the full statement of our results, see Theorem 20.

Theorem 1 (Simplified main result). For any fixed p ∈ [0,∞) and α > 0, there is an adversarially
robust Fp-estimation streaming algorithm that computes a (1± α)-approximation, using:

• Õ(m1/3) space if p ∈ [0, 1],

• Õ(mp/(2p+1)) if p ∈ [1, 2],

• Õ(mp/(2p+1) · n1−5/(2p+1)) if p ∈ (2,∞),

where the Õ notation suppresses factors that are polynomial in α−1, logm, and log n. The algorithm
gives correct estimates throughout the entire stream with probability 1− o(1).

We note that since the flip number for the moment estimation problem is λ = Θ(m) (see
Section 3.3), the dependency of the space complexity of our approach in λ is Õ(λ1/3) for p ∈
[0, 1] and Õ(λ

1
2
− 1

4p+2) for p > 1. This improves polynomially upon the currently best known
Õ(
√
λ) bound, obtained using the aforementioned differential privacy based robustness frameworks

[HKM+20, ACSS21]. Together with the separation of [KMNS21], our result (see also [Jay21])
suggests that a paradigm shift may be required in order to achieve improved space complexity
for turnstile streams: rather than developing very widely applicable robustness frameworks that
suffer from the

√
λ-type lower bound due to their wide applicability, it may make sense to look

for methods that are perhaps somewhat less generic, and exploit other properties of the problem,
beyond just the flip number.

1To the best of our knowledge, the first explicit appearance of this question in the literature is in Jayaram’s
Ph.D. thesis [Jay21, page 26]. See also a talk by Stemmer [Ste21] at 54:45 and the third question on the list of open
questions from the STOC 2021 Workshop on Robust Streaming, Sketching, and Sampling [Rob21a].

3

2.2 Our techniques

Our result relies on a straightforward combination of known techniques from the literature. The
bottleneck of the previous best result for moment estimation for general turnstile streaming is the
direct reliance on the flip number λ, which for general streams can be of order Ω(m). As mentioned
above, methods that take only the flip number into account (and do not use any other characteristics
of the problem at hand) cannot get space complexity much smaller than

√
λ (that is,

√
m for norm

estimation). Thus, we exploit a specific characteristic of Fp-estimation: the actual number of
significant changes to the p-th moment can only be large if the moment remains small. This can
only be the case if the underlying vector is sparse, i.e., has relatively few non-zero coordinates. We
therefore divide the current state of the frequency vector into two regimes: sparse and dense, using
a threshold T . If the vector has at most T non-zero coordinates, it is considered sparse. If it has
more than 4T non-zero coordinates, it is considered dense. For densities in between, the state of
the vector may be temporarily classified as either dense or sparse.

In the sparse regime, we take the simplest possible approach, which is storing the input explicitly,
using a sparse representation, which requires onlyO(T) space. In this form, it is easy to maintain the
current moment, since we know the current frequency vector exactly. In the dense regime, we apply
the technique from the paper of Hassidim, Kaplan, Mansour, Matias, and Stemmer [HKM+20],
which uses differential privacy to protect not the input data, but rather the internal randomness of
estimators it uses. At a high level, their framework consists of invoking a set of k estimators, which
upon each query provide an updated estimate. Given the stream of updates, they use differentially
private methods to detect whenever the current estimate is no longer relevant, at which point they
query the set of estimators to get an updated estimate. Their technique in general increases the
space requirement by a factor of the square root of the flip number, compared to that of oblivious
streaming algorithms. In particular, applying their method for the moment estimation problems,
requires invoking k = Õ(

√
λ) instances of oblivious Fp-estimation algorithms. We improve on the

above, by taking advantage of the fact that the estimated value of the p-th moment cannot change
too rapidly for dense vectors. For instance, for p = 0 (the distinct element count) or p = 1, if
the vector has at least T non-zero coordinates, at least Ω(T) insertions or deletions are required
to change it by a constant factor. Similarly, for p = 2, at least Ω(

√
T) insertions or deletions are

needed. Hence, the flip number for the dense regime is much lower, and we can make significantly
fewer queries to a set of oblivious Fp-estimation algorithms. This in turn implies that we can
significantly reduce the number of required estimators.

The missing component in our description so far is how the transition between the regimes
happens. If we are transitioning from the sparse regime to the dense one, we have all the information
needed about the current state of the input vector that we are tracking. If we are transitioning
from the dense regime to the sparse regime, we use off-the-shelf sparse recovery techniques (also
known as compressed sensing) to recover the frequency vector exactly. To know when to do this,
we run in parallel an adversarially robust streaming algorithm for distinct element counting, which
we also know has to be queried only every Ω(T) steps.

2.3 Pseudocode

We present the pseudocode of our approach as Algorithm 1. We maintain adversarially robust esti-
mators, Aapprox and Adensity, that are queried significantly less frequently than m times throughout
the entire execution of the algorithm. We query them at regular intervals, knowing that their values

4

Algorithm 1: Adversarially Robust Streaming of Moments
Parameters: p ∈ [0,∞) describing the moment, dimension n ∈ Z+, stream length

bound m ∈ Z+, threshold T ∈ R+, approximation quality parameter
α ∈ (0, 1), error parameter δ

1 regime← sparse; v ← (0, . . . , 0); count← 0
2 Mexact ← 0; Mapprox ← 0; kapprox ← 0
3 Asparse ← the sparse recovery algorithm (Theorem 9) with sparsity parameter k = d4T e

4 interval←

{
αT/4 for p ∈ [0, 1]
α
32p

(
αT
16

)1/p
for p ∈ (1,∞)

5 interval← max{bintervalc, 1}
6 Adensity ← (m/bT/10c)-query adversarially robust streaming algorithm (Algorithm 2)

for (1± .25)-approximation of number of distinct elements with error parameter δ/2
7 Aapprox ← (m/interval)-query adversarially robust streaming algorithm (Algorithm 2)

for (1± α/4)-approximation of the p-th moment with error parameter δ/2
8 foreach update (i,∆) do
9 count← count + 1

10 Process the update (i,∆) by Asparse, Adensity, Aapprox

11 if count is a multiple of bT/10c then kapprox ← estimate from Adensity

12 if count is a multiple of interval then Mapprox ← estimate from Aapprox

13 if regime = sparse then
14 Update v and Mexact

15 Output Mexact

16 if ‖v‖00 ≥ 4T then regime← dense

17 else
18 Output Mapprox

19 if kapprox ≤ 2T then
20 Use Asparse to recover v
21 Mexact ← ‖v‖pp
22 regime← sparse

cannot change too rapidly, when the vector is dense. We note that we do not use them when the
vector is sparse, as in that regime their readouts may be inaccurate.

