
PRESENTED AT THE 2003 IEEE CONFERENCE ON DECISION AND CONTROL 4399

Classical Dual-Inverted-Pendulum Control
Kent H. Lundberg James K. Roberge

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139

email: klund(at)mit.edu

Abstract— A cart with two independent inverted pendula,
called a dual-inverted-pendulum system, is analyzed and com-
pared to the single-inverted-pendulum system using classical
linear methods. Using only the angles of the pendula and
the position of the cart, a classical controller is designed that
stabilizes the pendula in the inverted position with the cart at
the center of the track. Simulations of the transient response
to initial conditions are presented. Intuitive reasoning and an
insightful approach to the control design are major emphases of
this effort.

I. I NTRODUCTION

The feedback stabilization of a single-inverted-pendulum
system, shown in Figure 1, is a favorite lecture demonstration
of students in control subjects, and is well covered in the lit-
erature [1], [2], [3]. The single-inverted-pendulum system has
an elegant classical controller, requiring only easily measured
inputs: the angle of the pendulum with respect to vertical and
the position of the cart.

The position of the cart must be measured to keep the
system from driving off the end of the track. The primary
difficulty in the design of the classical controller for the
inverted-pendulum system is maintaining the controllability of
the cart-position mode.

x

θ

l

Fig. 1. Geometry of the single-inverted-pendulum system (driving ser-
vomechanism not shown)

A cart with two independent inverted pendula [4], [5],
here called a “dual-inverted-pendulum system,” is shown in
Figure 2. The position of the cartx is driven by a servomech-
anism. The angles of the pendulum with respect to vertical are
θB for the big pendulum andθL for the little pendulum.

In the following sections, a compensator that stabilizes the
pendula in the inverted position and keeps the cart near the
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Fig. 2. Geometry of the dual-inverted-pendulum system (driving servomech-
anism not shown)

center of the track is devised using only measurements of the
pendula angle and the position of the cart.

II. I NVERTED-PENDULUM MODEL

Following the development by Siebert [6], the transfer
function for the inverted-pendulum system is written in terms
of the cart position. Consider the inverted-pendulum system
in Figure 1. At a pendulum angle ofθ from vertical, gravity
produces an angular acceleration equal to

θ̈g = (g/l) sin θ

and a cart acceleration of̈x produces an angular acceleration
of

θ̈x = −(ẍ/l) cos θ.

Writing these accelerations as an equation of motion, lineariz-
ing it, and taking its Laplace transform produces the plant
transfer functionG(s), as follows:

θ̈ = θ̈g + θ̈x = (g/l) sin θ − (ẍ/l) cos θ

lθ̈ − gθ = −ẍ

G(s) =
Θ(s)

X(s)
=

−s2

ls2 − g
=

−s2/g

(τs + 1)(τs − 1)

where the time constantτ is defined asτ =
√

l/g. This
transfer function has a pole in the right half-plane, which is
consistent with our intuitive expectation of instability.
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Fig. 3. Block diagram of the inverted-pendulum loop
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Fig. 4. Root locus of the inverted-pendulum-system loop withunstable
compensator

III. S INGLE-INVERTED-PENDULUM STABILIZATION

The stabilization of the single-inverted-pendulum system
is accomplished by driving the cart position based on the
pendulum angle, as shown in the system block diagram in
Figure 3.

The difficulty in stabilizing the inverted-pendulum system
derives from the right half-plane pole in conjunction with
the zeros at the origin. Canceling the zeros at the origin
makes the cart position uncontrollable. In order to stabilize
the system, the compensator must include a right half-plane
pole, as explained below.

For example, with a pendulum length ofl = 9.8 cm and
acceleration due to gravity ofg = 9.8 m/s2, the pendulum
transfer function is

G(s) =
−s2/g

(0.1s + 1)(0.1s − 1)

One possible stabilizing compensator is

K(s) =
K(0.11s + 1)

(s + 1)(0.2s − 1)

as shown in the root locus in Figure 4.
The right half-plane pole in the compensator causes the

root-locus branches in the right half-plane to break away from
the real axis and travel into the left half-plane. Without the
unstable pole in the compensator, the zeros at the origin would
prevent the root-locus branch for the right half-plane polefrom
crossing the imaginary axis.

Intuitively, the unstable pole in the compensator is explained
by the need for position feedback around the driving ser-
vomechanism. The cart position can be stabilized by adding
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Fig. 5. Block diagram of the minor loop

an offset to the angle measurement that is proportional to cart
position. This feedback has the effect of always “leaning” the
pendulum toward the center of the track, which prevents cart
drift. This positive feedback pushes one of the motor poles
into the right half-plane, as is shown in Figure 4.

IV. D UAL -INVERTED-PENDULUM CONTROL STRATEGY

The stabilizing control for the dual-inverted-pendulum sys-
tem is developed using an approach similar to the single-
inverted-pendulum system.

Conceptually, in order to stabilize this system, the controller
must catch the little pendulum (because it’s going to fall over
first) and then catch the big pendulum. If the little pendulum
is pointed in the same direction as the big pendulum, but at
a larger angle, then the cart must move such as to catch both
pendula. The only possible equilibrium for the system is with
both pendula upright.

