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Extracting Automata from 
Recurrent Neural Networks

Gail Weiss, Yoav Goldberg, Eran Yahav



Can we approximate the operations of an RNN using a 
deterministic finite automaton?

Given: Oracle RNN (R) Find: Minimal DFA (L)

Goal: Model Distillation

https://www.arxiv-vanity.com/papers/1801.08322/ 
https://www.brics.dk/automaton/

{0,1}*

?

As measured by 
the classification 
output



Core Contributions
Given: Oracle RNN (R) Find: Minimal DFA (L)

Must answer: 
1. Membership queries : Label the 

data point 
2. Equivalence queries : Is the 

hypothesis equivalent to me? i.e. 
accept or reject DFA with counter eg. 
if reject

Approximate using the L* 
algorithm (black box)

Use as functions to 
call when suggesting 
new hypotheses



Core Contributions
Given: Oracle RNN Find: Minimal DFA 

Must answer: 
1. Membership queries : Label the 

data point 
2. Equivalence queries : Is the 

hypothesis equivalent to me? i.e. 
accept or reject DFA with counter eg. 
if reject

Approximate using the L* 
algorithm (black box)

Use as functions to 
call when suggesting 
new hypotheses

A finite abstraction to the RNN to allow for answering of 
equivalence queries: 

Finite Abstraction (A)
L* DFA (L)
RNN (R)

L == A if L = R  else find counterexample or fix A



Brief Recap of Automata 
Theory



Deterministic Finite State Automata (DFA)
5 tuple such that: 

1.    all states, i.e. {1,2}
2.    alphabet i.e. {open, close}
3.                     transition function e.g.   (1, close) = 2
4.          starting state, assume 1

1. “DFA can have only 1 start state”

5.        final/ accept state(s)

Regular Language: The set of languages that can be accepted by a DFA 

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg



DFA Running Example
Regular Expressions are commonly represented with DFAs eg. baabb

    = s    = {r}  = { s, q , p , r }               = { b , a , c }

In Weiss et al, RNN hidden states 
are compared to Q 

https://levelup.gitconnected.com/an-example-based-introduction-to-finite-state-machines-f908858e450f



RNN - Automata Notations



5 tuple

and f(Q) --> {Accept, Reject}  s.t f(Q) == 1 if Q in F

Notations

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/

Most importantly, the 
hidden state of RNN = each state of DFA

RNN (R)

DFA (L)



Getting the classification decision

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/

f(Q) = {0,1}

f(Q) = {0,1}

Each discrete state: 
“Am I the final state?”

Each hidden vector:
“Am I the final state?”

RNN (R)
DFA (L)



How do we map from R to L?

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/

f(Q) = {0,1}

f(Q) = {0,1}
RNN (R) DFA (L)Go from continuous hidden 

vectors (R) to discrete states 
in DFA (L):

We need Abstractions (A) 
i.e. discretization of states of 

R.  

?

We need to answer 
equivalence question 
based on their 
classifications: 



How do we map from R to L?

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/

f(Q) = {0,1}

f(Q) = {0,1}RNN (R) DFA (L)

Approximate R using A and 
try to answer the simpler 

question:
 is A == L? 

This question can be 
answered using L*

Abstraction (A)

?

Use L* 
Algorithm



How do we map from R to L?

https://commons.wikimedia.org/wiki/File:Finite_state_machine_example_with_comments.svg
https://www.arxiv-vanity.com/papers/1801.08322/

f(Q) = {0,1}

f(Q) = {0,1}RNN (R) DFA (L)

After comparing 
classifications, 

approximation can result in 

counter examples i.e. 
 L != A → find new L 

or refinement of 
abstraction  i.e. L = A 

after finding new A

Abstraction (A)

?

Use L* 
Algorithm



Results



Brief Recap of Findings
Classification question: Does the input sequence belong to a Tomita Grammar? 

RNN: Binary Classification DFA: Reached Accept State or Not

1. Random Regular Languages: Reference Grammars have 5 state DFA over 
2 letter alphabet

Overall, RNN trained 

to 100% accuracy 



Brief Recap of Findings
2. Comparison with a-priori Quantization: Network state space divided into q 

equal intervals. A different method of network abstraction than that proposed 
in this paper. 

This paper: extracted small and accurate DFAs in 30s

A-priori: With quantization of 2, time limit of 1000s was not enough and 
extracted DFAs were large (60,000 states) and sequences of length 1000 
would get 0% accuracy. For others, 99%+
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3. Comparison with Random Sampling: For counterexample generation, their 

method is superior to random sampling, which could often become 
intractable. 



Brief Recap of Findings
3. Comparison with Random Sampling: For counterexample generation, their 

method is superior to random sampling (RS), which could often become 
intractable. Their method is also able to find adversarial inputs compared to 
none for RS. 



Brief Recap of Limitations
Due to L* polynomial complexity:

- Extraction can be very slow
- Large DFAs can be returned

When RNN doesn’t generalize well to input, this method finds various 
adversarial inputs, builds a large DFA and times out. 

Takeaway? RNNs are brittle and test set performance evidence should be 
interpreted with extreme caution. 



1. Where does model distillation fit in with the symbolism vs 
connectionism debate?

2. Were we successfully able to show equivalence between 
symbolic and connectionist architectures?

Breakout Room Activity



What Is One Grain of Sand 
in the Desert?