We present the pseudocode for an adversarially robust algorithm that has to answer only a
limited number of queries in Algorithm 2. This algorithm is a simplified and adjusted version of
the algorithm that appeared in the work of Hassidim et al. [HKM+20]. In the introduction of
their paper, they note that constructing a bounded-query variant of their algorithm is possible, but
do not give any details beyond that. As this variant is crucial for our purposes, we present this
construction in full detail for completeness.

5

Algorithm 2: Bounded Query Adversarially Robust Streaming
Parameters: number q of queries, probability δ of error, bound τ on the size of the range

of possible values, desired approximation parameter α
Subroutine: oblivious (1± α/3)-approximation streaming algorithm A as described in

the statement of Lemma 11

1 ε← 1/100
2 δ′ ← εδ/(10q)

3 ε′ ← ε/
√

8q ln(1/δ′)

4 k ← Θ(ε′−1 log 2q log 2τ
αδ)

5 Initialize k independent instances A1, . . . , Ak of A
6 foreach update (i,∆) do
7 Process the update (i,∆) by all of A1, . . . , Ak
8 if the adversary is querying for the current output then
9 foreach j ∈ [k] do

10 γj ← estimate from Aj
11 γ′j ← γj rounded up to a multiple of 1 + α

3 and truncated if not in {0} ∪ [1, τ).

12 Output an (ε′, 0)-DP estimate of the median of {γ′1, . . . , γ′k} as in Theorem 13

with parameters set to δ ← δ
2q and ε← ε′

3 Preliminaries

3.1 Basic notation and terms

For any k ∈ N, we write [k] to denote {1, . . . , k}, the set of k smallest positive integers.

Definition 2 (The pth-moment). The pth-moment of a vector v ∈ Rn is ‖v‖pp =
∑n

i=1 |vi|p, for any

p ∈ [0,∞). We interpret the 0th-moment as ‖v‖00 = | {i ∈ [k] : vi 6= 0} |, i.e., the number of non-zero
coordinates of v, by assuming in this context that 00 = 0 and x0 = 1 for any x 6= 0.

Definition 3 (Vector density). Let k ∈ R and n ∈ N. We say that a vector v ∈ Rn is k-dense if at
least k of its coordinates are non-zero, and k-sparse if at most k of them are non-zero.

Definition 4 ((1 ± α)-approximation). For any Q,Q′ ∈ [0,∞) and α ∈ [0, 1], we say that Q′ is a
(1± α)-approximation to Q if

(1− α)Q ≤ Q′ ≤ (1 + α)Q.

3.2 Streaming algorithms

A streaming algorithm receives, one by one, a stream of updates u1, u2, . . . , um that modify the
data, and is typically required to compute or approximate some function f of the data over the
stream of updates. In this paper, we fully focus on the setting in which the input is a frequency
vector v ∈ Zn for some integer n, known to the algorithm in advance. Initially, at the beginning
of the stream, this vector is the all-zero vector, i.e., v = (0, . . . , 0). The stream consists of updates
of the form uj = (ij ,∆j) in which ij ∈ [n] and ∆j ∈ {−1, 1}. The interpretation of each update is

6

that ∆j is added to the ij-th coordinate of v, i.e., each update increases (“insertion”) or decreases
(“deletion”) a select coordinate by 1.2

For any fixed stream of updates, the streaming algorithm is required to output f(v) or a good
approximation to f(v) (e.g., a (1 ± α)-approximation if f(v) is a non-negative real number) after
seeing the stream with probability 1− δ, for some parameter δ. We refer to 1− δ in this context, as
success probability. We sometimes refer to streaming algorithms in this model, in which the stream
is independent of the actions of the streaming algorithm, as oblivious or non-robust to distinguish
them from adversarially robust streaming algorithms, which we design in this paper.

Intermediate approximations. We assume that the streaming algorithm does not know the
exact length of the stream in advance, and only knows an upper bound on it. Because of that, we
assume that the algorithm can be asked to output its approximation of f(v) at any time throughout
the stream. This is true for a large majority of streaming algorithms, and in particular, to the best
of our knowledge, applies to all general moment streaming algorithms. For this type of streaming
algorithm, if its success probability is 1− δ, this means that it can output a desired approximation
with probability at least 1− δ at any fixed prefix of the stream.

Streaming related notation and assumptions. Throughout the paper, we consistently write
n to denote the dimension of the vector on which the streaming algorithm operates. We use m
to denote an upper bound on the length of the input and we assume that m = O(poly(n)). We
assume that machine words are large enough to represent n and m, i.e., the number of bits in them
is at least Ω(log max{m,n}) and we express the complexity of algorithms in words.

3.3 Adversarially robust streaming algorithms

In this paper, we design streaming algorithms in the adversarially robust streaming model of
Ben-Eliezer et al. [BEJWY20], which we now introduce in the context of computing a (1 ± α)-
approximation to values of a function f .

Definition 5 (Adversarially robust streaming). Fix a function f : Zn → [0,∞) and let α > 0. The
robust streaming model is defined as a game between two players, Adversary and Algorithm, where
f , α, and the stream length m are known to both players. In each round j ∈ [m]:

• First, Adversary picks (ij ,∆j) for ij ∈ [n] and ∆j ∈ {−1, 1} and sends them to Algorithm.
The choice of ij and ∆j may depend on all previous updates sent by Adversary as well as all
previous outputs of Algorithm.