Obviously, the system cannot be stabilized if the pendula
are identical in length. If the pendula are identical then they
are affected equally by the motion of the cart. For example,
if they are falling in opposite directions, any attempt to catch
the pendulum falling to the left makes the pendulum falling
to the right worse by the same amount. It is this property that
makes the dual-inverted-pendulum system harder to stabilize
than the articulated-inverted-pendulum system (often called
the “double-inverted-pendulum system”).

To implement the above control strategy, a minor loop is
closed around the little pendulum that drives the cart position
to regulate the little-pendulum angleθL. The little-pendulum
angle is commanded to lean in the direction that the cart needs
to travel, as shown in the block diagram of the minor loop in
Figure 5.GL(s) is the little-pendulum transfer function, and
KL(s) is the minor-loop compensator. Note that the block
diagram is drawn with positive feedback sinceGL(s) includes
a negative sign.

The transfer function from our command angleθC to the
cart positionx is

HL(s) =
X(s)

ΘC(s)
=

−KL(s)

1 − KL(s)GL(s)

To control the angle of the big pendulum, the cart is driven
via the minor-loop inputθC based on the angle of the big
pendulum with respect to vertical,θB. The control strategy is
to make the minor-loop command some function of the big-
pendulum angle, likeθC = kCθB. Thus, a compensatorKC(s)
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Fig. 6. Block diagram of the major loop

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
Evans Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 7. Root locus of the minor-loop transfer functionLm(s) =
KL(s)GL(s)

is designed, and the loop is closed fromΘC(s) to ΘB(s), as
shown in the block diagram of the major loop in Figure 6.

V. L OOPDESIGN AND STABILIZATION

The linearized transfer function relating the angle of the
little pendulum with respect to verticalθL to the position of
the cartx is

GL(s) =
ΘL(s)

X(s)
=

−s2/g

(τLs + 1)(τLs − 1)

whereg is the acceleration due to gravity and the time constant
is τL =

√

lL/g.
By analogy to the single-inverted-pendulum system, a com-

pensator for the minor loop is chosen to leave one of the
closed-loop minor-loop poles in the right half-plane. For a
little-pendulum length oflL = 9.8 cm, such a compensator is

KL(s) =
10

s + 1

as shown in the root locus of the minor-loop transfer function

Lm(s) = KL(s)GL(s)

shown in Figure 7.
The minor-loop transfer function is

HL(s) =
X(s)

ΘC(s)
=

−KL(s)

1 − KL(s)GL(s)
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Fig. 8. Pole-zero plot of the transfer functionHL(s) (closed minor loop)
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Fig. 9. Pole-zero plot of the major-loop transfer functionL(s) =
KC(s)HL(s)GB(s)

For the aboveGL(s) andKL(s), the pole-zero plot ofHL(s)
is shown in Figure 8.

The transfer function for the big pendulum is

GB(s) =
ΘB(s)

X(s)
=

−s2/g

(τBs + 1)(τBs − 1)

whereτB =
√

lB/g. With a big pendulum length four times
longer than the little pendulum (lB = 4lL), the pole-zero plot
of the major loop transfer function

L(s) = KC(s)HL(s)GB(s)

is shown in Figure 9.
The pole-zero plot in Figure 9 shows two poles in the right

half-plane, one from the minor loop and one from the big
pendulum, as desired. Closing the major loop with a little bit
of lead compensation

KC(s) = kC

(

τBs + 1

τLs + 1

)

produces the root-locus plot shown in Figure 10.
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Fig. 10. Root locus of the major-loop transfer functionL(s) =
KC(s)HL(s)GB(s)
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Fig. 11. Root locus of the major loop with locations of closed-loop poles
for kC = 1.5

ChoosingkC = 1.5 pushes the closed-loop poles of the
major loop deep into the left half-plane, as shown on the
root-locus plot in Figure 11. Note that this gain corresponds
to driving the little-pendulum angle to 1.5 times the big-
pendulum angle. This gain results in pole locations that
provide acceptable transient behavior.

A Nyquist diagram of the major loop, as shown in Figure 12,
shows that the system is stable as designed forkC = 1.5. The
two negative encirclements of the−1 point guarantee stability
since the open-loop system starts with two poles in the right
half-plane.

However, the Nyquist plot also shows that there is not
much phase margin, so the system will likely go unstable if
additional low-pass dynamics are added to the loop.

VI. SIMULATIONS

The system described in the previous section was simulated
in Simulink [7] for three different initial conditions corre-
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Fig. 12. Nyquist plot of the major-loop transfer functionL(s) =
KC(s)HL(s)GB(s) for kC = 1.5
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Fig. 13. Simulation of system for initial non-zero little-pendulum angle

sponding to the three states of the system: little-pendulum
angle, big-pendulum angle, and cart position.

A. Initial Little-Pendulum Angle

The system was simulated for the little pendulum initially
leaning by one degree, with the big pendulum vertical and the
cart centered on the track. The transient response to this initial
condition is shown in Figure 13.