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan 
Belinkov, Anthony Bau, James Glass



Neural networks learn distributed 
representations.



Neural networks learn distributed 
representations.

Many neurons, or “grains of sand,” 
comprise the meaning, or “the desert.”
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Neural networks learn distributed 
representations.

If we zoom in on a small slice of the 
representation, what would we find?

What if we look at only a single 
neuron?



Inside the black box
F&P argue that although neural networks can implement symbolic computation, 
they need not explicitly represent discrete symbols or operations on them.
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Inside the black box
F&P argue that although neural networks can implement symbolic computation, 
they need not explicitly represent discrete symbols or operations on them.

However, it might be the case that neural networks implicitly learn to represent 
and manipulate discrete units.

Here, we investigate whether neurons behave like discrete concept detectors, 
and whether this local representation mechanism determines network behavior.
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Consider a hidden layer in some neural network.

the
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through
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grass

Neural Model Neural Model

In response to a stimulus 
(e.g. a word), it either does 
not fire or it fires with some 
magnitude.

Neurons that consistently, 
strongly fire for specific 
classes of stimuli can be 
said to detect those stimuli. 

This neuron strongly activated for both 
“large” and “green,” so maybe it detects 
adjectives!
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the

large 

dog 

ran

through

green

grass

Neurons as concept detectors
In the previous example, we saw neurons that detect specific parts of speech. 
What if we don’t know what concepts to look for?

Network A Network B Network C Idea: If the concept is 
important for the task, 
then any neural 
network solving the 
task should encode 
the concept.

These neurons tend to fire 
together, so they probably encode 
the same (important) thing.



Discussion

Before we dive into experiments:

● Is this a reasonable way to 
interpret neuron activations?

● We’ve described a sort of local 
representation; can we call it 
“symbolic”?

10 minutes



Hidden Layer

Linguistic correlation analysis

the

large 

dog 

ran

through

green

grass

Neural Model Neural Model

This neuron strongly activated for both 
“large” and “green,” so maybe it detects 
adjectives!



Hidden Layer

Linguistic correlation analysis

Goal: Identify neurons that 
detect linguistically 
meaningful concepts: part of 
speech, morphological 
features, or semantic tags. 
The linguistic concepts are 
known a priori.

the

large 

dog 

ran

through

green

grass

Neural Model Neural Model

This neuron strongly activated for both 
“large” and “green,” so maybe it detects 
adjectives!
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Setup
Sequence of words (x1, …, xn)

Set of word and label tuples (xi, li)

Model f mapping words to vector representations f(xi) = zi

E.g., the hidden state of an RNN after 
the i-th input. The authors use the 
hidden states of RNNs trained on MT 
(EN → FR, DE → EN) and LM.

E.g., (“green”, JJ) for POS. The 
authors experiment with POS and 
semantic tags.
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Method
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Method
Train logistic regression classifier on (zi, li) pairs

Minimize regularized cross entropy:

Encourages sparsity, i.e. 
selection of only a few neurons



Results: classifier accuracy

Takeaway: The neural representations do contain (potentially distributed) signal 
about part of speech, morphology, and semantic tags.



Results: ablating important neurons

Takeaway 1: The MT and LM systems do distribute information across neurons.



Results: ablating important neurons

Takeaway 2: ...but the systems rely more on neurons that detect linguistically 
meaningful symbols.



Examples of linguistically meaningful neurons



Which linguistic concepts are most distributed?

Information about closed-class categories 
(e.g. month of year, end of sentence) is local 
to a few neurons. 

Information about open-class categories 
(e.g. noun and verb parts of speech) is 
highly distributed.



Discussion

Model performance still drops 
substantially when the least salient 
neurons are ablated. What can we 
conclude?

Why should open class concepts 
(e.g. noun/verb POS) be more 
distributed than closed class 
concepts?

10 minutes
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ran

through

green

grass

Cross-model correlations

Network A Network B Network C

These neurons tend to fire 
together, so they probably encode 
the same (important) thing.
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Method
Train the same architecture on the original task with multiple random seeds.

In each model, look for neurons whose activations are highly correlated with a 
neuron from a different initialization.

Same architectures (RNNs) and tasks (LM/MT) as before.

Activation values 
for i-th model, j-ith 
neuron



Results: ablating correlated neurons

Takeaway: Cross-model correlations select for salient neurons, and the 
network is most sensitive to the most correlated neurons. These 
neurons likely select for task-essential concepts.



Results: comparison to single-model correlations

Takeaway: We’re not hallucinating. Neurons 
with cross-model correlation select for more 
task-essential concepts than e.g. the highest 
variance neurons.



Results: comparison to linguistic correlations

Takeaway: Some classes of neurons are 
more essential for NMT than others.

In particular, the model relies most neurons 
with cross-model correlations. These 
probably select for concepts essential to MT.



Breakout 
Rooms

For the remaining time...

Is it fair to assume different 
initializations of an NN will learn 
similar concept detectors?

How does this method for 
identifying symbolic computation 
compare to the method used in 
[Weiss et al., 2018]?

These results are somewhat noisy; 
can we conclude these models are 
learning discrete structures?



Appendix