• Algorithm outputs yj , which is required to be a (1 ± α)-approximation to f(v(j)), where v(j)

is the vector aggregating all updates so far (that is, v
(j)
i =

∑
j′≤j:ij′=i

∆j′ for all i ∈ [n]).

Algorithm sends yj to Adversary.

2As mentioned, the update values ∆j are always ±1 in the model we consider here. In the most general setting
for turnstile streaming, ∆j may be unbounded; however, for our arguments to hold, it is important that ∆j are
bounded in some way (e.g., satisfy ∆j ∈ [−C,−C−1] ∪ {0} ∪ [C−1, C] for some constant C ≥ 1). This assumption
is not necessary for F0-estimation—i.e., counting the number of distinct elements—for which updates of arbitrary
magnitude are allowed as long as they can be handled by a non-robust streaming algorithm on which we build.

7

Algorithm’s goal is to return correct outputs at all times. That is, yj is required to be a (1 ± α)-
approximation to f(v(j)) for all j ∈ [m]. Conversely, Adversary’s goal is to have Algorithm’s output
yj that is not a (1± α)-approximation to f(v(j)) for some j ∈ [m].

We say that a streaming algorithm is adversarially robust and has success probability 1− δ for
some δ ∈ [0, 1] if it can provide all correct outputs as Algorithm with probability at least 1− δ for
any Adversary.

We now introduce the notion of an q-query adversarially robust streaming algorithm, which has
to provide no more than q outputs.

Definition 6 (q-query robust streaming algorithm). Let q ∈ N. A q-query adversarially robust
streaming algorithm is defined similarly to a standard adversarially robust streaming algorithm,
with the following modification: Adversary may perform at most q queries for outputs yj from
Algorithm, and only receives the output yj in these time steps where queries are made. Adversary
may pick these time steps adaptively as a function of all previous interactions. We say that a q-
query adversarially robust streaming algorithm has a probability of success 1−δ, for some δ ∈ [0, 1],
if for any Adversary that makes at most q queries, with probability at least 1−δ, it correctly answers
all of them.

Note on the tracking property. Oblivious streaming algorithms are not required to have the
“tracking” property, i.e., they have to provide a good approximation at the end of the stream (or at
any fixed point), but their definition does not require any type of consistent behavior throughout
the stream. This is required, however, for adversarially robust streaming algorithms. We build our
adversarially robust streaming algorithms from oblivious streaming algorithms that do not have a
tracking property.

3.4 Frequency moment estimation

The main focus of this paper is designing streaming algorithms for the problem of Fp-estimation,
i.e., estimation of the pth-moment, in the turnstile streaming model. To build our adversarially
robust algorithms, we use classical, non-robust, turnstile streaming algorithms for Fp-estimation.

Theorem 7 (Previously known Fp-estimation results). There exist turnstile streaming algorithms
that with probability of success 9

10 , return a (1±α)-approximation to the pth moment of a frequency
vector in Zn on the stream of length m with the following space complexity:

Value of p Space Reference

p = 0 O(α−2 · log n · (log(1/α) + loglog(m))) [KNW10b]

p ∈ (0, 2] O(α−2 · logm) [KNW10a]

p > 2 O
(
n1−2/p ·

(
α−2 + α−4/p log n

))
[GW18]

3.5 Flip number

The flip number, defined in [BEJWY20], plays a prominent role in many of the previous results
on adversarially robust streaming. For completeness, we next provide its definition suited for our
context.

8

Definition 8 (Flip number). Fix a function f : Zn → [0,∞) and α > 0. Let u1 = (i1,∆1), . . . ,
um = (im,∆m) be a sequence of updates to some vector v whose initial value is v(0), and let v(j) be
the value of the vector after j updates have been received. The flip number λα(f, (u1, . . . , um)) of
f with respect to the above sequence is the size t of the largest subsequence 0 ≤ j1 < . . . < jt ≤ m
for which f

(
v(jl)

)
is not a (1 ± α)-approximation of f

(
v(jl+1)

)
for any l = 1, . . . , t − 1. The flip

number λα(f) of f is the maximum of λα(f, (u1, . . . , um)) over all possible choices of the sequence
u1, . . . , um.

It is easy to see that the flip number of Fp-estimation is Ω(m) for any p: indeed, consider the
following pair of insertion-deletion updates (i, 1), (i,−1), repeated m/2 times. In such a stream,
the value of the pth moment alternates m times between 0 and 1.

3.6 Sparse recovery

In our algorithm, we use sparse recovery to reconstruct the current frequency vector when it becomes
sparse, which is possible even if it was arbitrarily dense in the meantime. For an introduction to
the topic of sparse recovery, see the survey of Gilbert and Indyk [GI10]. Here we use the following
streaming subroutine introduced by Gilbert, Strauss, Tropp, and Vershynin [GSTV07].

Theorem 9 (Sparse recovery [GSTV07]). There is a streaming algorithm that takes a parameter k,
operates on a vector v ∈ Zn, and has the following properties. It uses O(k polylog n) words of space
and handles each coordinate update in O(polylog n) time. Whenever the input vector is k-sparse,
the algorithm can reconstruct it exactly in O(k polylog n) time.

With probability 1 − O(n−3), taken over the initial selection of randomness, the algorithm can
correctly recover all k-sparse vectors in all parts of the process (even when they are constructed in
an adaptive manner).

3.7 Differential privacy

Differential privacy [DMNS06] is by now a standard formal notion of privacy for individual data
items in large datasets. The formal definition is as follows.

Definition 10 (Differential Privacy). Let A be a randomized algorithm operating on databases.
A is (ε, δ)-differentially private (in short (ε, δ)-DP) if for any two databases S and S′ that differ on
one row, and any event T , it holds that

Pr[A(S) ∈ T] ≤ eε · Pr[A(S′) ∈ T] + δ

In the framework of Hassidim et al. [HKM+20], which we use here, DP is used in a somewhat
non-standard way to protect the internal randomness of instances of a static algorithm.