The transient deviations in angle and position make sense.
In order to recover from an initial angle in the little pendulum,
the cart must move to get both pendula pointing in the same
direction. Only then can the cart move to make both pendula
vertical.

B. Initial Big-Pendulum Angle

The system was simulated for the big pendulum initially
leaning by one degree, with the little pendulum vertical and
the cart centered on the track. The transient response to this
initial condition is shown in Figure 14.
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Fig. 14. Simulation of system for initial non-zero big-pendulum angle
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Fig. 15. Simulation of system for initial non-zero cart position

Again, the transient deviations in angle and position make
sense, despite their larger amplitude. Note the system has to
“work harder” to correct a deviation in the big pendulum
than to correct a deviation in the little pendulum. In order to
recover from an initial angle in the big pendulum, the cart must
initially move in the direction to make the deviation worse,so
both pendula are pointing in the same direction. This motion
more than doubles the big pendulum angle, and creates a large
transient deviation of the little pendulum. Once both pendula
are leaning in the same direction (with the little pendulum
leaning more), the cart moves back to correct both angles.

C. Initial Cart Position

The system was simulated for an initial cart position of ten
centimeters, with the pendula vertical. The transient response
to this initial condition is shown in Figure 15.

The complicated initial behavior of the cart can be readily
explained. To move the cart to the left, the system must point
the big pendulum to the left. To point the big pendulum to

the left, the little pendulum must first be pointed to the right.
Therefore

1) The cart moves slightly to the left to point the little
pendulum to the right

2) The cart moves to the right to point both pendula to the
left

3) The cart moves smoothly to the left, catching both
pendula and traveling the necessary distance

Intuitively, this behavior is correct. When balancing a verti-
cal ruler in your hand, to move the ruler to the left, you must
first move your hand sharply to the right, pointing the ruler
to the left, so that when you catch the ruler, you have moved
both your hand and ruler to the left.

VII. C ONCLUSION

A logical extension to the classical controller for the
single-inverted-pendulum system has been shown for the dual-
inverted-pendulum system. This controller is simpler thanthe
modern control result [8]. It is the result of an intuitive
approach to the problem, and is easily understood.

APPENDIX

L IMIT ON PHASE MARGIN

The obtainable system phase margin can be estimated by
ignoring the controllability of the cart position and designing
a minimal compensator. Starting with the transfer functionof
the little pendulum

GL(s) =
ΘL(s)

X(s)
=

−s2/g

(τLs + 1)(τLs − 1)

The minor loop can be stabilized by makingx an appropriate
function of θL. A simple choice for this compensator (which
ignores the position mode) is

KL(s) =
kLg(τLs + 1)

s2
.

The system, shown in the block diagram of Figure 5, is stable
for any kL > 1. The transfer function for the closed minor
loop, from command to cart position is

HL(s) =
X(s)

ΘC(s)
=

−KL(s)

1 − KL(s)GL(s)

HL(s) = −
g(τLs + 1)(τLs − 1)

s2( τLs
kL

+ 1 − 1

kL

)

In the limiting case of making the compensator gainkL very
large, the dynamics of the real axis pole are instantaneous,
thus

HL(s) =
X(s)

ΘC(s)
≈ −

g(τLs + 1)(τLs − 1)

s2

The transfer function of the big pendulum is

GB(s) =
ΘB(s)

X(s)
=

−s2/g

(τBs + 1)(τBs − 1)
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thus the transfer function of the major loop, shown in the block
diagram of Figure 6, is

L(s) = KC(s)HL(s)GB(s)

L(s) = KC(s)
(τLs + 1)(τLs − 1)

(τBs + 1)(τBs − 1)

One possible compensation technique for the major loop is to
pick a KC(s) that cancels all of the left half-plane dynamics
of the plant. This compensator is

KC(s) = kB

(τBs + 1)

(τLs + 1)

thus, the loop transfer function of the major loop becomes

L(s) = kB

(τLs − 1)

(τBs − 1)

To achieve the most stable performance, the loop must
crossover atωc = 1/

√
τLτB with kB =

√

τB/τL. This system
has a phase margin

φM = arcsin

(

α − 1

α + 1

)

whereα = τB/τL. This equation is similar to the maximum
obtainable phase increase from the lead compensator [9].

This development suggests that the stability of the system is
improved if the ratio of the pendula lengths is increased. This
result makes intuitive sense, because the system is obviously
uncontrollable if the lengths are the same. However, it is
inadvisable to increase the ratio without bound. Our choice
for the major-loop compensator

KC(s) = kB

(τBs + 1)

(τLs + 1)

has high-frequency gain proportional to the square root
of the length ratio. Increasing the high-frequency gain of

KC(s) increases the amplitude of the transient deviations of
the little-pendulum angle. As can be seen from the simulation
in Figure 14, for an initial big-pendulum angle of one degree,
the transient deviation of the little-pendulum angle already
approaches seven degrees. Increasing the length ratio will
make the amplitude of this transient larger, possibly violating
our assumption thatsin θ = θ.
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