4 Bounded Query Adversarially Robust Streaming

In this section, we present a q-query adversarially robust streaming algorithm for approximating a
function f : Zn → R. In the case that q � m, and for problems where the flip number is λ = Θ(m),
such as turnstile Fp-estimation, it obtains significant gains in the space complexity compared to
the general algorithm introduced by Hassidim et al. [HKM+20]. The space overhead of the q-query

9

robust algorithm over an oblivious streaming algorithm is roughly
√
q, independently of how much

the function changes in the meantime. Informally, this is because the flip number of the output
observed by the adversary decreases from a (worst case) Θ(m) factor to a Θ(q) one. The algorithm
is a simplified and adjusted version of the algorithm of Hassidim et al. [HKM+20]. Their algorithm
builds on two important primitives: a DP procedure for detecting when a set of functions exceeds a
certain threshold, and a DP procedure for computing the median of a set of values. Their algorithm
works by invoking the threshold detection procedure after each update, in order to detect whether
the estimate of the computed function should be re-evaluated. If this is the case, then the median
procedure is used to compute a private updated estimation. Compared to their algorithm, we do
not need the first primitive, i.e., the differentially private threshold detection. We only recompute
a private median when the algorithm is replying to a query from the adversary.3

Lemma 11 (q-query adversarially robust algorithm). Let α, δ ∈ (0, 1) and q ∈ Z+. Let A be an
oblivious streaming algorithm for computing a (1±α/3)-approximation to a function f : Zn → [0,∞)
that uses S space and is correct with probability 9/10 when queried once. Additionally, let {0}∪[1, τ]
be the range of possible correct values of f on the stream.

There is a q-query adversarially robust streaming algorithm, Algorithm 2, that uses χ · S space
to provide a (1± α)-approximation to f with probability 1− δ, where

χ
def
= O

(√
q log(2q/δ) · log

2q log 2τ

αδ

)
.

4.1 Tools from differential privacy

In order to prove Lemma 11, we use the following set of tools from the differential privacy literature.
First, the following theorem allows for composing multiple applications of a DP mechanism.

Theorem 12 ([DRV10]). Let ε, δ′ ∈ (0, 1] and let δ ∈ [0, 1]. An algorithm that allows for q adaptive

interactions with an (ε, δ)-DP mechanism is (ε′, qδ + δ′)-DP for ε′
def
=
√

2q ln(1/δ′) · ε+ 2qε2.

At the heart of the algorithm is a DP mechanism for computing a median of a set of items.
While sublinear-space algorithms for DP median estimation are known to exist [ABEC21], for our
purposes it suffices to use a simple approach with near-linear space complexity.

Theorem 13 ([HKM+20, Theorem 2.6]). For every ε, δ ∈ (0, 1), there exists an (ε, 0)-DP algorithm
for databases S ∈ X∗ of size Ω

(
1
ε log (|X|/δ)

)
that outputs an element x ∈ X such that with

probability at least 1 − δ, there are at least |S|/2 − Γ elements in S that are bigger or equal to x

and at least |S|/2 − Γ elements in S that are smaller or equal to x, where Γ
def
= O

(
1
ε log (|X|/δ)

)
.

The algorithm uses O(|S|) space.

We note that the original statement of the theorem did not mention the space complexity, but
such space can be obtained using standard approaches in the DP literature, e.g., by applying the
exponential mechanism with the Gumbel trick [ABEC21, MT07].

Finally, we use a known generalization theorem that shows that a differentially private mecha-
nism cannot heavily bias its computation on a sufficiently large set of random samples.

3We note that the private thresholds procedure is crucial for Hassidim et al. [HKM+20] to improve their space
overhead from roughly

√
m, which strongly depends on the stream length, to roughly

√
λ, which depends only on the

flip number. In the problems we consider here, this is not essential as λ = Θ(m) anyway.

10

Theorem 14 ([BNS+21, DFH+15]). Let ε ∈ (0, 1/3), δ ∈ (0, ε/4), and t ≥ ε−2 log(2ε/δ). Let
A : Xt → 2X be an (ε, δ)-DP algorithm that operates on a database of size t and outputs a predicate
h : X → {0, 1}. Let D be a distribution on X, let S be a database containing t elements drawn
independently from D, and let h← A(S) be an output of A on S. Then

Pr
S∼D

h←A(S)

[∣∣∣∣∣ 1

|S|
∑
x∈S

h(x)− E
x∼D

[h(x)]

∣∣∣∣∣ ≥ 10ε

]
≤ δ

ε
.

4.2 Proof of Lemma 11

Recall that Algorithm 2 runs multiple copies A1, . . . , Ak of an oblivious streaming algorithm A,
where each Ai uses an independent random string ri ∈ {0, 1}∗, selected from the same distribution

as the randomness of A. Let R
def
= {r1, . . . , rk} be the collection of random strings used by the copies

of A. We can view R as a database, in which each ri is a row, and Algorithm 2 as a mechanism
that operates on it. We now show that Algorithm 2 does not reveal much about the collection of
random strings it uses.

Lemma 15. Algorithm 2 is (ε, δ′)-DP with respect to R, the collection of random strings used by
copies of A, where ε and δ′ are as defined in the algorithm.

Proof. The only way in which the algorithm reveals anything about the strings ri is by outputting
the private median of current estimates of all algorithms. Note that the set of possible values of
estimates γ′j is of size at most 1+ dlog1+α/3(τ)e = O(α−1 log(2τ)). Let ε′ be as defined in Line 3. It
follows from Theorem 13 that each application of the median algorithm is (ε′, 0)-DP with respect to
R and errs with probability at most δ/(2q) when the constant hidden by the asymptotic notation
in the definition of k in Line 4 is large enough. Applying Theorem 12, we conclude that the entire
algorithm is (ε′′, δ)-DP with respect to R, where

ε′′
def
=
√

2q ln(1/δ′) · ε′ + 2qε′2 ≤ ε

2
+
ε2

4
≤ ε.

We now proceed to prove Lemma 11, i.e., that Algorithm 2 has the desired properties.

Proof of Lemma 11. Recall that by Lemma 15, Algorithm 2 is (ε, δ′)-DP with respect to the col-
lection of random strings that copies of A use, where ε is defined in Line 1 and δ′ is defined in
Line 2. For any random string r ∈ {0, 1}∗ that an instance of A may use and for any i ∈ [q],
let hi(r) : {0, 1}∗ → {0, 1} equal 1 if A outputs a (1 ± α/3)-approximation to the function being
computed on the prefix of the stream, when asked the i-th query and using r as its randomness.
Let rj be the randomness that Aj , the j-th instance of A, uses. Since the adversary can be seen
as an (ε, δ′)-DP mechanism, and this includes all generated queries and updates to the stream, by
Theorem 14 and the union bound, we get that∣∣∣∣∣∣Er [hi(r)]−

1

k

k∑
j=1

hi(rj)

∣∣∣∣∣∣ ≤ 10ε =
1

10

for all i ∈ [q], with probability at least 1− q · δ′ε ≥ 1− δ/10 as long as k ≥ ε−2 log(2ε/δ′). We now
show that this condition holds for a sufficiently large constant hidden by the asymptotic notation

11

in the definition of k in Line 4. First, observe that ε is defined to be a positive constant, and
hence ε−2 is a constant as well and can easily be bounded by a sufficiently large constant hidden
in the definition of k. It remains to bound log(2ε/δ′) = log(q/(5δ)). To this end, observe that the
definition of k also has two multiplicative terms. The first one is

1

ε′
=

√
8q ln(1/δ′)

ε
≥ 100

√
8 ln 10 ≥ 1,

and the second one is

log
2q log 2τ

αδ
≥ log

2q

δ
= log 2 + log

q

δ
.

Since q
δ ≥ 1, and, therefore, log q

δ ≥ 0, their product multiplied by a sufficiently large constant—
which again can be hidden in the asymptotic notation in the definition of k—is greater than
log 20q

δ = log 20 + log q
δ . This finishes the proof that k ≥ ε−2 log(2ε/δ′) can easily be achieved by

properly adjusting constants.
Since A is correct with probability at least 9/10 on any fixed data stream, this implies that

for each i ∈ [q], at least 4
5k predicates hi(rj) are 1. In other words, with probability at least

1− δ/10, for each query from the adversary, at least 4
5k of the collected estimates γj of the current

value of f are its (1 ± α/3)-approximations. Note that the rounding step can only increase the
approximation error by a factor of at most (1 +α/3), which means that at least 4

5k of estimates γ′j
are (1± α)-approximation of the current value of f because (1 + α/3)2 < 1 + α.

Now note that the private median algorithm returns an estimate that is greater than or equal
to at least 2/5 of estimates γ′j and also smaller than or equal to at least 2/5 of the same estimates

with probability at least 1 − δ
2q . As long as this algorithm outputs such an estimate, and as long

as the fraction of bad estimates is at most 1/5, this means that the algorithm outputs a (1 ± α)-
approximation to the value of f at the query point. By the union bound this occurs for all queries
with probability at least 1− δ/2− δ/10 ≥ 1− δ.

The space complexity of the algorithm is dominated by the space to store the instances of A.
Note that there are k = O(

√
q log(2q/δ) · log 2q log 2τ

αδ) of them.

5 Bounded Change

As discussed in the introduction, our frequency moment estimation algorithm gains from the fact
that when the vector v is k-dense for some value of k, the value of ‖v‖pp cannot change too rapidly.
We formally state and prove this below.

5.1 Moments p ∈ [0, 1]

Lemma 16. Let v, v′ ∈ Zn, p ∈ [0, 1], α ∈ (0, 1), and k ∈ Z+. If v is k-dense and ‖v − v′‖1 ≤ αk,
then ‖v′‖pp is a (1± α)-approximation to ‖v‖pp.

Proof. Consider a function f : R → R defined as f(t)
def
= |t|p. We claim that for any t ∈ Z,

|f(t)−f(t+ 1)| ≤ 1. This is easy to verify for t ∈ {−1, 0}, because f(−1) = f(1) = 1 and f(0) = 0.
Since f is differentiable in (−∞,−1] ∪ [1,∞) with the absolute value of the derivative bounded by
1, the claim holds in that range as well, i.e., for other t ∈ Z \ {−1, 0}. This implies that for any
t, t′ ∈ Z, |f(t)− f(t′)| ≤ |t− t′|.

12

We have ∣∣∣‖v‖pp − ∥∥v′∥∥pp∣∣∣ ≤ n∑
i=1

∣∣f(vi)− f(v′i)
∣∣ ≤ n∑

i=1

|vi − v′i| = ‖v − v′‖1 ≤ αk.

Since v is k-dense, for at least k of its coordinates i, |vi| ≥ 1, and hence ‖v‖pp ≥ k. We therefore

have ‖v′‖pp = ‖v‖pp +
(
‖v′‖pp − ‖v‖

p
p

)
≤ ‖v‖pp +αk ≤ (1 +α) ‖v‖pp. Analogously, ‖v′‖pp ≥ ‖v‖

p
p−αk ≥

(1− α) ‖v‖pp.

5.2 Moments p ∈ [1,∞)

We use the following two well-known facts, which are easy to verify via basic calculus.

Fact 17. For p ≥ 1 and α ∈ (0, 1), (1− α)p ≥ 1− αp.

Fact 18. For α ∈ (0, 1), eα ≤ (1 + 2α).

Lemma 19. Let v, v′ ∈ Zn, p ∈ [1,∞), α ∈ (0, 1), and k ∈ Z+. If v is k-dense and ‖v − v′‖1 ≤
α
8p(αk4)1/p, then ‖v′‖pp is a (1± α)-approximation to ‖v‖pp.

Proof. Let ∆
def
= v − v′. We partition the set of indices, [n], into two sets, Ismall and Ilarge, based

on how |∆i| compares to |vi|. We have Ismall
def
=
{
i ∈ [n] : |∆i| ≤ α

4p |vi|
}

and Ilarge
def
= [n] \ Ismall.

For i ∈ Ismall, we have (
(1− α

4p
)|vi|

)p
≤ |v′i|p ≤

(
(1 +

α

4p
)|vi|

)p
.

The left–hand side can be bounded from below by (1 − α/4)|vi|p, using Fact 17. The right–hand
side is at most

(
eα/4p

)p |vi|p ≤ eα/4|vi|p ≤ (1 + α
2)|vi|p, where the last inequality uses Fact 18. This

implies that ||vi|p − |v′i|p| ≤ α
2 |vi|

p. As a corollary, we obtain∑
i∈Ismall

∣∣|vi|p − |v′i|p∣∣ ≤ α

2

∑
i∈Ismall

|vi|p ≤
α

2
‖v‖pp .

For i ∈ Ilarge, we have

∑
i∈Ilarge

|v′i| ≤
∑

i∈Ilarge

|vi|+ |∆i| ≤
∑

i∈Ilarge

(
1 +

4p

α

)
|∆i| ≤

∑
i∈Ilarge

8p

α
|∆i| ≤

8p

α
‖∆‖1 ≤

(
αk

4

)1/p

.

This implies that, due to the convexity of the function f(x)
def
= xp for p ≥ 1,

∑
i∈Ilarge

|v′i|p ≤

 ∑
i∈Ilarge

|v′i|

p

≤ αk

4
.

The same bound holds for v, i.e.,

∑
i∈Ilarge

|vi|p ≤

 ∑
i∈Ilarge

|v′i|

p

≤ αk

4
.

13

Combining these bounds, we get a bound on the sum of differences in coordinates in Ilarge∑
i∈Ilarge

∣∣|vi|p − |v′i|p∣∣ ≤ ∑
i∈Ilarge

|vi|p + |v′i|p ≤
αk

4
+
αk

4
=
αk

2
≤ α

2
‖v‖pp ,

where the last inequality follows from the fact that v is k-dense, and therefore, ‖v‖pp ≥ k.
Overall, combining our knowledge for both Ismall and Ilarge,∣∣∣‖v‖pp − ∥∥v′∥∥pp∣∣∣ =

∣∣∣∣∣
n∑
i=1

|vi|p − |v′i|p
∣∣∣∣∣ ≤

n∑
i=1

∣∣|vi|p − |v′i|p∣∣
≤

∑
i∈Ismall

∣∣|vi|p − |v′i|p∣∣+
∑

i∈Ilarge

∣∣|vi|p − |v′i|p∣∣
≤ α ‖v‖pp .

This immediately implies our main claim.

6 Proof of the Main Result

We start by restating our main result. This version has more details than the simplified version,
which was presented as Theorem 1 in the introduction.

Theorem 20 (Adversarially robust moment estimation algorithm, full version of Theorem 1).
Algorithm 1 is a (1±α)-approximation adversarially robust streaming algorithm for the pth-moment
with success probability 1−δ−O(n−3) for streams of length m. The space complexity of the algorithm
for different values of p is specified in Table 1.

value of p Õ(mµnρ) space detailed space complexity

p ∈ [0, 1] µ = 1
3 , ρ = 0 O(m1/3 · α−5/3 · log5/3(m/αδ)) · polylog(n)

p ∈ (1, 2] µ = p
2p+1 , ρ = 0

O
(
mp/(2p+1) · α−(5p+1)/(2p+1) · log5p/(2p+1) (m/(αδ))

)
· polylog(n)

p = 2 µ = 2
5 , ρ = 0 O

(
m2/5 · α−11/5 log4/3(m/αδ)

)
· polylog(n)

p ∈ (2,∞) µ = p
2p+1 , ρ = 1− 5

2p+1

O
(
(mp)p/(2p+1) · n1−5/(2p+1) · α−(5p+1)/(2p+1)

)
· log10p/(6p+3)(m/(αδ)) · polylog n

Table 1: Space complexity of Algorithm 1. See Theorem 20.

Implementation notes for Algorithm 1. We start with a few implementation details. First,
to ensure low memory usage, one has to maintain a sparse representation of v, i.e., store only the
non-zero coordinates in an easily searchable data structure such as a balanced binary search tree.
This is possible, because as soon as v becomes 4T -dense, we stop maintaining it explicitly. Hence
this part of the algorithm uses only O(T) words of space.

14

We also avoid discussing numerical issues, and assume that for any integer j ∈ [m], we can
compute a good approximation to jp in O(1) time, and also that summing such sufficiently good
approximations still yields a sufficiently good approximation. In order to efficiently update Mexact,
while avoiding accumulating numerical errors (due to a sequence of additions and subtractions),
one can create a balanced binary tree in which we sum approximations for |vi|p for all non-zero
coordinates vi. Updating one of them then requires only updating the sums on the path to the root.
This path is of length O(log T), and hence this requires updating at most O(log T) intermediate
sums, each being a result of adding two values.

Proof of our main result. We are now ready to move on to the proof of our main result, which
collects all the tools that we have developed throughout the paper.

Proof of Theorem 20. We first prove our algorithm’s correctness conditioning on three assumptions,
and then we prove that these assumptions hold with high probability. Finally, we analyze the space
complexity of the algorithm. Throughout the proof v(i) denotes the value of v after the ith update.
Our assumptions are:

1. All invocations of Asparse, Aapprox, and Adensity are successful. That is, the following events
occur: Asparse correctly recovers v (provided that v is d4T e-sparse), Aapprox returns a (1±α/4)-
approximation to the pth-moment of v whenever it is queried, and Adensity returns a (1± .25)-
approximation to the number of non-zero coordinates in v whenever it is queried.

2. If v is T -sparse, then regime = sparse.

3. If regime = sparse, then v is 4T -sparse.

Correctness under the assumptions. By Assumption 3, Asparse is only invoked when v is
4T -sparse. By the first item, each such invocation correctly recovers v. Hence, at the first time
step of every time interval such that regime = sparse, the algorithm has a sparse representation of
v (as discussed in Section 6) and this continues for the duration of the sparse interval. Therefore,
for the duration of an interval where regime = sparse, Mexact correctly approximates ‖v‖pp, and
therefore all outputs of the algorithm are (1± α)-approximations to ‖v‖pp.

Consider now a time interval where regime = dense. By the above discussion, at the first
time step such that regime = dense, it holds that ‖v‖pp > 4T (since during sparse intervals the
algorithm exactly knows ‖v‖pp). We claim that at all time steps where regime = dense, kapprox is
a (1 ± α)-approximation of ‖v‖pp. Fix a maximal time interval [t, t′] such that regime = dense.
Let Mapprox(t) denote the value of Mapprox at time step t, and let i0 denote the time step in
which this value was computed (note that i0 ≤ t). Further let i1, . . . , i` denote all the time steps
within [t, t′] in which Aapprox was invoked. Now consider any two subsequent time steps ij , ij+1 for
j ∈ [1, ` − 1], and any time step z ∈ [ij , ij+1]. It holds that ij+1 − ij = interval. For p ∈ [0, 1],
since z − ij ≤ interval = αT/4, it holds that ‖v(ij) − v(z)‖1 ≤ αT/4, and by Lemma 16 it follows
that

∥∥v(z)∥∥p
p
∈ (1±α/4)

∥∥v(ij)∥∥p
p
. For p ≥ 1, ‖v(ij)− v(z)‖1 ≤ interval = α

32p(αT16)1/p, and Lemma 19

implies that
∥∥v(z)∥∥p

p
∈ (1 ± α/4)

∥∥v(ij)∥∥p
p
. By the assumption that all invocations of Aapprox are

successful, Mapprox(ij) ∈ (1 ± α/4) ‖v‖pp. Hence, it follows that for both possible regimes of p,

Mapprox(z) ∈ (1±α)
∥∥v(z)∥∥p

p
for any z ∈ [i1, t

′]. Similar reasoning proves that at time step i0, v was

k-dense, and hence for any z ∈ [t, i1], it holds holds that Mapprox(z) ∈ (1 ± α)
∥∥v(z)∥∥p

p
. Therefore,

15

for any z ∈ [t, t′] such that [t, t′] is a maximal time interval with regime = dense, it holds that the
output of the algorithm is a (1 ± α)-approximation of ‖v‖pp. Hence, it remains to prove that the
assumptions hold with high probability.

The assumptions hold. For item 1, by Theorem 9, with probability 1 − O(n−3), Asparse is
successful on all invocations.4 Algorithm Adensity is queried O(m/bT/10c) times, so by the setting
of q it holds that, with probability at least 1 − δ/2, all queries return a (1 ± .25)-approximation
of ‖v‖00. Similarly, Aapprox is invoked O(m/interval) times, and hence, with probability at least
1 − δ/2, all queries return a (1 ± α/4)-approximation of ‖v‖pp. Hence, Assumption 1 holds with

probability at least 1− δ −O(n−3). We henceforth condition on this event.
Now consider Assumption 2, that if v is T -sparse then regime = sparse. Clearly this holds from

the beginning of the stream and until the first time that ‖v‖00 > 4T , since up to that point everything
is deterministic and exact. Assume towards contradiction that there exists time steps such that v
is T -sparse and regime = dense, and let t be the earliest one. Let i0 be the closest step prior to
t in which kapprox was recomputed (by invoking Adensity). By the conditioning on Assumption 1

holding, kapprox(i0) ∈
[
.75
∥∥v(i0)∥∥0

0
, 1.25

∥∥v(i0)∥∥0
0

]
. Since at time step i0, the regime was not changed

to sparse, it also holds that kapprox(i0) > 2T . Hence,
∥∥v(i0)∥∥0

0
> (4/5) · kapprox(i0) > (8/5)T .

Clearly, in bT/10c updates ‖v‖00 cannot change by more than T/10. Hence,
∥∥v(t)∥∥0

0
> T , implying

that v is not T -sparse, and so we have reached a contradiction.
We turn to Assumption 3. By the conditioning on Assumption 1 holding, Asparse always cor-

rectly recovers v, implying that as long as regime = sparse, v is exactly known to the algorithm.
Therefore, it can be exactly detected when ‖v‖00 becomes greater than 4T , at which point the
regime is being set to dense. Hence, up until that point, ‖v‖00 ≤ 4T and v is 4T -sparse.

Space complexity analysis. We now analyze the space complexity of our algorithm. By
Theorem 7 and Lemma 11, for q = m/bT/10c, Algorithm Adensity requires O(

√
m/T · α−2 ·

log5/2(m/(αδ)) · log n = Õ(
√
m/T) space. This complexity is always bounded by the following

terms. By Theorem 9, Asparse requires O(k polylog n) = O(T polylog n) space. We continue to
analyze the space complexity due to Aapprox separately for different regimes of p.

For p ∈ [0, 1], by Theorem 7 and Lemma 11, Algorithm Aapprox with q = m/interval =

O(m/(αT)), requires O(
√
m/(αT) · log5/2(m/(αδ)) ·α−2 · log n = Õ(

√
m/T) space. Hence, setting

T to balance between the space complexities of Asparse and Aapprox (and Adensity), we get that the
space complexity of (α, δ)-approximating the pth moment for p ∈ [0, 1] is

O
(
m1/3 · α−5/3 · log5/3(m/(αδ)

)
· polylog(n) = Õ(m1/3).

For p ∈ (1,∞], it holds that interval = Θ((α/p) · (αT)1/p). We again consider two separate
regimes. First, p ∈ (1, 2]. By Lemma 11 and Theorem 7, since q =

√
m/interval, Aapprox

takes O
(√

mp/(α(αT)1/p) · log3/2(m/(αδ)) · α−2 · logm · log(1/δ)
)

= Õ(
√
m/T 1/p) space. Equat-

ing this term with the O(T · polylog n) space required by Asparse, results in a space complexity
of

O
(
mp/(2p+1) · α−(5p+1)/(2p+1) · log5p/(2p+1) (m/(αδ))

)
· polylog(n) = Õ(mp/(2p+1))

for p ∈ (1, 2]. Finally, we consider the regime p ∈ (2,∞). In this regime, we again have q =
(m/interval) = O(mp/(α(αT)1/p)), and so by Lemma 11 and Theorem 7, the space usage of Aapprox

4We note that with probability 1−O(n−3) (over its set of initial random coins) Algorithm Asparse correctly recovers
all k-sparse vectors, and hence its output is correct for any (adversarial) input stream.

16

is O(
√
mp/(α(αT)1/p) · log3/2(m/(αδ))(α−2 · log(1/δ) · n1−2/p)) = Õ(

√
m/T 1/p · n1−2/p). Hence,

equating this with the O(T polylog n) space required by Asparse, we get a space complexity of

O
(

(mp)p/(2p+1) · n1−5/(2p+1)α−(5p+1)/(2p+1) · log5p/(2p+1) (m/(αδ))
)
· polylog n

= Õ((mp)p/(2p+1) · n1−5/(2p+1)).

This concludes the proof.

Acknowledgments

This work was inspired by the conversation of Cameron Musco and David Woodruff—after David
Woodruff’s talk at the STOC 2021 workshop on adversarially robust streaming [Rob21a, Rob21b]—
about when tracking moments in the general turnstile model is difficult and involves a large flip
number. The authors wish to thank Rajesh Jayaram and Uri Stemmer for useful discussions.

References

[ABEC21] Daniel Alabi, Omri Ben-Eliezer, and Anamay Chaturvedi. Bounded space differen-
tially private quantiles, 2021. Preprint; Extended abstract appeared in Theory and
Practice of Differential Privacy (TPDP) 2021.

[ABED+21] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon
Yogev. Adversarial laws of large numbers and optimal regret in online classification. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, page 447–455, New York, NY, USA, 2021. ACM.

[ACSS21] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for
adversarial streaming via differential privacy and difference estimators. CoRR,
abs/2107.14527, 2021.

[BEJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A frame-
work for adversarially robust streaming algorithms. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS’20,
page 63–80, New York, NY, USA, 2020. ACM.

[BEY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS’20, page 49–62, New York, NY, USA, 2020. ACM.

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep
Silwal, and Samson Zhou. Adversarial robustness of streaming algorithms through
importance sampling. CoRR, abs/2106.14952, 2021.

[BNS+21] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, and
Jonathan R. Ullman. Algorithmic stability for adaptive data analysis. SIAM J.
Comput., 50(3), 2021.

17

[DFH+15] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,
and Aaron Leon Roth. Preserving statistical validity in adaptive data analysis. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 117–126. ACM, 2015.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory
of Cryptography (TCC), pages 265–284. Springer Berlin Heidelberg, 2006.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential pri-
vacy. In 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 51–60. IEEE Computer Society, 2010.

[GI10] Anna Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings of
the IEEE, 98(6):937–947, 2010.

[GSTV07] Anna C. Gilbert, Martin J. Strauss, Joel A. Tropp, and Roman Vershynin. One sketch
for all: fast algorithms for compressed sensing. In David S. Johnson and Uriel Feige,
editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11-13, 2007, pages 237–246. ACM, 2007.

[GW18] Sumit Ganguly and David P Woodruff. High probability frequency moment sketches.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[HKM+20] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer.
Adversarially robust streaming algorithms via differential privacy. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, ed-
itors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[HW13] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive
inputs? In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, page 121–130, New York, NY, USA, 2013. ACM.

[Jay21] Rajesh Jayaram. Sketching and Sampling Algorithms for High-Dimensional Data.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2021.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive
streaming from oblivious streaming using the bounded storage model. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages 94–121,
Cham, 2021. Springer International Publishing.

[KNW10a] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 1161–1178. SIAM, 2010.

18

[KNW10b] Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 41–52, 2010.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–
103, 2007.

[Rob21a] STOC 2021 workshop: Robust streaming, sketching, and sampling. https:

//rajeshjayaram.com/stoc-2021-robust-streaming-workshop.html, June 2021.
Accessed: 2021-08-31.

[Rob21b] STOC 2021 workshop: Robust streaming, sketching, and sampling. https://youtu.
be/svgv-xw9DZc, June 2021. Accessed: 2021-09-06.

[Ste21] Uri Stemmer. Adversarial streaming, differential privacy, and adaptive data analysis.
https://youtu.be/Whu-6IVYFXc, March 2021. Accessed: 2021-08-31.

[WZ20] David P. Woodruff and Samson Zhou. Adversarially robust and sliding window stream-
ing algorithms without the overhead. CoRR, abs/2011.07471, 2020. To appear in
FOCS 2021.

19

https://rajeshjayaram.com/stoc-2021-robust-streaming-workshop.html
https://rajeshjayaram.com/stoc-2021-robust-streaming-workshop.html
https://youtu.be/svgv-xw9DZc
https://youtu.be/svgv-xw9DZc
https://youtu.be/Whu-6IVYFXc

	Introduction
	Overview of Our Contribution
	Our results
	Our techniques
	Pseudocode

	Preliminaries
	Basic notation and terms
	Streaming algorithms
	Adversarially robust streaming algorithms
	Frequency moment estimation
	Flip number
	Sparse recovery
	Differential privacy

	Bounded Query Adversarially Robust Streaming
	Tools from differential privacy
	Proof of Lemma 11

	Bounded Change
	Moments p [0,1]
	Moments p [1,)

	Proof of the Main Result

